
Analytica® Decision Engine
User Guide

Release 4.0
Beta—April 21, 2007

Chapter

ii Analytica® Decision Engine User Guide

I

Copyright Notice
Information in this document is subject to change without notice and does not represent a commitment on the part
of Lumina Decision Systems, Inc. The software program described in this document is provided under a license
agreement. The software may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license agreement.

This document and the software program described in this document, Analytica Decision Engine, are
copyrighted

© 1998-2007 Lumina Decision Systems, Inc., all rights reserved

The Analytica Decision Engine software contains software technology licensed from Carnegie Mellon University
exclusively to Lumina Decision Systems, Inc., and includes software proprietary to Lumina Decision Systems, Inc.
Carnegie Mellon University and Lumina Decision Systems, Inc., make no warranties whatsoever, either expressed
or implied, regarding this product, including warranties with respect to its merchantability or its fitness for any
particular purpose.

Analytica is a registered trademark and Lumina Decision Systems and Intelligent Arrays are trademarks of Lumina
Decision Systems, Inc.

Lumina Decision Systems, Inc.
26010 Highland Way, Los Gatos, CA 95033
Tel: (650) 212-1212, Fax: (650) 240-2230
Internet: support@lumina.com
http://www.lumina.com

Acknowledgements
The ADE User Guide was written by Richard Sonnenblick, Hugh Silin, Lonnie Chrisman, Max Henrion,
and Richard Morgan.

Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
Phone: (650) 212-1212
Fax: (650) 240-2230
Web Site: www.lumina.com

mailto:support@lumina.com

Analytica Decision Engine User Guidei

Contents
Chapter 1: Introduction 2
What is the Analytica Decision Engine?..2
Using the ADE Server ...3
How to use this document...3

Chapter 2: Installation . 6
System Requirements...6
Installing the Analytica Decision Engine files ..6

Installing from the network..6
Installing from CD ...7
Entering a new license code...7
Upgrading from an earlier version of ADE..8
Uninstalling ADE...8

Chapter 3: The ADE Tutorial 10
Your First ADE Application..10

What’s next? ...11
Distinguishing Title from Identifier...12
Creating an ADE Object from within Visual Basic12
COM vs. Automation Interface..13

Opening a Model with ADE ...13
Retrieving Objects from the Analytica Model ..13

Getting Object Attributes...14
Evaluating Objects and Retrieving Results...15
Getting the Index Elements of a Table ...15

Retrieving information from CATable & CAIndex objects16
Controlling Formats of Atomic Values ...17
Other Ways to Access Tables ..17
.Modifying Objects ..17

Graphing with ADE..19
Conclusion ..20

Chapter 4: Using the Analytica Decision Engine Server 22
Analytica Decision Engine Server Class Architecture...................................22

COM, Automation, and .NET ..22
In-Process vs. Out-of-Process..22
Typescript ...23
Security Permissions under IIS 5..23

The AdeTest Program...24

ii Analytica® Decision Engine User Guide

Contents
Sample Application in Excel’s Visual Basic .. 25
Sample ASP Web Application... 26
Using the ADE COM-interface .. 26

From a .Net project in Visual Studio 2005 .. 26
Releasing Objects in .NET ... 27
From an ATL Project in C++... 27

Using the ADE Automation-interface .. 28
From Visual Basic or VBScript ... 28

ADE Typescript: Command Language Communication................................ 29
In Visual Basic .. 29
In VBScript.. 29
In C# ... 30
In J#.. 30
In C++/CLR... 31
In VC++ (without .NET) .. 31

Errors and Error Handling ... 31

Chapter 5: Working with Models, Modules, and Files . . 34
Models and Modules... 34
ADE Objects ... 35
Retrieving Computed Results ... 36
Retrieving Multi-Dimensional Results ... 38
Creating Tables and Setting Values in Tables.. 44
Adjusting How Values Are Returned... 48
Using the Analytica Graphing Engine ... 50

Chapter 6: ADE Server Class Reference 54
Class CAEngine.. 54

Properties ... 54
Methods.. 56

Class CAObject... 60
Properties ... 60
Methods.. 61

Class CATable .. 64
Properties ... 64
Methods.. 65

Class CAIndex .. 71
Properties ... 71
Methods:... 71

Class CARenderingStyle .. 72
Properties ... 72

ADE Error Codes .. 76
API Error Codes.. 76

Chapter 1 Introduction

Chapter Introduction

2 Analytica® Decision Engine User Guide

1 What is the Analytica Decision Engine?

Introduction

What is the Analytica Decision Engine?
The Analytica Decision Engine (ADE) is a powerful COM component that helps you to
programmatically access Analytica models. ADE lets you run any Analytica model on a
server computer. It provides an Application Programming Interface (API) through which
other application programs can create, read, check, parse, evaluate, modify, and save
Analytica models. For example, you can create a user-interface accessible via a web-
browser so that users can run Analytica models as web applications. Or you can use
ADE to access your Analytica model from another application that may supply inputs,
run the model, and collect and display results.

Although you can use ADE to build and edit models with commands issued via the API,
it is usually much more convenient to use Analytica Enterprise for this purpose (see the
Analytica Tutorial and Analytica User Guide for details, including the “Analytica
Enterprise” chapter of the Analytica User Guide). Once you have an Analytica model,
you can use ADE to build a custom user interface via a Web browser or other
application, to interface the model with another application.

ADE is provided in two forms: An ActiveX in-process automation server. adew.dll. and a
COM local automation server, ADE.exe, so that it is compatible with a wide range of
applications. The classes, methods, and properties exposed by these servers are
accessible from any programming environment that supports the use of COM, ActiveX
Automation or .NET interfaces. Such environments include VB, VB.NET, ASP,
ASP.NET, C#, Visual C/C++, J#, VB Script, and JavaScript. For example, you can use
Visual Basic or C# to create graphical user interfaces (GUIs) on 32-bit Microsoft
Windows platforms for your Analytica models, tailored to specific applications and
specific classes of end-users.

Figure 1 shows a conceptual model of ADE. Your application makes calls to the
functions exposed by the interface classes of ADE. Those functions then return
information to your application. Server objects allow you to read, check, parse, evaluate,
modify, and save Analytica models from within your applications.

Figure 1: Conceptual model of Analytica Decision Engine

Your application

Analytica
Model

Analytica Decision Engine (ADE)

CAEngine CAObject CATable CAIndex CARenderi
ngStyle

 Analytica® Decision Engine User Guide 3

Chapter Introduction1 Using the ADE Server

Using the ADE Server
ADE provides objects of five OLE classes: CAEngine, CAObject, CATable, CAIndex,
and CARenderingStyle (‘CA’ stands for Class Analytica). You use these classes to
interact with your Analytica model through ADE. The CAEngine class contains methods
and properties to open and close existing models, create new models, and access
objects in your Analytica model.

It is important to distinguish these OLE object classes in ADE from the Analytica object
classes. Analytica classes include Chance, Decision, Index, Objective, and Variable
(which we refer to collectively as Variable Classes); Model, Module, and Library (which
we refer to collectively as Module Classes); Functions, and Attributes. You can access
Analytica objects as instances of the CAObject class, This class provides Properties
and methods to get and set attributes of Analytica objects, including Identifier, Title,
Description, and (for variables) Definition, and Value.

You can access the value of a Variable via the ResultTable property of class CATable.
A CATable represents an Analytica Array (also known as a Table) so that you can get or
set its individual elements (also known as cells). Each element may be a number or a
string value (termed a text value in Analytica).

A CATable has zero or more dimensions. Zero dimensions means it is a atomic (it has a
single element). Each dimension is identified by an Analytica Index, represented by the
CAIndex class. A CAIndex has a name, and a list of labels, numbers or string, used to
identify the rows or columns (more generally, slices) of the array. In Analytica you
identify dimensions of an Array by name not by order.

The CARenderingStyle class provides control over formatting of returned values as
numbers or text.

How to use this document
The rest of this guide has five sections:

• Installation

This chapter explains the steps required to install the Analytica Decision Engine 4.0
on your Windows NT 4 (>SP 6), 2000, XP, or Vista computer.

• Tutorial

This chapter shows you how to use the Analytica® Decision Engine (ADE) from
within a Visual Basic program, and steps you through building your first ADE
application using Visual Basic.

• Using the Analytica Decision Engine Server

This section provides a step-by-step guide to the functionality accessible through
ADE. You should read this section to get better acquainted with the classes, and
their methods and properties. By using the sample code fragments presented in this
section in your code, you can begin accessing information in your models from your
Visual Basic applications immediately.

• Working with Analytica Models, Modules, and Files

This chapter contains examples of various common operations and manipulations
you might perform on objects in your Analytica model.

• Analytica Decision Engine Server Class Reference

Chapter Introduction

4 Analytica® Decision Engine User Guide

1 How to use this document

This chapter provides reference materials on the four object classes in ADE and
their properties and methods. Information that can be found in this chapter includes
method syntax, data types, and property access information. Refer to the
information in this section after you’ve read through the section, “Using the
Analytica Decision Engine Server”, and have specific questions about particular
methods and properties.

Chapter 2 Installation

This chapter explains the system requirements
for the Analytica Decision Engine (ADE). It
describes how to install, upgrade, and uninstall,
the Analytica Decision Engine.

Chapter Installation

6 Analytica® Decision Engine User Guide

2 System Requirements

Installation

System Requirements
• Windows NT 4.0 (>SP6), 2000, XP, Windows Server 2003, and Vista.

• 20 MB of hard drive space (you will need more space to develop your applications).

• 256 MB of RAM

• You will also need a development language environment to build your application
using ADE. This could be Visual Studio with VB.NET, C#, ASP.NET, VC++, or any
other COM or .NET-enabled development environment. You can also use ADE from
Microsoft Office Visual Basic for Applications (VBA) or from Windows Scripting Host
(CScript.exe or WScript.exe), as well as other COM-enabled or ActiveX automation-
enabled packages.

You can obtain all the files for installation of ADE from the ADE CD-ROM or you can
download the installer from

http://www.lumina.com/ana/support/download.htm

The installation contains the ADE in-process automation server (adew.dll), the ADE
local automation server (ADE.exe), auxiliary files needed by ADE, this ADE User Guide,
and example programs.

Installing the Analytica Decision Engine files

Installing from the network
Obtain an ADE 4.0 license code from Lumina. This will be supplied to you, usually
through e-mail, when you purchase ADE. You must complete the installation within
three days after the license code is issued to you.

Download the ADE setup executable. The location of the file will be provided to you
when you receive your license code. Save the file to disk.

Run (e.g., double click on) the file just download to begin the ADE installer.

Note:Before running the ADE installer, you must have the Windows System Installer
(WSI) already installed on your system. This is guaranteed to already be on your
system if you are using Windows XP, or if you have previously installed
Analytica. If you have installed any recent Windows software, it is almost
certainly present. If it is not present, the easiest remedy is to install Analytica or
later.

Follow the instructions. Read and agree to the license agreement, select a directory for
the installation, and enter your license code when prompted.

If the installer reports that your license code is stale, go to
http://lumina.com/ADE/staleLicense and obtain a fresh code. After you obtain a
fresh code, be sure to enter the license code within three days.

http://www.lumina.com/ana/support/download.htm
http://lumina.com/ade/staleLicensetm

 Analytica® Decision Engine User Guide 7

Chapter Installation2 Installing the Analytica Decision Engine files

Installing from CD
Insert the Analytica Decision Engine CD into your CD-ROM.

If the installer does not automatically start, run the setup.exe program on the CD-ROM.

During the setup, you will need to select a directory for installation, to read and agree to
the licensing terms, and to enter the license code supplied to you by Lumina Decision
Systems when you acquired ADE.

If the installer reports that your license code is stale, go to
http://lumina.com/ADE/staleLicense and obtain a fresh code. After you obtain a fresh
code, be sure to enter the license code within three days.

After following the above steps, the following files should exist in the directory in which
you installed ADE:

• Adew.dll

• ADE.exe

• Analytica.ini

• Analytica.i

• ODBC4Analytica.dll

• license.txt

• SolverSDK.dll

Two ADE manuals are installed into a subdirectory called docs. These are:

• ADE User Guide.pdf (this document)

• ADE Scripting.pdf

Four example programs should also have been installed in that directory underneath the
examples directory. They are as follows:

Tutorial—the program referred to by the Analytica Decision Engine Tutorial. It is
recommended that you read the Analytica Decision Engine Tutorial completely before
writing your own programs that depend on ADE.

AdeTest—a program that allows you to call or test the methods of ADE objects through
a GUI. You can run AdeTest.Exe (in the bin directory) directory, or you can trace through
the code in the Visual Studio.NET 2005 debugger to observe each method being called.

asp_exam—a program that shows how to access ADE through a Microsoft ASP
program.

excel_exam—a program that shows how to access ADE from any application with
Visual Basic for Applications (VBA) support, including the Microsoft Office suite of
applications.

Entering a new license code
If you have previously installed an earlier version of ADE and need to enter a new
(different) license code, follow these steps:

Open a command prompt.

Select Start Run and type Cmd.exe.

Change directory (using the cd command) to the directory where you installed the
earlier version of ADE.

http://lumina.com/ade/staleLicense

Chapter Installation

8 Analytica® Decision Engine User Guide

2 Installing the Analytica Decision Engine files

Type: ADE /RegServer

A dialog will appear prompting you enter your new license code.

Upgrading from an earlier version of ADE
ADE 4.0 has been configured to install without disturbing previously installed versions of
ADE. This allows you to compare the performance and output of your application
under the different versions. However, it also means that your existing applications will
continue to use the previous version until you have changed them to use ADE 4.0. The
section "Migrating to ADE 4.0" describes the changes. When you have completed your
migration to ADE 4.0, you can uninstall the previous version of ADE.

If you are installing ADE 4.0 on a computer that has previous contained a beta release
of ADE 4.0, the beta version will be upgraded (replaced) by the installer, but after the
installer completes, you will need to follow the steps in the previous section, Entering a
new license code, in order to enter your non-beta license code.

Uninstalling ADE
To uninstall ADE, select Add/Remove Programs in the Windows Control Panel. Scroll
to find ADE 4.0. Press the Change/Remove or Add/Remove… button, depending on
your operating system, and select Remove.

The uninstall will only remove files that were placed on your system by the installer. If
you have compiled some of the examples, there may be some files and directories,
created during those exercises, which are not removed. To remove these as well, find
the install directory (e.g., C:\Program Files\Lumina\ADE 4.0) and remove them after
the uninstall has been run.

Chapter 3 The Analytica® Decision
Engine Tutorial

This Tutorial shows you how to use the
Analytica® Decision Engine (ADE) from within a
Visual Basic program.

Chapter The Analytica“ Decision

10 Analytica® Decision Engine User Guide

3 Your First ADE Application

The ADE Tutorial

Your First ADE Application
First let us write a simple ADE application from scratch, just to be sure that everything is
set up correctly. Follow these steps:

1. Bring up Visual Studio.NET

2. Select New Project, Project Type "Visual Basic Projects", and template "Console
Application". Select a project name, e.g., "FirstADEtry" and an appropriate folder
location.

3. From the Project menu, select “Add Reference” and select the “COM” tab in the
dialog. Find and select “Analytica Decision Engine Local Server 4.0” (Ade.exe) and
click [OK]. (If you cannot find this entry in the list of COM servers, then ADE 4.0 is
not properly installed. See “Installation” on page 5 for instruction on how to install
ADE before reading further.)

4. Add to the Module1 class as follows:
Imports ADE
Module Module1

Public m_ade As CAEngine
Sub Main()
Dim filename, modelname As String
filename = "C:\Program Files\Lumina\Analytica 4.0\Tutorial

Models\Car Cost.ana"
m_ade = New CAEngine
modelname = m_ade.OpenModel(filename)
If modelname = "" Then

Console.Write(filename & " not found")
Else

Console.Write("Congratulations on opening" &
modelname)

End If
End Sub

End Module

5. Now run the program. If your program prints “Congratulations on opening Carcosts”,
you have just successfully written your first ADE program.

This first program did the following:

• created a CAEngine automation object called m_ade (using new CAEngine),

• opened an Analytica model (using the OpenModel method of CAEngine), and

• displayed the name of the model (the return value of OpenModel).

We will go into the details of these functions, and many more functions in the next
section.

 Analytica® Decision Engine User Guide 11

Chapter The Analytica“ Decision Engine 3 Your First ADE Application

What’s next?
We will not attempt to explain all of the features of ADE in this tutorial. Those are
described in the following chapters of this guide. Here, we will give you the background
to explore the more advanced features of ADE on your own.

From this point, we will use the example model called Txc.ana. You can find Txc.ana
under the Risk Analysis folder under the Example Models folder installed with
Analytica. If you cannot find it, or if you opted not to install the examples when you
originally installed Analytica, there is a copy in the Examples\Tutorial folder in the
directory where you installed ADE.

The Txc model demonstrates risk-benefit analysis of reducing the emissions of fictitious
air pollutant "TXC". Please open the Txc model with Analytica in order to see how it
works.

The example Visual Basic.NET program called TestTxc under your Ade
Examples\Tutorial.NET folder shows many aspects of ADE: It creates an ADE
automation object, opens the Txc.ana model with this object, gets the definition of the
“Population Exposed” variable, evaluates the “Total Cost” variable, prints out the result
of the “Total cost” variable as a table by getting at the individual components of the
table, and changes the definition of the “Population Exposed” variable. It then gets the
result of the “Total cost” variable again, to see what effect the change of definition for
“Population Exposed” had on the “Total Cost” variable. If things are set up properly,
TestTxc displays the window show in Figure 1: “Text Txc Window”.

The application displays the Definition of the “Population Exposed” variable ("Normal
(30M, 3M)"), and the table associated with “Total Cost”, based on the definition of
“Population Exposed”. You can change the definition of “Population Exposed” by
selecting File > Change Population Exposed from the main menu and seeing the
effect this has on the “Total Cost” table.

Figure 1: Text Txc Window

Chapter The Analytica“ Decision

12 Analytica® Decision Engine User Guide

3 Your First ADE Application

Distinguishing Title from Identifier
Whenever an ADE function requires a variable, you must pass it the identifier of the
variable, not its title. This can be confusing since Analytica normally displays the titles
of each variable in an influence diagram. By default, when you first create each object,
Analytica automatically creates an identifier based on the title. It substitutes underscore
“_” for each blank or other character in the Title that is not a letter or number.

You can show the identifiers in an influence diagram by pressing control-y (or by
selecting Show by identifier from the Object menu). For model Txc.ana, you can
see that the identifier of the variable titled “Population Exposed” is “Pop_exp”. It is
important to use “Pop_exp” as the identifier when passing this variable to ADE
functions. ADE would not be able to find the variable if you pass “Population Exposed”
instead, and would return an error.

Creating an ADE Object from within Visual Basic
If you haven’t already, load the project called Examples\Tutorial\TestTxc.sln
into Visual Basic.NET, and view the code for the file called TestTxc.vb. It looks like
this:

Imports ADEW
. . .
Public adeEngine As CAEngine

Public Sub Main()
Dim exeDirectory, theModel As String
Dim theModelString As String
exeDirectory = VB6.GetPath
theModel = exeDirectory & "\" & "Txc.ana"

adeEngine = New CAEngine
...

theModelString = adeEngine.OpenModel(theModel)
...
frmMain.DefInstance.Show()

End Sub

At the very top of the file, it declares the automation object adeEngine as a CAEngine
object. Via this object, we can access all of the public functions exposed by CAEngine
(see “ADE Server Class Reference” on page 53 for a complete listing). This line will
then create the CAEngine Object:

adeEngine = New CAEngine

The adeEngine variable now holds our in-process CAEngine object.

If we want to use the local (out-of-process) server version of ADE, we can add a
reference to the project to the “Analytica Decision Engine Server 4.0” COM component
and change the top line from “Imports ADEW” to "Imports ADE".

Here is another way to obtain a new CAEngine object, which does not require adding a
reference to the project:

adeEngine = CreateObject("ADEW4.0.CAEngine") ’ in-process
adeEngine = CreateObject("ADE4.0.CAEngine") ’ out-of-process

 Analytica® Decision Engine User Guide 13

Chapter The Analytica“ Decision Engine 3 Opening a Model with ADE

To understand the pros and cons of using an in-process server versus as out-of process
(or local) server, and which automation server to use for different scenarios, see “In-
Process vs. Out-of-Process” on page 22, as well as other books related to COM
servers.

COM vs. Automation Interface
In the above example, we used a COM interface to call ADE. In a COM interface, the
object (CAEngine in this case) is declared as CAEngine, and the compiler resolves
each member function and can detect several obvious errors at compile time. In
addition, Visual Studio can provide a list of methods and parameter types as tool tips as
you program, which is helpful when writing programs that use ADE. COM calls are
slightly faster than Automation calls, but the speed difference is not usually significant in
applications of ADE. With ADE 4.0, we recommend using the COM interface if your
programming language supports it.

In VB Automation, you can declare an object simply as Object, rather than a more
specific types such as CAEngine, CAObject, etc. When ADE methods are called using
Automation, the methods are resolved at run-time. At compile time, the compiler does
not know whether your m_ade object has a method named OpenModel. In VB, the
syntax for calling a COM method or an Automation method is identical — the only
difference is whether the object’s type is declared explicitly.

In VC++ and C#, the syntax for calling COM is not the same as for Automation. In these
cases, COM is much more convenient, while Automation can get rather tedious.
However, some languages, including VBScript and other scripting languages, support
only Automation and not COM.

Opening a Model with ADE
We will now open the Txc.ana model, and show the main window of our application.
Use the following call:

theModelString = adeEngine.OpenModel(theModel)
frmMain.DefInstance.Show

The OpenModel function of CAEngine will open the model. If successful, the variable
theModelString will contain the name of the model. Otherwise, it contains an empty
string. Although we haven’t done so in this example for the sake of brevity, you should
check to see that the string returned from OpenModel isn’t empty. If it is, there was an
error in opening your model. You can find out what kind of error with the ErrorCode
and ErrorText properties of CAEngine (adeEngine.ErrorCode and
adeEngine.ErrorText). We will see how to use these two properties later on. For a
listing of all the error codes, see Appendix A: “Error Codes” on page 76.

Retrieving Objects from the Analytica Model
The next step is to retrieve objects (Variables, Modules, Functions, etc.) from our model,
so that we can access their attributes (Definition, Title, Class, etc.). Our example model
(Txc.ana) manipulates the Pop_exp and Cost objects. In particular, it modifies
Pop_exp to see how this effects the Cost object.

Chapter The Analytica“ Decision

14 Analytica® Decision Engine User Guide

3 Retrieving Objects from the Analytica Model

The PrintAttributes function in the file frmMain.frm of our TxcTest.vbproj
(TxcText.sln) project shows how to do this. This function is first called by the
Form_Load function of frmMain.frm, when the application starts, to display the Cost
table. It is also called whenever we wish to print out the current result of our Cost table.
The function looks as follows:

Public Sub PrintAttributes(ByRef inputIdentifier As String, ByRef
 outputIdentifier As String)

Dim inputObject, outputObject As CAbject
Dim resultTable As CATable
Dim definitionAttrInput As String
inputObject = adeEngine.GetObjectByName(inputIdentifier)
outputObject = adeEngine.GetObjectByName(outputIdentifier)
definitionAttrInput = inputObject.GetAttribute("definition")
resultTable = outputObject.resultTable
Call PrintResultTable(resultTable, inputIdentifier,

definitionAttrInput, outputIdentifier)
End Sub

PrintAttributes gets with the variable identifiers, Pop_exp passed as parameter
inputIdentifier and Cost passed as parameter outputIdentifier. It fetches the
corresponding objects using the GetObjectByName function of CAEngine thus:

inputObject = adeEngine.GetObjectByName(inputIdentifier)
outputObject = adeEngine.GetObjectByName(outputIdentifier)

If GetObjectByName succeeds, it returns an object of type CAObject. You then use
the functions of CAObject. See “SendCommand(command)” on page page 59 for a
listing all CAObject functions. If GetObjectByName fails, the return value is
Nothing. The code should check to make sure that the result from
GetObjectByName is valid. If not, use the ErrorCode and ErrorText properties of
CAEngine to get more information about the error. For example:

Set inputObject = adeEngine.GetObjectByName(inputIdentifier)
If inputObject Is Nothing Then

 MsgBox(“This error from GetObjectByName occurred: “& _
vbCrLf & adeEngine.errorCode & “:” & adeEngine.errorText)

Else
 'inputObject valid

End If

Getting Object Attributes
Each Analytica object has a set of Attributes (analogous to “Properties”), such as
Identifier, Title, Description, and Class. You can use the GetAttribute function to obtain
an Attribute from an Analytica Object. For example, to get the Definition of inputObject
(currently, the cost):

definitionAttrInput = inputObject.GetAttribute("definition")

In the Txc.ana model, the definition of Pop_exp is “Normal (30M, 3M)” which we store
in definitionAttrInput.

 Analytica® Decision Engine User Guide 15

Chapter The Analytica“ Decision Engine 3 Retrieving Objects from the Analytica Model

Evaluating Objects and Retrieving Results
Use Result or ResultTable methods of CAObject to get the value of a variable. ADE
will automatically evaluate the variable first if necessary. Use the Result method if you
are sure the result will be atomic, i.e. a single element. Otherwise, use ResultTable,
which retrieves the result as an array. An atomic result is treated as a special case of an
array, one with zero dimensions. If the value is atomic, the method AtomicValue
returns its single value as a number or string.

By default, Result and ResultTable return the Mid value of the result — i.e. the result of
ADE evaluating it as deterministic. For a probabilistic value, set the ResultType
property of CAObject to the desired uncertainty view — Mean, Sample, PDF, CDF,
Confidence bands, or Statistics,. (See “ResultType” on page 60 for details.) We get the
value of outputObject, thus:

resultTable = outputObject.ResultTable

The result is a CATable object, which lets us accesss individual elements in a table.

If you call Result to get an array (or table) value, it returns the array as a string, listing
the indexes and elements separated by commas. It is usually easier to use
ResultTable, so that you don’t have to parse elements of the table from the string.

Getting the Index Elements of a Table
An Analytica table has zero or more indexes. If it has one index e, then it is one-
dimensional; if it has two indexes, it is two-dimensional, and so on. A zero-dimensional
table holds a single atomic (or scalar) value. You can use the NumDims function of
CATable to get the number of dimensions (same as number of Indexes) of a table. To
get at the individual indexes of a table, use methods IndexNames and GetIndexObject
of CATable.

The function PrintResultTable in frmMain.frm shows the use of these two functions .
PrintResultTable is called from PrintAttributes, and does the actual work of printing
the table that shows up in our TestTxc application. (For brevity, we show only the parts
of this function related to ADE).

Public Sub PrintResultTable(ByRef resultTable As CATable,
ByRef inputIdentifier As String,
ByRef definitionAttrInput As String,
ByRef outputIdentifier As String)

Dim theIndexName, theTableName As String
Dim theIndexElement As String
Dim theTableElement
Dim theIndexObj As CAIndex
Dim numEls As Integer
Dim spaces, i As Integer
Dim lenStr As Short
Dim OutputStr As Short
Dim spaceString, underlineString As String
...
theIndexName = resultTable.IndexNames(1)
theTableName = resultTable.Name
theIndexObj = resultTable.GetIndexObject(theIndexName)
numEls = theIndexObj.IndexElements
For i = 1 To numEls

theIndexElement = theIndexObj.GetValueByNumber(i)

Chapter The Analytica“ Decision

16 Analytica® Decision Engine User Guide

3 Retrieving information from CATable & CAIndex objects

theTableElement = resultTable.GetDataByElements(i)
...

Next i
InformationPane.Text = outputString

End Sub

The lines of PrintResultTable that get an index of a table are as follows:

theIndexName = resultTable.IndexNames(1)
theIndexObj = resultTable.GetIndexObject(theIndexName)

We get the name of first index using the IndexNames function of CATable. We pass it
into the GetIndexObject function of CATable to get a CAIndex object that represents
our index. This automation object returns information about its corresponding index. If
this function fails, it returns Nothing. In that case, use ErrorCode and ErrorText
functions of CAEngine to find out why.

Retrieving information from CATable & CAIndex objects
PrintResultTable also shows how to get information from CATable and CAIndex
objects. This code gets the index and table elements of the Cost table:

numEls = theIndexObj.IndexElements
For i = 1 To numEls

theIndexElement = theIndexObj.GetValueByNumber(i)
theTableElement = resultTable.GetDataByElements(i)
...

Next i

The IndexElements property of CAIndex returns the number of elements in the (first)
index. The GetValueByNumber function of CAIndex gets individual index elements.

To get the individual table elements of the Cost table object, resultTable, we use the
GetDataByElements function of CATable, passing in the coordinates of the element in
the table.

When we retrieve an individual element of our CATable object (resultTable), we take
advantage of the fact that the table is one-dimensional. Therefore, we only need to
pass GetDataByElements a single number representing the position in our table. If we
were dealing with two or more dimensions, however, we would need to pass
GetDataByElements an array specifying the coordinates of the element of our table to
retrieve. So, if we want to retrieve the element at position (4,3) of a 2-dimensional table,
we would write:

Dim W as Variant 'return element
Dim IndexPtrs(1 To 2) As Variant 'position in table

 ...
IndexPtrs(1) = 4
IndexPtrs(2) = 3
W = resultTable.GetDataByElements(IndexPtrs)

 Analytica® Decision Engine User Guide 17

Chapter The Analytica“ Decision Engine 3 Retrieving information from CATable & CAIndex objects

Controlling Formats of Atomic Values
Each atomic value in a CATable may be a number, string, or one of a few other basic
types (e.g,. Null, Undefined, Reference, or Handle). These are returned as variants, a
data structure understood by Visual Basic, specifying the type and value. The
RenderingStyle property of CATable controls how the underlying Analytica value is
mapped to the Visual Basic variant.

For example, it can return a numeric value as a number, or a string using the Analytica
model’s number format setting. If it is formatted, an option controls whether to truncate
the number of digits, or to return it with full precision.

In the PrintResultTable subroutine, located in frmMain.vb, the rendering style is
explicitly specified:

resultTable.RenderingStyle.NumberAsText = True
resultTable.RenderingStyle.FullPrecision = False
resultTable.RenderingStyle.StringQuotes = 2

The first line specifies that numeric values should be formatted as text according to the
number format associated with the result object. For example, in the program output,
we see “30.103M” instead of 30102995.6639812, which would likely be displayed if we
had let Visual Basic concatenate the numeric value to our result string. In the event that
a string-valued cell occurs in the result, it will be returned with explicit double quotes
around the value. See “Class CARenderingStyle” on page 72 for additional properties
available through the CARenderingStyle object.

Other Ways to Access Tables
There are several ways to access the elements of a multi-dimensional CATable. Some
may be more convenient in certain scenarios than others.

The first way is to use the GetDataByElements or GetDataByLabels methods of
CATable, shown in above. In this case, you supply the coordinates of the cell whose
atomic value you which to retrieve.

A second way is to use the Slice or Subscript methods of CATable to obtain a new
CATable object having one less dimension. By repeatedly reducing the dimensionality,
you will eventually reach zero dimensions, in which case you have a single atomic
value. At that point, the AtomicValue method of CATable returns this value. The
AtomicValue method is the only way to access a scalar value (since it doesn’t have a
coordinate). You must use this method if you need to generate a graph image of a slice
of the full result.

A third way is to use the GetSafeArray method of CATable, to convert the multi-
dimensional array into a Safe Array (or into a .NET array). You can then manipulate the
multi-dimensional array directly in VB or other .NET language. Since there is no
inherent ordering to Analytica dimensions, but Safe Arrays and .NET arrays have an
explicit ordering, you must first use the SetIndexOrder of CATable to specify the
ordering of dimensions before calling GetSafeArray. (Not necessary if you know your
array to be one-dimensional,)

.Modifying Objects
A custom application often gets input from a user or other external source, to transfer
into input variables in the Analytica model. You can do this either by setting the
definition of an input variable, or by using a definition table.

Chapter The Analytica“ Decision

18 Analytica® Decision Engine User Guide

3 Retrieving information from CATable & CAIndex objects

TestTxc shows how to modify the definition of Pop_exp, which is a model input that
effects the Cost result variable. To set the definition in the example, select File|Change
Population Exposed from the main menu. The following dialog appears:

 You can enter a new definition for into the field, and press OK. At that point, the main
window of our application will display the new value of Cost. The OkButton_Click
function in ChangeDef.frm is called when the Ok button is pressed in the above dialog.
It modifies the definition of Pop_exp, and then calls the PrintAttributes function that
prints the result of Cost.

The function looks as follows:
Private Sub OkButton_Click(ByVal eventSender As System.Object,

 ByVal eventArgs As System.EventArgs) Handles OkButton.Click
Dim errorText As String
Dim pop_exp_Object As CAObject
Dim errorCode As Short
Dim errorString As String
newDefinition = PopExposedDef.Text
pop_exp_Object = adeEngine.GetObjectByName("pop_exp")
pop_exp_Object.SetAttribute("definition", newDefinition)
errorCode = adeEngine.errorCode
If errorCode <> 0 Then

MsgBox("This error occurred while processing your
definition: " &

vbCrLf & vbCrLf & adeEngine.errorText)
PopExposedDef.Focus()

Else
Me.Close()
frmMain.DefInstance.PrintAttributes("Pop_exp", "Cost")

End If
End Sub

This function grabs the new definition typed into the New Definition for Population
Exposed field and sets it to the Pop_exp object by using the SetAttribute function of
CAObject object. It then calls PrintAttributes, which evaluates the Cost object, and
prints the new table.

 Analytica® Decision Engine User Guide 19

Chapter The Analytica“ Decision Engine 3 Graphing with ADE

To set a new definition for the pop_exp variable, we get the CAObject for Pop_exp, and
set it’s definition to the definition typed in by the user. This is done with the following
code:

pop_exp_Object = adeEngine.GetObjectByName("pop_exp")
pop_exp_Object.SetAttribute "definition", newDefinition

Whenever you call SetAttribute, you should check the ErrorCode of the CAEngine
automation object (adeEngine), in case the definition is illegal.

Try entering a new definition such as Uniform(25M,35M) and press Ok. When the
definition of pop_exp is changed, the result for Cost gets recomputed by ADE when
ResultTable is next called for the Cost variable (when the application window is
repainted).

Graphing with ADE
You may generate a chart or graph to display an array-valued or uncertain result, using
the same graphing engine used by Analytica 4.0. In ADE 4.0 you can use the
GraphToFile and GraphToStream methods of CATable. The graphs are returned in
several possible image formats, such as “image/bmp” or “image/jpeg”.

The easiest way is to select from the many graphing options available is to open your
model with Analytica Enterprise. You can experiment with the settings for the default for
all variables or for the override for selected variables to see how they look. When you’ve
chosen the settings you want, save the model. ADE will then use these settings when
producing result graphs for the each variable.

For higher-dimensional results, some work may be necessary to select the slice of the
result that will be plotted and the specific pivot (i.e., which dimensions will appear on the
X-axis versus in the key). The Subscript or Slice methods of CATable can be used to
select the particular slice to be plotted and the SetIndexOrder can be used to control
the pivot. See the “Class CATable” on page 64 for details. In our Txc example, we have
a one-dimensional result (Cost), and do not need to worry about slicing or pivoting.

In the example, the GraphToStream method is used to transfer the graph image
directly from ADE to a user-interface method. GraphToStream is a bit more
complicated to use than GraphToFile, since GraphToFile requires little more than a file
name to where it writes the image. To use GraphToStream, we must set up a stream in
memory, allow ADE to write to that stream, and then reconstitute the image from that
stream. Because .NET streams are not compatible with COM streams, you need to use
a StreamConnector class provided with ADE. The GraphResult_Click routine in

Chapter The Analytica“ Decision

20 Analytica® Decision Engine User Guide

3 Conclusion

frmMain shows the use of GraphToStream. Select the Graph Result menu option
from the main application window, and it will show:

Conclusion
In this tutorial, we introduced several important aspects of the Analytica Decision
Engine. We saw how to create the ADE server object, open a model with ADE, get at
an individual object in a model, evaluate objects, access elements in a table, and modify
objects in a model. But, ADE can do a lot more! We hope that you have learned
enough about the basics so that you can now explore the more advanced features on
your own. We recommend that you now read the rest of this guide in order to learn
about what else ADE can do.

Chapter 4 Using the Analytica
Decision Engine Server

This chapter describes the Analytica Decision
Engine server classes: CAEngine, CAObject,
CATable, CAIndex, and CARenderingStyle,
and the server class architecture.

Chapter Using the Analytica Decision

22 Analytica® Decision Engine User Guide

4 Analytica Decision Engine Server Class Architecture

Using the Analytica Decision Engine Server
ADE exposes five classes: CAEngine, CAObject, CATable, CAIndex, and
CARenderingStyle (‘CA’ stands for Class Analytica).

• The CAEngine class contains methods and properties that allow you to open and
close existing models, create new models, create new Analytica objects, and
access Analytica objects contained in your model.

• The CAObject class contains methods and properties that allow you to set and
obtain information about the Analytica objects (such as variables or modules) that
you obtain from the CAEngine class.

• The CATable class is used to examine multi-dimensional results or to view and
modify multi-dimensional definition tables (a.k.a., Edit Tables).

• A CAIndex object provides access to one dimension of a multi-dimensional
CATable.

• The CARenderingStyle, which is new to ADE 4.0, allows you to control or alter the
format in which values returned from ADE. The following sections describe how to
access these Analytica Server objects from Visual Basic or C#.

Analytica Decision Engine Server Class Architecture

COM, Automation, and .NET
ADE 4.0 supports two calling conventions: COM and ActiveX Automation. COM is an
early-binding convention in which the methods and data types are resolved when your
application code is compiled. Automation is a late-binding convention where method
calls are resolved at run time. The COM convention is somewhat more efficient,
although for most applications, the difference in efficiency is far overshadowed by the
time required to compute your model’s results.

In Visual Basic, the syntax for calling a method using COM or Automation is identical,
and which is used depends on how you declare your objects. In other languages, such
as C# or C++, the method of invocation may look quite different. In C# and C++, it is
generally more convenient to use the COM interface. VBScript (used by the Windows
Scripting Host and older versions of IIS ASP) supports only the Automation interface.

The COM interface can be used quite transparently from a .NET environment such as
Visual Studio 2005. The .NET programming environment wraps COM objects with a
.NET Interop object, which gives ADE interfaces the appearance of being .NET
interfaces.

In ADE 3.1 and before, the Automation interface was the recommended convention;
however, with the ADE 4.0 release, we now recommend the COM interface unless this
is not an option in your programming environment (such as VBScript).

In-Process vs. Out-of-Process
ADE can be launched either in-process or out-of-process. When launched in-process
(ADEW), the Adew.dll library is loaded into your application’s process space. When

 Analytica® Decision Engine User Guide 23

Chapter Using the Analytica Decision 4 Analytica Decision Engine Server Class Architecture

launched out-of-process (ADE), the ADE.exe server is launched and runs in a different
process. Both types of server use the exact same class interfaces, so the choice of
which type of server to use can be changed usually by changing a single line of code –
i.e., the line that instantiates the CAEngine.

In-process servers have a slight performance advantage, but come with several
restrictions. First, the apartment threading model of ADEW must be compatible with
your application’s threading model. For example, The Microsoft IIS web server (IIS 5.0
or later) will not allow you to use an apartment threaded component under its default
settings. Also, you will be restricted to have only one CAEngine instance (and thus,
only one model) in memory at any one time.

Out-of-process instances of ADE run in a different process, and can even be configured
to run on a totally different computer, from your application. Because data must be
“marshaled” across process boundaries, it is a bit less efficient, but it is far more flexible
than the in-process. Your program can make use of multiple simultaneous instances of
ADE, each with a separate model instance loaded. As such, the out-of-process is
almost always preferred for web applications (e.g., you can have one ADE instance for
each session).

Typescript
In addition to the Program Interface, ADE has a fully functional command interface,
known as the typescript. The typescript language is described in the Analytica Scripting
Guide, and allows access to all of ADE’s functionality. The API provides a more
convenient, object-oriented, set of functions for communication with the engine from
Visual Basic and C++ applications. A calling program can use the API functions, or it
can pass typescript commands directly to the typescript interface.

Figure 1. The Analytica Decision Engine Architecture

Security Permissions under IIS 5
When creating a web application that uses ADE from within Microsoft’s Active Server
Pages (ASP / ASPX) under Internet Information Server (IIS), you may need to configure
permission settings in order to instantiate and access the ADE COM component from
your program.

When creating a web application or web service, you should use the out-of-process
ADE server. When your ASPX application is executed while serving a web page
request, the ADE COM component will be launched and accessed from a special
internal Window’s account name. Even though your programs can create and access
ADE when run under your account, the same access may not exist for ASP or ASPX

Application
 (Calling Program)

Analytica Engine
(adew.dll or ade.exe)

Typescript I/O

Using ‘Command’ and
‘Send’

Chapter Using the Analytica Decision

24 Analytica® Decision Engine User Guide

4 The AdeTest Program

programs. To configure security permissions so that your ASPX application can use
ADE, follows these steps:

1. From the Window’s Control panel, select Administrative Tools Component
Services.

2. In the DCOM Config folder, locate “Analytica Decision Engine Local Server 4.0”.

3. Select Properties from the right mouse menu, and select the Security tab.

4. Set Launch and Activation Permissions to Customize, then click on Edit…

5. For the user {computer_name}\ASPNET, grant local launch and local activation
permission.

6. Save these settings. A reboot of the machine may be necessary.

When these permissions are not properly configured, a “security exception” will occur
on the line of your program that attempts to instantiate the CAEngine.

The AdeTest Program
ADE 4.0 ships with a sample program called AdeTest.exe. The executable can be found
in the Examples/AdeTest/bin directory. You can use AdeTest to exercise the functionality
of either the in-process (adew.dll) or the local process (ADE.exe) versions of ADE 4.0.
Using AdeTest, you can send script commands to the engine, create ADE objects, set or
call virtually any of the properties and methods of the ADE objects. If you have Visual
Studio 2005 installed, you can step through the code in the Visual Studio Debugger to
observe the methods being called.

The diagram shows a screenshot of the AdeTest program. The left-hand pane shows a
list of ADE objects that the program is currently holding. The right side shows details of
one of those objects. In the screenshot, there are three CAEngine instances, each with
a different model open. The first CAEngine is an in-process (ADEW.DLL) instance, while
the second two are out-of-process local servers (ADE.exe) instances. The two buttons
above the left pane can be used to create additional CAEngine instances, while the
Release button at the lower-right corner of the right-hand panel releases an instance.
The right-hand panel shows information about the third CAEngine instance. The
current values for the CAEngine properties ErrorCode, ErrorText, CurrentModule,
OutputBuffer and Photo are displayed. You can execute a typescript command by
typing the command into the text box area and pressing the “Send” button. Or you can
execute any of the method of CAEngine by selecting the method in the drop-down
Method box, filling in the parameters and pressing the “Execute Method” button

 Analytica® Decision Engine User Guide 25

Chapter Using the Analytica Decision 4 Sample Application in Excel’s Visual Basic

.

If you click on an object in the left-hand pane, the properties for that object will be
displayed on the right-hand side and properties can be set or its methods called. Thus,
you can simulate a series of steps your program might execute through the graphical
interface.

When a method returns an object, for example, as with
CAEngine::GetObjectByName, the object returned is added to the tree on the left as a
child of the object that created it. After executing a method from a class other than
CAEngine, it is a good idea to glance at the corresponding CAEngine’s panel to check
the ErrorCode, ErrorText, and OutputBuffer properties.

The Photo checkbox in the Analytica window is mirrored by the Photo property of the
CAEngine class. By default the Photo property is False, so typescript communications
between the client and ADE are not copied to the Analytica Log Window. Setting the
Photo property to True will copy all subsequent typescript communications between
the client and ADE. In Visual Basic, this would be done as follows:

ADE.Photo=True
ADE.Photo=False

Turning the Photo property on significantly slows down communication with ADE.

Sample Application in Excel’s Visual Basic
Another example program called excel_exam is also included in the ADE package. The
program, Analytica.xls, in the excel_exam directory can be loaded into Microsoft Excel
and executed as a macro. This program demonstrates the use of Visual Basic for
Applications in Excel for ADE communications. This sample makes use of the local
server version of ADE.

Chapter Using the Analytica Decision

26 Analytica® Decision Engine User Guide

4 Sample ASP Web Application

Sample ASP Web Application
The example in asp_exam demonstrates the use of ADE from an Active Server Pages
web application. This application produces a hierarchical outline of your model structure
in HTML. The readme.txt file in that directory contains instructions for configuring the
web server to run the example.

When using Microsoft’s ASP, we recommend that you use the local server. By using
the local server (ADE.exe), you can ensure that each web application, or even each
session, uses a different version of ADE.exe. Currently, there is a limitation in ADE that
prevents creation of two or more in-process server objects at the same time. Therefore,
if you expect to have more than one session of ADE active at one time (as is almost
always the case in web-based applications), always use the local server of ADE.

Using the ADE COM-interface

From a .Net project in Visual Studio 2005
From a Visual Basic, C#, J#, ASP.NET, or C++/CLR project in Visual Studio 2005, you
gain access to ADE by adding a reference to it into your project. The same technique
holds with slight variations in details in older (pre-.NET) versions of Visual Basic and
several other non-Microsoft development environments.

In Visual Studio 2005, select “Add reference…” or “References…” from the Project
menu, and in the dialog that appears, select the “COM” tab (in VC++ you’ll need to
press the Add new reference…” button to get to the COM tab). In the list of components,
locate and select one of:

Analytica Decision Engine Local Server 4.0
Analytica Decision Engine Server 4.0

For out-of-process ADE.exe server, select the Local server, to use Adew.dll select the
(non-local) server. It is also possible to add both references into a project (the AdeTest
example does this), although the need for this would be rare.

The ADE classes will exposed in the name space ADE or ADEW for the local server and
in-process server respectively. For convenience, you can add a using declaration to the
top of your source files such as:

Imports ADE ’ Visual basic
using ADE; // C#
using namespace ADE; // C++/CLR
import ADE.*; // J#

Of course, when using the in-process server you would type ADEW in place of ADE
above. These declarations allow you to refer to CAEngine, CAObject, etc., in your
code, rather than ADE.CAEngine, ADE.CAObject, etc., which in turn makes it very
easy to convert from the local to the in-process ADE server should the need arise.

To begin using ADE, you will need to obtain a first instantiation of a CAEngine. This is
done with one of the following lines:

dim ADE as CAEngine = new CAEngineClass ’ VB
CAEngine ADE = new CAEngineClass(); // C#, J#
CAEngine^ pAde = gcnew CAEngineClass(); // C++/CLR

 Analytica® Decision Engine User Guide 27

Chapter Using the Analytica Decision 4 Using the ADE COM-interface

CAEngine is the name of a particular abstract interface, while ADEW.CAEngineClass
and ADE.CAEngineClass are the names of two particular object classes that
implement that interface. The CAEngineClass object is the only object that you can
create directly – all other ADE object instances are obtained by calling methods on
existing objects.

To keep the use of the COM interface, always declare your variables with the class
names CAEngine, CAObject, CATable, CAIndex and CARenderingStyle. Avoid
assigning object instances to variables declared as System.Object. This allows the
compiler to perform early binding and type checking.

Releasing Objects in .NET
In pre-.NET Visual Basic and Scripting Languages, the programming environment
automatically ensures that COM objects are released immediately. This is not the case
in VB.NET, ASP.NET, or other .NET programs. From .NET, it is important that your
program explicitly releases each COM object when it is through with it. Setting a pointer
to Null (or Nothing) is not sufficient, since the actual release doesn’t occur until the next
garbage collection.

To release a COM object from a .NET program, you need to execute code such as (C#
syntax shown):

System.Runtime.InteropServices.Marshal.ReleaseComObject(ADE);
ADE = null;

Releasing objects in this fashion is especially important when you are using an out-of-
process COM server (e.g., ADE.CAEngine). In this case, the memory resources are
predominantly consumed in the ADE process, not in your program’s process. This can
cause the ADE process to run out of memory before your program’s process uses
enough memory to cause an automatic garbage collection to occur. From a .NET-based
web-application, old ADE.EXE processes will linger long after a session has finished
unless you explicitly release the CAEngine object.

This need to release COM objects is not unique to ADE. You must take care to release
any COM object, including those provided by Microsoft, especially when those COM
objects are out-of-process.

Because of this absence of deterministic destruction in .NET, it is extremely tedious to
ensure that every COM object is released. Therefore, you may also want to occasionally
force an explicit garbage collection in your code, which will release all unused objects.
This can be accomplished by calling

System.GC.Collect();

From an ATL Project in C++
To use ADE 4.0 from a non-Dot Net C++ project, place the following two lines at the top
of your source file:

#import "ADE.exe"
using namespace ADE;

or to use the in-process server, use these line:
#import "Adew.dll"
using namespace ADEW;

You will need to include the ADE Home directory on your include path in the project
settings, or spell out the complete path in the #import declaration.

Chapter Using the Analytica Decision

28 Analytica® Decision Engine User Guide

4 Using the ADE Automation-interface

Next, in your code obtain the first instance to an ADE engine using:
CoInitialize(NULL);
CAEnginePtr pAde(__uuidof(_CAEngine));
.
.
.
CoUninitialize();

CoInitialize() is a windows system call that is required before the COM system can be
used.

If your project spans multiple code files, use
#import "ADE.exe" no_implementation

in each of your source files (or once in stdafx.h), and then in one file only (e.g.,
stdafx.cpp), include the line

#import "ADE.exe" implementation_only

Using the ADE Automation-interface
VBScript is an example of a scripting language, usable from Windows Scripting Host
(CScript.exe or WScript.exe), pre-.NET versions of Active Server Pages, Internet
Explorer, etc. JScript is another, and many other scripting OLE-Automation compliant
scripting languages are available including Perl, etc.

These scripting languages support ActiveX Automation scripting but not COM
interfaces. ADE can be used from these, often with no additional tools beyond a simple
text editor, using the Automation interface.

For ADE releases prior to 4.0, the automation interface was the preferred convention to
use. For languages that support direct COM calls, the COM convention is now
recommended in ADE 4.0. Using Automation from C++ or C# is rather tedious and not
covered here.

From Visual Basic or VBScript
To use the Automation interface, it is not necessary to add a reference to your Visual
Basic project. The syntax here is similar in other scripting languages. In Visual Basic,
the code to instantiate a CAEngine is

dim ADE as Object
ADE = CreateObject("ADE4.CAEngine")

In VBScript, and some older versions of Visual Basic, the set keyword is required:
dim ADE
set ADE = CreateObject("ADE4.CAEngine")

For the in-process server, you will use send the parameter ADEW4.CAEngine to the
CreateObject call.

 Analytica® Decision Engine User Guide 29

Chapter Using the Analytica Decision 4 ADE Typescript: Command Language Communication

ADE Typescript: Command Language Communication
The Command property and Send method of the CAEngine class allow you to use
typescript commands, sent as ASCII strings to the Engine, and receive the resulting
output as another ASCII string. You may want to use a typescript command instead of
an API method if:

You want to perform your own parsing on ADE output (e.g., on tabular data that are
output from the Analytica Decision Engine as text strings of comma-delimited text).

No appropriate API method exists.

You perform three steps to send a typescript command to ADE:

Assign a text string containing the command to the Command property of your CAEngine
object.

Use the Send method to send the command to the Engine. If the Send method returns
True, then the command was processed without error by ADE.

Store the error code and error text (if the return code is nonzero). These two pieces of
information are stored in the CAEngine properties ErrorCode, and ErrorText.

Get the output by calling the OutputBuffer function in the CAEngine class.

These steps are demonstrated here for various programming languages. After this
simple example, subsequent example will be given using a Visual Basic syntax, but the
reader should have no problem extrapolating the syntax to their language of choice.

In Visual Basic
Imports ADE

Module Module1
Sub Main()

Dim Result,ErrT As String
Dim ErrCode as Integer

dim ADE as CAEngine = new CAEngineClass
ADE.Command = "news" ’any typescript command
dim SendCode as Boolean = ADE.Send
If SendCode = False Then

ErrCode = ADE.ErrorCode
ErrT = ADE.ErrorText

Else
Result = ADE.OutputBuffer

End If
End Sub
End Module

In VBScript
set ADE = CreateObject("ADE4.CAEngine")
ADE.Command = “news”
If ADE.Send = False Then

ErrCode = ADE.ErrorCode

Chapter Using the Analytica Decision

30 Analytica® Decision Engine User Guide

4 ADE Typescript: Command Language Communication

ErrT = ADE.ErrorText
Else

Result = ADE.OutputBuffer
End if

In C#
using System;
using ADE;
namespace ADE_from_Csharp
{

class Program
{

static void Main()
{

String errT, result;
int errCode;
CAEngine ADE = new CAEngineClass();
ADE.Command = "news";
if (!ADE.Send()) {

errCode = ADE.ErrorCode;
errT = ADE.ErrorText;

} else {
result = ADE.OutputBuffer;

}
}

}
}

In J#
import ADE.*;
public class Program
{

public static void main()
{

String errT, result;
int errCode;
ADE.CAEngine ADE = new ADE.CAEngineClass();
ADE.set_Command("news");
boolean sendRes = ADE.Send();
if (!sendRes) {

errCode = ADE.get_ErrorCode();
errT = ADE.get_ErrorText();

} else {
result = ADE.get_OutputBuffer();

}
}

}

 Analytica® Decision Engine User Guide 31

Chapter Using the Analytica Decision 4 Errors and Error Handling

In C++/CLR
using namespace System;
using namespace ADE;
void main()
{

String ^result, ^errT;
int errCode;
CAEngine^ ADE = gcnew CAEngineClass();
ADE->Command = "news";
if (!ADE->Send()) {

errCode = ADE->ErrorCode;
errT = ADE->ErrorText;

} else {
result = ADE->OutputBuffer;

}
}

In VC++ (without .NET)
#import "ADE.exe"
using namespace ADE;
void main()
{

CoInitialize(NULL);
_bstr_t errT, result;
int errCode;
_CAEnginePtr pAde(__uuidof(_CAEngine));
pAde->Command = "news";
if (!pAde->Send()) {

errT = pAde->ErrorText;
errCode = pAde->ErrorCode;

} else {
result = pAde->OutputBuffer;

}
CoUninitialize();

}

Errors and Error Handling
The CAEngine properties ErrorCode and ErrorText should be queried after any
operation with ADE whenever an error is possible. Reading a value of a property from
an ADE object does not change the error code. Setting the value of a property may
result in an error code, usually indicating an illegal value for that property. All method
calls will reset the ErrorCode to zero if there is no error, or to a value indicating the
error.

To get additional information on an error, check the OutputBuffer property of
CAEngine. Any error messages that a user of Analytica would have seen will appear in
the output buffer.

Chapter Using the Analytica Decision

32 Analytica® Decision Engine User Guide

4 Errors and Error Handling

Chapter 5 Working with Models,
Modules, and Files

This section contains examples of various
common operations and manipulations you
might perform on objects in your Analytica
model.

Chapter Working with Models,

34 Analytica® Decision Engine User Guide

5 Models and Modules

Working with Models, Modules, and Files

Models and Modules
Note: In VBScript, VBA and pre-dot-NET versions of Visual Basic, the Set keyword

was necessary when assigning an object to a variable. In VB.NET, the Set
keyword is no longer necessary. The Set keyword is not used in the examples
below.

• To create a new model:
If ADE.CreateModel("NewModelName") Then

’Model successfully created
End If

The CreateModel method only requires one parameter, a string containing a model
name.

• To open an existing Analytica model:
Dim ModName as String
ModName = ADE.OpenModel("C:\ ... \Anamodel.ana")
If ModName="" then

’ Handle Error condition here
End if

If a model has already been opened, that model will be closed automatically before the
new model is created. If the specified filename is not legal, OpenModel will return an
empty string. In that case, use the ErrorCode property of CAEngine to determine the
cause of the error. Be aware that an ErrorCode=2 warning is often returned even
though the load is successful. For full details as to what has caused an error or
warning, use the OutputBuffer property of the CAEngine. You must use the backward
slash (\) for the path delimiter when using ADE. It does not support the forward slash
(/).

• To add a module from a file to the currently open model:
Dim Merge as Boolean = True
Dim ModName as String
ModName = ADE.AddModule ("C:\...\MyLibrary.ana", Merge)
if ModName="" Then

’ Handle error conditions here
End if

The FileSpec parameter should contain the path and filename of the module to be
included. The Merge parameter is a Boolean variable that determines whether
preexisting objects with identical names are overwritten. If Merge=True then conflicting
variables are overwritten. If Merge=False, and there are conflicting variables, then the
call to AddModule will fail.

• To read a script file:
If ADE.ReadScript("C:\..\MyScript.ana") Then

’ Script successfully read
End If

 Analytica® Decision Engine User Guide 35

Chapter Working with Models, Modules, 5 ADE Objects

A script file can contain a list of typescript commands. Upon loading the file, the Engine
will execute the commands contained in the file. Errors encountered while running the
script file are described in the ErrorText property.

• To save a module (i.e., a subset of the current model) in a separate file:
If AdeSaveModuleFile ("MyLibrary", "C:\...\MyLibrary.ana") Then

’ Save succeeded
End If
The first parameter is the module identifier, the second is the file
name.

• To save the current model in a file:
If ADE.SaveModel("C:\...\MyNewModel.ana") Then

’ Save succeeded
End If

• To close the current model without saving:
If ADE.CloseModel() Then … ’ Close succeeded

The CloseModel method takes no parameters.

ADE Objects
• To create a new CAObject object:

Dim ObjName As String = "NewVariable"
Dim ObjClass As String = "Variable"
Dim var As CAObject = ADE.CreateObject(ObjName, ObjClass)

The object name and the class of the object to be created are passed into the
CreateObject method. Note that an identifier and not the title of the object should be
used when giving the object a name. Most Object-related methods use their Identifier
attribute, not their Title attribute. ADE can create the following types of objects:
Variable, Module, Chance, Constant, Decision, Index, and Objective. Refer to the
Analytica User Guide for more information on these object types.

• To delete an Analytica object from a model:
Dim obj as CAObjec
If ADE.DeleteObject(obj) Then … ’ Successful

• To set the active module:
ObjName = "ModuleToMakeActive"
ObjClass = "Module"
Var = ADE.CreateObject (ObjName, ObjClass)
ADE.CurrentModule = Var

ADE utilizes a hierarchy to order objects. When an object is created, it is created inside
the current module. By default, all objects are placed within the top-level module unless
you set the CurrentModule property.

• To identify the current module:
Dim module As CAObject = ADE.CurrentModule

• To obtain a CAObject object when you know the name of an Analytica variable (this
is probably the most commonly used method in ADE):

Chapter Working with Models,

36 Analytica® Decision Engine User Guide

5 Retrieving Computed Results

Dim Var As CAObject = ADE.GetObjectByName ("IdentifierInModel")
If Var Is Nothing Then

’Analytica model associated with Ana
’does not contain variable with
’identifier "IdentifierInModel"

End If

The method CAObject::Get is synonymous with GetObjectByName.

• You can get all Analytica object attributes, except the Identifier, using the
GetAttribute method:
UnitsOfVar = Var.GetAttribute ("Units")

Use the SetAttribute method to change an Attribute of an Analytica object
(except for Identifier):
If Var.SetAttribute ("definition","A/B") Then

’Attribute Set Correctly
Else

’Attribute Not Set
End If

• To access or rename the Identifier of an object, use the Name property:
Dim oldName As String = Var.Name
Var.Name = "NewIdentifer"

For the full lists of object attributes see The Analytica Scripting Guide chapter 3,
"Objects and their attributes."

Retrieving Computed Results
The CAObject class contains three methods that cause results to be computed and
returned. The Result method evaluates an object in your model and returns the result
as a single value. This is most useful if you know that the result will be a single number
or single text string. The ResultTable method evaluates an object in your model and
returns the result as a CATable object. Methods and properties of the CATable object
allow you to understand what dimensions are present and to access individual elements
(cells). The Evaluate method processes an arbitrary expression and returns the result
of parsing and evaluating that expression as a multi-dimensional CATable.

When retrieving results you have control over which computation mode is used to
compute the result. You can compute the deterministic mid point value, or the various
probabilistic views: Mean, Sample, PDF, CDF, Statistics or Bands. Set the ResultType
to indicate which result type you desire (default is Mid).

Whether you are computing a scalar or a table, your program will eventually access
individual “atomic” values such as numbers or text strings. You can use various
RenderingStyle settings to control the form in which these values are returned. For
example, numeric values can be returned as floating point numbers, formatted strings,
or full-precision string depictions. Textual strings can be returned with or without
surrounding quotes.

• To evaluate and obtain a simple result (e.g., a scalar) of an object use the Result
method of CAObject:

 Analytica® Decision Engine User Guide 37

Chapter Working with Models, Modules, 5 Retrieving Computed Results

Dim Obj As CAObject
Dim Result
Obj = ADE.GetObjectByName ("ObjectToEvaluate")
Result = Obj.Result
If ADE.ErrorCode = 0 Then

’Result was successfully retrieved
Else

’An error occurred
End If

The Result property of CAObject retrieves, by default, the midpoint result of the object.
It will return the result as a variant (or in .NET, as a System.Object). This method is
convenient for retrieving the results of objects that evaluate to a scalar.

• To evaluate and obtain the result of an object as something other than the midpoint
use the ResultType property of CATable:
Dim Obj As CAObject = ADE.GetObjectByName("ObjectToEvaluate")
Dim Result
Obj = ADE.GetObjectByName("ObjectToEvaluate")
Obj.ResultType = 1 ' get result as mean
Result = Obj.Result
If ADE.ErrorCode = 0 Then

’Result was successfully retrieved as a mean
Else

’An error occurred
End If

The ResultType property is used to indicate the type of result that Result should return.
Possible values are: (0=Mid point, 1=Mean, 2=Probabilistic Sample, 3=PDF, 4=CDF,
5=Statistics, 6=Probability Bands). When ResultType>=2, the result will always be a
table, even if the mid and mean are scalars. See the next section for a discussion on
retrieving table results.

• To retrieve a formatted result, set properties of the object’s RenderingStyle.
Dim Obj As CAObject = ADE.GetObjectByName("ObjectToEvaluate")
Dim Result
Obj.RenderingStyle.NumberAsText = true
Obj.RenderingStyle.StringQuotes = 2 ’ double quotes.
Result = Obj.Result
If ADE.ErrorCode = 0 then

’ Result was successfully returned.
End If

In this example, numbers will be returned as formatted text using the object’s number
format property. Strings will be returned surrounded by double quotes. So, for
example, the numeric value 1.2K might be returned as the string “$1,200.00” if the
number format happens to be fixed point, 2 digits, with trailing zeros, thousand
separators and currency. This numeric value is returned as a text string because the
NumberAsText property is True. The string would be returned as “"$1,200.00"” with
two extra double quote characters in the result string. This is controlled by the
StringQuotes property (0 = no quotes, 1 = ‘single quotes’, 2="double quotes").

Chapter Working with Models,

38 Analytica® Decision Engine User Guide

5 Retrieving Multi-Dimensional Results

Retrieving Multi-Dimensional Results
Before delving into the details of how to obtain results from table objects (arrays with
one or more dimensions), let us briefly discuss the conceptual model of a table in
Analytica.

An Analytica table has the following components:

• Indexes, each of which identifies a dimension of the table

• Values in the cells of the table

• Index labels, which identify the coordinates of each cell

The number of indexes determines the dimensionality of the table. So, for example, if a
table contains two indexes, then the table is 2-dimensional.

The number of elements in the index determines the actual number of cells in the table.
Suppose table T is composed of 2 indexes, I and J. If I has 5 elements (AA, BB, CC,
DD, EE) and J has 3 elements (A, B, C), then T is either a 5x3 table, or a 3x5 table,
depending on your perspective.

Determining your perspective of a table is very important when working with ADE. It is
up to you to tell ADE how you wish to view the table. So, for example, in the above
paragraph, if you tell ADE to use index I first, followed by index J, then element 2,3
would be the element described by position I=B, J=CC. If, however, you tell ADE to use
index J first, followed by index I, then element 2,3 would be described by position I=C,
J=BB (note that tables in ADE are 1-based; that is, each dimension goes from 1 to N
where N is the size of the index). The method called SetIndexOrder, described below,
allows you to set the order of the indexes for your table, so that you can look at the table
in any way you desire.

The ADE methods are very flexible in terms of how you refer to individual elements in
the table. You can either refer to the individual elements by their position number or by
their label names. So, for example, you can tell ADE to give you the element at position
2,1 (2 along the first index, and 1 along the second index), or you can tell ADE to give
you the element described by ‘BB’,’A’ where ‘BB’ and ‘A’ are label names in their
respective indexes. The methods most commonly used for these types of transactions
(GetDataByElements and GetDataByLabels) are described below.

As discussed in the previous section, the Result and ResultType methods are used to
evaluate and obtain the result of an object. For objects that evaluate to multi-
dimensional results, however, it is often inconvenient to use the Result method. After
all, the output of the Result method for a multi-dimensional result would be a long
comma delimited string in the following form:

Table Index1...IndexN [Value1, Value2...]

Here, Index1 to IndexN are the indexes of the table, and Value1 to ValueN are the
values in the table (which are filled in row by row). So, if we wanted to get at a particular
element in the table after using the Result method, we would have to parse through the
comma delimited string, returned from Result, in order to get at the element of interest.
Fortunately, ADE provides an ADE object of type CATable that provides methods to
simplify the manipulation of tables.

• To evaluate and obtain the result of an object as a table use the ResultType
method of CAObject:

Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim TableResult As CATable = Obj.ResultTable

 Analytica® Decision Engine User Guide 39

Chapter Working with Models, Modules, 5 Retrieving Multi-Dimensional Results

If Not (TableResult Is Nothing) Then
’Result table was successfully retrieved
Else
’An error occurred, or result is scalar
End If

The ResultTable method of CAObject returns an automation object of type
CATable. CATable contains various methods that allow you to set, retrieve, and
manipulate individual elements in the table. The first thing that you will, more than
likely, want to do after retrieving the CATable object, is to set the index order of the
result table.

• To parse and evaluate an arbitrary expression, use the Evaluate method of
CAObject.

Dim Obj As CAObject = ADE.GetObjectByName ("ContextObject")
Obj.ResultType = 2 ’ Sample
Dim TableResult As CATable = Obj.Evaluate("Normal(X,Y^2) / Z")
If ADE.ErrorCode <> 0 Then

’An error occurred
Else

’Evaluation successful
End If

To use Evaluate, you must first obtain a CAObject instance. Although the
expression you are evaluating may have nothing to with any specific object, the
CAObject serves a couple of purposes. First, the ResultType property of the
object provides a place to specify the result type that you want computed. Second,
if you make use of the NumberAsText rendering style, the number format stored
with the indicated object will determine how the numbers are formatted. Often,
however, the object you use is of no consequence – you can even use the top-level
model object as your context object.

Comparing the previous two examples demonstrates also that there are often two
ways to detect failure. The ErrorCode property is non-zero if an error occurred
during the evaluation of a method. And for many methods, the return value is
Nothing or False if it fails. .

• To set the index order of a CATable object, use the SetIndexOrder method:
Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) as String
Set Obj = ADE.GetObjectByName ("MultiDimObject")
Set TableResult = Obj.ResultTable
If Not (TableResult Is Nothing) Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"

If TableResult.SetIndexOrder(IndexOrder)Then
’Index Order set successfully

Else
’An error occurred in setting index order

End If
Else
’An error occurred, or result is scalar

End If

Chapter Working with Models,

40 Analytica® Decision Engine User Guide

5 Retrieving Multi-Dimensional Results

The above code assumes that we are manipulating a two-dimensional table. We
set the index order of this table so that Index2 is the first index, and Index1 is the
second index.

In some computer languages, the first element of an array is considered position 0
(zero-based), and others it is position 1 (one-based). Analytica’s Slice function, and
the ADE methods are one-based . Older versions of Visual Basic are one-based,
while current versions of Visual Basic and most other modern programming
languages are zero-based. In the above example, the Visual Basic array was
declared and used as follows

Dim IndexOrder(2) As String
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"

In the modern VisualBasic, this declares an array that ranges from position 0 to
position 2 – an array having three elements. Because the first element was not set,
it will contain the special value Empty. ADE can recognize whether zero-based or
one-based arrays are being passed to it. So, depending on your preference, it
would work equally well to use a zero-based version, i.e.

Dim IndexOrder(1) As String
IndexOrder (0) = "Index2"
IndexOrder (1) = "Index1"
ResultTable.SetIndexOrder(IndexOrder)

• To retrieve an element in a table by index order use the GetDataByElements
method:

Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) As String
Dim Pos (2) As Integer
Dim Element
Obj = ADE.GetObjectByName ("MultiDimObject")
TableResult = Obj.ResultTable
If Not (TableResult Is Nothing) Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
RetValue = TableResult.SetIndexOrder (IndexOrder)
If RetValue = True Then

’Index Order set successfully
Pos (1) = 2
Pos (2) = 1
Element = TableResult.GetDataByElements (Pos)
If ADE.ErrorCode = 0 Then

’element retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

 Analytica® Decision Engine User Guide 41

Chapter Working with Models, Modules, 5 Retrieving Multi-Dimensional Results

’An error occurred, or result is scalar
End If

The above code uses GetDataByElements to retrieve the element at position
Index2=2, Index1=1 and stores the result to Element.

• To retrieve an element in a table by index labels use the GetDataByLabels method:
Dim Obj As CAObject
Dim TableResult As CAObject
Dim IndexOrder (2) As String
Dim Pos (2) As String
Dim Element
Set Obj = ADE.GetObjectByName (“MultiDimObject”)
Set TableResult = Obj.ResultTable
If Not TableResult Is Nothing Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
If TableResult.SetIndexOrder(IndexOrder) Then

’Index Order set successfully
Pos (1) = "SomeLabelInIndex2"
Pos (2) = "SomeLabelInIndex1"
Element = TableResult.GetDataByLabels (Pos)
If ADE.ErrorCode = 0 Then

’element retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

’An error occurred, or result is scalar
End If

The above code uses GetDataByLabels to retrieve the element at position
Index2="SomeLabelInIndex2", Index1="SomeLabelInIndex1" and stores the result
to Element.

• To control the format of elements obtained by GetDataByLabels,
GetDataByElements, AtomicValue or GetSafeArray methods, set the CATable’s
RenderingStyle properties:

Set TableResult = Obj.ResultTable
Set rs As CARenderingStyle = TableResult.RenderingStyle
rs.NumberAsText = True
rs.FullPrecision = True
rs.UndefValue = ""
rs.StringQuotes = 1
Dim Element
If TableResult.SetIndexOrder(Split("Index2;Index1",";")) Then

Element = TableResult.GetDataByLabels(_
Split("SomeLabel1,SomeLabel2”,”,”))
If Add.ErrorCode=0 Then

’ Element retrieved successfully

Chapter Working with Models,

42 Analytica® Decision Engine User Guide

5 Retrieving Multi-Dimensional Results

End If
End If

• To retrieve the whole table into a Visual Basic or .NET array in one call use the
GetSafeArray method:

Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) as String
Dim Pos (2) As Integer
Dim TheWholeTable
Obj = ADE.GetObjectByName ("MultiDimObject")
TableResult = Obj.ResultTable
If Not (TableResult Is Nothing) Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
If TableResult.SetIndexOrder(IndexOrder) Then

’Index Order set successfully
TheWholeTable = TableResult.GetSafeArray
If ADE.ErrorCode = 0 Then

’table retrieved successfully
Else

’an error occurred
End If
Else

’An error occurred in setting index order
End If
Else

’An error occurred, or result is scalar
End If

The above code uses GetSafeArray to store the entire table in TheWholeTable.
The elements of each dimension associated with the table returned from
GetSafeArray are indexed 1 to N, where N is the length of the dimension. The
lower bound of the Safe Array can be changed to zero using:

TheWholeTable.RenderingStyle.SafeArrayLowerBound = 0

prior to calling GetSafeArray. The syntax for reading a multi-dimensional result in
a .NET array in C# is worth mentioning:

Array theWholeTable = (Array) tableResult.GetSafeArray();

• To determine the number of dimensions of the table, use the NumDims property:
NumDimensions = ADE.Get("MultiDimObject").TableResult.NumDims

• To get the index names associated with the table, use the IndexNames method:
Dim CurIndexName As String
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim TableResult As CATable = Obj.ResultTable
Dim NumDimensions As integer = TableResult.NumDims
Dim I as Integer
For I = 1 To NumDimensions
CurIndexName = TableResult.IndexNames(I)

 Analytica® Decision Engine User Guide 43

Chapter Working with Models, Modules, 5 Retrieving Multi-Dimensional Results

MsgBox “Current index is “ & CurIndexName
Next I

The IndexNames method returns the index names of the table in the order
specified to SetIndexOrder. If SetIndexOrder has not been set for the CATable,
then the default order of the indexes will be returned.

• To get the CAIndex objects associated with your table, use the GetIndexObject
method of CATable:

Dim CurIndexName As String
Dim IndexObj As CAindex
Dim Obj As CATable = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim NumDimensions As Integer = Res.NumDims
Dim CurIndexName As String = Res.IndexNames(NumDimensions)
Dim IndexObj As CAObject = Res.GetIndexObject(CurIndexName)

The above example retrieved the last CAIndex object, with respect to the index
order, from the table. The CAIndex object provides properties and methods that
allow you to obtain information about the respective index.

• To get the number of elements in the index, use the IndexElements property:
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim NumDimensions As Integer = Res.NumDims
Dim CurIndexName As String = Res.IndexNames (NumDimensions)
Dim IndexObj As CAIndex = Res.GetIndexObject(CurIndexName)
Dim NumElsInIndex As Integer = IndexObj.IndexElements

• To get an index label at the specified position in the index, use the
GetValueByNumber method:

Dim I As Integer
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim NumDimensions As Integer = Res.NumDims
Dim CurIndexName As String = Res.IndexNames(NumDimensions)
Dim IndexObj As CAIndex = Res.GetIndexObject (CurIndexName)
Dim Str As String = "The elements in the index are: " & vbCrLf
For I=1 To IndexObj.IndexElements

Str = Str & IndexObj.GetValueByNumber(I) & " "
Next I
MsgBox Str

• To get at the position of an index label in an index, use the GetNumberByValue
method:

Dim Obj As Object
Dim NumDimensions
Dim TableResult As Object
Dim CurIndexName As String
Dim IndexObj As Object
Dim I As Integer
Dim IndexPosition As Integer
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim IndexName As String = Res.IndexNames(TableResult.NumDims)

Chapter Working with Models,

44 Analytica® Decision Engine User Guide

5 Creating Tables and Setting Values in Tables

Dim IndexObj As CAIndex = Res.GetIndexObject (IndexName)
Dim IndexPosition As Integer
IndexPosition = IndexObj.GetNumberByValue("SomeIndexLabel")
If ADE.ErrorCode = 0 Then

’the index position was successfully retrieved
Else

’an error occurred
End If

• Obtain the scalar value in a zero-dimensional array.

Sometimes, it is not possible to know in advance whether the evaluation of an
object will return a multi-dimensional result or a scalar. In this case, use
ResultTable. If the result happens to be a scalar, NumDims will return zero. In this
case, the so-called “array” isn’t an array at all, but rather contains a single atomic
value. It is also possible to end up with a zero-dimensional array after calling the
CATable::Slice or CATable::Subscript methods. To obtain the atomic value, use
the CATable::AtomicValue method.

Dim Res As CATable = ADE.Get("SomeObject").ResultTable
Dim x As Object
If Res.NumDims = 0 Then

x = Res.AtomicValue
Else

’ Handle the array case.
End If

• Dimensionality Reducing Slice and Subscript Operations:

The Slice and Subscript methods of CATable return a new CATable object with
the number of dimensions reduced by one. These methods are similar to the Slice
and Subscript functions built into Analytica. Slice returns the Nth slice (by position)
along a given dimension. Subscript returns the slice corresponding to a specified
index value.

Dim PandL CATable = ADE.Get("P_n_L_Statement").ResultTable
Dim CatIndex As CAIndex = Res.GetIndexObject("Categories")
Dim Expenses As CATable = Res.Subscript(CatIndex,"Expenses")
Dim Year As CAIndex = Expenses.GetIndexObject("Year")
Dim InitialExpense As CATable
InitialExpense = Expenses.Slice(Year,1).AtomicValue

Creating Tables and Setting Values in Tables
We can apply to definition tables the same methods described above to retrieve values
from result tables. A definition table, as the name suggests, is when the definition of
an object is a Table function (also known as an Edit table in Analytica). Please note:

The value of an Analytica variable (accessed via ResultTable) may be an array not
because it was defined by a Definition Table but simply because it is defined as an
expression or function that returns an array value.

When using an edit table, you need to pay careful attention to whether you are passing
general expressions into each table cell, or just literal strings. The
RenderingStyle.GeneralExpression property determines how string values that you

 Analytica® Decision Engine User Guide 45

Chapter Working with Models, Modules, 5 Creating Tables and Setting Values in Tables

send to the table are interpreted. By default, GeneralExpression=true, which means
that if you set a cell value to the string “Revenue”, this is an actual expression consisting
of one variable identifier, and not a literal string. If you are populating a definition table
with literal constants (as you might an input table to your model), you should either use
RenderingStyle.GeneralExpressions=false, or remember to prepend and append
quotation marks on all literal string values.

An object defined as a definition table will not necessarily produce the same table when
ResultTable is called. After all, the definition table can be defined to be an array of
identifiers. When ResultTable is called, each identifier’s result will be evaluated, and a
new table will be produced which would be different than the definition table. If
identifiers evaluate to arrays, the result table may have more dimensions than the
definition table.

• To get the definition table of an object as a CATable, use the DefTable method of
CAObject:

Dim Obj As Object
Dim TableDef As Object
Obj = ADE.GetObjectByName (“MultiDimObject”)
TableDef = Obj.DefTable
If Not TableDef Is Nothing Then
’Definition table was successfully retrieved
Else
’An error occurred, or definition is not a table
End If

Once the definition table is retrieved, we can use all the same methods described in
the above section (GetDataByElements, GetDataByLabels, SetIndexOrder,
etc.) to retrieve elements in the table and to obtain information about the indexes in
the table. We can also use the same method that we used above in determining
whether the result of the object was multi-dimensional or scalar to determine
whether the definition of the object is a table or scalar:

Dim Obj As Object
Dim TableDefinition As Object
Dim ScalarDefinition

Obj = ADE.GetObjectByName (“SomeObject”)
TableDefinition = Obj.DefTable
If TableDefinition Is Nothing Then

ScalarDefinition = Obj.GetAttribute (“definition”)
If ADE.ErrorCode = 0 Then

’you have a scalar definition
Else

’an error occurred
End If

Else
’you have a table definition

End If

• To set an element in a table by index order use the SetDataByElements method of
CATable:

Dim Obj As CAObject
Dim TableDef As CATable
Dim IndexOrder (2) As String

Chapter Working with Models,

46 Analytica® Decision Engine User Guide

5 Creating Tables and Setting Values in Tables

Dim Pos (2) As Integer
Dim Element
Obj = ADE.GetObjectByName (“MultiDimObject”)
TableDef = Obj.DefTable
If Not TableDef Is Nothing Then

’Definition table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
If TableDef.SetIndexOrder (IndexOrder) Then

’Index Order set successfully
Pos (1) = 2
Pos (2) = 1
Element = “’ABC’” ’ Notice the extra quotes

If TableDef.SetDataByElements(Element,Pos) Then
’element successfully set
If TableDef.Update Then

’model successfully updated
Else

’error updating def in model
End If

Else
’an error occurred

End If
Else
’An error occurred in setting index order
End If

Else
’An error occurred, or definition is scalar

End If

The above code uses SetDataByElements to set the element at position
Index2=2, Index1=1 to Element. Note the use of the quotes around ABC. Here,
since ABC is single quoted, we are putting the string “ABC” in the table. If we
instead set Element to “ABC”, then the expression ABC would be placed in the
table. In the latter case, ABC would, more than likely, be a variable. If an identifier,
ABC, did not exist in the model, then an error would have occurred while trying to
set the element in the latter case. The code then used Update to update the model
with the new definition. It is important to note that the model containing the object
will not be updated until Update is called. Therefore, if Update is not called, and
the result of a node that depends on this object is later calculated, the old definition
of this object will still be used. The other important thing to note is that Update
functions very differently for result tables as it does for definition tables. For result
tables, Update will retrieve the result from the specified object again. It will,
therefore, overwrite any changes that were made to the object using
SetDataByElements and SetDataByLabels.

• To set an element in a table by index labels use the SetDataByLabels method of
CATable:

Dim Obj As CAObject
Dim TabDef As CATable
Dim IndexOrder (2) as String

 Analytica® Decision Engine User Guide 47

Chapter Working with Models, Modules, 5 Creating Tables and Setting Values in Tables

Dim Pos (2) as String
Dim Element
Obj = ADE.GetObjectByName ("MultiDimObject")
TabDef = Obj.DefTable
If Not TabDef Is Nothing Then

’Definition table was successfully retrieved
TabDef.RenderingStyle.GeneralExpression = False
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
If TabDef.SetIndexOrder (IndexOrder) Then

’Index Order set successfully
Pos (1) = "SomeLabelInIndex2"
Pos (2) = "SomeLabelInIndex1"
Element = "ABC"
If TabDef.SetDataByLabels(Element,Pos) Then

’element set successfully
If TabDef.Update Then

’model successfully updated
Else

’an error occurred
End If

Else
’an error occurred

End If
Else

’An error occurred in setting index order
End If

Else
’An error occurred, or definition is scalar

End If

The above code uses SetDataByLabels to set the element at position
Index2="SomeLabelInIndex2", Index1="SomeLabelInIndex1" to Element. In this
example, the RenderingStyle.GeneralExpression property was set to False.
This eliminates the need to explicitly include quotes around the string as was done
in the previous example for SetDataByElements.

• To set the whole table in one call, use PutSafeArray and Update:
Dim Obj As Object
Dim TableResult, TableDef As Object
Dim RetValue
Dim TheWholeTable

Obj = ADE.GetObjectByName (“MultiDimObject”)
TableDef = Obj.DefTable
TableResult = Obj.ResultTable
TheWholeTable = TableResult.GetSafeArray
‘make changes to TheWholeTable
…
RetValue = TableDef.PutSafeArray (TheWholeTable)
If RetValue = True Then

’table successfully put
RetValue = TableDef.Update

Chapter Working with Models,

48 Analytica® Decision Engine User Guide

5 Adjusting How Values Are Returned

If RetValue = True Then
’model successfully updated

End If
End If

• To create a whole table from scratch, use CreateDefTable:
Dim Obj As Object
Dim RetValue
Dim IndexLabs (1 To 2) As Variant

Obj = ADE.CreateObject (“MyNewTable”, “Variable”)
IndexLabs (1) = “I”
IndexLabs (2) = “J”
RetValue = Obj.CreateDefTable (IndexLabs)
If RetValue = True Then
’a table indexed by I and J has successfully
’been created. We are assuming that I and J
’already exist
Else
’an error occurred when creating the table
End If

The above code created a definition table indexed by I and J. The table is
dimensioned according to the size of I and J. All the cells in the table are initially set
to 0. The user can then call DefTable, and then use SetIndexOrder,
SetDataByElements, SetDataByLabels, PutSafeArray, and Update to put
values into the table. Note that the function CreateDefTable is very rarely used in
an ADE program. After all, it is much easier to create an object in Analytica than it
is in ADE.

Adjusting How Values Are Returned
Analytica models may contain several different data types for values in attributes or in
the cells of a table or index. Data types include floating point numbers, textual strings,
the special values Undefined and Null, references, and varTerm (handles to other
objects). When these data types are returned and ultimately mapped to data types in
the programming language you are using, you may want or need to alter how the values
are returned. The RenderingStyle provides the control.

The CAObject, CATable and CAIndex objects all contain a property called
RenderingStyle, which returns a CARenderingStyle object. Properties of the
rendering style can be changed to change how values are returned. You can also
control whether Safe Arrays returned by Analytica are 1-based or 0-based. These
settings impact for CAObject: GetAttribute and Result; for CATable:
GetDataByElements, GetDataByLabels, AtomicValue, and GetSafeArray; and for
CAIndex::GetValueByNumber.

When transferring values to cells in a DefTable, you can also control whether the cells
are populated by literal strings and values, or by general expression. This is controlled
by the GeneralExpression property of CARenderingStyle.

 Analytica® Decision Engine User Guide 49

Chapter Working with Models, Modules, 5 Adjusting How Values Are Returned

The DefaultRenderingStyle and DefaultDefTableRenderingStyle properties of
CAEngine can be set once just after the CAEngine has been instantiated to set the
rendering style globally. For example, if you always use zero-based arrays, this can be
specified once.

• Retrieving numeric values as numbers:
obj.RenderingStyle.NumberAsText = False
Dim x As Double = obj.Result

Numeric values are returned as numbers by default, so unless NumberAsText is set
to True at some point, there is no need to specify this explicitly.

• Retrieving numeric values as formatted strings:
obj.RenderingStyle.NumberAsText = True
obj.RenderingStyle.FullPrecision = False
Dim s As String = obj.Evaluate(1/3 * 10^6)

The number format associated with obj is used to format the numeric value. A suffix
style with 4 digits returns “333.3K” for this example.

• Retrieving numeric values as strings with no loss of precision:
obj.RenderingStyle.NumberAsText = True
obj.RenderingStyle.FullPrecision = True
Dim s As String = obj.Evaluate(1/3 * 10^6)

Analytica continues to use the number format associated with obj, but the significant
digits is increased so as to avoid any loss in precision. So, suffix, exponential, fixed
point, and percent formats will not be truncated. If a date, integer or Boolean format
is used, some truncation may still occur. In the example, the return value would be
“333.333333333333”.

• Retrieving string results without quotation marks:
tab.RenderingStyle.StringQuotes = 0

• Retrieving string results with explicit quotation marks:
tab.RenderingStyle.StringQuotes = 1 ’ for single quotes
tab.RenderingStyle.StringQuotes = 2 ’ for double quotes

• Using a custom value for Undefined:
ADE.DefaultRenderingStyle.UndefValue = ""

By default, the special value Undefined is returned as a the special Windows variant
type Empty. There are some scripting languages that cannot deal with the Empty
data type, so if you encounter this problem, you may want to change this value.

• Setting the cells of a definition table to string values:
defTab.RenderingStyle.GeneralExpression = False
defTab.SetDataByElements("A & B",inds)

In this example, the indicated table cell is set to the string value "A & B". When this
table is evaluated, this cell’s result will be a string containing the five characters "A &
B".

• Setting the cells of a definition table to expressions:
defTab.RenderingStyle.GeneralExpression = True
defTab.SetDataByElements("A & B",inds)

Here the cell is set to the expression “A & B”. When this table is evaluated, the
variable named A and the variable named B will be evaluated, and their results will

Chapter Working with Models,

50 Analytica® Decision Engine User Guide

5 Using the Analytica Graphing Engine

be coerced to strings and concatenated by the “&” operator.

You can set table cells to literal strings with GeneralExpression=True, but you
must embed explicit quotations marks in the expression. For example:

defTab.RenderingStyle.GeneralExpression = True
defTab.SetDataByElements("’A & B’",inds)
GeneralExpression=True by default.

Using the Analytica Graphing Engine
When you have a CATable result with at least one dimension, you can obtain a graph of
the result as an image. One use of this is to embed graphs as JPEG images in a web
page that uses ADE on the back end.

Obtaining the graph of a result requires the following steps:

1. Select the appropriate graph settings, such as chart type, axis range settings, colors,
fonts, and so on. The easiest way is to open the model in Analytica Enterprise, and
select the settings you want for each variable using the Graph Setup… dialog.

The graph template you create from using the Graph Setup… dialog is stored in
the GraphSetup attribute of the object. You can copy the GraphSetup attribute from
an existing variable if you need to change the style template.

2. From ADE, obtain a CATable with the result to be graphed.

3. Set the GraphWidth and GraphHeight properties of the CATable object to indicate
the desired size of the graph in pixels.

4. If your result has more than 2 dimensions, call Slice or Subscript to reduce the
dimensionality to the desired dimensionality for the plot (usually one dimension
without a key or two dimensions if there is a key).

5. If you have more than one dimension, call SetIndexOrder to select the desired pivot
for the graph.

6. If sending the graph to an output stream, obtain an Windows IStream interface to the
stream. If you have a .NET Stream (System.io.Stream), you will need to use a
wrapper class (see below).

7. Call either the GraphToStream or GraphToFile methods of CATable, depending
on where you want the graph written to. The graph can be created in different mime
types (e.g., “image/JPEG”).

If you are able to view the result graph in Analytica with no slicers, then steps 4 and 5
are unnecessary.

• Writing a result graph to a file:
Dim res As CATable = obj.ResultTable
res.GraphWidth = 640
res.GraphHeight = 400
If res.GraphToFile("C:\Temp\Result.JPG","image/JPEG") Then

’ success
End If

• Dynamically generating a result graph from an ASP.NET web page:
<%

 Analytica® Decision Engine User Guide 51

Chapter Working with Models, Modules, 5 Using the Analytica Graphing Engine

Response.ContentType = "image/JPEG"
Dim varName As String = Request.QueryString("var")
Dim ADE As CAEngine = Session("ADE") ’ assume existing session
Dim res As CATable = ADE.Get(varName).ResultTable
res.GraphWidth = 640
res.GraphHeight = 400
Dim stream As StreamConnector = _

 new StreamConnector(Response.OutputStream)
If res.GraphToStream(stream, "image/JPEG") Then
’ success
End If
%>

In this example code, Response, Request and Session are Active Server Page
objects. The HTTP in the client browser would contain a tag such as:

When Microsoft introduced .NET, they did not make the base Stream class interface
in .NET compatible with the IStream interface in Windows. Because of this, it is
necessary to create a stream wrapper that implements the IStream interface
around the .NET Stream before passing it to GraphToStream. This wrapper, class
StreamConnector, is included in the example AdeTest. To use the above example,
add the file StreamConnector.vb to your project.

Chapter Working with Models,

52 Analytica® Decision Engine User Guide

5 Using the Analytica Graphing Engine

Chapter 6 ADE Server Class
Reference

This chapter lists the properties and methods for
the five ADE server classes:CAEngine,
CAObject, CATable, CAIndex, and
CARenderingStyle.

Chapter ADE Server Class Reference

54 Analytica® Decision Engine User Guide

6 Class CAEngine

ADE Server Class Reference
There are five ADE server classes: CAEngine, CAObject, CATable, CAIndex, and
CARenderingStyle. They are listed below in that order, with a complete description of
the properties and methods of each class.

Class CAEngine

Properties

Command
Description: Sets a typescript language command for execution by the ADE Automation Server. The

Send method causes the Command to be sent to ADE for execution. For the list of
typescript commands see the Analytica Scripting Guide.

Data type: string

Access: read/write

Usage: ADE.Command = “value obj1”

CurrentModule
Description: The currently open module.

Data type: CAObject

Access: read/write

Usage: Dim Obj As Object
Set Obj = ADE.CurrentModule

Remarks: Newly created objects are placed into the CurrentModule; so, you should set the
CurrentModule before creating any new objects. Setting CurrentModule = Nothing
means that no module is open, so all new objects will be created in the top-level Module
or Model of the currently opened model.

API Errors: 44- " Module could not be set"

DefaultDefTableRenderingStyle
Description: The default rendering style controlling how definition table values are transferred to and

from ADE. All definition tables returned from CAObject::DefTable will inherit these
settings when they are first created.

Data type: CARenderingStyle

Access: read/write

Usage: ADE.DefaultRenderingStyle.GeneralExpression = false

 Analytica® Decision Engine User Guide 55

Chapter ADE Server Class Reference6 Class CAEngine

DefaultRenderingStyle
Description: The default rendering style controlling how result values are returned from ADE. All

CAObject instances will inherit this rendering style when they are created.

Data type: CARenderingStyle

Access: read/write

Usage: ADE.DefaultRenderingStyle.StringQuotes = 2

ErrorCode
Description: Returns the error code generated by the last communication with the Analytica Decision

Engine Server. The property ErrorCode should be checked after setting and retrieving
critical CAEngine properties and calling CAEngine methods. An ErrorCode of zero
indicates the last action was successful.

Data type: integer

Access: read

Usage: Dim x As Integer
x = ADE.ErrorCode

ErrorText
Description: short text explanation of error from ErrorCode

Data type: string

Usage: Dim x As String
x = ADE.ErrorText

Access: read

Log
Description: A record of all Commands sent to the ADE typescript and the results received from

those commands, when the Photo property is true

Data type: string

Usage: Dim x As String
x = ADE.Log

Access: read

OutputBuffer
Description: A text string buffer that contains the result of the last typescript (i.e., using the

Command property and Send method) interaction with the ADE.

Data type: string

Usage: Dim x As String
x = ADE.OutputBuffer

Access: read

Chapter ADE Server Class Reference

56 Analytica® Decision Engine User Guide

6 Class CAEngine

Photo
Description: When Photo is True, ADE records all typescript commands and results into the Log

property.

Data type: boolean

Access: read/write

Usage: ADE.Photo = True

Remarks: Setting Photo property to True slows down computation speed of the Engine.

Methods

AddModule(fileName, merge)
Description: Adds a module from file fileName into the CurrentModule. merge currently has no

effect and should be set to True.

Parameters: fileName - string

merge – boolean.

Return Value: ModuleName - string

Usage: ModName = ADE.AddModule ("C:\MYMOD\MYMOD.ANA", True)

API Errors: 39- "Module could not be found"

CloseModel
Description: Closes the model

Usage: ADE.CloseModel

CreateObject(objName, objClass)
Description: Creates a new Analytica object with identifier objName and Class objClass in the

CurrentModule and returns it as a CAObject

Parameters: objName - string

objClass – string

Return Value: CAObject

Usage: Dim obj As CAObject
Set obj = ADE.CreateObject ("NewVar","Chance")

Remarks: ObjClass can be one of the following values:

Decision, Variable, Chance, Constant, Index, Module, Objective, Determ, Alias, or
Formnode.

API Errors: 40- "Object could not be created"
41- "Invalid name for object"
42 - "Object name already in use"
48 – “Invalid object class”

 Analytica® Decision Engine User Guide 57

Chapter ADE Server Class Reference6 Class CAEngine

CreateModel(modelName)
Description: Creates a new Analytica model with identifier modelName

Parameters: modelName - string

Return Value: boolean (success or failure)

Usage: boolval = ADE.CreateModel ("MyNewModel")

API Errors: 45- "Model could not be created"

DeleteObject(obj)
Description: Deletes CAObject obj from the Current Model

Parameters: obj – CAObject

Usage: Dim Obj As CAObject
Set Obj = ADE.GetObjectByName(“ObjToDelete”)
ADE.DeleteObject (Obj)

API Errors: 41- "Invalid object"

GetObjectByName(objName)
Get

Description: Returns an object of type CAObject for an existing Analytica object with identifier
objName.

Parameters: objName - string

Return Value: CAObject

Usage: Dim Obj As CAObject
Set Obj = ADE.GetObjectByName (“MyObject”)
Set Obj = ADE.Get("MyObject") ’alternate equiv. form

API Errors: 41- "Invalid name for object"

OpenModel
Description: Reads a model from a disk file and opens it as the current model.

Parameters: FileSpec- string (the filename containing the model).

Return Value: ModelName – string (actual model name).

Usage: modName = ADE.OpenModel (“C:\TMP\MYMODEL.ANA”)

Remarks: Failure should be detected by checking whether the return value is “”, not by checking
for a zero ErrorCode. It is possible that some errors or warnings may occur during
loading, and will thus be reflected in the ErrorCode, ErrorText, and OutputBuffer
properties, even though the load was successful.

API Errors: 2– Warning (but load was successfully completed).
3– Lexical error (load was only partially successful)
4– Statement error (load was only partially successful)
39- "Model could not be found"

ReadScript(filePath)
Description: Reads an Analytica script file and executes it.

Chapter ADE Server Class Reference

58 Analytica® Decision Engine User Guide

6 Class CAEngine

Parameters: filePath - string

Usage: ADE.ReadScript (“C:\TMP\SCRIPT.MOD”)

API Errors: 39- "Script file could not be found"

ResetError
Description: Resets the error code, error text string associated with the error code, and the output

buffer to default values. This function is normally used internally, but could be useful in
other circumstances as well.

Usage ADE.ResetError

SaveModel(filePath)
Description: Saves the model to file filePath

Parameters: filePath - string

Usage: ADE.SaveModel("C:\TMP\CHANGES.ANA")

API Errors: 46- "Model could not be saved"
49- “There is no model to save”

SaveModuleFile(modName, filePath)
Description: Saves module with identifier modName into file filePath.

Parameters: modName – string
filePath - string

Return Value: boolean (success or failure)

Usage: b = ADE.SaveModuleFile("Function_lib", "C:\TEMP\NEWMOD.ANA")

API Errors: 41 – “Invalid name for object”
46 - "Module could not be saved"

Send
Description: Sends the string contained in the Command property as a command to be executed by

ADE. See the Analytica Scripting Guide for details of commands and syntax.

Return Value: Boolean (success or failure)

API Errors: 1- "Unimplemented"
2- "Warning"
3- "Lexical error"
4- "Statement error"
5- "Expression error"
6- "Execution error"
7- "System error"
8- "Fatal error"
9- "Undefined variable error"
10- "Aborted"

 Analytica® Decision Engine User Guide 59

Chapter ADE Server Class Reference6 Class CAEngine

SendCommand(command)
Description: Sends the string command property as a typescript command to be executed by ADE.

See the Analytica Scripting Guide for details of commands and syntax.

SendCommand is a single method that is faster way to to execute a typescript
command than using the Send method. Using Send requires two statements to execute
a command:

ade.Command = "profile Va1"
b = ade.Send()

This can be done with a single SendCommand statement:
b = ade.SendCommand("profile Va1")

Return Value: Boolean (success or failure)

API Errors: 1- "Unimplemented"
2- "Warning"
3- "Lexical error"
4- "Statement error"
5- "Expression error"
6- "Execution error"
7- "System error"
8- "Fatal error"
9- "Undefined variable error"
10- "Aborted"

Chapter ADE Server Class Reference

60 Analytica® Decision Engine User Guide

6 Class CAObject

Class CAObject

Properties

ClassType
Description: Contains the type of the Analytica object.

Data type: string

Access: read/write

Usage classType = CAObject.ClassType

Remarks: ADE currently supports the following types of Analytica objects: Decision, Chance,
Constant, Index, Module, and Variable.

Name
Description: Contains the name given to the Analytica object.

Data type: string

Access: read/write

Usage: CAObject.Name = "NewName"

API Errors: 41- "Invalid name for object"

RenderingStyle
Description: Contains a CARenderingStyle object that controls how data is returned from Analytica.

This property is inherited from the DefaultRenderingStyle property of CAEngine when
the object is first instantiated. Its settings control how data is returned from
CAObject::Result and CAObject::GetAttribute. Also, the setting will be inherited by
any CATable created from the object by the Evaluate or ResultTable methods.

Data type: CARenderingStyle

Access: read/write

Usage: obj.RenderingStyle.StringQuotes = 0

ResultType
Description: Specifies the treatment of uncertainty in the value obtained using the Result or

ResultTable properties:
0 - Mid value (default)
1 - Mean |
2 - Sample
3 – PDF
4 – CDF
5 – Statistics
6 – Confidence Bands

Data type: integer

Access: read/write

 Analytica® Decision Engine User Guide 61

Chapter ADE Server Class Reference6 Class CAObject

Usage: CAObject.ResultType = 1

Methods

CreateDefTable(indexList)
Description: Creates an input table object in the definition attribute of the specified Analytica object

with dimension specified by the indexList. The IndexList parameter must contain an
array of identifiers of existing Index variables (identical in form to the IndexNames
method of class CATable). The number of indexes in indexList determines the number
of dimensions of the table. One index may be "Self", meaning that one of the
dimensions will be indexed by the Indexvals attribute of this variable. should be one of
the entries in the array. Initially, the input table object’s array will be filled with null
elements, which can be changed using the SetDataByElements and SetDataByLabels
methods of the class CATable.

Parameters: indexList - array of strings

Return Value: boolean (success or failure)

Usage: Var.CreateDefTable (IndexList)

API Errors: 25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
32- "Index object not found"

DefTable
Description: Gives object of class CATable containing the input table for an Analytica Variable — or

Nothing if the variable was not defined as an input table.

Data type: CATable

Access: read/write

Usage: Dim CATable As Object
Set CATable = CAObject.DefTable

API Errors: 34- "Definition table not found"

Evaluate(expr)
Description: Parses and evaluates an Analytica expression expr.

Parameters: expr - string

Return Value: CATable

Usage: dim tab As CATable = _
obj.Evaluate("Sum(Revenue,Division)")

API Errors: 35- "Attribute could not be retrieved"

GetAttribute(attribName)
Description: Gets the value of Attribute attribName of the object.

Parameters: attribName - string

Chapter ADE Server Class Reference

62 Analytica® Decision Engine User Guide

6 Class CAObject

Return Value: variant

Usage: X = obj.GetAttribute("definition")

API Errors: 35- "Attribute could not be retrieved"

PictureToFile(fileName, mimeType)
Description: Causes ADE to retreiveCAObject object’s picture, if any, and save it to file fileName, in

the format specified by mimeType.

Return Value: Boolean (success)

Parameters: fileName : string
mimeType : string (usually "image/jpeg", "image/bmp", "image/tiff", or "image/png").

Usage: obj = ade.Get("Pi1");
bSuccess = obj.PictureToFile(@"C:\Temp\myPict.jpg","image/jpeg")

PictureToStream(stream, mimeType)
Description: Causes ADE to retreive CAObject object’s picture, if any, and send it to stream stream,

in the format specified by mimeType.

Return Value: Boolean (success)

Parameters: stream : string
MimeType : string (usually "image/jpeg", "image/bmp", "image/tiff", or "image/png").

Usage: dim outStream as MyStreamWrapper = _
new MyStreamWrapper(Response.OutputStream)

bSuccess = obj.PictureToStream(outStream,"image/jpeg")

Result
Description: Gives the result value of the object as a single value (not a table). ADE will first

evaluate the value if it has not already been evaluated. If the value is an array, it returns
it as a string of comma-delimited elements.

Data type: variant

Access: read

Usage: Dim x
X = CAObject.Result

API Errors: 37- "Could not retrieve result"

ResultTable
Description: Gives the value of the object as a CATable, with zero or more dimensions, or Nothing if

the object cannot be evaluated. ADE first evaluates the variable if necessary.

Data type: CATable

Access: read

Usage: Dim CATable As Object
Set CATable = CAObject.ResultTable

API Errors: 38- "Could not get result table"

 Analytica® Decision Engine User Guide 63

Chapter ADE Server Class Reference6 Class CAObject

SetAttribute(attribName, value)
Description: Sets Attribute attribName of the Object to value. It returns true if successful or false if

not.

Parameters: attribName - string
value - Variant

Return Value: Boolean

Usage: bool = obj.SetAttribute ("definition","A/B")

API Errors: 36- "Attribute could not be set"

Chapter ADE Server Class Reference

64 Analytica® Decision Engine User Guide

6 Class CATable

Class CATable

Properties

GraphHeight
Description: Controls the height of the graph image returned by GraphToStream or GraphToFile.

Data type: integer (number of pixels)

Access: read/write

Usage: tab.GraphHeight = NumDims

GraphWidth
Description: Controls the width of the graph image returned by GraphToStream or GraphToFile.

Data type: integer (number of pixels)

Access: read/write

Usage: x = CATable.TableType

NumDims
Description: The number of dimensions of the table (zero if it is a scalar with no dimensions).

Data type: integer

Access: read

Usage: x = CATable.NumDims

RenderingStyle
Description: Contains a CARenderingStyle object that controls how atomic values are interpreted

when transferred to and from table cells. Definition tables inherit this property from the
DefaultDefTableRenderingStyle property of CAEngine. Result table inherits this
property from the CAObject that created the table.

Data type: CARenderingStyle

Access: read/write

Usage: tab.Renderingstyle.NumberAsText = true

ResultType
Description: Contains the type of result that was computed, and controls the type of result computed

if the table is updated. Possible value are the same as for CAObject::ResultTable.

Data type: integer

Access: read/write

Usage: x = CATable.ResultType

 Analytica® Decision Engine User Guide 65

Chapter ADE Server Class Reference6 Class CATable

TableType
Description: This property holds the type of the table (“D” for a definition table, and “V” for a result

table)

Data type: string

Access: read

Usage: x = CATable.TableType

Methods
AtomicValue

Description: Retrieves the scalar value from a zero-dimensional CATable object. A zero-
dimensional table results when a result is not an array, or when you call Slice or
Subscript on a one-dimensional array.

Return Value: variant

Parameters: none

Usage: x = tab.AtomicValue

GetDataByLabels(indexLabels)
Description: Retrieves the value of an input table cell according to indexLabels, which specify the

label for each index of the table in order.

Return Value: variant

Parameters: values of indexes (Variant); the number of elements inVariant must be equal to
NumDims.

Usage: IndexLabs (1) = 3
IndexLabs (2) = “green”
W = Var.DefTable.GetDataByLabels (IndexLabs)

Or
IndexLabs (1) = 3
IndexLabs (2) = “green”
W = Var.ResultTable.GetDataByLabels (IndexLabs)

If the table has only one dimension, the parameter need not be an array:
W = Var.ResultTable.GetDataByLabels("green")

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
30- "Position does not exist"

GetDataByElements
Description: Retrieves the value of input table cell according to index values.

Return Value: variant

Parameters: index values (Variant), number of elements in the variant must be equal to NumDims.

Chapter ADE Server Class Reference

66 Analytica® Decision Engine User Guide

6 Class CATable

Usage: IndexPtrs (1) = 1
IndexPtrs (2) = 2
W = Var.DefTable.GetDataByElements (IndexPtrs)

Or
IndexPtrs (1) = 1
IndexPtrs (2) = 2
W = Var.ResultTable.GetDataByElements (IndexPtrs)

If the table is one dimensional, then an array is not needed:
W = Var.ResultTable.GetDataByElements (1)

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
29- "Position specified is out of bounds"
30- "Position does not exist"
31- "Illegal Position Specified In Table"

GetIndexObject
Description: Retrieves an index object by its name

Return Value: CAIndex

Parameters: index name: string

Usage: dim AI as Object
Set AI = AObj.GetIndexObject (IndexName)

Remarks: If ObjName is not valid the method returns Nothing.

API Errors: 32- "Index object not found"

GetSafeArray
Description: Retrieves the CATable as a safe array (i.e., a Visual Basic array). The ordering of the

dimensions is controlled by the SetIndexOrder method. The elements of each
dimension are indexed 1 to N, where N is the size of each index.

Return Value: Array

Usage: dim Var As Object
Dim curTable
curTable = Var.GetSafeArray

API Errors: None.

GraphToFile(fileName, mimeType)
Description: Creates a graph image of the data contained in the CATable object formatted using the

mimeType and writes it to file fileName. It uses attribute settings for the CAObject
from which the CATable was obtained to control graph settings, uncertainty settings,
and number format. The GraphWidth and GraphHeight properties control the size of
the graph image in pixels.

Return Value: Boolean (success)

 Analytica® Decision Engine User Guide 67

Chapter ADE Server Class Reference6 Class CATable

Parameters: fileName : string
mimeType : string (usually "image/jpeg", "image/bmp", "image/tiff", or "image/png").

Usage: tab.GraphWidth = 350
tab.GraphHeight = 200
b = tab.GraphToFile("C:\data\trends.jpg","image/bmp")

GraphToStream(stream, mimeType)
Description: Creates a graph image of the data contained in the CATable object formatted using the

mimeType, and writes it to stream, a Windows IStream. Note: An IStream is not
interchangeable with a .NET System.Io.Stream object (including a
Response.OutputStream object in ASP.NET). A wrapper class is necessary for
converting between these. The size of the image in pixels is controlled by the
GraphWidth and GraphHeight properties of the table. The graphing options are
controlled by the

Return Value: Boolean (success)

Parameters: stream : string
MimeType : string (usually "image/jpeg", "image/bmp", "image/tiff", or "image/png").

Usage: tab.GraphWidth = 350
tab.GraphHeight = 200
dim outStream as MyStreamWrapper = _
new MyStreamWrapper(Response.OutputStream)
b = tab.GraphToStream(outStream, "image/jpeg")

IndexName(IndexNumber)
Description: Takes one parameter, IndexNumber, and returns the name of the corresponding index

for CATable.

Return Value: string

Parameters: IndexNumber : short int.

Usage: dim string as indexTitle = Var.DefTable.IndexName (1)

IndexNames
Description: Returns the names of the indexes of the table as an array. Use indexes in this order

when using the GetDataBy and SetDataBy methods to get or set elements of the table.
You can change the order with the SetIndexOrder method.

Data type: string array with dimension from 1 to object’s NumDims property

Access: read

Usage: Dim names(k) of String = Var.DefTable.IndexNames (k)

PutSafeArray
Description: Replaces the current table represented by this object with another table of the same

dimensions.

Return Value CATable

Parameters: the table (Visual Basic Array) that will replace the current table)

Usage: Dim Var As Object
Dim TheArray

Chapter ADE Server Class Reference

68 Analytica® Decision Engine User Guide

6 Class CATable

TheArray = Var.GetSafeArray
Var.PutSafeArray (TheArray)

API Errors: 24- "Subscripts must be an array of variants"
50- "Safe-array has incorrect size or number of dimensions”

SetDataByLabels
Description: Sets the value of an input table cell according to its index labels.

Return Value: boolean (success or failure)

Parameters: cell value (Variant), values of indexes (Variant), number of elements in this variant must
be equal to NumDims.

Usage: IndexVals (1) = 3
IndexVals (2) = ‘green’
RetVal= Var.DefTable.SetDataByLabels (W, IndexVals)

If the table is one-dimensional, then an array is not needed:
W = Var.DefTable.SetDataByLabels (W, "green")

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
30- "Position does not exist"
31- "Illegal position specified in table"

SetDataByElements(value, indexVals)
Description: Sets the input table cell specified by indexVals to value. indexVals must contain a

label for each index of the table, so the number of labels must equal NumDims. If the
table has just one dimension, indexVals may be the label for that one index rather than
an array of labels.

Return Value: boolean (success or failure)

Parameters: value: Variant, indexVals: Variant

Usage: IndexPtrs (1) = 1
IndexPtrs (2) = 2
RetVal = Var.DefTable.SetDataByElements (W, IndexPtrs)

If the table is one-dimensional, then an array is not needed:
W = Var.DefTable.SetDataByElements (W, 1)

API Errors: 24- "Subscripts must be an array of variants"
25- "Subscripts cannot be accessed"
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in table"
29- "Position specified is out of bounds"
31- "Illegal position specified in table"
51- “Element position is non-numeric”

 Analytica® Decision Engine User Guide 69

Chapter ADE Server Class Reference6 Class CATable

SetIndexOrder(indexNames)
Description: Sets the order of the indexes in the table to the order of indexNames, which must

contain the names of only and all the indexes of the table, assuming it has more than
one index. This order determines the order used by SetDataByElements,
SetDataByLabels, GetDataByElements, and GetDataByLabels to access a cell in a
table.

Return Value: boolean (success or failure)

Parameters: indexNames: array of strings

Usage: IndexVals (1) = ‘X’
IndexVals (2) = ‘Y’
RetVal = Var.DefTable.SetIndexOrder (W, IndexVals)

API Errors: 24- “Subscripts must be an array of variants”
26- "Lower bound of subscript array inaccessible"
27- "Upper bound of subscript array inaccessible"
28- "Must specify at least one element in array"
52- "Specified name is not an index of the array"

Slice(indexObj, n)
Description: Returnss the nth slice of the table over index indexObj. The result is a new CATable

object with one fewer dimensions than the table to which it is applied.

Parameters: indexObj: CAObject
n : Integer – the 1-based slice position along index.

Return Value: CATable

Usage: dim In1 as CAIndex = tab.GetIndexObject("In1")
dim subTab as CATable = tab.Slice(In1, 1)

Subscript(indexObj, label)
Description: Returns a slice of a table for which index indexObj is equal to label. It retruns a new

CATable object with one fewer dimensions than the original table.

Parameters: indexObj: CAObject
label : variant – the label in index.

Return Value: CATable

Usage: dim In1 as CAIndex = tab.GetIndexObject("In1")
dim subTab as CATable = tab.Slice(In1, "SomeLabel")

Update
Description: For Definition Tables: Updates an existing input table in the definition attribute of an

Analytica object. Use this method after setting one or more SetDataBy methods to
direct the API to send the new table data to the Analytica Decision Engine Server. For
Result Tables: Retrieves an updated version of the result table from the Analytica
Decision Engine Server.

Return Value: Boolean (success or failure)

Usage: Var.DefTable.Update

Remarks: Use the CreateDefTable method to replace the current definition attribute of an
Analytica object with an input table.

Chapter ADE Server Class Reference

70 Analytica® Decision Engine User Guide

6 Class CATable

API Errors: None.

 Analytica® Decision Engine User Guide 71

Chapter ADE Server Class Reference6 Class CAIndex

Class CAIndex
Properties

IndexElements
Description: Returns the number of elements in the index.

Data type: integer

Access: read

Usage: x = CAIndex.IndexElements

Name
Description: Contains the name given to the Analytica index.

Data type: string

Access: read/write

Usage: theName = CAIndex.Name

API Errors: 41- "Invalid name for object"

RenderingStyle
Description: Contains a CARenderingStyle object that controls how values are returned from

GetValueByNumber.

Data type: CARenderingStyle

Access: read/write

Usage: theIndex.RenderingStyle.StringQuotes = 1

Methods:

GetNumberByValue
Description: returns the position of an index label in an index.

Parameters: Value - variant

Return Value: integer

Usage: n = Anindex.GetNumberByValue (Value)

API Errors: 22- "Value not found in index"

GetValueByNumber
Description: returns the index label at the specified position in the index.

Parameters: Number - integer

Return Value: variant

Usage: W = AnIndex.GetValueByNumber (Number)

API Errors: 23- " Illegal position in index"

Chapter ADE Server Class Reference

72 Analytica® Decision Engine User Guide

6 Class CARenderingStyle

Class CARenderingStyle

Properties

GeneralExpression
Description: Determines how string values are interpreted when they are written to a definition table.

When True (default), a string is taken to be an expression, which must parse to be a
valid expression. When False, a string value is stored as a literal string. For example,
the value “Pi” would be interpreted as the identifier Pi when GeneralExpression is true,
and would thus evaluate to 3.141592654, but the same string would be interpreted as a
literal character string when GeneralExpression is false, and would evaluate to two-
character textual string.

Data type: Boolean

Access: read / write

Usage: deftab.RenderingStyle.GeneralExpression = false

FullPrecision
Description: When True a numeric values rendered as text (see the NumberAsText property will

have the maximum number digits needed to represent the number at full precision
(usually 16). If False, it so that a loss of precision does not occur.

Data type: Boolean

Access: read / write

Usage: dim res As CATable = obj.Evaluate("sqrt(2)")
res.RenderingStyle.NumberAsText = true
res.RenderingStyle.FullPrecision = false
dim s As String = res.AtomicValue ’ returns "1.414"
res.renderingStyle.FullPrecision = true
s = res.AtomicValue ’ returns "1.4142135623731"

NumberAsText
Description: Controls whether numeric results or numeric table cell definitions are returned as

floating point numbers or as formatted strings. When true, the number format for the
current object will control how the number is formatted as a string (except that the
FullPrecision property may override the number of digits in the number format).

Data type: Boolean

Access: read / write

Usage: deftab.RenderingStyle.NumberAsText = true

ReferenceAsText
Description: Some Analyica expressions may evaluate structured value (such as a tree) containing

references. This property controls whether references are returned as CATable objects
(containing the de-referenced value), or rendered as text. By default, they are returned
as CATable objects. Note that in Analytica, a reference is treated as atomic, even
though its dereferenced value may be array valued.

 Analytica® Decision Engine User Guide 73

Chapter ADE Server Class Reference6 Class CARenderingStyle

Data type: Boolean

Access: read / write

Usage: obj.SetAttribute("definition", "\(A^t)")
def res as CATable = obj.Evaluate("\(A^t)")
res.RenderingStyle.ReferencesAsText = false
def derefdVal as CATable = res.AtomicValue

SafeArrayLowerBound
Description: The lower bound for safe arrays returned by CATable::GetSafeArray. Default is 1.

Data type: Integer

Access: read / write

Usage: ADE.DefaultRenderingStyle.SafeArrayLowerBound = 0

StringQuotes
Description: Controls whether textual values are returned with explicit quotation marks surrounding a

string, according to its value:
0 = no quotes around strings— e.g., 0.25
1 = single quotes — e.g., ‘0.25’
2 = double quotes — e.g., “0.25”

When NumberAsText is true, with no quotation marks around string values, the
numeric value 0.25 and the string containing the four characters “0.25” would be
indistinguishable. If you want to be able to distinguish them, set the value of
StringQuotes to 1 or 2.

Data type: Integer:
0 = no quotes,
1 = ‘single quotes’,
2 = “double quotes”.

Access: read / write

Usage: deftab.RenderingStyle.StringQuotes = 2

UndefValue
Description: This property specifies the value returned when the Analytica value is Undefined. By

default, ADE returns the special value Variant Empty — for example, when GetAttribute
is applied to an Attribute that was not set. Some scripting languages cannot manipulate
the value Empty: In this case you can set UndefValue to something more convenient,
such as Null or the empty string.

Data type: Variant

Access: read / write

Usage: ADE.DefaultRenderingStyle.UndefValue = Null

VarTermFormat
Description: Controls how a varTerm (a pointer to an Analytica object) is returned. A varTerm may

occur in a definition cell of a table if that definition consists of a single identifier. There
are also some rare Analytica expressions that can produce a VarTerm in a result. If
VarTermFormat = 0, it will return the identifier of the Analytica object as a string; if 1, a
CAObject for the Analytica object; or if 2, the Title of the object as a string.

Chapter ADE Server Class Reference

74 Analytica® Decision Engine User Guide

6 Class CARenderingStyle

Data type: Integer:
0 = identifier,
1 = CAObject,
2 = title

Access: read / write

Usage: deftab.RenderingStyle.VarTermFormat = 1

Appendices

The following appendices provide you with:

• The complete list of ADE error messages

• A glossary of Analytica terms

Chapter

76 Analytica® Decision Engine User Guide

1 Error Codes

Appendix A. Error Codes

ADE Error Codes

API Error Codes

Error Code Meaning/Error Text

0 "OK"

1 "Unimplemented"

2 "Warning"

3 "Lexical error"

4 "Statement error"

5 "Expression error"

6 "Execution error"

7 "System error"

8 "Fatal error"

9 "Undefined variable error"

10 "Aborted"

11 "Analytica expired -- contact Lumina"

12 not currently used

13 not currently used

14 not currently used

15 not currently used

16 not currently used

17 not currently used

18

19 not currently used

20 "Analytica is uninitialized"

21 "Bad parameter passed"

22 "Value not found in index"

23 "Illegal position in index"

24 "Subscripts must be an array of variants"

 Analytica® Decision Engine User Guide 77

Chapter 1 API Error Codes

25 "Subscript cannot be accessed"

26 "Lower bound of subscript array inaccessible"

27 "Upper bound of subscript array inaccessible"

28 "Must specify at least one element in table"

29 "Position specified is out of bounds"

30 "Position does not exist"

31 "Illegal position specified in table"

32 "Index object not found"

33 "Illegal index number specified"

34 "Definition table not found"

35 "Attribute could not be retrieved"

36 "Attribute could not be set"

37 "Could not retrieve result"

38 "Could not get result table"

39 "Module/Model/Script could not be found"

40 "Object could not be created"

41 "Invalid name for object"

42 "Object name already in use"

43 "Current module could not be retrieved"

44 "Module could not be set"

45 "Model could not be created"

46 "Model/Module could not be saved"

47 "Illegal command"

48 "Invalid object class"

49 "There is no model in memory to save"

50 "Safe-array has incorrect size or number of dimensions"

51 "Element position is non-numeric"

52 "Specified name is not an index of the array"

53 "Insufficient memory"

54 "Unrecognized MIME type"

55 "Value is not atomic"

56 "Operation allowed only on a result CATable, not on a definition table"

57 "First param is not an IStream*"

58 "Subscript array contains the wrong number of elements There
should be one element for each dimension"

59 "CATable is not associated with an object, so it cannot be updated"

60 "A result table is read-only"

Chapter

78 Analytica® Decision Engine User Guide

1 API Error Codes

61 "Expression could not be parsed"

62 "Error evaluating expression"

63 "GraphWidth and GraphHeight must be positive"

64 "Value is atomic (not an array) To get value, use AtomicValue
method"

65 "Index value could not be computed"

66 "No picture stored with object"

67 "Internal picture format not supported"

68 "Filename too long"

69 "Result cannot be graphed"

70 "Definition is Hidden"

 Analytica® Decision Engine User Guide 79

Chapter 1 Glossary

Appendix B. Glossary
ADE See “Analytica Decision Engine.”

Alias A node in a diagram that refers to a Variable or other node located somewhere else,
usually in another module. An alias permits you to display a Variable in more than one
module. An alias node is distinguished by having its title in italics.

Analytica Browser A free edition of Analytica that allows a user to evaluate and view results, and change
input fields; however, from Analytica Browser a user cannot enter edit mode or
otherwise change the content of a model. Copies of Analytica without a valid registration
number run as the Analytica Browser.

Analytica Decision
Engine

A product sold by Lumina Decision Systems, Inc., separate from Analytica. With the
Analytica Decision Engine (ADE), you embed the Analytica computation engine in your
web-server backend or in your custom applications built in Visual Basic, C++, Microsoft
Office, or any language supporting ActiveX Automation or COM.

Analytica Enterprise A edition of Analytica for users who intend to share data or models with others in their
organization. Analytica Enterprise contains all features of Analytica Pro as well as
functions for accessing ODBC databases and features for protecting your intellectual
property.

AnalyticaProfessional
edition

The standard fully-functional edition of Analytica. Analytica Pro provides all the features
and functionality required to create, edit, and evaluate models.

Analytica Trial A fully-functional, but expiring, edition of Analytica. Analytica Trial can be downloaded
from the Lumina web site (www.lumina.com) for those wishing to "test drive" the
product. Analytica Trial contains the complete functionality of Analytica Pro. After
expiration, Analytica Trial converts to Analytica Browser.

Array A collection of values that can be viewed as one or more tables. An array has one or
more dimensions; each dimension is identified by an index.

Array abstraction See “Intelligent Array Abstraction™.”

Arrow An arrow or influence from one Variable node to another indicates that the origin node
affects (influences) the destination node. If the nodes depict Variables, the origin
Variable usually appears in the definition of the destination Variable.

Arrow tool The Arrow tool, or Influence Arrow tool, is in the shape of a left-to-right pointing arrow
cursor. The Arrow tool is used to draw arrows connecting Variables to create relations
between them.

Attribute A property or descriptor of an Object, such as its title, description, definition, value, or
inputs.

Attribute panel An auxiliary window pane that you can open below a diagram or outline window. Use
the Attribute panel to rapidly examine one Attribute at a time of any Variable in the
model, by selecting the Variable and then the Attribute from a popup menu.

Author An Attribute recording the names of the person or people who created the model, or
other Object.

Behavior analysis Model behavior analysis is a type of sensitivity analysis in which you specify a set of
alternative values for one or more inputs and examine the effect on selected model
output Variables. It is also known as parametric analysis.

Browse-only models Analytica Enterprise users can save a copy of their model in a browse-only form. When
a browse-only model is loaded into any edition of Analytica, the user cannot enter edit
mode, and therefore can only make changes to Variables with input nodes. Browse-only
models are also obfuscated.

Chapter

80 Analytica® Decision Engine User Guide

1 Glossary

Browse tool The Browse tool is in the shape of a hand. With the Browse tool, you can examine the
diagram but cannot make any changes, except to change the values in input nodes.

Chance Variable A Chance Variable is uncertain and cannot be directly controlled by the decision maker.
Usually, it is defined by a probability distribution. A Chance Variable is depicted as an
oval node.

Check The check Attribute contains an expression that checks the validity of the value of a
Variable. It displays a message when the Variable's value is out of specified bounds.

Class The type of Analytica Object: decision, chance, objective, or index Variable; function;
module; library; form; model.

Cloaking See “Definition Hiding.”

Conditional
dependency

A Chance Variable a is conditionally dependent on another Variable b if the probability
of a value of a depends on the value of b. If a is defined by a probability table, b may be
an index of its probability table.

Constant A Variable whose value is not probabilistic, and does not depend on other Variables,
such as the number of minutes in an hour.

Continuous
distribution

A probability distribution defined for a continuous Variable—that is, for a real-valued
Variable. Example continuous distributions are beta, normal, and uniform. Compare to
“Discrete distribution.”

Continuous Variable A Variable whose value is a real number—that is, one of an infinite number of possible
values. Its range can be bounded (for example, between 0 and 1) or unbounded.
Compare to “Discrete Variable.”

Created The date and time at which the model was first created. This model Attribute is entered
automatically, and is not user-modifiable.

Cumulative
probability

distribution

A representation of a probability distribution that plots the cumulative probability that the
actual value of the uncertain Variable x will be less than or equal to each possible value
of x. The cumulative probability distribution is a display option in the Uncertainty View
popup menu.

Decision Variable A Variable that the decision maker can control directly. Decision Variables are
represented by rectangular nodes.

Definition A formula that defines how to compute a Variable’s value. It can be a simple number, a
mathematical expression, a list of values, a table, or a probability distribution. In text
format, it is limited in length to 32,000 characters.

Definition Hiding A feature in Analytica Enterprise for protecting your intellectual property when
distributing models you have created to others. Definition hiding controls whether the
end-user of your model can view the definitions of selected nodes.

Description Text explaining what the node represents in the real system being modeled. It is limited
in length to 32,000 characters.

Deterministic table A deterministic function that gives the value of a Variable x conditional on the values of
its input Variables. The input must all be discrete Variables. The table is indexed by
each of its inputs, and gives the value of x that corresponds to each combination of
values of its inputs.

Deterministic value A Variable's deterministic value, or mid value, is a calculation of the Variable's value
assuming all uncertain inputs are fixed at their median values.

Deterministic
(determ) Variable

A Variable that is a deterministic function of its inputs. Its definition does not contain a
probability distribution. The value of a deterministic Variable can be probabilistic if one

 Analytica® Decision Engine User Guide 81

Chapter 1 Glossary

or more of its inputs are uncertain. A deterministic Variable is displayed as a double
oval. You can also use a general Variable (rounded rectangle) to depict a deterministic
Variable.

Determtable See “Deterministic table.”

Diagram See “Influence diagram.”

Dimension An array has one or more dimensions. Each dimension is identified by an index
Variable. When an array is shown as a table, the row header (vertical) and column
headers(horizontal) give the two dimensions of the table.

Discrete distribution A probability distribution over a finite number of possible values. Example discrete
distributions are Bernoulli and the Probtable function. Compare to “Continuous
distribution.”

Discrete Variable A Variable whose value is one of a finite number of possible values. Examples are the
number of days in a month (28, 29, 30, or 31), or a Boolean Variable with possible
values True and False. A Variable that is defined as a list or list of labels is discrete.
Compare to “Continuous Variable.”

Domain The possible outcomes of a Variable. The Domain has a type as well as value. The
possible types are List of labels, List of numbers, or Continuous; the default type is
Continuous, except for Variables defined with the Choice(), Probtable(), and
Determtable() functions.

Dynamic Variable A Variable that depends on the system Variable Time and is defined by the Dynamic()
function. A dynamic Variable can depend on itself at a previous time period, directly or
indirectly, through other dynamic Variables.

Edit Table A definition that is a table is also called an Edit Table because it can be edited.

Edit tool The Edit tool is in the shape of the normal mouse pointer cursor. The Edit tool is used to
create a new model or to change an existing model. It allows you to move, resize, and
edit nodes, and exposes the Arrow tool and node palette.

Excel Graph The graphing engine of Microsoft Excel®. Users who have Excel installed on their
computers can take advantage of Excel Graph to graph results.

Expression A formula that can contain numbers, Variables, functions, distributions, and operators,
such as 0.5, a-b, or Min(x), combined according to the Analytica language syntax.
The definition of a Variable must contain an expression.

Expression type The Expression popup menu, which appears above the definition field, allows you to
change the definition of a Variable to one of several different kinds of expressions.
Expression types include expression, list (of expressions or numbers), list of labels (text
values), table, probability table, and distribution. Any definition, regardless of expression
type, can be viewed as an expression.

File Info The name of the file and folders in which the model was last saved.

Filed library A library whose contents are saved in a file separate from the model that contains it. A
filed library can be shared among several models without making a copy for each
model.

Filed module A module whose contents are saved in a file separate from the model that contains it. A
filed module can be shared among several models without making a copy for each
model.

Fractile The median is the 0.5 fractile. More generally, there is probability p that the value is less
than or equal to the p fractile. Quantile is a synonym for fractile. (Fractal is something
different!) Compare to “Percentile.”

Chapter

82 Analytica® Decision Engine User Guide

1 Glossary

General Variable A Variable that can be certain or probabilistic. It is often convenient to define a Variable
as a general Variable without worrying about what particular kind of Variable it is. A
general Variable is depicted by a rounded rectangle node.

Identifier A short name for a Variable used in mathematical expressions in definitions. An
identifier must start with a letter, have no more than 20 characters, and contain only
letters, numbers, and ’_’ (underscore, used instead of a space). Each identifier in a
model must be unique. Compare to “Title.”

Importance analysis Importance analysis lets you determine how much effect the uncertainty of one or more
input Variables has on the uncertainty of an output Variable. Analytica defines
importance as the rank order correlation between the sample of output values and the
sample for each uncertain input. It is a robust measure of the uncertain contribution
because it is insensitive to extreme values and skewed distributions.

Unlike commonly used deterministic measures of sensitivity, this rank order correlation
averages over the entire joint probability distribution. Therefore, it works well even for
models where the sensitivity to one input depends strongly on the value of another.

Index An index of an array identifies a dimension of that array. An index is usually a Variable
defined as a list, list of labels, or sequence. An index is often, but not always, a Variable
with a node class of Index.

Indexes Plural of index. Indicates a set of index Variables that define the dimensions of a table
(in an Edit Table or value).

Index selection area The top portion of a Result window, containing a description of the result and other
information about the dimensions of the result.

Index Variable A class of Variable, defined as a list, list of labels, or sequence, that identifies the
dimensions of an array—for example, in an Edit Table. An Index Variable is depicted as
a parallelogram node. Variables of other classes whose definition or domain consist of
list, list of labels, or sequence can also be used to identify the dimensions of an array,
and are sometimes referred to as index Variables.

Influence arrow See “Arrow.”

Influence cycle A cyclic dependency occurs when a Variable depends on itself directly or indirectly so
that the arrows form a directed circular path. The only cyclic dependencies allowed in
Analytica are in Variables using the Dynamic() function that contain a time lag on the
cycle.

Influence diagram An intuitive graphical view of the structure of a model, consisting of nodes and arrows.
Influence diagrams provide a clear visual way to express uncertain knowledge about the
state of the world, decisions, objectives, and their interrelationships.

Innermost dimension The dimension of an array that varies most rapidly in the Table() function. The
innermost dimension is the last index listed in a Table() or Array() function. Compare
to “Outermost dimension.”

Input A Variable that appears in the definition of the selected Variable. See also “Output.”

Input arrowhead An arrowhead pointing into a node, indicating that the node has one or more inputs from
outside its module. Click on the arrowhead for a popup menu of the input Variables.

Inputs A list of the Variables or functions on which this Variable or function depends. The inputs
are determined by the arrows drawn to and the Variables or functions referred to in this
Variable’s or function’s definition or check Attribute. See also “Outputs.”

Intelligent Array
Abstraction™

A powerful key feature of the Analytica Engine that automatically propagates and
manages the dimensionality of multidimensional arrays within models.

 Analytica® Decision Engine User Guide 83

Chapter 1 Glossary

Key In a results graph, the key shows the value of the key index Variable that corresponds to
each curve, indicated by pattern or color.

Kurtosis A measure of the peakedness of a distribution. A distribution with long thin tails has a
positive kurtosis. A distribution with short tails and high shoulders, such as the uniform
distribution, has a negative kurtosis. A normal distribution has zero kurtosis.

Last Saved The date and time at which the model was last saved. This model Attribute is entered
automatically, and is not user-modifiable. If the model is new, this field remains empty
until the model is first saved.

Library A model component that typically contains a collection of user-defined functions and/or
Variables to be shared.

List A type of expression available in the Expression popup menu consisting of an ordered
set of numbers or expressions. A list is often used to define Index and Decision
Variables.

List of labels A type of expression available in the Expression popup menu consisting of an ordered
set of text items. A list of labels is often used to define Index and Decision Variables.

Matrix A two-dimensional array of numbers with indexes of equal length.

Mean The average of the population, weighted by the probability mass or density for each
value. The mean is also called the expected value. The mean is the center of gravity of
the probability density function.

Median The value that divides the range of possible values of a quantity into two equally
probable parts. Thus, there is 0.5 probability that the uncertain quantity is less than or
equal to the median, and 0.5 probability that it is greater than the median.

Mid value The result of evaluating a Variable deterministically, holding probability distributions at
their median value. Analytica calculates the mid value of a Variable by using the mid
value of each input. The mid value is a measure of central value, computed very quickly
compared to uncertainty values. Compare “Probvalue.”

Mode The most probable value of the quantity. The mode is at the highest peak of the
probability density function. On the cumulative probability distribution, the mode is at the
steepest slope, at the point of inflection.

Model A module, or a hierarchy of linked and/or embedded modules and libraries, on which
you work during an Analytica session; the main, or root, module at the top of the module
hierarchy. Between sessions, a model is stored in an Analytica document file.

Module A collection of related nodes, typically including Variables, functions, and other
modules, organized as a separate Influence Diagram. A module is depicted in a
diagram as a node with a thick outline.

Module hierarchy A model can contain several modules, each one containing details of the model. Each
module can contain further modules, containing still more detail. This module hierarchy
is organized as a tree with the model at the top. You can view the hierarchical structure
in the Outline window.

Multimodal
distribution

A probability distribution that has more than one mode.

Node A shape, such as a rectangle, oval, or hexagon, that represents an Object in an
Influence Diagram. Different node shapes are used to represent different types of
Variables.

Obfuscated Saved in a non-human-readable (i.e, encrypted) form. Obfuscation provides a
mechanism for protecting intellectual property. Analytica Enterprise users can distribute

Chapter

84 Analytica® Decision Engine User Guide

1 Glossary

obfuscated copies of their models to their end-users. In Analytica, obfuscation also has
the effect of making settings for definition hiding and/or browse-only mode permanent.

Object A Variable, function, or module in an Analytica model. Each Object is depicted as a
node in an Influence Diagram and is described by a set of attributes. See also “Class,”
“Node,” “Attribute,” and “Influence diagram.”

Object Finder A dialog box used to browse and edit the functions and Variables available in a model.

Object window A view of the detailed information about a node. The Object window shows the visible
attributes, such as a node’s type, identifier, and description.

Objective Variable A Variable that evaluates the overall desirability of possible outcomes. The objective
can be measured as cost, value, or utility. A purpose of most decision models is to find
the decision or decisions that optimize the objective—for example, minimizing cost or
maximizing expected utility. An objective Variable is represented by a hexagonal node.

OLE Linking A standard in the Windows operating system for sharing data between applications.

Operator A symbol, such as a plus sign (+), that represents a computational process or action
such as addition or comparison.

Outermost dimension The dimension of an array that varies least rapidly in the Table() function. The
outermost dimension is the first index listed in a Table() or Array() function. Compare
to “Innermost dimension.”

Outline window A view of a model that lists the objects it contains as a hierarchical outline.

Output A Variable whose definition refers to the selected Variable. See also “Input.”

Output Arrowhead An arrowhead pointing out of a node, indicating that the node has one or more outputs
outside its module. Click on the arrowhead for a popup menu of the output Variables.

Outputs A list of the Variables or functions that depend on this Variable or function. The outputs
are determined by the arrows drawn from this Variable or function and the Variables or
functions in whose definition or check Attribute this Variable or function appears. See
also “Inputs.”

Parameters The arguments of a function.

Parametric analysis See “Behavior analysis.”

Parent diagram The diagram for the module that contains this Object.

Percentile The median is the fiftieth percentile (also written as 50%ile). More generally, there is
probability p that the value is less than or equal to the pth percentile. Compare to
“Fractile.”

Probabilistic Variable A Variable that is uncertain, and is described by a probability distribution. A probabilistic
Variable is evaluated using simulation; its result is an array of sample values indexed by
Run.

Probability bands Probability bands are a way to display the uncertainty in a value by showing percentiles
from its distribution—for example, the 5%, 25%, 50%, 75%, and 95% percentiles. On a
graph, these often appear as bands around the median (50%) line. Probability bands
are also referred to as credible intervals.

Probability density
function

A representation of a probability distribution that plots the probability density against the
value of the Variable. The probability density at each value of X is the relative probability
that X will be at or near that value. The probability density function can be displayed for
continuous, but not discrete Variables. It is a display option in the Uncertainty View
popup menu. Compare to “Probability mass function,” which is used with discrete
Variables.

 Analytica® Decision Engine User Guide 85

Chapter 1 Glossary

Probability
distribution

A probability distribution describes the relative likelihood of a Variable having different
possible values.

Probability mass
function

A probability mass function is a representation of a probability distribution for a discrete
Variable as a bar graph, showing the probability that the Variable will take each possible
value. The probability mass function can be displayed for discrete, but not continuous
Variables. It is a display option in the Uncertainty mode View menu. Compare to
“Probability density function,” which is used with continuous Variables.

Probability table A table for specifying a discrete probability distribution for a Chance Variable. In a
probability table, you specify the numerical probability for each value in the domain of
the Variable. If the Variable depends on (that is, is conditioned by) other discrete
Variables, each of these conditioning Variables gives an additional dimension to the
table, so you can specify the probability distribution conditional on the value of each
conditioning Variable.

Probtable See “Probability table.”

Probvalue The probabilistic value of a Variable, represented as a random sample of values from
the probability distribution for the Variable. The probvalue for a Variable is based on the
probvalue for the inputs to the Variable. See also “Probabilistic Variable” and compare to
“Mid value.”

Reducing function A function that operates on an array over one of its indexes. The result of a reducing
function has that dimension removed, and hence has one fewer dimension.

Remote Variable A Variable in another module, not shown in the active diagram. Typically a remote
Variable is an input or output of a node in the active diagram.

Result view A window that shows the value of a Variable as a table or graph.

Sample An array of values selected at random from the underlying probability distribution for a
quantity. Analytica represents uncertainty about a quantity as a sample, and estimates
statistics, probability density function, and other representations of a probability
distribution from the sample.

Sampling method A method used to generate a random sample from the probability distributions in a
model (for example, Monte Carlo and Latin hypercube).

Scalar A value that is a single number.

Scatter plot A graph that plots the samples of two probabilistic Variables against each other.

Self A keyword used in two different ways:

• Refers to the index of a table that is indexed by itself. Self refers to the alternative
values of the Variable defined by the table.

• Refers to the Variable itself, as a substitute for the Variable’s identifier, in a Check
Attribute expression or a Dynamic expression.

Sensitivity analysis A method to identify and compare the effects of various input Variables to a model on a
selected output. Example methods for sensitivity analysis are importance analysis and
model behavior analysis.

Skewness A measure of the asymmetry of the distribution. A positively skewed distribution has a
thicker upper tail than lower tail, while a negatively skewed distribution has a thicker
lower tail than upper tail. A normal distribution has a skewness of zero.

Slice A slice of an array is an element or subarray selected along a specified dimension. A
slice has one less dimension than the array from which it is sliced.

Standard deviation The square root of the variance. The standard deviation of an uncertainty distribution
reflects the amount of spread or dispersion in the distribution.

Chapter

86 Analytica® Decision Engine User Guide

1 Glossary

Suffix Numbers such as 10K, 123M, or 1.23u are in suffix notation. The suffix letter denotes a
power of ten; for example, K, M, and u denote 103, 106, and 10-6, respectively.

Symmetrical
distribution

A distribution, such as a normal distribution, that is symmetrical about its mean.

System function A function available in the Analytica modeling language. See also “User-defined
function.”

System Variable A Variable that is part of the Analytica modeling language, such as Samplesize or Time.

Table A two-dimensional view of an array. The array can have more than two dimensions, but
only two can be seen at one time. In the Result window, click on the Table button to
select the table view of an array-valued result.

Tail The upper and lower tails of a probability distribution contain the extreme high and low
quantity, respectively. Typically, the lower and upper tails include the lower and upper
ten percent of the probability, respectively.

Title The full name of an Analytica Object. A Variable's or module's title is displayed in its
node, in window titles, and in Object lists. It is limited to 255 characters. It can contain
any characters, including spaces and punctuation. Compare to “Identifier.”

Uncertain value See “Probvalue.”

Units The units of measurement for a Variable. Units are used to annotate tables and graphs;
they are not used in any calculation.

User-defined function A function that the user defines to augment the functions provided as part of the
Analytica modeling language.

Value See “Mid value.”

Variable An Object that has a value, which may be text, a number, or an array.

Variance A measure of the uncertainty or dispersion of a distribution. The wider the distribution,
the greater its variance.

	Copyright Notice
	Acknowledgements
	Introduction
	What is the Analytica Decision Engine?
	Using the ADE Server
	How to use this document

	Installation
	System Requirements
	Installing the Analytica Decision Engine files
	Installing from the network
	Installing from CD
	Entering a new license code
	Upgrading from an earlier version of ADE
	Uninstalling ADE

	The ADE Tutorial
	Your First ADE Application
	What’s next?
	Distinguishing Title from Identifier
	Creating an ADE Object from within Visual Basic
	COM vs. Automation Interface
	Getting Object Attributes
	Evaluating Objects and Retrieving Results
	Getting the Index Elements of a Table
	Controlling Formats of Atomic Values
	Other Ways to Access Tables
	.Modifying Objects

	Using the Analytica Decision Engine Server
	Analytica Decision Engine Server Class Architecture
	COM, Automation, and .NET
	In-Process vs. Out-of-Process
	Typescript
	Security Permissions under IIS 5

	The AdeTest Program
	Sample Application in Excel’s Visual Basic
	Sample ASP Web Application
	From a .Net project in Visual Studio 2005
	Releasing Objects in .NET
	From an ATL Project in C++

	Using the ADE Automation-interface
	From Visual Basic or VBScript
	In Visual Basic
	In VBScript
	In C#
	In J#
	In C++/CLR
	In VC++ (without .NET)

	Errors and Error Handling

	Working with Models, Modules, and Files
	Models and Modules
	ADE Objects
	Retrieving Computed Results
	Adjusting How Values Are Returned
	Using the Analytica Graphing Engine

	ADE Server Class Reference
	Class CAEngine
	Properties
	Methods
	Properties
	Methods
	Properties
	Methods
	Properties
	Methods:

	Class CARenderingStyle
	Properties

	Appendix A. Error Codes
	ADE Error Codes
	API Error Codes
	Appendix B. Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

