
Analytica® Decision
Engine

for Windows

26010
(650) 212-12
Lumina Decision Systems, Inc.
 Highland Way • Los Gatos, CA 95033
12 • www.lumina.com • support@lumina.com
Developer’s Guide
Release 3.1

November, 2004

Copyright notice
Information in this document is subject to change without notice and does
not represent a commitment on the part of Lumina Decision Systems, Inc.
The software program described in this document is provided under a
license agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy
the software on any medium except as specifically allowed in the license
agreement. No part of this document may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including
photocopying, recording, or information storage and retrieval systems, for
any purpose other than the licensee's personal use, without the express
written consent of Lumina Decision Systems.

This document is © 1998-2004 Lumina Decision Systems, Inc. All rights
reserved. The software program described in this document, Analytica
Decision Engine, is copyrighted

© 1998-2004 Lumina Decision Systems, Inc., all rights reserved

The Analytica Decision Engine software contains software technology
licensed from Carnegie Mellon University exclusively to Lumina Decision
Systems, Inc., and includes software proprietary to Lumina Decision
Systems, Inc. Carnegie Mellon University and Lumina Decision Systems,
Inc., make no warranties whatsoever, either expressed or implied,
regarding this product, including warranties with respect to its
merchantability or its fitness for any particular purpose.

Analytica is a registered trademark of Lumina Decision Systems, Inc.

Lumina Decision Systems, Inc.

26010 Highland Way, Los Gatos, CA 95033

Tel: (650) 212-1212, Fax: (650) 240-2230,

E-mail: support@lumina.com

Internet: http://www.lumina.com

Acknowledgments
The Analytica Decision Engine for Windows Developer's Guide was written
by Richard Sonnenblick, Hugh Silin, and Lonnie Chrisman.

mailto:support@lumina.com
http://www.lumina.com/

Analytica Decision Engine for Windows Developer’s Guide

Contents
Introduction 1

What is the Analytica Decision Engine?.................................. 1
How to use this document... 2

Installation 3
System Requirements .. 3
Installing the Analytica Decision Engine files 3

Entering a new license code ... 5
Uninstalling ADE ... 6

Using the Analytica Decision Engine Server 7
Analytica Decision Engine Server Class Architecture 7
The AdeTest Program .. 8
Sample Application in Excel’s Visual Basic 10
To create a new Visual Basic project which uses the in-process
server of ADE: .. 10
Initializing ADE ... 11
ADE Typescript: Command Language Communication 12
Errors and Error Handling ... 13
Working with Analytica Models, Modules, and Files.............. 15
ADE Objects ... 17
Retrieving Results of CAObject .. 19
Retrieving Multi-Dimensional Results of CAObject 20
Creating Tables and Setting Values In Tables 28

Analytica Decision Engine Server Class Reference 33
Class CAEngine ... 33

Properties: ... 33
Methods:.. 36

Class CAObject .. 39
Properties: ... 39
Methods:.. 40

Class CATable.. 41
Properties: ... 41
Methods:.. 42

Class CAIndex.. 47
Properties: ... 47
Methods:.. 47

Analytica Decision Engine Developer’s Guide 1

Introduction
Thank you for purchasing the Analytica Decision Engine for
Windows (ADE) developer’s kit. This document describes how to
use ADE. If you are a Visual Basic or C++ programmer interested
in accessing information in your Analytica models from within your
applications, from within Microsoft applications such as Excel and
Word, or from Microsoft ASP, this document will help you get
started.

What is the Analytica Decision Engine?
The Analytica Decision Engine (ADE) is a powerful ActiveX
component that helps you to programmatically interact with and
create Analytica models. The engine can create, read, check,
parse, evaluate, modify, and save Analytica models. Although
you can use ADE to prototype and refine your models, we
recommend that you use Analytica for this purpose (see the
Analytica tutorial and reference guide for information about
creating and refining Analytica models). Following model
refinement, you can use ADE to build an interface to your model.

To provide the widest range of inter-application compatibility, ADE
is provided as both an ActiveX in-process automation server
(adew.dll) and an ActiveX local automation server (ade.exe). The
classes, methods, and properties exposed by these servers are
accessible from any OLE client compliant development
environment (Visual Basic), any application with Visual Basic for
Applications (VBA) support, including the Microsoft Office suite of
applications, web pages using VB Script, JavaScript, or Microsoft
Active Server Page (ASP) technology, any C/C++ program, and
many others. Server objects allow you to read, check, parse,
evaluate, modify, and save Analytica models from within your
applications. For example, you can use Visual Basic or C/C++ to
create graphical user interfaces (GUIs) on 32-bit Microsoft
Windows platforms for your Analytica models, tailored to specific
applications and specific classes of end-users.

Introduction

Analytica Decision Engine Developer’s Guide 2

How to use this document
Following this introduction, this document is divided into three
sections:

1. Installation

This section explains the steps required to install the Analytica
Decision Engine 3.1 on your Windows 98, ME, NT 4 (>SP 6),
2000, or XP computer.

2. Using the Analytica Decision Engine Server

This section provides a step-by-step guide to the functionality
accessible through ADE. You should read this section to get
better acquainted with the classes, and their methods and
properties. By using the sample code fragments presented in this
section in your code, you can begin accessing information in your
models from your Visual Basic applications immediately.

3. Analytica Decision Engine Server Class Reference

This section provides reference materials on the four object
classes in ADE and their properties and methods. Information
that can be found in this chapter includes method syntax, data
types, and property access information. Refer to the information
in this section after you’ve read through the section, “Using the
Analytica Decision Engine Server”, and have specific questions
about particular methods and properties.

Installation

Analytica Decision Engine Developer’s Guide 3

Installation
System Requirements

Windows 98, ME, NT 4.0 (>SP6), 2000, or XP.

Ten Mb of hard drive space (additional space will be required for
development of your applications).

Eight Mb of RAM (16 Mb recommended for Visual Basic
Applications development)

In addition to the above requirements, you will need an OLE-
automation enabled development environment such as Visual
Basic.NET, or Visual Basic 5 or 6 Standard Edition (minimum), 32-
bit version.

The files required for installation of ADE are shipped on a CD or
downloaded over the network. The installation contains the ADE
in-process automation server (adew.dll), the ADE local automation
server (ade.exe), analytica.i and Analytic.ini (which are needed by
adew.dll and ade.exe), and four example programs.

Installing the Analytica Decision Engine files
[Installing from the network]

1. Obtain an ADE 3.1 license code from Lumina. This will be
supplied to you, usually through e-mail, when you purchase
ADE. You must complete the installation within the specified
number of days after the license code is issued to you, or it will
become stale. A fresh code can be obtained by following the
directions accompanying the license code.

2. Download the ADE setup executable. The location of the file
will be provided to you when you receive your license code.
Save the file to disk.

3. Run (e.g., double click on) the file just download to begin the
ADE installer.
Note: Before running the ADE installer, you must have the
Windows System Installer (WSI) already installed on your
system. This is guaranteed to already be on your system if
you are using Windows XP, or if you have previously installed
Analytica 3.1. If you have installed any recent Windows

Installation

Analytica Decision Engine Developer’s Guide 4

software, it is also very likely to already be present. If it is not
present, the easiest remedy is to install Analytica 3.1.

4. Follow the instructions. Read and agree to the license
agreement, select a directory for the installation, and enter
your license code when prompted.
If the installer reports that your license code is stale, go to
http://lumina.com/ana/refreshLicense and obtain a fresh code.
After you obtain a fresh code, be sure to enter the license
code within three days.

[Installing from CD]:

1. Insert the Analytica Decision Engine CD into your CD-ROM.

2. If the installer does not automatically start, run the setup.exe
program on the CD-ROM.

3. During the setup, you will need to select a directory for
installation, to read and agree to the licensing terms, and to
enter the license code supplied to you by Lumina Decision
Systems when you acquired ADE.

If the installer reports that your license code is stale, go to
http://lumina.com/ana/refreshLicense and obtain a fresh code.
After you obtain a fresh code, be sure to enter the license
code within three days.

After following the above steps, the following files should exist in
the directory in which you installed ADE:

Adew.dll

Ade.exe

Analytic.ini

Analytic.i

MathFunctions.dll

ArrayFunctions.dll

FinancialFunctions.dll

ODBC4Analytica.dll

Three ADE manuals are installed into a subdirectory called docs.
These are:
ADE Developer’s Guide.pdf (this document)
ADE Tutorial.pdf
ADE Scripting Guide.pdf

http://lumina.com/ana/refreshLicense
http://lumina.com/ana/refreshLicense

Installation

Analytica Decision Engine Developer’s Guide 5

Six example programs should also have been installed in that
directory underneath the examples directory. They are as follows:

Tutorial.VB6 and Tutorial.NET- (separate versions for users of VB
versions 5/6 and VB.NET) the program referred to by the
Analytica Decision Engine Tutorial. It is recommended that you
read the Analytica Decision Engine Tutorial completely before
writing your own programs that depend on ADE.

Anatest- a program that tests the functionality of ADE for users of
VB 5 and 6. You can run this program inside of the Visual Basic
version 5 or 6 debugger to gain some insight into the proper
syntax of some of ADE’s calls. This program makes use of the
vast majority of the functionality exposed by ADE.

AdeTest – a program that allows you to call or test the methods of
ADE objects. You can run AdeTest.Exe (in the bin directory), or
you can trace through the code in the Visual Basic.NET debugger
to observe each method being called.

asp_exam – a program that shows how to access ADE through a
Microsoft ASP program.

excel_exam – a program that shows how to access ADE from any
application with Visual Basic for Applications (VBA) support,
including the Microsoft Office suite of applications.

Entering a new license code
If you have previously installed ADE 3.1 and need to enter a new
(different) license code, follow these steps:

1. Open a command prompt.

On Windows 98 or ME, select Start � Run and type
Command.exe.

On Windows NT 4, 2000, or XP, select Start � Run and type
Cmd.exe.

2. Change directory (using the cd command) to the directory where
you installed ADE 3.1.

3. Type: ADE /RegServer

A dialog will appear prompting you enter your new license code.

Installation

Analytica Decision Engine Developer’s Guide 6

Uninstalling ADE
To uninstall ADE, select “Add/Remove Programs” in the Windows
Control Panel. Scroll to find ADE 3.1. Press the
“Change/Remove” or “Add/Remove…” button, depending on your
operating system, and select “Remove”.

The uninstall will only remove files that were placed on your
system by the installer. If you have compiled some of the
examples, there may be some files and directories, created during
those exercises, which are not removed. To remove these as
well, find the install directory (e.g., C:\Program Files\Lumina\ADE
3.1) and remove it (but only after the uninstall has been run).

Analytica Decision Engine Developer’s Guide 7

Using the Analytica Decision
Engine Server

ADE exposes four automation objects: CAEngine, CAObject,
CATable, and CAIndex (‘CA’ stands for Class Analytica).

The CAEngine class contains methods and properties that allow
you to open and close existing models, create new models, create
new Analytica objects, and access Analytica objects contained in
your model. The CAObject class contains methods and
properties that allow you to set and obtain information about the
Analytica objects that you obtain from the CAEngine class. The
CATable and CAIndex classes are used to examine and modify
definition attributes of Analytica index objects, and objects whose
results are multi-dimensional. The following sections describe
how to access these Analytica Server objects from Visual Basic.

Analytica Decision Engine Server Class
Architecture

In addition to the Program Interface, ADE has a fully functional
command interface, known as the typescript. The typescript
language is described in the Analytica Scripting Guide, and allows
access to all of ADE’s functionality. The API provides a more
convenient, object-oriented, set of functions for communication
with the engine from Visual Basic and C++ applications. A calling
program can use the API functions, or it can pass typescript
commands directly to the typescript interface.

Application
 (Calling Program)

Analytica Engine
(adew.dll or ade.exe)

Typescript I/O

Using ‘Command’ and
‘Send’

Figure 1. The Analytica Decision Engine Architecture

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 8

The AdeTest Program
ADE 3.1 ships with a sample program called AdeTest.exe. The
executable can be found in the Examples/AdeTestbin directory.
You can use AdeTest to exercise the functionality of either the in-
process (adew.dll) or the local process (ade.exe) versions of ADE
3.1. Using AdeTest, you can send script commands to the
engine, create ADE objects, set or call virtually any of the
properties and methods of the ADE objects. If you have Visual
Basic.NET installed, you can step through the code in the Visual
Studio Debugger to observe the methods being called.

The diagram shows a screenshot of the AdeTest program. The
left-hand pane shows a list of ADE objects that the program is
currently holding. The right side shows details of one of those
objects. In the screenshot, there are three CAEngine instances,
each with a different model open. The first CAEngine is an in-
process (ADEW.DLL) instance, while the second two are out-of-
process local servers (ADE.EXE) instances. The two buttons
above the left pane can be used to create additional CAEngine
instances, while the Release button at the lower-right corner of the
right-hand panel releases an instance. The right-hand panel
shows information about the third CAEngine instance. The current
values for the CAEngine properties ErrorCode, ErrorText,
CurrentModule, OutputBuffer and Photo are displayed. You
can execute a typescript command by typing the command into
the text box area and pressing the “Send” button. Or you can
execute any of the method of CAEngine by selecting the method in
the drop-down Method box, filling in the parameters and pressing
the “Execute Method” button.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 9

If you click on an object in the left-hand pane, the properties for
that object will be displayed on the right-hand side and properties
can be set or its methods called. Thus, you can simulate a series
of steps your program might execute through the graphical
interface.

When a method returns an object, for example, as with
CAEngine::GetObjectByName, the object returned is added to the
tree on the left as a child of the object that created it. After
executing a method from a class other than CAEngine, it is a good
idea to glance at the corresponding CAEngine’s panel to check
the ErrorCode, ErrorText, and OutputBuffer properties.

The Photo checkbox in the Analytica window is mirrored by the Photo
property of the CAEngine class. By default the Photo property is
False, so typescript communications between the client and ADE
are not copied to the Analytica Log Window. Setting the Photo
property to True will copy all subsequent typescript
communications between the client and ADE. In Visual Basic, this
would be done as follows:

Ana.Photo=True
Ana.Photo=False

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 10

Turning the Photo property on significantly slows down
communication with ADE.

Sample Application in Excel’s Visual Basic
Another example program called excel_exam is also included in
the ADE package. The program, Analytica.xls, in the
excel_exam directory can be loaded into Microsoft Excel and
executed as a macro. This program demonstrates the use of
Visual Basic for Applications in Excel for ADE communications.
This sample makes use of the local server version of ADE.

When using Microsoft’s ASP, we recommend that you use the
local server. By using the local server (ade.exe), you can ensure
that each web application, or even each session, uses a different
version of ade.exe. Currently, there is a limitation in ADE that
prevents creation of two or more in-process server objects at the
same time. Therefore, if you expect to have more than one
session of ADE active at one time (as is almost always the case in
web-based applications, always use the local server of ADE. An
example program called asp_exam shows how to use the local
server of ADE with a Microsoft ASP application.

To create a new Visual Basic project which uses
the in-process server of ADE:

Start Visual Basic.

Create a new project [or document], using the File/New
command.

Next, add a link to the Analytica C++ Engine Server 3.1. Use the
References… option of the Project pull down menu [or the
Project/References item]. Put a check next to the ‘Analytica C++
Engine Server 3.1’ selection. Note that this is different from the
‘Analytica C++ Engine Local Server 3.1’ option. The ‘Analytica
C++ Engine Local Server 3.1’ option cannot currently be used
within Visual Basic.

The four Analytica classes CAEngine, CAObject, CATable, and
CAIndex are now accessible from your project. You can use all of
the methods and access the class properties described in this
reference document in your Visual Basic application. Only the
CAEngine class will allow object creation from your program; the
CAEngine class, in turn, creates and manages objects of the three

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 11

other classes. The following section describes how to create an
object of type CAEngine.

Initializing ADE
Before an Analytica model can be opened or created, you must
initialize the Analytica Decision Engine by creating an object of
type CAEngine.

From a Visual Basic.NET program that uses the in-process
version of the ADE, initialize ADE using a New statement, as
demonstrated below.

Dim Ana as ADEW3.CAEngine
Ana = New ADEW3.CAEngine

From a Visual Basic version 5 or 6 program, use the syntax:

Dim Ana as CAEngine
Set Ana = New CAEngine

Note that for the above to work, you must have added the
Analytica Decision Engine 3.1 in-process server to the project
references.

From an MSOffice application, initialize the in-process version of
ADE in the following way. Note the use of Object instead of
CAEngine. All of the ADE automation components (CAEngine,

CAObject, CATable, and CAIndex) must be referred to as
Objects when using the CreateObject function.

Dim Ana as Object
Set Ana = CreateObject(“ADEW3.CAENGINE”)

When using the local server version of ADE, initialize the Analytica
Decision Engine in the following way (note the use of
ADE3.CAENGINE rather than ADEW3.CAENGINE):

Dim Ana as Object
Set Ana = CreateObject (“ADE3.CAENGINE”)

This code snippet results in a new object Ana, an instance of class
CAEngine that initializes ADE (from an ASP program, of course,
you would just do Dim Ana , not Dim Ana As Object).

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 12

When using the in-process version of ADE, only one CAEngine
object can exist at a time. However, multiple versions of the
CAEngine object can exist at one time when using the local server.

After initializing a CAEngine object you can:

• Use the Command property and the Send method to send
typescript commands to ADE and receive resulting output from
the Engine. Typescript commands are described in the
Analytica Scripting Guide and can be used to access all the
functionality of ADE.

• Use the methods and properties of classes CAEngine,
CAObject, CATable, and CAIndex to communicate with ADE.

After the calling application has closed the current model, it may
destroy the Ana object using the CAEngine class destructor:

Set Ana = Nothing

The above statement terminates this instance of ADE, freeing all
memory associated with this instance of ADE.

ADE Typescript: Command Language
Communication

The Command property and Send method of the CAEngine class
allow you to use typescript commands, sent as ASCII strings to
the Engine, and receive the resulting output as another ASCII
string. You may want to use a typescript command instead of an
API method if:

• You want to perform your own parsing on ADE output (e.g., on
tabular data that are output from the Analytica Decision Engine
as text strings of comma-delimited text).

• No appropriate API method exists.

You perform three steps to send a typescript command to ADE:

1. Assign a text string containing the command to the Command
property of your CAEngine object.

2. Use the Send method to send the command to the Engine. If
the Send method returns True, then the command was
processed without error by ADE.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 13

3. Store the error code and error text (if the return code is
nonzero). These two pieces of information are stored in the
CAEngine properties ErrorCode, and ErrorText.

4. Get the output by calling the OutputBuffer function in the
CAEngine class.

The steps are demonstrated in the following Visual Basic code
segment:
Dim RetCode, SendCode as Boolean
Dim Result As String
Dim ErrCode as Integer
Dim ErrT as String

Ana.Command = "probvalue var1" ’any typescript command
SendCode = Ana.Send
If SendCode = False Then

ErrCode = Ana.ErrorCode
ErrT = Ana.ErrorText

Else
Result = Ana.OutputBuffer

End If

Errors and Error Handling
The CAEngine properties ErrorCode and ErrorText should be
queried after any operation with ADE whenever an error is
possible. The possible error codes in ErrorCode, and the
associated string in the ErrorText property is described below.

Error Code
(ErrorCode)

Meaning (ErrorText)

0 "OK"
1 "Unimplemented"
2 "Warning"
3 "Lexical error"
4 "Statement error"
5 "Expression error"
6 "Execution error"
7 "System error"
8 "Fatal error"
9 "Undefined variable error"

10 "Aborted"
11-19 "Undefined server error"
20 "Analytica is uninitialized"
21 "Bad parameter passed"
22 "Value not found in index"
23 "Illegal position in index"

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 14

24 "Subscript must be an array of variants"
25 "Subscripts can not be accessed"
26 "Lower bound of subscript array inaccessible"
27 "Upper bound of subscript array inaccessible"
28 "Must specify at least one element in table”"
29 "Position specified is out of bounds"
30 "Position does not exist"
31 "Illegal position specified in table"
32 "Index object not found"
33 "Illegal index number specified"
34 "Definition table not found"
35 "Attribute could not be retrieved"
36 “Attribute could not be set”
37 “Could not retrieve result”
38 “Could not get result table”
39 “Module/Model/Script could not be found”
40 “Object could not be created”
41 “Invalid name for object”
42 “Object name already in use”
43 “Current module could not be retrieved”
44 “Module could not be set”
45 “Model could not be created”
46 “Model/Module could not be saved”
47 “Illegal command”
48 “Invalid object class”
49 “There is no model to save”
50 “Safe-array has incorrect size or number of

dimensions”
51 “Element position is non-numeric”
52 “Specified name is not an index of the array”

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 15

Working with Analytica Models, Modules, and Files

Note: In VB.NET, the Set keyword is no longer necessary when
assigning an object as a value. The keyword is necessary in
previous versions of Visual Basic, in VBScript, and VBA, and is
thus shown in the examples below.

• To create a new model:
 Ana.CreateModel ("NewModelName")
 If Ana.ErrCode = 0 Then

 ’Model successfully created
 End If

The CreateModel method only requires one parameter, a string
containing a model name.

• To open an existing Analytica model:
Dim FileSpec as String
Dim ModName as String
FileSpec = "C:\ ... \Anamodel.ana"
ModName = Ana.OpenModel (FileSpec)
If ModName="" then

’ Handle Error condition here’
End if

If a model has already been opened, then that model will be
closed automatically before the new model is created. If the
specified filename is not legal, OpenModel will return an empty
string. If an empty string is returned, use the ErrorCode property
of CAEngine to determine the cause of the error. Be aware that
an ErrorCode=2 (Warning) is often returned even though the load
is successful. For full details as to what has caused an error or
warning, use the OutputBuffer property of the CAEngine. You
must specify the backward slash (\) for the path delimiter when
using ADE. The forward slash (/) is not yet supported.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 16

• To add a module from a file to the currently open model:
 Dim ModObj as Object
 Dim Merge as Boolean
 ModObj = Ana.AddModule (FileSpec, Merge)

The FileSpec parameter should contain the path and filename of
the module to be included. The Merge parameter is a Boolean
variable that determines whether preexisting objects with identical
names are overwritten. If Merge=True then conflicting variables
are overwritten. If Merge=False, and there are conflicting
variables, then the call to AddModule will fail.

• To read a script file:
Dim RetCode as Boolean
RetCode = Ana.ReadScript (FileSpec)

A script file can contain a list of typescript commands. Upon
loading the file, the Engine will execute the commands contained
in the file. Errors encountered while running the script file are
described in the ErrorText property.

• To save a module (i.e., a subset of the current model) in a separate
file:

RetCode = Ana.SaveModuleFile (ModName, FileSpec)

• To save the current model in a file:
RetCode = Ana.SaveModel (FileSpec)

• To close the current model without saving:

Ana.CloseModel

The CloseModel method takes and returns no parameters.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 17

ADE Objects
• To create a new CAObject object:

Dim ObjName, ObjClass as String
Dim Var as Object ’ or as CAObject
ObjName = "NewVariable"
ObjClass = "Chance"
Set Var = Ana.CreateObject (ObjName, ObjClass)

The object name and the class of the object to be created are
passed into the CreateObject method. Note that an identifier
and not the title of the object should be used when giving the
object a name. Most Object-related methods use their Identifier
attribute, not their Title attribute. ADE can create the following
types of objects: Variable, Module, Chance, Constant, Decision,
Index, and Objective. Refer to the Analytica Developer’s Guide
for more information on these object types.

• To delete an Analytica object from a model:

RetCode = Ana.DeleteObject (Var)

• To set the active module:
ObjName = "ModuleToMakeActive"
ObjClass = "Module"
Set Var = Ana.CreateObject (ObjName, ObjClass)
Set Ana.CurrentModule = Var

ADE utilizes a hierarchy to order objects. When an object is
created, it is created inside the current module. By default, all
objects are placed within the top-level module unless you set the
CurrentModule property.

• To identify the current module:
Set Var = Ana.CurrentModule

• To obtain a CAObject object when you know the name of an Analytica
variable (this is probably the most commonly used method in ADE):

Dim Var As Object

ObjName = "IdentifierInModel"
Set Var = Ana.GetObjectByName (ObjName)
If Var Is Nothing Then

’Analytica model associated with Ana
’does not contain variable with
’identifier “IdentifierInModel’

End If

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 18

• All Analytica object attributes, with the exception of the Name attribute
can be obtained using the GetAttribute method:

Set AttName = "Units"
UnitsOfVar = Var.GetAttribute (AttName)

• To get the Name of an identifier, you should do the following (where
Var is the CAObject associated with the identifier of interest):

Name = Var.Name

• The SetAttribute method is used to set an Analytica object’s
attributes (except for Name):

Dim RetCode As Boolean
RetCode = Var.SetAttribute ("definition","A/B")
If RetCode = True Then

’Attribute Set Correctly
Else

’Attribute Not Set
End If

• To set the Name attribute, do the following:
Var.Name = “NewNameOfIdentifer”

For the full lists of object attributes see The Analytica Developer’s
Guide, Chapter 3: Objects and their attributes.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 19

Retrieving Results of CAObject
• To evaluate and obtain the result of an object use the Result method

of CAObject:

Dim Obj As Object
Dim Result
Set Obj = Ana.GetObjectByName (“ObjectToEvaluate”)
Result = Obj.Result
If Ana.ErrorCode = 0 Then

’Result was successfully retrieved
Else

’An error occurred
End If

The Result property of CAObject retrieves, by default, the
midpoint result of the object. It will return the result as a variant.
This method is convenient for retrieving the results of objects that
evaluate to a scalar.

• To evaluate and obtain the result of an object as something other than
the midpoint use the ResultType property of CATable:

Dim Obj As Object
Dim Result
Set Obj = Ana.GetObjectByName (“ObjectToEvaluate”)
Obj.ResultType = 1 ’get result as mean
Result = Obj.Result
If Ana.ErrorCode = 0 Then

’Result was successfully retrieved as a mean
Else

’An error occurred
End If

The ResultType property is used to indicate the type of result that
Result should return. If ResultType is set to 0, then the midpoint
of the result will be returned by Result. If ResultType is set to 1,
then the mean will be returned by Result. If ResultType is set to
2, then the probabilistic value of the result will be returned by
Result. Note that the probabilistic value of the result will always
be multi-dimensional, even if the mid and mean are not multi-
dimensional. See the next section for a discussion on retrieving
multi-dimensional results.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 20

Retrieving Multi-Dimensional Results of CAObject
Before delving into the details of how to obtain results from multi-
dimensional objects (tables with one or more dimensions), let us
briefly discuss the conceptual model of a table in Analytica.

An Analytica table is composed of the following components:

1. the indexes, which determine the dimensions of the table.

2. the values in the cells of the table.

3. The index labels, which can be used to identify the coordinates
of each cell.

The number of indexes determines the dimensionality of the table.
So, for example, if a table contains two indexes, then the table is
2-dimensional.

The number of elements in the index determines the actual
number of cells in the table. Suppose table T is composed of 2
indexes, I and J. If I has 5 elements (AA, BB, CC, DD, EE) and J
has 3 elements (A, B, C), then T is either a 5 X 3 table, or a 3 X 5
table, depending on your perspective.

Determining your perspective of a table is very important when
working with ADE. It is up to you to tell ADE how you wish to view
the table. So, for example, in the above paragraph, if you tell ADE
to use index I first, followed by index J, then element 2,3 would be
the element described by position I=B, J=CC. If, however, you tell
ADE to use index J first, followed by index I, then element 2,3
would be described by position I=C, J=BB (note that tables in ADE
are 1-based; that is, each dimension goes from 1 to N where N is
the size of the index). The method called SetIndexOrder,
described below, allows you to set the order of the indexes for
your table, so that you can look at the table in any way you desire.

The ADE methods are very flexible in terms of how you refer to
individual elements in the table. You can either refer to the
individual elements by their position number or by their label
names. So, for example, you can tell ADE to give you the element
at position 2,1 (2 along the first index, and 1 along the second
index), or you can tell ADE to give you the element described by
‘BB’,’A’ where ‘BB’ and ‘A’ are label names in their respective
indexes. The methods most commonly used for these types of
transactions (GetDataByElements and GetDataByLabels) are
described below.

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 21

As discussed in the previous section, the Result and ResultType
methods are used to evaluate and obtain the result of an object.
For objects that evaluate to multi-dimensional results, however, it
is often inconvenient to use the Result method. After all, the
output of the Result method for a multi-dimensional result would
be a long comma delimited string in the following form:

Table Index1...IndexN [Value1, Value2...]

Here, Index1 to IndexN are the indexes of the table, and Value1
to ValueN are the values in the table (which are filled in row by
row). So, if we wanted to get at a particular element in the table
after using the Result method, we would have to parse through
the comma delimited string, returned from Result, in order to get
at the element of interest. Fortunately, ADE provides an ADE
object of type CATable that provides methods to simplify the
manipulation of tables.

• To evaluate and obtain the muti-dimensional result of an object use
the ResultType method of CAObject:

Dim Obj As Object
Dim TableResult As Object
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
If Not TableResult Is Nothing Then

’Result table was successfully retrieved
Else

’An error occurred, or result is scalar
End If

The ResultTable method of CAObject returns an automation
object of type CATable. CATable contains various methods that
allow you to set, retrieve, and manipulate individual elements in
the table. The first thing that you will, more than likely, want to do
after retrieving the CATable object, is to set the index order of the
result table.

• To set the index order of a CATable object, use the SetIndexOrder
method:

Dim Obj As Object
Dim TableResult As Object
Dim IndexOrder (2)
Dim RetValue
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 22

If Not TableResult Is Nothing Then
’Result table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
RetValue = TableResult.SetIndexOrder (IndexOrder)
If RetValue = True Then

’Index Order set successfully
Else

’An error occurred in setting index order
End If

Else
’An error occurred, or result is scalar

End If

The above code assumes that we are manipulating a two-
dimensional table. We set the index order of this table so that
Index2 is the first index, and Index1 is the second index.

• To retrieve an element in a table by index order use the
GetDataByElements method:

Dim Obj As Object
Dim TableResult As Object
Dim IndexOrder (2)
Dim Pos (2)
Dim RetValue
Dim Element
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
If Not TableResult Is Nothing Then

’Result table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
RetValue = TableResult.SetIndexOrder (IndexOrder)
If RetValue = True Then

’Index Order set successfully
Pos (1) = 2
Pos (2) = 1
Element = TableResult.GetDataByElements (Pos)
If Ana.ErrorCode = 0 Then

’element retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

’An error occurred, or result is scalar
End If

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 23

The above code uses GetDataByElements to retrieve the element
at position Index2=2, Index1=1 and stores the result to Element.

• To retrieve an element in a table by index labels use the
GetDataByLabels method:

Dim Obj As Object
Dim TableResult As Object
Dim IndexOrder (2)
Dim Pos (2)
Dim RetValue
Dim Element
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
If Not TableResult Is Nothing Then

’Result table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
RetValue = TableResult.SetIndexOrder (IndexOrder)
If RetValue = True Then
’Index Order set successfully
Pos (1) = “SomeLabelInIndex2”
Pos (2) = “SomeLabelInIndex1”
Element = TableResult.GetDataByLabels (Pos)
If Ana.ErrorCode = 0 Then

’element retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

’An error occurred, or result is scalar
End If

The above code uses GetDataByLabels to retrieve the element at
position Index2=”SomeLabelInIndex2”,
Index1=”SomeLabelInIndex1” and stores the result to Element.

• To retrieve the whole table into a Visual Basic array in one call use
the GetSafeArray method:

Dim Obj As Object
Dim TableResult As Object
Dim IndexOrder (2)
Dim Pos (2)
Dim RetValue
Dim TheWholeTable
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 24

If Not TableResult Is Nothing Then
’Result table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
RetValue = TableResult.SetIndexOrder (IndexOrder)
If RetValue = True Then
’Index Order set successfully
Pos (1) = “SomeLabelInIndex2”
Pos (2) = “SomeLabelInIndex1”
TheWholeTable = TableResult.GetSafeArray
If Ana.ErrorCode = 0 Then

’table retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

’An error occurred, or result is scalar
End If

The above code uses GetSafeArray to store the entire table in
TheWholeTable. The elements of each dimension associated
with the table returned from GetSafeArray are indexed 1 to N,
where N is the length of the dimension.

• To determine the number of dimensions of the table, use the NumDims
property:

Dim Obj As Object
Dim NumDimensions
Dim TableResult As Object
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
NumDimensions = TableResult.NumDims

• To get the index names associated with the table, use the
IndexNames method:

Dim Obj As Object
Dim NumDimensions
Dim TableResult As Object
Dim I As Integer
Dim CurIndexName As String
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
NumDimensions = TableResult.NumDims
For I = 1 To NumDimensions

CurIndexName = TableResult.IndexNames (I)
MsgBox “Current index is “ & CurIndexName

Next I

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 25

IndexNames will return the index names in the order specified by
SetIndexOrder. If SetIndexOrder has not been used for the
CATable, then the default order of the indexes will be returned.

• To get the CAIndex objects associated with your table, use the
GetIndexObject method of CATable:

Dim Obj As Object
Dim NumDimensions
Dim TableResult As Object
Dim CurIndexName As String
Dim IndexObj As Object
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
NumDimensions = TableResult.NumDims

CurIndexName = TableResult.IndexNames (NumDimensions)
Set IndexObj = TableResult.GetIndexObject
(CurIndexName)

The above example retrieved the last CAIndex object, with
respect to the index order, from the table. The CAIndex object
provides properties and methods that allow you to obtain
information about the respective index.

• To get the number of elements in the index, use the IndexElements
property:

Dim Obj As Object
Dim NumDimensions
Dim NumElsInIndex
Dim TableResult As Object
Dim CurIndexName As String
Dim IndexObj As Object
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
NumDimensions = TableResult.NumDims
CurIndexName = TableResult.IndexNames (NumDimensions)
Set IndexObj = TableResult.GetIndexObject

(CurIndexName)
NumElsInIndex = IndexObj.IndexElements

• To get an index label at the specified position in the index, use the
GetValueByNumber method:

Dim Obj As Object
Dim NumDimensions
Dim NumElsInIndex
Dim TableResult As Object
Dim CurIndexName As String
Dim IndexObj As Object

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 26

Dim I As Integer
Dim Str As String

Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
NumDimensions = TableResult.NumDims
CurIndexName = TableResult.IndexNames (NumDimensions)
Set IndexObj = TableResult.GetIndexObject

(CurIndexName)
NumElsInIndex = IndexObj.IndexElements
Str = “The elements in the index are: ” & vbCrLf
For I=1 To NumElsInIndex

Str = Str & IndexObj.GetValueByNumber (I) & “ “
Next I
MsgBox Str

• To get at the position of an index label in an index, use the
GetNumberByValue method:

Dim Obj As Object
Dim NumDimensions
Dim TableResult As Object
Dim CurIndexName As String
Dim IndexObj As Object
Dim I As Integer
Dim IndexPosition As Integer

Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
NumDimensions = TableResult.NumDims
CurIndexName = TableResult.IndexNames (NumDimensions)
Set IndexObj = TableResult.GetIndexObject

(CurIndexName)
IndexPosition = IndexObj.GetNumberByValue

(“SomeIndexLabel”)
If Ana.ErrorCode = 0 Then

’the index position was successfully retrieved
Else

’an error occurred
End If

Often times, it is difficult to determine whether the evaluation of an
object will return a multi-dimensional result or a scalar. What you
should do in this scenario is to first call ResultTable on the
CAObject of interest. If the call succeeds, then you have a multi-
dimensional result. If ResultTable fails, call Result. If Result
succeeds in this scenario, then the result is a scalar. Otherwise,
there was an error in the evaluation of the object. So, the
following code might be used:

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 27

Dim Obj As Object
Dim TableResult As Object
Dim ScalarResult

Set Obj = Ana.GetObjectByName (“SomeObject”)
Set TableResult = Obj.ResultTable
If TableResult Is Nothing Then

ScalarResult = Obj.Result
If Ana.ErrorCode = 0 Then

’you have a scalar result
Else

’an error occurred
End If

Else
’you have a multi-dimensional result

End If

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 28

Creating Tables and Setting Values In Tables
Up until this point, we talked about how to retrieve elements from
result tables. We can use the same exact methods described
above to retrieve values in definition tables. A definition table, as
the name suggests, is when the definition of an object is defined
to be a table. There are a couple of interesting things to point out
at this point:

1. Just because ResultTable returns a table, it does not mean
that the definition of the object is a definition table. For
example, an object could be defined to be a function call
which, when evaluated, evaluates to a table. But a function
call is not a definition table.

2. Each cell in a definition table contains an expression.
Therefore, strings must be quoted (i.e. ‘samplestring’). This is
not the case for result tables, since all cells in a result table
contain either a string or a number.

3. An object defined to be a definition table would not necessarily
produce the same table when ResultTable is called. After all,
the definition table can be defined to be an array of identifiers.
When ResultTable is called, each identifier’s result will be
evaluated, and a new table will be produced which would be
different than the definition table. If identifiers evaluate to
arrays, the result table may have more dimensions than the
definition table.

• To get the definition table of an object as a CATable, use the
DefTable method of CAObject:

Dim Obj As Object
Dim TableDef As Object
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableDef = Obj.DefTable
If Not TableDef Is Nothing Then

’Definition table was successfully retrieved
Else

’An error occurred, or definition is not a table
End If

Once the definition table is retrieved, we can use all the same
methods described in the above section (GetDataByElements,
GetDataByLabels, SetIndexOrder, etc.) to retrieve elements in
the table and to obtain information about the indexes in the table.
We can also use the same method that we used above in

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 29

determining whether the result of the object was multi-dimensional
or scalar to determine whether the definition of the object is a
table or scalar:
Dim Obj As Object
Dim TableDefinition As Object
Dim ScalarDefinition

Set Obj = Ana.GetObjectByName (“SomeObject”)
Set TableDefinition = Obj.DefTable
If TableDefinition Is Nothing Then

ScalarDefinition = Obj.GetAttribute (“definition”)
If Ana.ErrorCode = 0 Then

’you have a scalar definition
Else

’an error occurred
End If

Else
’you have a table definition

End If

• To set an element in a table by index order use the
SetDataByElements method of CATable:

Dim Obj As Object
Dim TableDef As Object
Dim IndexOrder (2)
Dim Pos (2)
Dim RetValue
Dim Element
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableDef = Obj.DefTable
If Not TableDef Is Nothing Then

’Definition table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
RetValue = TableDef.SetIndexOrder (IndexOrder)
If RetValue = True Then
’Index Order set successfully
Pos (1) = 2
Pos (2) = 1
Element = “’ABC’”
RetValue=TableDef.SetDataByElements(Element,Pos)
If RetValue = True Then
’element successfully set
RetValue = TableDef.Update
If RetValue = True Then

‘model successfully updated
Else

‘error updating def in model
End If

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 30

Else
’an error occurred

End If
Else
’An error occurred in setting index order

End If
Else

’An error occurred, or definition is scalar
End If

The above code uses SetDataByElements to set the element at
position Index2=2, Index1=1 to Element. Note the use of the
quotes around ABC. Here, since ABC is single quoted, we are
putting the string “ABC” in the table. If we instead set Element to
“ABC”, then the expression ABC would be placed in the table. In
the latter case, ABC would, more than likely, be a variable. If an
identifier, ABC, did not exist in the model, then an error would
have occurred while trying to set the element in the latter case.
The code then used Update to update the model with the new
definition. It is important to note that the model containing the
object will not be updated until Update is called. Therefore, if
Update is not called, and the result of a node that depends on this
object is later calculated, the old definition of this object will still be
used. The other important thing to note is that Update functions
very differently for result tables as it does for definition tables. For
result tables, Update will retrieve the result from the specified
object again. It will, therefore, overwrite any changes that were
made to the object using SetDataByElements and
SetDataByLabels.

• To set an element in a table by index labels use the
SetDataByLabels method of CATable:

Dim Obj As Object
Dim TabDef As Object
Dim IndexOrder (2)
Dim Pos (2)
Dim RetValue
Dim Element
Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TabDef = Obj.DefTable
If Not TabDef Is Nothing Then

’Definition table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
RetValue = TabDef.SetIndexOrder (IndexOrder)
If RetValue = True Then

’Index Order set successfully

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 31

Pos (1) = “SomeLabelInIndex2”
Pos (2) = “SomeLabelInIndex1”
Element = “’ABC’”
RetValue=TabDef.SetDataByLabels(Element,Pos)
If RetValue = True Then

’element set successfully
RetValue = TabDef.Update
If RetValue = True Then

’model successfully updated
Else

’an error occurred
End If

Else
’an error occurred

End If
Else

’An error occurred in setting index order
End If

Else
’An error occurred, or definition is scalar

End If

The above code uses SetDataByLabels to set the element at
position Index2=”SomeLabelInIndex2”,
Index1=”SomeLabelInIndex1” to Element.

• To set the whole table in one call, use PutSafeArray and Update:

Dim Obj As Object
Dim TableResult, TableDef As Object
Dim RetValue
Dim TheWholeTable

Set Obj = Ana.GetObjectByName (“MultiDimObject”)
Set TableDef = Obj.DefTable
Set TableResult = Obj.ResultTable
TheWholeTable = TableResult.GetSafeArray
‘make changes to TheWholeTable
…
RetValue = TableDef.PutSafeArray (TheWholeTable)
If RetValue = True Then

’table successfully put
RetValue = TableDef.Update
If RetValue = True Then

’model successfully updated
End If

End If

Using the Analytica Decision Engine Server

Analytica Decision Engine Developer’s Guide 32

• To create a whole table from scratch, use CreateDefTable:
Dim Obj As Object
Dim RetValue
Dim IndexLabs (1 To 2) As Variant

Set Obj = Ana.CreateObject (“MyNewTable”, “Variable”)
IndexLabs (1) = “I”
IndexLabs (2) = “J”
RetValue = Obj.CreateDefTable (IndexLabs)
If RetValue = True Then

’a table indexed by I and J has successfully
’been created. We are assuming that I and J
’already exist

Else
’an error occurred when creating the table

End If

The above code created a definition table indexed by I and J.
The table is dimensioned according to the size of I and J. All the
cells in the table are initially set to 0. The user can then call
DefTable, and then use SetIndexOrder, SetDataByElements,
SetDataByLabels, PutSafeArray, and Update to put values into
the table. Note that the function CreateDefTable is very rarely
used in an ADE program. After all, it is much easier to create an
object in Analytica than it is in ADE.

Analytica Decision Engine Developer’s Guide 33

Analytica Decision Engine Server
Class Reference

Class CAEngine

Properties:
Command
Description: Sets a typescript language command for execution by the

Analytica Decision Engine Automation Server. The engine
is directed to execute the command using the Send
method. For the list of typescript commands see the
Analytica Scripting Guide.

Data type: string
Access: read/write
Usage: Ana.Command = “value obj1”
API Errors: None

CurrentModule
Description: Currently opened module.
Data type: CAObject
Access: read/write
Usage:

Dim Obj As Object
Set Obj = Ana.CurrentModule

Remarks: User must set this property to define a parent module for
new objects. Setting CurrentModule = Nothing means
that no module is opened, all new objects will be created in
the top-level diagram of the currently opened model.

API Errors: 39- " Module could not be found"
44- " Module could not be set"

Server Class Reference

Analytica Decision Engine Developer’s Guide 34

ErrorCode
Description: Returns the error code generated by the last

communication with the Analytica Decision Engine Server.
The property ErrorCode should be checked after setting
and retrieving critical CAEngine properties and calling
CAEngine methods. An ErrorCode value of zero indicates
successful completion of the last action by the Analytica
Decision Engine Server.

Data type: integer
Access: read
Usage:

Dim x As Integer
x = Ana.ErrorCode

Error Codes: 0: "OK"
1: "Unimplemented"
2: "Warning"
3: "Lexical error"
4: "Statement error"
5: "Expression error"
6: "Execution error"
7: "System error"
8: "Fatal error"
9: "Undefined variable error"
10: "Aborted"
20: "Analytica is uninitialized"
21: "Bad parameter passed"
22: "Value not found in index"
23: "Illegal position in index"
24: "Subscripts must be an array of variants"
25: "Subscripts cannot be accessed"
26: "Lower bound of subscript array inaccessible"
27: "Upper bound of subscript array inaccessible"
28: "Must specify at least one element in table"
29: "Position specified is out of bounds"
30: "Position does not exist"
31: "Illegal position specified in table"
32: "Index object not found"
33: "Illegal index number specified"
34: "Definition table not found"
35: "Attribute could not be retrieved"
36: "Attribute could not be set"
37: "Could not retrieve result"
38: "Could not get result table"
39: "Module/Model/Script could not be found"
40: "Object could not be created"
41: "Invalid name for object"
42: "Object name already in use"

Server Class Reference

Analytica Decision Engine Developer’s Guide 35

43: "Current module could not be retrieved"
44: "Module could not be set"
45: "Model could not be created"
46: "Model/Module could not be saved"
47: "Illegal command"

ErrorText
Description: short text explanation of error from ErrorCode
Data type: string
Usage:

Dim x As String
x = Ana.ErrorText

Access: read

Log
Description: contains a record of communications between the client

and the Analytica Decision Engine Server when using
typescript.

Remarks: A record of communications will not be logged unless the
Photo property is turned on.

Data type: string
Usage:

Dim x As String
x = Ana.Log

Access: read

OutputBuffer
Description: A text string buffer that contains the result of the last

typescript (i.e., using the Command property and Send
method) interaction with the Analytica Decision Engine
Server.

Data type: string
Usage:

Dim x As String
x = Ana.OutputBuffer

Access: read

Server Class Reference

Analytica Decision Engine Developer’s Guide 36

Photo
Description: The user may review all typescript communications

between the client and the Analytica Decision Engine
Server by setting the Photo property to True (and by
calling the Log method of CAEngine).

Data type: Boolean
Access: read/write
Usage: Ana.Photo = True
Remarks: setting Photo property to True slows down computation

speed of the Engine.

Methods:
AddModule
Description: Adds a module to an already opened/created model
Parameters: FileSpec - string

Merge – Boolean.
Return Value: ModuleName - string
Usage: ModName = Ana.AddModule (“C:\MYMOD\MYMOD.ANA”,
True)
Remarks: Where the module is being added depends on the value of

the CurrentModule property. Merge currently has no effect
and should be set to True.

API Errors: 39- "Module could not be found"

CloseModel
Description: Closes the model
Usage: Ana.CloseModel

CreateObject
Description: Creates a new CAObject object and a new Analytica object

in the CurrentModule
Parameters: ObjName - string

ObjClass – string
Return Value: CAObject
Usage:

Dim obj As CAObject
Set obj = Ana.CreateObject (“NewVar”,”Chance”)

Remarks: ObjClass can be one of the following values:
Decision, Variable, Chance, Constant, Index, Module,
Objective, Determ, Alias, or Formnode.

API Errors: 40- "Object could not be created"
41- "Invalid name for object"
42 - "Object name already in use"
48 – “Invalid object class”

Server Class Reference

Analytica Decision Engine Developer’s Guide 37

CreateModel
Description: Creates a new Analytica model
Parameters: ModelName - string
Return Value: Boolean (success or failure)
Usage: boolval = Ana.CreateModel (“MyNewModel”)
API Errors: 45- "Model could not be created"

DeleteObject
Description: Deletes the specified CAObject from the Current Model
Parameters: Var – CAObject
Usage:

Dim Obj As CAObject
Set Obj = Ana.GetObjectByName(“ObjToDelete”)
Ana.DeleteObject (Obj)

API Errors: 41- "Invalid object"

ResetError
Description: Resets the error code, error text string associated with the

error code, and the output buffer to default values. This
function is normally used internally, but could be useful in
other circumstances as well.

Usage Ana.ResetError

GetObjectByName
Description: Returns an object of type CAObject for an existing

Analytica object.
Parameters: ObjName - string
Return Value: CAObject
Usage:

Dim Obj As CAObject
Set Obj = Ana.GetObjectByName (“MyObject”)

API Errors: 41- "Invalid name for object"

OpenModel
Description: Reads a model from a disk file and opens it as the current

model.
Parameters: FileSpec- string (the filename containing the model).
Return Value: ModelName – string (actual model name).
Usage: modName = Ana.OpenModel (“C:\TMP\MYMODEL.ANA”)
Remarks: Failure should be detected by checking whether the return

value is “”, not by checking for a zero ErrorCode. It is
possible that some errors or warnings may occur during
loading, and will thus be reflected in the ErrorCode,
ErrorText, and OutputBuffer properties, even though the
load was successful.

Server Class Reference

Analytica Decision Engine Developer’s Guide 38

API Errors: 2– Warning (but load was successfully completed).
3– Lexical error (load was only partially successful)
4– Statement error (load was only partially successful)
39- "Model could not be found"

ReadScript
Description: Reads an Analytica script file and executes it immediately.
Parameters: FileSpec – string
Usage: Ana.ReadScript (“C:\TMP\SCRIPT.MOD”)
API Errors: 39- "Script file could not be found"

SaveModel
Description: Saves the model to a file
Parameters: FileSpec – string
Usage: Ana.SaveModel(“C:\TMP\CHANGES.ANA”)
API Errors: 46- "Model could not be saved"

49- “There is no model to save”

SaveModuleFile
Description: Saves a module to a file (i.e., to a file separate from the file

in which the current model is saved).
Parameters: ModuleName – string

FileSpec - string
Return Value: Boolean (success or failure)
Usage: b = Ana.SaveModuleFile(“ModName”, “C:\TMP\NEWMOD.ANA”)

API Errors: 41 – “Invalid name for object”
46- "Module could not be saved"

Send
Description: Sends the Command property to the Analytica Decision

Engine Server.
Return Value: Boolean (success or failure)
API Errors: 1- "Unimplemented"

2- "Warning"
3- "Lexical error"
4- "Statement error"
5- "Expression error"
6- "Execution error"
7- "System error"
8- "Fatal error"
9- "Undefined variable error"
10- "Aborted"

Server Class Reference

Analytica Decision Engine Developer’s Guide 39

 Class CAObject

Properties:

ClassType
Description: Contains the type of the Analytica object.
Data type: string
Access: read/write
Usage classType = CAObject.ClassType
Remarks: ADE currently supports the following types of Analytica

objects: Decision, Chance, Constant, Index, Module, and
Variable.

DefTable
Description: An object of class CATable containing the input table for

the specified Analytica object.
Data type: CATable
Access: read/write
Usage:

Dim CATable As Object
Set CATable = CAObject.DefTable

Remarks: returns Nothing if the object’s definition is not a valid
Analytica table

API Errors: 34- "Definition table not found"

Name
Description: Contains the name given to the Analytica object.
Data type: string
Access: read/write
Usage: CAObject.Name = “NewName”
API Errors: 41- "Invalid name for object"

Result
Description: Contains the evaluated result value of an object.

Accessing this property will cause the Analytica Decision
Engine Server to evaluate the specified object.
Multidimensional results are expressed in a string of
comma-delimited elements.

Data type: variant
Access: read
Usage:

Dim x
X = CAObject.Result

API Errors: 37- "Could not retrieve result"

Server Class Reference

Analytica Decision Engine Developer’s Guide 40

ResultTable
Description: An object of class CATable containing the

multidimensional result value of the specified Analytica
object.

Data type: CATable
Access:read
Usage:

Dim CATable As Object
Set CATable = CAObject.ResultTable

Remarks: returns Nothing if object’s result is not a valid Analytica
table

API Errors: 38- "Could not get result table"

ResultType
Description: Indicates the type of result obtained using the Result

property:
0 - mid value (default)
1 - mean value
2 - prob value

Data type: integer
Access: read/write
Usage: CAObject.ResultType = 1

Methods:
CreateDefTable
Description: This method creates an input table object in the definition

attribute of the specified (and pre-existing) Analytica
object. The IndexList parameter must contain an array of
identifiers for the Table’s (pre-existing) indexes (this
parameter is identical in form to the IndexNames property
of class CATable). The number of elements in the array
passed to CreateDefTable determines the number of
dimensions of the table. If the table is indexed by itself,
"Self" should be one of the entries in the array. Initially, the
input table object’s array will be filled with null elements,
which can be changed using the SetDataByElements and
SetDataByLabels methods of the class CATable.

Parameters: IndexList - array of strings
Return Value: Boolean (success or failure)
Usage: Var.CreateDefTable (IndexList)
API Errors: 25- "Subscripts cannot be accessed"

26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
32- "Index object not found"

Server Class Reference

Analytica Decision Engine Developer’s Guide 41

GetAttribute
Description: Gets an object attribute value
Parameters: AttributeName: - string
Return Value: variant
Usage: X = CAObject.GetAttribute(“definition”)
API Errors: 35- "Attribute could not be retrieved"

SetAttribute
Description: Sets an object attribute value
Parameters: AttributeName: - string

AttributeValue: - Variant
Return Value: Boolean (success or failure)
Usage: bool = CAObject.SetAttribute (“definition”,”A/B”)

API Errors: 36- "Attribute could not be set"

Class CATable

Properties:

IndexNames
Description: This property allows access to the indexes of the table.

The order of the indexes should be adhered to when using
the GetDataBy... SetDataBy... methods to retrieve or set
selected table values. If you wish to change this order, use
the SetIndexOrder method.

Data type: string array with dimension from 1 to object’s NumDims
property

Access: read
Usage: String_array (k) = Var.DefTable.IndexNames (k)
API Errors: 33- "Illegal index number specified"

NumDims
Description: This property shows the number of dimensions of a multi-

dimensional object.
Data type: integer
Access: read
Usage: x = CATable.NumDims

TableType
Description: This property holds the type of the table (“D” for a definition

table, and “V” for a result table)
Data type: string
Access: read
Usage: x = CATable.TableType

Server Class Reference

Analytica Decision Engine Developer’s Guide 42

Methods:
GetDataByLabels
Description: Retrieves the value of an input table cell according to index

labels.
Return Value: variant
Parameters: values of indexes (Variant); the number of elements in the

Variant must be equal to NumDims.
Usage:

IndexLabs (1) = 3
IndexLabs (2) = “green”
W = Var.DefTable.GetDataByLabels (IndexLabs)

 Or

IndexLabs (1) = 3
IndexLabs (2) = “green”
W = Var.ResultTable.GetDataByLabels (IndexLabs)

If the table is one dimensional, then an array is not needed:

W = Var.ResultTable.GetDataByLabels (“green”)

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
30- "Position does not exist"

GetDataByElements
Description: Retrieves the value of input table cell according to index

values.
Return Value: variant
Parameters: index values (Variant), number of elements in the variant

must be equal to NumDims.
Usage:

IndexPtrs (1) = 1
IndexPtrs (2) = 2
W = Var.DefTable.GetDataByElements (IndexPtrs)

Or

IndexPtrs (1) = 1
IndexPtrs (2) = 2
W = Var.ResultTable.GetDataByElements (IndexPtrs)

If the table is one dimensional, then an array is not needed:

W = Var.ResultTable.GetDataByElements (1)

Server Class Reference

Analytica Decision Engine Developer’s Guide 43

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
29- "Position specified is out of bounds"
30- "Position does not exist"
31- "Illegal Position Specified In Table"

GetIndexObject
Description: Retrieves an index object by its name
Return Value: CAIndex
Parameters: index name: string
Usage:

dim AI as Object
Set AI = AObj.GetIndexObject (IndexName)

Remarks: If ObjName is not valid the method returns Nothing.
API Errors: 32- "Index object not found"

GetSafeArray
Description: Retrieves the CATable as a safe array (i.e. Visual Basic

array). The ordering of the dimensions is controlled by the
SetIndexOrder method. The elements of each dimension
are indexed 1 to N, where N is the amount of elements in
the index.

Return Value: Array
Usage:

dim Var As Object
Dim curTable
curTable = Var.GetSafeArray

API Errors: None.

Server Class Reference

Analytica Decision Engine Developer’s Guide 44

PutSafeArray
Description: Replaces the current table represented by this object with

another table of the same dimensions.
Return Value: CATable
Parameters: the table (Visual Basic Array) that will replace the current

table)
Usage:

Dim Var As Object
Dim TheArray

TheArray = Var.GetSafeArray
Var.PutSafeArray (TheArray)

API Errors: 24- "Subscripts must be an array of variants"
50- "Safe-array has incorrect size or number of
dimensions”

SetDataByLabels
Description: Sets the value of an input table cell according to its index

labels.
Return Value: Boolean (success or failure)
Parameters: cell value (Variant), values of indexes (Variant), number of

elements in this variant must be equal to NumDims.
Usage:

IndexVals (1) = 3
IndexVals (2) = ‘green’
RetVal= Var.DefTable.SetDataByLabels (W, IndexVals)

If the table is one-dimensional, then an array is not needed:

W = Var.DefTable.SetDataByLabels (W, “green”)

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
30- "Position does not exist"
31- "Illegal position specified in table"

Server Class Reference

Analytica Decision Engine Developer’s Guide 45

SetDataByElements
Description: Sets the value of input table cell according to index values.
Return Value: Boolean (success or failure)
Parameters: cell value (Variant), index values (Variant), number of

elements in this variant must be equal to NumDims.
Usage:

IndexPtrs (1) = 1
IndexPtrs (2) = 2
RetVal = Var.DefTable.SetDataByElements (W, IndexPtrs)

If the table is one-dimensional, then an array is not needed:

W = Var.DefTable.SetDataByElements (W, 1)

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
29- "Position specified is out of bounds"
31- "Illegal position specified in table"
51- “Element position is non-numeric”

SetIndexOrder
Description: Sets the order of the indexes in the table. The order of the

indexes determines the order in which
SetDataByElements, SetDataByLabels,
GetDataByElements, and GetDataByLabels will access a
cell in a table.

Return Value: Boolean (success or failure)
Parameters: index names (array of strings). The number of elements in

this array must be equal to NumDims.
Usage:

IndexVals (1) = ‘X’
IndexVals (2) = ‘Y’
RetVal = Var.DefTable.SetIndexOrder (W, IndexVals)

API Errors: 24- “Subscripts must be an array of variants”
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in array"
52- "Specified name is not an index of the array"

Server Class Reference

Analytica Decision Engine Developer’s Guide 46

Update
Description: For Definition Tables: Updates an existing input table in the

definition attribute of an Analytica object. Use this method
after setting one or more SetDataBy… methods to direct
the API to send the new table data to the Analytica
Decision Engine Server. For Result Tables: Retrieves an
updated version of the result table from the Analytica
Decision Engine Server.

Return Value: Boolean (success or failure)
Usage: Var.DefTable.Update

Remarks: Use the CreateDefTable method to replace the current
definition attribute of an Analytica object with an input
table.

API Errors: None.

Server Class Reference

Analytica Decision Engine Developer’s Guide 47

Class CAIndex

Properties:
IndexElements
Description: Returns the number of elements in the index.
Data type: integer
Access: read
Usage: x = CAIndex.IndexElements

Name
Description: Contains the name given to the Analytica index.
Data type: string
Access: read/write
Usage: theName = CAIndex.Name
API Errors: 41- "Invalid name for object"

Methods:
GetNumberByValue
Description: returns the position of an index label in an index.
Parameters: Value - variant
Return Value: integer
Usage: n = Anindex.GetNumberByValue (Value)
API Errors: 22- "Value not found in index"

GetValueByNumber
Description: returns the index label at the specified position in the

index.
Parameters: Number - integer
Return Value: variant
Usage: W = AnIndex.GetValueByNumber (Number)
Remarks:
API Errors: 23- " Illegal position in index"

	Contents
	Introduction
	What is the Analytica Decision Engine?
	How to use this document

	Installation
	System Requirements
	Installing the Analytica Decision Engine files
	Entering a new license code
	Uninstalling ADE

	Using the Analytica Decision Engine Server
	Analytica Decision Engine Server Class Architecture
	The AdeTest Program
	Sample Application in Excel’s Visual Basic
	To create a new Visual Basic project which uses the in-process server of ADE:
	Initializing ADE
	ADE Typescript: Command Language Communication
	Errors and Error Handling
	Working with Analytica Models, Modules, and Files
	ADE Objects
	Retrieving Results of CAObject
	Retrieving Multi-Dimensional Results of CAObject
	Creating Tables and Setting Values In Tables

	Analytica Decision Engine Server Class Reference
	Class CAEngine
	Properties:
	Methods:

	Class CAObject
	Properties:
	Methods:

	Class CATable
	Properties:
	Methods:

	Class CAIndex
	Properties:
	Methods:

