
Analytica Decision Engine Tutorial

Analytica® Decision
Engine

for Windows

Lumina Decision Systems, Inc.
26010 Highland Way • Los Gatos, CA 95033

(650) 212-1212 • www.lumina.com • support@lumina.com

Tutorial
Release 3.1

November, 2004

Analytica Decision Engine Tutorial 2

Copyright notice

Information in this document is subject to change without notice and does not
represent a commitment on the part of Lumina Decision Systems, Inc. The
software program described in this document is provided under a license
agreement. The software may be used or copied only in accordance with the
terms of the agreement. It is against the law to copy the software on any
medium except as specifically allowed in the license agreement. No part of
this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or information
storage and retrieval systems, for any purpose other than the licensee's
personal use, without the express written consent of Lumina Decision
Systems.

This document is © 1998-2004 Lumina Decision Systems, Inc. All rights
reserved. The software program described in this document, Analytica
Decision Engine, is copyrighted

© 1998-2004 Lumina Decision Systems, Inc., all rights reserved

The Analytica Decision Engine software contains software technology
licensed from Carnegie Mellon University exclusively to Lumina Decision
Systems, Inc., and includes software proprietary to Lumina Decision Systems,
Inc. Carnegie Mellon University and Lumina Decision Systems, Inc., make no
warranties whatsoever, either express or implied, regarding this product,
including warranties with respect to its merchantability or its fitness for any
particular purpose.
Analytica is a registered trademark of Lumina Decision Systems, Inc.

Lumina Decision Systems, Inc.
26010 Highland Way, Los Gatos, CA 95033

Tel: (650) 212-1212, Fax: (650) 240-2230,

E-mail: support@lumina.com

Internet: http://www.lumina.com

Acknowledgments
The Analytica Decision Engine Tutorial was written by Hugh Silin and modified
for version 3.1 by Lonnie Chrisman.

mailto:support@lumina.com

Analytica Decision Engine Tutorial

Contents
Introduction 1

What is the Analytica Decision Engine?.. 1
Using the Analytica Decision Engine Server ... 2
Analytica Decision Engine Server Class Architecture 2
Your First ADE Application ... 3
What’s next?... 4

Understanding the Difference Between Titles and Identifers 6
Creating an ADE Object from within Visual Basic 7

COM vs. Automation Interface.. 8

Opening a Model with ADE 9
Retrieving Objects from the Analytica Model 10
Getting the Attributes of Objects in the Analytica Model 12
Evaluating Objects and Retrieving Results 13
Getting the Index Elements of a Table 15
Retrieving Information from our CATable and CAIndex objects 17
Modifying Objects 19
Conclusion 21

Analytica Decision Engine Tutorial 1

Introduction
This tutorial demonstrates how to use the Analytica Decision
Engine (ADE) from within a Visual Basic program. It is
assumed that you have properly installed both ADE (see the
Installation instructions starting on page 3 of the Analytica
Decision Engine for Windows Developer’s Guide), and
Analytica for Windows 1.2 or higher before reading this tutorial,
and that your system meets all of the requirements described
for those two products.

What is the Analytica Decision Engine?
ADE is a powerful tool that allows you to create, read, check,
parse, evaluate, modify, and save Analytica models from within
your own application programs. Although you can use ADE to
prototype and refine your models, Analytica is much easier to
use for this purpose (see the Analytica tutorial for information
about creating and refining Analytica models). Following model
refinement, you can use ADE to build an interface to your
model from your program.

To provide the widest range of inter-application compatibility,
ADE is provided as both an ActiveX in-process automation
server (adew.dll) and an ActiveX local automation server
(ade.exe). The classes, methods, and properties exposed by
these servers are accessible from any OLE client compliant
development environment (Visual Basic), any application with
Visual Basic for Applications (VBA) support, including the
Microsoft Office suite of applications, web pages using VB
Script, JavaScript, or Microsoft Active Server Page (ASP)
technology, and any C/C++ program.

Server objects allow you to read, check, parse, evaluate,
modify, and save Analytica models from within your
applications. For example, you can use Visual Basic to create
graphical user interfaces (GUIs) on 32-bit Microsoft Windows
platforms for your Analytica models tailored to specific
applications and specific classes of end-users.

Introduction

Analytica Decision Engine Tutorial 2

Using the Analytica Decision Engine Server
ADE exposes four OLE classes: CAEngine, CAObject,
CATable, and CAIndex (‘CA’ stands for Class Analytica).
You use these classes to interact with your model through
ADE. The CAEngine class contains methods and properties
that allow you to open and close existing models, create new
models, and access Analytica objects contained in your model.
The CAObject class contains methods and properties that
allow you to set and obtain information about the Analytica
objects that you obtain from the CAEngine class. Examples of
Analytica objects are variables, modules, libraries, constants,
and functions. The CATable and CAIndex classes are used
to examine and modify definition attributes of Analytica index
objects, and objects whose results are multi-dimensional.

Analytica Decision Engine Server Class Architecture
A conceptual model of ADE is presented in Figure 1 below.
Your application makes calls to the functions exposed by the
four interfaces of ADE. Those functions then return information
to your application.

Application

CAEngine CAObject CATable CAIndex

Analytica Engine
(adew.dll or ade.exe)

Figure 1. The Analytica Decision Engine Architecture

Introduction

Analytica Decision Engine Tutorial 3

Your First ADE Application
Before we go further, let us write a simple ADE application from
scratch, just to be sure that everything is set up correctly. We
will assume you have Visual Basic.NET installed.

1. Bring up Visual Studio.NET

2. Select New Project, Project Type "Visual Basic Projects",
and template "Console Application". Select a project name,
e.g., "FirstADEtry" and an appropriate location.

3. Add to the Module1 class as follows:

Module Module1

Public m_ade As Object

Sub Main()

m_ade = CreateObject("ADE3.CAEngine")

Dim filename, modelname As String

filename = "C:\Program

Files\Lumina\Analytica 3.1\Tutorial Models\Car

Cost.ana"

modelname = m_ade.OpenModel(filename)

If modelname = "" Then

Console.Write(filename & " not found")

Else

Console.Write("Congratulations on

opening " & modelname)

End If

End Sub

End Module

Run the program. If your program prints “Congratulations on
opening Carcosts”, then you have just successfully written your
first ADE program. If you received the following error message:

Introduction

Analytica Decision Engine Tutorial 4

then ADE is not properly installed. Please consult the Analytica
Decision Engine for Windows Developer’s Guide for
information about installing ADE before reading further.

In your first program, you successfully created a CAEngine
automation object called m_ade (using CreateObject), opened
an Analytica model (using the OpenModel method of
CAEngine), and displayed the name of the model (the return
value of OpenModel). We will go into the details of these
functions, and many more functions in the next section.

What’s next?
Because of the many things that you can do with ADE, this
tutorial will not attempt to explain all of the features of ADE.
Instead, it will give you all of the necessary background to
explore the more advanced features of ADE on your own. To
understand all of the features of ADE, please read the
Analytica Decision Engine for Window’s Developers Guide.

From this point, this tutorial uses the example model called
Txc.ana to demonstrate how to use a lot of the features of
ADE. Txc.ana can be found under the Risk Analysis folder
under the Example Models folder of your Analytica product. If
you cannot find Txc.ana, or if you opted not to install the
examples when you originally installed Analytica, a copy of
Txc.ana is included in the Examples\Tutorial folder under the
directory where you installed ADE.

The Txc model demonstrates risk/benefit analysis, in this case
regarding the benefits of reducing the emissions of fictitious air
pollutant "TXC". Please load the Txc model into Analytica in
order to gain an understanding of how the Txc model works.

The example Visual Basic program called TestTxc under your
Ade Examples\Tutorial.NET folder demonstrates many aspects
of ADE. (The Tutorial.NET example is for use with Visual
Basic.NET, while the Tutorial.VB6 folder is for use with Visual
Basic versions 5 or 6). In particular, it shows you how to create
an ADE automation object, open the Txc.ana model with this
object, get the definition of the “Population Exposed” variable,
evaluate the “Total Cost” variable, print out the result of the
“Total cost” variable as a table by getting at the individual
components of the table, change the definition of the
“Population Exposed” variable, and then get the result of the
“Total cost” variable, again, to see what effect the change of

Introduction

Analytica Decision Engine Tutorial 5

definition for “Population Exposed” had on the “Total Cost”
variable If things are set up properly, then TestTxc displays the
following window:

This application displays the definition of the “Population
Exposed” object (Normal (30M, 3M)), and the table associated
with “Total Cost”, based on the definition of “Population
Exposed”. You can change the definition of “Population
Exposed” by selecting File|Change Population Exposed from
the main menu and seeing the effect this has on the “Total
Cost” table.

Analytica Decision Engine Tutorial 6

Understanding the Difference Between
Titles and Identifers

Whenever an ADE function requires the name of a variable,
you must pass it the name of the identifier of the variable, and
not its title. This can be confusing since Analytica, by default,
displays the titles of each variable when a model is loaded.
Also, if you don’t specify an identifier for a variable when you
first create that variable from within Analytica, Analytica will
automatically create an identifier for the variable based on it’s
title.

To view the identifiers in the Txc.ana model, load the Txc.ana
model into Analytica. Then, press Control-Y. Note how the
titles of all the variables change to display the identifiers of the
variables. You can see that the identifier of the variable titled
“Population Exposed” is “Pop_exp”. It is important to pass
“Pop_exp” to all ADE functions that require a name for this
variable. If you pass “Population Exposed” instead of
“Pop_exp”, ADE will not be able to find the variable, and an
error will be returned.

Analytica Decision Engine Tutorial 7

Creating an ADE Object from within
Visual Basic

If you have not already done so, load the project called
Examples\Tutorial\TestTxc.vbproj into Visual Basic.NET, and
view the code for the file called TestTxc.vb. It looks as follows:

Public adeEngine As Object

Public Sub Main()
Dim exeDirectory, theModel As Object
Dim theModelString As String

exeDirectory = VB6.GetPath
theModel = exeDirectory & "\" & "Txc.ana"
adeEngine = CreateObject("ADEW3.CAENGINE")

...
theModelString = adeEngine.OpenModel(theModel)

...
frmMain.DefInstance.Show()

End Sub

At the very top of the file, the automation object called
adeEngine is declared. This object is our CAEngine object.
Through this object, we can access all of the public functions
exposed by CAEngine (see the Analytica Decision Engine for
Windows Developers Guide for a listing of all the functionality
exposed by CAEngine). To create our ADE automation object,
the following is done:

adeEngine = CreateObject("ADEW3.CAENGINE")

Note: In VB 5 or 6, this must be written as:

set adeEngine =

CreateObject("ADEW3.CAENGINE")

This assigns our in-process ADE server object to our
adeEngine object. If we want to use the local server version
of our ADE server, we would, instead, make the following call:

adeEngine = CreateObject("ADE3.CAENGINE")

Note the difference between the strings passed to
CreateObject. If “ADEW.CAENGINE” were passed into
CreateObject, the in-process version of ADE would be used.
If “ADE.CAENGINE” were passed into CreateObject, then
the local server version of ADE would be used. For a brief

Creating an ADE Object from within Visual Basic

Analytica Decision Engine Tutorial 8

description of the benefits and deficiencies of using a local
server vs. an in-process server, as well as which automation
server you should use under different scenarios, please consult
the Analytica Decision Engine for Windows Developers Guide,
as well as other books related to OLE automation servers.

COM vs. Automation Interface
In the above examples, an ActiveX Automation interface was
used to call ADE. In an automation interface, the object
(CAEngine in this case) is declared as Object and member
functions are resolved at run-time. In other words, when you
compile your program, the compiler does not know whether
adeEngine has a method named OpenModel or how to call it.
At run-time, when the call to adeEngine.OpenModel is
encountered, the method is found and called.

It is also possible from Visual Basic to use a COM interface.
The COM and Automation interfaces are different underlying
technologies for calling the methods of ActiveX objects. When
a COM interface is used, the compiler resolves each member
function and can detect several obvious errors at compile time.
In addition, the Visual Studio can provide a list of methods and
parameter types as tool tips as you program. COM calls are
slightly more efficient than Automation calls, but the speed
difference is typically not a significant factor in applications of
ADE. To use the COM interface, you must first add a reference
to the ADE engine to your project in Visual Studio by selecting
"Project" / "Add References...", clicking on the "COM" tab, and
finding "Analytica Decision Engine in-process Server", TypeLib
version 3.1. Once this is selected, change the declaration of
the ADE object(s) to an explicit type, such as:

Public m_ade As ADEW3.CAEngine

When you create the m_ade object, you can now use:

m_ade = New ADEW3.CAEngine

Once the object is created, the syntax for calling methods is
identical whether you are using Automation or COM.

In environments other than Visual Basic, you may find that only
Automation or COM calls are supported, but not both. For
example, in VBScript or JScript, only Automation is used. In
C++, the COM interface is generally much more convenient,
while Automation requires a rather tedious use of the IDispatch
interface.

Analytica Decision Engine Tutorial 9

Opening a Model with ADE
We will now open the Txc.ana model, and show the main
window of our application. This is done with the following call:

theModelString = adeEngine.OpenModel(theModel)
frmMain.DefInstance.Show

Note: In VB 5 or 6, the second line is just: frmMain.Show

The OpenModel function of CAEngine will open the model. If
successful, then the variable theModelString contains the name
of the model. Otherwise, it contains an empty string. Although
we haven’t done so in this example for the sake of brevity, you
should check to see that the string returned from OpenModel is
not an empty string. If it is, then an error in opening your model
has occurred. The error is obtained by using the ErrorCode
and ErrorText properties of CAEngine (adeEngine.ErrorCode
and adeEngine.ErrorText). We will show how to use these two
properties later on in this tutorial. For a listing of all the error
codes, please consult the Analytica Decision Engine for
Windows Developer’s Guide.

Opening a Model with ADE

Analytica Decision Engine Tutorial 10

Retrieving Objects from the Analytica
Model

Now that we have opened our model, the next step is to
retrieve objects (e.g., Variables, Modules, Functions, etc.) from
our model in order to evaluate and retrieve their attributes
(definition, title, class, etc.). Our example model (Txc.ana)
manipulates the Pop_exp and Cost objects. In particular, it
modifies Pop_exp to see how this affects the Cost object.

The PrintAttributes function in the file frmMain.frm of our
TxcTest.vbproj (TxcText.vp) project demonstrates how to do
this. This function is called initially by the Form_Load function
of frmMain.frm when the application first starts in order to
display the current value of our Cost table. It is also called
whenever we wish to print out the current result of our Cost
table. The function looks as follows:

Public Sub PrintAttributes(ByRef inputIdentifier As
String, ByRef outputIdentifier As String)

Dim inputObject, outputObject As Object
Dim resultTable As Object
Dim definitionAttrInput As String

inputObject =
adeEngine.GetObjectByName(inputIdentifier)

outputObject =
adeEngine.GetObjectByName(outputIdentifier)

definitionAttrInput
inputObject.GetAttribute("definition")
resultTable = outputObject.resultTable
Call PrintResultTable(resultTable,

inputIdentifier, definitionAttrInput,
outputIdentifier)

End Sub

This function starts by getting at the objects associated with
Pop_exp and Cost (the inputIdentifier parameter is passed in
as “Pop_exp” and the outputIdentifier is passed in as “Cost”).
These are fetched using the GetObjectByName function of
CAEngine by the following lines of code:

inputObject =

adeEngine.GetObjectByName(inputIdentifier)
outputObject =

adeEngine.GetObjectByName(outputIdentifier)

Opening a Model with ADE

Analytica Decision Engine Tutorial 11

Note: In VB 5 or 6, these lines must be preceded by set.

If GetObjectByName succeeds, it returns an object of type
CAObject. You then use the functions of CAObject. Please
consult the Analytica Decision Engine for Windows Developer’s
Guide for a listing all CAObject functions. If
GetObjectByName fails, then the return value will be Nothing.
Although it is not done in our sample (for the sake of brevity),
code should check to be sure that the object being returned
from GetObjectByName is valid. If it is not valid, use the
ErrorCode and ErrorText properties of CAEngine to get more
information about the error. So, you might want to write the
following code:

Set inputObject =
adeEngine.GetObjectByName(inputIdentifier)

If inputObject Is Nothing Then
Dim ErrorString As String

ErrorString = “The following error from “
ErrorString = ErrorString & “GetObjectByName

occurred: “ & vbCrLf
ErrorString = adeEngine.errorCode & “:”
ErrorString = adeEngine.errorText
MsgBox ErrorString

Else
'inputObject valid

End If

Analytica Decision Engine Tutorial 12

Getting the Attributes of Objects in the
Analytica Model

Once we get at the objects of interest in our model (which are
returned as CAObject interfaces), we will query some of the
attributes of those objects. For example, to get the definition of
the “Pop_exp” object, use the following:

definitionAttrInput =
inputObject.GetAttribute("definition")

In the Txc.ana model, the definition of Pop_exp is “Normal
(30M, 3M)” which is returned in definitionAttrInput. There may
be numerous attributes associated with an object. For
example, you can also retrieve the title, description, and class
of an object (as well as many other attributes). For a complete
list of attributes associated with an object, please consult the
Analytica User’s Guide that came with Analytica.

Analytica Decision Engine Tutorial 13

Evaluating Objects and Retrieving
Results

To evaluate an object, use the Result and ResultTable
functions of CAObject. Result is generally used to retrieve the
results of scalar objects, while ResultTable is used to retrieve
the results of multi-dimensional objects. By default, Result and
ResultTable return the mid value of the result (consult your
Analytica User’s Guide for an explanation of the different result
types that can be returned when evaluating an object). To
return the result as a probabilistic value, or as a mean, set the
ResultType property of CAObject. Please see the Analytica
Decision Engine for Windows Developer’s Guide for more
information about ResultType. We retrieve the result of our
Cost object (outputObject) in the following way:

resultTable = outputObject.ResultTable

Note: In VB 5 or 6, use: Set resultTable = ...

This function returns a CATable object that allows us to access
(and set) individual elements in a table. Below, it is shown how
to use the function GetDataByElements, which is one function
that can be used to access individual elements in a table.
Here, use the function ResultTable because we know that our
result is multi-dimensional. If ResultTable did not evaluate to a
multi-dimensional result, then Nothing would be returned by
ResultTable. This could mean that either an error had occurred
or that the object in question represents a scalar value (in
which case the Result function should be used).

Sometimes it is hard to tell whether a result will be scalar or
multi-dimensional. For example, an object in your model may
evaluate to a scalar under some circumstances, and a multi-
dimensional result in other circumstances. In this case, call
ResultTable first. If ResultTable succeeds, then you are
dealing with a multi-dimensional value. If ResultTable returns
Nothing, then call Result. If Result succeeds, then you are
dealing with a scalar. If Result fails, then an error has
occurred. Call the ErrorCode and ErrorText functions to
understand why an error occurred, and take appropriate action.

For example, you might write code that looks as follows:

Evaluating Objects and Retrieving Results

Analytica Decision Engine Tutorial 14

Dim result As Variant
Dim resultTable As Object 'our CATable
resultTable = outputObject.ResultTable
If resultTable Is Nothing Then

'Check to see if it is a scalar result
result = outputObject.Result
If adeEngine.ErrorCode <> 0 Then

'an error occurred. Take action
Else

'continue with result
End If

Else
‘continue with resultTable

End If

Note that in the above code snippet, ResultTable returns a
CATable object. To access the individual elements of the
table, use the functions exposed by the CATable object. The
function Result, however, returns either a string or a number,
and not an automation object. You can, therefore, use the
return value of Result directly.

Although ResultTable is generally used with multi-dimensional
objects, you can also use the Result function for multi-
dimensional objects. This, however, is very rarely done
because Result, in the case of a multi-dimensional result,
returns a string representation of your table, which can be very
hard to parse if you need to get at individual elements of the
table.

Analytica Decision Engine Tutorial 15

Getting the Index Elements of a Table
All Analytica tables have indexes associated with them. If there
is one index associated with a table, then the table is one-
dimensional, if there are two indexes associated with a table,
then the table is two dimensional, etc. (you can use the
NumDims function of CATable to determine the dimensionality
of your table). To get at the individual indexes of a table, make
use of the functions IndexNames and GetIndexObject of
CATable. The function PrintResultTable in frmMain.frm
demonstrates the use of these two functions (as well as other
concepts that we present below). PrintResultTable is called
from PrintAttributes, and does the actual work of printing the
table that shows up in our TestTxc application. Note that only
the parts of this function related to ADE are shown for brevity.

Public Sub PrintResultTable(ByRef resultTable As
Object, ByRef inputIdentifier As String,
ByRef definitionAttrInput As String, ByRef
outputIdentifier As String)

Dim theIndexName, theTableName As String
Dim theIndexElement As String
Dim theTableElement
Dim theIndexObj As Object
Dim numEls As Integer
Dim spaces, i As Integer
Dim lenStr As Short
Dim OutputStr As Short
Dim spaceString, underlineString As String

.

.

theIndexName = resultTable.IndexNames(1)
theTableName = resultTable.Name

theIndexObj =
resultTable.GetIndexObject(theIndexName)

numEls = theIndexObj.IndexElements
.
.

For i = 1 To numEls
theIndexElement =
theIndexObj.GetValueByNumber(i)
theTableElement =
resultTable.GetDataByElements(i)

.

.
Next i
InformationPane.Text = outputString

End Sub

Getting the Index Elements of a Table

Analytica Decision Engine Tutorial 16

The lines of PrintResultTable that get an index of a table are as
follows:

theIndexName = resultTable.IndexNames(1)
theIndexObj =
resultTable.GetIndexObject(theIndexName)

The first index in the table is retrieved by using the
IndexNames function of CATable (if this were more than a one-
dimensional table, and we wanted the name of the second
index, we would pass 2 into the IndexNames function rather
than 1). We then pass the name of this index into the
GetIndexObject function of CATable to retrieve a CAIndex
object that represents our index. This automation object
returns information about its corresponding index. If this
function fails, then Nothing is returned. In this case, the
ErrorCode and ErrorText functions of CAEngine should be
used to gain more information about the error.

Analytica Decision Engine Tutorial 17

Retrieving Information from our
CATable and CAIndex objects

PrintResultTable also demonstrates how to retrieve information
from CATable and CAIndex objects. The code, which gets at
the index elements and the table elements of our Cost table, is
as follows:

numEls = theIndexObj.IndexElements
For i = 1 To numEls

theIndexElement =
theIndexObj.GetValueByNumber(i)

theTableElement =
resultTable.GetDataByElements(i)

.

.
Next i

The IndexElements property of CAIndex returns the number of
elements in the index (the first index).

The GetValueByNumber function of CAIndex retrieves
individual index elements of the index.

To retrieve the individual table elements of the Cost table
object, resultTable, the GetDataByElements function of
CATable is called (passing in the position of the table we wish
to retrieve).

In our example, when we retrieve an individual element of our
CATable object (resultTable), we take advantage of the fact
that the table is one-dimensional. Therefore, we only need to
pass GetDataByElements a single number representing the
position in our table. If we were dealing with two or more
dimensions, however, we would need to pass
GetDataByElements an array specifying the coordinate of the
element of our table to retrieve. So, if we want to retrieve the
element at position 4,3 of a 2-dimensional table, we would write
the following code:

Dim W as Variant 'return element
Dim IndexPtrs(1 To 2) As Variant 'position in

table
....
....
IndexPtrs(1) = 4
IndexPtrs(2) = 3
W = resultTable.GetDataByElements(IndexPtrs)

Retrieving Information from our CATable and CAIndex objects

Analytica Decision Engine Tutorial 18

There are other ways to retrieve information from CATable and
CAIndex objects. Please consult the Analytica Decision Engine
Reference Guide for the functions exposed by the CATable and
CAIndex objects.

Analytica Decision Engine Tutorial 19

Modifying Objects
A custom application typically obtains input from a user or other
external source, and then transfers this data to input variables
in their Analytica model before retrieving results from the
model. Input data is usually transferred into ADE either by
setting the definition of an input variable, or by using a
definition table.

The TestTxc shows how to modify the definition of pop_exp,
which is a model input that affects the Cost result variable. To
set the definition in the example, select File|Change Population
Exposed from the main menu. The following dialog appears:

In the “New Definition for “Population Exposed” field, you can
enter a new definition for pop_exp, and press OK. At that
point, the main window of our application will display the new
result of Cost. The OkButton_Click function in ChangeDef.frm
is called when the Ok button is pressed in the above dialog. It
modifies the definition of pop_exp, and then calls the
PrintAttributes function that prints the result of Cost.

The function looks as follows:

Private Sub OkButton_Click(ByVal eventSender As
System.Object, ByVal eventArgs As
System.EventArgs) Handles OkButton.Click

Dim errorText As String

Modifying Objects

Analytica Decision Engine Tutorial 20

Dim pop_exp_Object As Object
Dim errorCode As Short
Dim errorString As String
Dim newDefinition As String

newDefinition = PopExposedDef.Text
pop_exp_Object =

adeEngine.GetObjectByName("pop_exp")
pop_exp_Object.SetAttribute("definition",

newDefinition)
errorCode = adeEngine.errorCode
If errorCode <> 0 Then

errorString = adeEngine.errorText
errorText = "The following error occurred
while processing your definition: " & vbCrLf
& vbCrLf
errorText = errorText & errorString
MsgBox(errorText)
PopExposedDef.Focus()

Else
Me.Close()

frmMain.DefInstance.PrintAttributes("Pop_exp"
, "Cost")

End If
End Sub

This function grabs the new definition typed into the New
Definition for Population Exposed field and sets it to the
“pop_exp” object by using the SetAttribute function of CAObject
object. It then calls PrintAttributes, which evaluates the Cost
object, and prints the new table.

To set a new definition for the pop_exp variable, we get the
CAObject for pop_exp, and set it’s definition to the definition
typed in by the user. This is done with the following code:

pop_exp_Object =
adeEngine.GetObjectByName("pop_exp")

pop_exp_Object.SetAttribute "definition",
newDefinition

Whenever you call SetAttribute, you should check the
ErrorCode of the CAEngine automation object (adeEngine), in
case the definition is illegal.

Try entering a new definition such as Uniform(25M,35M) and
press Ok. When the definition of pop_exp is changed, the
result for Cost gets recomputed by ADE when ResultTable is
next called for the Cost variable (when the application window
is repainted).

Analytica Decision Engine Tutorial 21

Conclusion
This tutorial touched on several aspects of the Analytica
Decision Engine. It explained how to create the ADE server
object, open a model with ADE, get at an individual object in a
model, evaluate objects, access elements in a table, and
modify objects in a model. It is important to note that this
tutorial has barely scratched the surface of the things that can
be done with ADE. However, we hope that you have gained
enough information about the basics of ADE in order to explore
the many advanced features of ADE on your own. It is strongly
recommended that you read the Analytica Decision Engine for
Windows Programmers Guide in order to gain a complete
understanding of ADE, and what it can accomplish. Good
luck!!

	Contents
	Introduction
	What is the Analytica Decision Engine?
	Using the Analytica Decision Engine Server
	Analytica Decision Engine Server Class Architecture
	Your First ADE Application
	What’s next?

	Understanding the Difference Between Titles and Identifers
	Creating an ADE Object from within Visual Basic
	COM vs. Automation Interface

	Opening a Model with ADE
	Retrieving Objects from the Analytica Model
	Getting the Attributes of Objects in the Analytica Model
	Evaluating Objects and Retrieving Results
	Getting the Index Elements of a Table
	Retrieving Information from our CATable and CAIndex objects
	Modifying Objects
	Conclusion

