
Analytica®

Decision Engine
User Guide

Release 4.2

Copyright Notice
Information in this document is subject to change without notice and does not represent a commitment on the part of Lumina
Decision Systems, Inc. The software program described in this document is provided under a license agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against the law to copy the software on any
medium except as specifically allowed in the license agreement.

This document and the software program that it describes, the Analytica Decision Engine, are copyrighted 1998–2010 by
Lumina Decision Systems, Inc. All rights reserved.

The Analytica Decision Engine software contains software technology licensed from Carnegie Mellon University exclusively to
Lumina Decision Systems, Inc., and includes software proprietary to Lumina Decision Systems, Inc. Carnegie Mellon University
and Lumina Decision Systems, Inc., make no warranties whatsoever, either expressed or implied, regarding this product, includ-
ing warranties with respect to its merchantability or its fitness for any particular purpose.

The Analytica Decision Engine incorporates the PCRE library, © 1997-2008, University of Cambridge.

The Analytica Decision Engine incorporates the Reprise License Manager libraries licensed from Reprise Software, Inc.

The Analytica Decision Engine incorporates the Premium Solver SDK licensed from Frontline Systems, Inc.

Analytica is a registered trademark and Lumina Decision Systems and Intelligent Arrays are trademarks of Lumina Decision
Systems, Inc.

Acknowledgements
The ADE User Guide was written by Richard Sonnenblick, Hugh Silin, Lonnie Chrisman, Max Henrion, and Richard Morgan.

Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
Phone: (650) 212-1212
Fax: (650) 240-2230
www.lumina.com

 Analytica® Decision Engine User Guide i

Contents

About ADE . 1
What is the Analytica Decision Engine? .. 2
Using the ADE server .. 2
How to use this document ... 3

Chapter 1: Installation . 5
System requirements... 6
Installing the Analytica Decision Engine files... 6

Installing from the network... 6
Installing from CD.. 6
Entering a new license code.. 7
Upgrading from an earlier version of ADE... 7
Uninstalling ADE.. 7

Chapter 2: The Analytica Decision Engine Tutorial 9
Your first ADE application.. 10

What’s next?.. 10
Distinguishing title from identifier... 11
Creating an ADE object from within Visual Basic .. 12
COM vs. Automation interface... 12
Monitoring the Process.. 13

Opening a model with ADE... 13
Retrieving objects from the Analytica model... 13

Getting object attributes... 14
Evaluating objects and retrieving results ... 14
Getting the index elements of a table .. 15

Getting information from CATable and CAIndex .. 16
Controlling formats of atomic values .. 16
Other ways to access tables.. 16
Modifying objects... 17

Graphing with ADE ... 18
Conclusion .. 19

Chapter 3: Using the Analytica Decision Engine Server 21
ADE classes .. 22
Server class architecture ... 22

COM, Automation, and .NET... 22
In-process vs. out-of-process .. 22
Typescript .. 23
Security permissions under IIS 5... 23

The AdeTest program.. 23
Sample application in Excel’s Visual Basic.. 25
Sample ASP web application... 25
Using the ADE COM interface .. 25

From a .NET project in Visual Studio 2005 ... 25
Releasing objects in .NET ... 26
From an ATL project in C++ .. 26

Using the ADE Automation interface ... 27
From Visual Basic or VBScript .. 27

ADE typescript: command language communication ... 27
Errors and error handling... 30

Contents

ii Analytica® Decision Engine User Guide

Chapter 4: Working with Models, Modules, and Files 31
Models and modules .. 32
ADE objects ... 33
Retrieving computed results... 34
Retrieving multi-dimensional results ...35
Creating tables and setting values in tables..41
Adjusting how values are returned... 44
Terminating an in-progress computation.. 46
Instantiating CAEngine using CALicense... 47
Using the Analytica Graphing Engine .. 47

Chapter 5: ADE Server Class Reference . 49
ADE server classes.. 50
Class CAEngine ... 50

Properties...50
Methods ...51

Class CALicense...55
Properties...55
Methods ...57

Class CAObject...57
Properties...57
Methods ...59

Class CATable ..61
Properties...61
Methods ...62

Class CAIndex ..66
Properties...66
Methods ...67

Class CARenderingStyle...67
Properties...67

Appendix A: Error Codes. 72
ADE error codes... 72
API error codes .. 72

Index. 75

Introduction About ADE

This chapter provides an overview of the Analytica Decision Engine
(ADE) and summarizes the information presented in this book.

Introduction

2 Analytica® Decision Engine User Guide

Using the ADE server

What is the Analytica Decision Engine?
The Analytica Decision Engine (ADE) is a powerful COM component that helps you to access
Analytica models via a program. ADE lets you run any Analytica model on a server computer. It
provides an Application Programming Interface (API) through which other application programs
can create, read, check, parse, evaluate, modify, and save Analytica models. For example, you
can create a user interface accessible via a web browser so that users can run Analytica models
as web applications. Or you can use ADE to access your Analytica model from another applica-
tion that can supply inputs, run the model, and collect and display results.

Although you can use ADE to build and edit models with commands issued via the API, it is usu-
ally much more convenient to use Analytica Enterprise for this purpose (see the Analytica Tutorial
and Analytica User Guide for details, including the “Analytica Enterprise” chapter of the Analytica
User Guide). After you have an Analytica model, you can use ADE to build a custom user inter-
face via a web browser or other application, to interface the model with another application.

ADE is provided in two forms so that it is compatible with a wide range of applications. These
forms are an ActiveX in-process automation server, Adew.dll, and a COM local automation
server, ADE.exe. The classes, methods, and properties exposed by these servers are accessible
from any programming environment that supports the use of COM, ActiveX Automation, or .NET
interfaces. Such environments include VB, VB.NET, ASP, ASP.NET, C#, Visual C/C++, J#, VB
Script, and JavaScript. For example, you can use Visual Basic or C# to create graphical user
interfaces (GUIs) on 32-bit Microsoft Windows platforms for your Analytica models, tailored to
specific applications and specific classes of end users.

Figure shows a conceptual model of ADE. Your application makes calls to the functions exposed
by the interface classes of ADE. Those functions then return information to your application.
Server objects allow you to read, check, parse, evaluate, modify, and save Analytica models from
within your applications.

Conceptual model of
Analytica Decision

Engine

Using the ADE server
ADE provides objects of six OLE classes: CALicense, CAEngine, CAObject, CATable, CAIn-
dex, and CARenderingStyle (“CA” stands for Class Analytica). You use these classes to interact
with your Analytica model through ADE. The CAEngine class contains methods and properties to
open and close existing models, create new models, and access objects in your Analytica model.

It is important to distinguish these OLE object classes in ADE from the Analytica object classes.
Analytica classes include chance, decision, index, objective, and variable (which we refer to col-
lectively as variable classes); model, module, and library (which we refer to collectively as mod-
ule classes); functions, and attributes. You can access Analytica objects as instances of the

Your application

Analytica
Model

Analytica Decision Engine (ADE)

CAEngine CAObject CATable CAIndex CARenderi
ngStyle

 Analytica® Decision Engine User Guide 3

How to use this documentIntroduction

CAObject class. This class provides properties and methods to get and set attributes of Analytica
objects, including identifier, title, and description, as well as definition and value for variables.

You can access the value of a variable via the ResultTable property of class CATable. A CAT-
able represents an Analytica array (also known as a table) so that you can get or set its individ-
ual elements (also known as cells). Each element can be a number or a string value (termed a
text value in Analytica).

A CATable has zero or more dimensions. Zero dimensions means it is atomic (it has a single ele-
ment). Each dimension is identified by an Analytica index, represented by the CAIndex class. A
CAIndex has a name and a list of labels, numbers, or strings used to identify the rows or columns
(more generally, slices) of the array. In Analytica, you identify dimensions of an array by name,
not by order.

The CARenderingStyle class provides control over formatting of returned values as numbers or
text.

Before your code can interact with ADE, you must create a CAEngine object, from which all else
is obtained. You can create a CAEngine class directly, or you can first obtain a CALicense
object, and then use it to create a CAEngine. The CALicense class can tell you whether your
ADE license allows you to create a CAEngine, and provide more detailed information about why
the CAEngine could not be created when a failure occurs.

How to use this document
The rest of this guide includes these sections:

Chapter 1, Installation
This chapter explains the steps required to install the Analytica Decision Engine 4.2 on your Win-
dows NT 4 (>SP 6), 2000, XP, or Vista computer.

Chapter 2, The Analytica Decision Engine Tutorial
This chapter shows you how to use the Analytica Decision Engine (ADE) from within a Visual
Basic program, and steps you through building your first ADE application using Visual Basic.

Chapter 3, Using the Analytica Decision Engine Server
This chapter provides a step-by-step guide to the functionality accessible through ADE. You
should read this section to get better acquainted with the classes, and their methods and proper-
ties. By using the sample code fragments presented in this section in your code, you can begin
accessing information in your models from your Visual Basic applications immediately.

Chapter 4, Working with Models, Modules, and Files
This chapter contains examples of common operations and manipulations you might perform on
objects in your Analytica model.

Chapter 5, ADE Server Class Reference
This chapter provides reference materials on the sixobject classes in ADE and their properties
and methods, including method syntax, data types, and property access information. Refer to the
information in this section after you’ve read through “Chapter 3, “Using the Analytica Decision
Engine Server,” and have specific questions about particular methods and properties.

Introduction

4 Analytica® Decision Engine User Guide

How to use this document

Chapter 1 Installation

This chapter explains the system requirements for the Analytica Decision
Engine (ADE) and describes how to install, upgrade, and uninstall ADE.

Chapter Installation

6 Analytica® Decision Engine User Guide

1 Installing the Analytica Decision Engine files

System requirements
• Windows NT 4.0 (>SP6), 2000, XP, Windows Server 2003, and Vista
• 20 MB of hard drive space (you need more space to develop your applications)
• 256 MB of RAM
• You also need a development language environment to build your application using ADE.

This could be Visual Studio with VB.NET, C#, ASP.NET, VC++, or any other COM or .NET-
enabled development environment. You can also use ADE from Microsoft Office Visual Basic
for Applications (VBA) or from Windows Scripting Host (CScript.exe or WScript.exe),
as well as other COM-enabled or ActiveX automation-enabled packages.

You can obtain all the files for installation of ADE from the ADE CD-ROM or you can download the
installer from http://www.lumina.com/ana/support/download.htm.

The installation contains the ADE in-process automation server (Adew.dll), the ADE local auto-
mation server (ADE.exe), auxiliary files needed by ADE, this ADE User Guide, and example pro-
grams.

Installing the Analytica Decision Engine files

Installing from the network
Obtain an ADE 4.2 license code from Lumina. This is supplied to you, usually through e-mail,
when you purchase ADE. You must complete the installation within three days after the license
code is issued to you.

Download the ADE setup executable. The location of the file is provided when you receive your
license code. Save the file to disk.

Run (i.e., double click) the file you just downloaded to begin the ADE installer.

Follow the instructions. Read and agree to the license agreement, select a directory for the instal-
lation, and enter your license code when prompted.

If the installer reports that your license code is stale, go to http://lumina.com/ADE/staleLicense to
obtain a fresh code. After you obtain a fresh code, be sure to enter the license code within three
days.

Installing from CD
Insert the Analytica Decision Engine CD into your CD-ROM drive.

If the installer does not automatically start, run the setup.exe program on the CD.

During setup, you need to select a directory for installation, to read and agree to the licensing
terms, and to enter the license code supplied to you by Lumina Decision Systems when you
acquired ADE.

If the installer reports that your license code is stale, go to http://lumina.com/ADE/staleLicense
and obtain a fresh code. After you obtain a fresh code, be sure to enter the license code within
three days.

After following the steps above, the following files should exist in the directory in which you
installed ADE:

• Adew.dll
• ADE.exe
• Analytica.ini
• Analytica.i
• ODBC4Analytica.dll
• license.txt
• SolverSDK.dll

http://www.lumina.com/ana/support/download.htm
http://lumina.com/ana/staleLicense.htm
http://lumina.com/ana/staleLicense.htm

 Analytica® Decision Engine User Guide 7

Installing the Analytica Decision Engine filesChapter Installation1

• readme.txt
• solver.lic

Two ADE manuals are installed into a subdirectory called docs. These are:

• ADE User Guide.pdf (this document)
• ADE Scripting.pdf

Four example programs should also have been installed in that directory underneath the exam-
ples directory. They are as follows:

Tutorial.NET — This program is referred to by the Analytica Decision Engine Tutorial. It is rec-
ommended that you read the Analytica Decision Engine Tutorial completely before writing your
own programs that depend on ADE.

AdeTest — This program allows you to call or test the methods of ADE objects through a GUI.
You can run AdeTest.Exe (in the bin directory), or you can trace through the code in the Visual
Studio.NET 2005 debugger to observe each method being called.

asp_exam — This program shows you how to access ADE through a Microsoft ASP program.

excel_exam — This program shows you how to access ADE from any application with Visual
Basic for Applications (VBA) support, including the Microsoft Office suite of applications.

Entering a new license code
If you have previously installed an earlier version of ADE and need to enter a new (different)
license code, follow these steps:

1. Open a command prompt.
2. Select Start > Run and type Cmd.exe.

3. Use the cd command to change the directory to the same directory where you installed the
earlier version of ADE.

4. Type ADE /RegServer.

A dialog appears prompting you enter your new license code.

Upgrading from an earlier version of ADE
ADE 4.2 has been configured to install without disturbing previously installed versions of ADE.
This allows you to compare the performance and output of your application under the different
versions. However, it also means that your existing applications continue to use the previous ver-
sion until you have changed them to use ADE 4.2.

Uninstalling ADE
To uninstall ADE, select Add/Remove Programs in the Windows Control Panel. Scroll through
the list to find “Analytica Decision Engine 4.2.” Click the Remove button and proceed through the
uninstall wizard.

Chapter Installation

8 Analytica® Decision Engine User Guide

1 Installing the Analytica Decision Engine files

Chapter 2 The Analytica Decision
Engine Tutorial

This tutorial shows you how to use the Analytica Decision Engine (ADE)
from within a Visual Basic program.

Chapter The Analytica Decision Engine Tutorial

10 Analytica® Decision Engine User Guide

2

Your first ADE application
First let’s write a simple ADE application from scratch, just to be sure that everything is set up cor-
rectly. Follow these steps:

1. Bring up Visual Studio.NET.
2. Select New Project, then select the Project Type “Visual Basic Projects” and the template

“Console Application.” Select a project name, e.g., “FirstADEtry,” and an appropriate folder
location.

3. From the Project menu, select Add Reference and select the COM tab in the dialog. Find
and select Analytica Decision Engine Local Server 4.2 (Ade.exe) and click OK.

Note: If you cannot find this entry in the list of COM servers, then ADE 4.2 is not properly
installed. See “Installation” on page 5 for instruction on how to install ADE before reading
further.

4. Add to the Module1 class as follows:
Imports ADE
Module Module1

Public ADE As CAEngine
Sub Main()

Dim FileName, ModelName As String
FileName = "C:\Program Files\Lumina\Analytica 4.0"
FileName &= "\Tutorial Models\Car Cost.ana"
ADE = New CAEngine
ADE.MonitorProcess(

System.Diagnostics.Process.GetCurrentProcess().Id)
ModelName = ADE.OpenModel(FileName)
If ModelName = "" Then

Console.Write(FileName & " not found")
Else

Console.Write("Congratulations on opening ")
Console.WriteLine(ModelName)
Console.WriteLine("Press 'enter' to exit")
Console.ReadLine()

End If
End Sub

End Module

5. Now run the program. If your program prints “Congratulations on opening Carcosts” you have
just successfully written your first ADE program.

This first program did the following:

• Created a CAEngine automation object called ADE (using new CAEngine).
• Opened an Analytica model (using the OpenModel method of CAEngine).
• Displayed the name of the model (the return value of OpenModel).

We go into the details of these and other functions in the next section.

What’s next?
We will not attempt to explain all of the features of ADE in this tutorial. These are described in the
following chapters of this guide. Here, we give you the background to explore the more advanced
features of ADE on your own.

From this point, we use the example model called Txc.ana. You can find Txc.ana in the Risk
Analysis folder under the Example Models folder installed with Analytica. If you cannot find it,

 Analytica® Decision Engine User Guide 11

Chapter The Analytica Decision Engine Tutorial2

or if you opted not to install the examples when you originally installed Analytica, there is a copy in
the Examples\Tutorial.NET folder in the directory where you installed ADE.

The Txc model demonstrates risk-benefit analysis of reducing the emissions of the fictitious air
pollutant TXC. Please open the Txc model with Analytica to see how it works.

The example Visual Basic.NET program called TestTxc in your Ade Examples\Tuto-
rial.NET folder shows many aspects of ADE. This program creates an ADE automation object,
opens the Txc.ana model with this object, gets the definition of the Population Exposed
variable, evaluates the Total Cost variable, prints out the result of the Total cost variable
as a table by getting at the individual components of the table, and changes the definition of the
Population Exposed variable. It then gets the result of the Total cost variable again, to
see what effect the change of definition for Population Exposed had on the Total Cost
variable. If things are set up properly, TestTxc displays the window shown in “Text Txc window”.

The application displays the definition of the Population Exposed variable ("Normal (30M,
3M)"), and the table associated with Total Cost, based on the definition of Population
Exposed. You can change the definition of Population Exposed by selecting File > Change
Population Exposed from the main menu and seeing the effect this has on the Total Cost
table.

Text Txc window

Distinguishing title from identifier
Whenever an ADE function requires a variable, you must pass it the identifier of the variable, not
its title. This can be confusing since Analytica normally displays the titles of each variable in an
influence diagram. By default, when you first create each object, Analytica automatically creates
an identifier based on the title. It substitutes an underscore (_) for each blank or other character in
the title that is not a letter or number.

You can show the identifiers in an influence diagram by pressing Control+y (or by selecting Show
by identifier from the Object menu). For model Txc.ana, you can see that the identifier of the
variable titled Population Exposed is Pop_exp. It is important to use Pop_exp as the identi-
fier when passing this variable to ADE functions. ADE would not be able to find the variable if you
pass Population Exposed instead, and would return an error.

Chapter The Analytica Decision Engine Tutorial

12 Analytica® Decision Engine User Guide

2

Creating an ADE object from within Visual Basic
If you haven’t already, load the project called Examples\Tutorial\TestTxc.sln into Visual
Basic.NET, and view the code for the file called TestTxc.vb. The code looks like this:

Imports ADEW
. . .
Public adeEngine As CAEngine

Public Sub Main()
Dim exeDirectory, theModel As String
Dim theModelString As String
exeDirectory = VB6.GetPath
theModel = exeDirectory & "\..\" & "Txc.ana"
adeEngine = New CAEngine
...
theModelString = adeEngine.OpenModel(theModel)
...
frmMain.DefInstance.Show()

End Sub

At the very top of the file, the code declares the automation object adeEngine as a CAEngine
object. Using this object, we can access all of the public functions exposed by CAEngine (see
“ADE Server Class Reference” on page 49 for a complete listing). This line then creates the
CAEngine object.

adeEngine = New CAEngine

The adeEngine variable now holds our in-process CAEngine object.

If we want to use the local (out-of-process) server version of ADE, we can add a reference to the
project to the Analytica Decision Engine Server 4.2 COM component and change the top line
from Imports ADEW to Imports ADE.

Here is another way to obtain a new CAEngine object. This sequence does not require adding a
reference to the project.

adeEngine = CreateObject("ADEW4.2.CAEngine") ’ in-process
adeEngine = CreateObject("ADE4.2.CAEngine") ’ out-of-process

To understand the pros and cons of using an in-process server versus as out-of-process (or local)
server, and which automation server to use for different scenarios, see “In-process vs. out-of-pro-
cess” on page 22, as well as other books related to COM servers.

COM vs. Automation interface
In the example above, we used a COM interface to call ADE. In a COM interface, the object
(CAEngine in this case) is declared as CAEngine, and the compiler resolves each member func-
tion and can detect several obvious errors at compile time. In addition, Visual Studio can provide
a list of methods and parameter types as tool tips as you program, which is helpful when writing
programs that use ADE. COM calls are slightly faster than Automation calls, but the speed differ-
ence is not usually significant in applications of ADE. With ADE 4.2, we recommend using the
COM interface if your programming language supports it.

In VB Automation, you can declare an object simply as Object, rather than a more specific types
such as CAEngine, CAObject, and so on. When ADE methods are called using Automation, the
methods are resolved at run time. At compile time, the compiler does not know whether your ADE
object has a function named OpenModel. In VB, the syntax for calling a COM method or an Auto-
mation method is identical — the only difference is whether the object’s type is declared explicitly.

In VC++ and C#, the syntax for calling COM is not the same as for Automation. In these cases,
COM is much more convenient, while Automation can get rather tedious. However, some lan-
guages, including VBScript and other scripting languages, support only Automation and not COM.

 Analytica® Decision Engine User Guide 13

Chapter The Analytica Decision Engine Tutorial2

Monitoring the Process
When using the out-of-process ADE server, your own code must release the CAEngine COM
object when it terminates. When this final CAEngine usage is released, the ADE.exe process
automatically terminates. In the code seen so far, the VB language takes care releasing the object
automatically when it reaches the end of the program. However, while you are debugging your
own code, you may terminate your program prematurely to fix a bug, your program may be killed
from Task Manager, or your own code may crash, causing your program’s process to terminate
before it had a chance to release the object. Because the COM object is never released, the
ADE.exe process cannot know that it is no longer in use, and you may get zombie ADE.exe pro-
cesses lingering.

To avoid this, it is a good practice to call CAEngine::MonitorProcess(..) immediately after
obtaining a CAEngine instance. You pass the method the process id for your program’s own pro-
cess. In this fashion, ADE can learn which process is using it, and will set up a thread to detect if
your process terminates before ADE is fully released. If your program’s process does terminate,
the ADE process immediately shuts itself down, eliminating the build-up of zombie ADE pro-
cesses.

To obtain your process ID from a .NET application, use the GetCurrentProcess().Id found in the-
System.Diagnostics.Process namespace. In other languages, you can use the Windows SDK
function GetProcessId().

MonitorProcess() can only be used to monitor processes running on the same computer as
ADE’s process, so you can’t use this if running ADE through DCOM. There is no need to use this
when using the in-process ADEW server.

Opening a model with ADE
We will now open the Txc.ana model, and show the main window of our application. Use the fol-
lowing call:

theModelString = adeEngine.OpenModel(theModel)
frmMain.DefInstance.Show

The OpenModel function of CAEngine opens the model. If successful, the variable
theModelString contains the name of the model. Otherwise, it contains an empty string.
Although we haven’t done so in this example for the sake of brevity, you should check to see that
the string returned from OpenModel isn’t empty. If it is, there was an error in opening your model.
You can find out what kind of error with the ErrorCode and ErrorText properties of CAEngine
(adeEngine.ErrorCode and adeEngine.ErrorText). We will see how to use these two
properties later on. For a listing of all the error codes, see Appendix A, “Error Codes” on page 72.

Retrieving objects from the Analytica model
The next step is to retrieve objects (variables, modules, functions, etc.) from our model, so that
we can access their attributes (definition, title, class, etc.). Our example model (Txc.ana) manip-
ulates the Pop_exp and Cost objects. In particular, it modifies Pop_exp to see how this effects
the Cost object.

The PrintAttributes function in the file frmMain.frm of our TxcTest.vbproj (TxcText.sln)
project shows how to do this. This function is first called by the Form_Load function of
frmMain.frm, when the application starts, to display the Cost table. It is also called whenever
we wish to print out the current result of our Cost table. The function looks like this:

Public Sub PrintAttributes(ByRef inputIdentifier As String, ByRef
 outputIdentifier As String)

Dim inputObject, outputObject As CAbject

Chapter The Analytica Decision Engine Tutorial

14 Analytica® Decision Engine User Guide

2

Dim resultTable As CATable
Dim definitionAttrInput As String
inputObject = adeEngine.GetObjectByName(inputIdentifier)
outputObject = adeEngine.GetObjectByName(outputIdentifier)
definitionAttrInput = inputObject.GetAttribute("definition")
resultTable = outputObject.ResultTable
Call PrintResultTable(resultTable, inputIdentifier,

definitionAttrInput, outputIdentifier)
ReleaseComObject(resultTable)
ReleaseComObject(inputObject)
ReleaseComObject(outputObject)

End Sub

PrintAttributes works with the variable identifiers Pop_exp passed as parameter inputIdentifier
and Cost passed as parameter outputIdentifier. It fetches the corresponding objects using the
GetObjectByName function of CAEngine as follows:

inputObject = adeEngine.GetObjectByName(inputIdentifier)
outputObject = adeEngine.GetObjectByName(outputIdentifier)

If GetObjectByName succeeds, it returns an object of type CAObject. You then use the func-
tions of CAObject. See “SendCommand(command)” on page 54 for a listing all CAObject func-
tions. If GetObjectByName fails, the return value is Nothing. The code should check to make
sure that the result from GetObjectByName is valid. If not, use the ErrorCode and ErrorText
properties of CAEngine to get more information about the error. For example:

Set inputObject = adeEngine.GetObjectByName(inputIdentifier)
If inputObject Is Nothing Then

 MsgBox(“This error from GetObjectByName occurred: “& _
vbCrLf & adeEngine.errorCode & “:” & adeEngine.errorText)

Else
 'inputObject valid

End If

Getting object attributes
Each Analytica object has a set of attributes (analogous to properties), such as identifier, title,
description, and class. You can use the GetAttribute function to obtain an attribute from an Ana-
lytica object. For example, to get the definition of inputObject (currently, the cost):

definitionAttrInput = inputObject.GetAttribute("definition")

In the Txc.ana model, the definition of Pop_exp is "Normal (30M, 3M)" which we store in
definitionAttrInput.

Evaluating objects and retrieving results
Use Result or ResultTable methods of CAObject to get the value of a variable. ADE automati-
cally evaluates the variable first, if necessary. Use the Result method if you are sure the result will
be atomic, i.e., a single element. Otherwise, use ResultTable, which retrieves the result as an
array. An atomic result is treated as a special case of an array, one with zero dimensions. If the
value is atomic, the method AtomicValue returns its single value as a number or string.

By default, Result and ResultTable return the mid value of the result, i.e., the result of ADE eval-
uating it as deterministic. For a probabilistic value, set the ResultType property of CAObject to
the desired uncertainty view — Mean, Sample, PDF, CDF, Confidence bands, or Statistics (see
“ResultType” on page 58 for details). We get the value of outputObject like this:

resultTable = outputObject.ResultTable

 Analytica® Decision Engine User Guide 15

Chapter The Analytica Decision Engine Tutorial2

The result is a CATable object, which lets us access individual elements in a table.

If you call Result to get an array (or table) value, it returns the array as a string, listing the indexes
and elements separated by commas. It is usually easier to use ResultTable, so that you don’t
have to parse elements of the table from the string.

Getting the index elements of a table
An Analytica table has zero or more indexes. If it has one index, then it is one-dimensional; if it
has two indexes, it is two-dimensional, and so on. A zero-dimensional table holds a single atomic
(or scalar) value. You can use the NumDims function of CATable to get the number of dimen-
sions (same as number of indexes) of a table. To get at the individual indexes of a table, use
methods IndexNames and GetIndexObject of CATable.

The function PrintResultTable in frmMain.frm shows the use of these two functions.
PrintResultTable is called from PrintAttributes, and does the actual work of printing the table
that shows up in our TestTxc application (for brevity, we show only the parts of this function
related to ADE).

Public Sub PrintResultTable(ByRef resultTable As CATable,
ByRef inputIdentifier As String,
ByRef definitionAttrInput As String,
ByRef outputIdentifier As String)

Dim theIndexName, theTableName As String
Dim theIndexElement As String
Dim theTableElement
Dim theIndexObj As CAIndex
Dim numEls As Integer
Dim spaces, i As Integer
Dim lenStr As Short
Dim OutputStr As Short
Dim spaceString, underlineString As String
...
theIndexName = resultTable.IndexNames(1)
theTableName = resultTable.Name
theIndexObj = resultTable.GetIndexObject(theIndexName)
numEls = theIndexObj.IndexElements
...
For i = 1 To numEls

theIndexElement = theIndexObj.GetValueByNumber(i)
theTableElement = resultTable.GetDataByElements(i)
...

Next i
InformationPane.Text = outputString

End Sub

The lines of PrintResultTable that get an index of a table are as follows:
theIndexName = resultTable.IndexNames(1)
theIndexObj = resultTable.GetIndexObject(theIndexName)

We get the name of first index using the IndexNames function of CATable. We pass it into the
GetIndexObject function of CATable to get a CAIndex object that represents our index. This
automation object returns information about its corresponding index. If this function fails, it returns
Nothing. In that case, use ErrorCode and ErrorText functions of CAEngine to find out why.

Chapter The Analytica Decision Engine Tutorial

16 Analytica® Decision Engine User Guide

2

Getting information from CATable and CAIndex
PrintResultTable also shows how to get information from CATable and CAIndex objects. This
code gets the index and table elements of the Cost table:

numEls = theIndexObj.IndexElements
For i = 1 To numEls

theIndexElement = theIndexObj.GetValueByNumber(i)
theTableElement = resultTable.GetDataByElements(i)
...

Next i

The IndexElements property of CAIndex returns the number of elements in the (first) index. The
GetValueByNumber function of CAIndex gets individual index elements.

To get the individual table elements of the Cost table object, resultTable, we use the Get-
DataByElements function of CATable, passing in the coordinates of the element in the table.

When we retrieve an individual element of our CATable object (resultTable), we take advantage
of the fact that the table is one-dimensional. Therefore, we only need to pass GetDataByEle-
ments a single number representing the position in our table. If we were dealing with two or more
dimensions, however, we would need to pass GetDataByElements an array specifying the coor-
dinates of the element of our table to retrieve. So, if we want to retrieve the element at position
(4,3) of a two-dimensional table, we would write:

Dim W as Variant 'return element
Dim IndexPtrs(1 To 2) As Variant 'position in table

 ...
IndexPtrs(1) = 4
IndexPtrs(2) = 3
W = resultTable.GetDataByElements(IndexPtrs)

Controlling formats of atomic values
Each atomic value in a CATable can be a number, string, or one of a few other basic types (e.g,.
Null, Undefined, Reference, or Handle). These are returned as variants, a data structure under-
stood by Visual Basic, specifying the type and value. The RenderingStyle property of CATable
controls how the underlying Analytica value is mapped to the Visual Basic variant.

For example, it can return a numeric value as a number, or a string using the Analytica model’s
number format setting. If it is formatted, an option controls whether to truncate the number of dig-
its or to return it with full precision.

In the PrintResultTable subroutine, located in frmMain.vb, the rendering style is explicitly
specified:

resultTable.RenderingStyle.NumberAsText = True
resultTable.RenderingStyle.FullPrecision = False
resultTable.RenderingStyle.StringQuotes = 2

The first line specifies that numeric values should be formatted as text according to the number
format associated with the result object. For example, in the program output, we see 30.103M
instead of 30102995.6639812, which would likely be displayed if we had let Visual Basic con-
catenate the numeric value to our result string. In the event that a string-valued cell occurs in the
result, it returns with explicit double quotes around the value. See “Class CARenderingStyle” on
page 67 for additional properties available through the CARenderingStyle object.

Other ways to access tables
There are several ways to access the elements of a multi-dimensional CATable. Some might be
more convenient in certain scenarios than others.

 Analytica® Decision Engine User Guide 17

Chapter The Analytica Decision Engine Tutorial2

The first way is to use the GetDataByElements or GetDataByLabels methods of CATable,
shown in the code example above. In this case, you supply the coordinates of the cell whose
atomic value you wish to retrieve.

A second way is to use the Slice or Subscript methods of CATable to obtain a new CATable
object having one less dimension. By repeatedly reducing the dimensionality, you eventually
reach zero dimensions, in which case you have a single atomic value. At that point, the Atom-
icValue method of CATable returns this value. The AtomicValue method is the only way to
access a scalar value (since it doesn’t have a coordinate). You must use this method if you need
to generate a graph image of a slice of the full result.

A third way is to use the GetSafeArray method of CATable, to convert the multi-dimensional
array into a safe array (or into a .NET array). You can then manipulate the multi-dimensional
array directly in VB or other .NET language. Since there is no inherent ordering to Analytica
dimensions, but safe arrays and .NET arrays have an explicit ordering, you must first use the Set-
IndexOrder of CATable to specify the ordering of dimensions before calling GetSafeArray. Note
that this is not necessary if you know that your array is one-dimensional.

Modifying objects
A custom application often gets input from a user or other external source to transfer into input
variables in the Analytica model. You can do this either by setting the definition of an input vari-
able, or by using a definition table.

TestTxc shows how to modify the definition of Pop_exp, which is a model input that effects the
Cost result variable. To set the definition in the example, select File > Change Population
Exposed from the main menu. A dialog appears, as shown in .

Redefining the variable
definition

Enter a new definition into the field and click Ok. The main window displays the new value of
Cost. The OkButton_Click function in ChangeDef.frm is called when the Ok button is clicked
in the dialog. It modifies the definition of Pop_exp, and then calls the PrintAttributes function
that prints the result of Cost.

The function looks like this:
Private Sub OkButton_Click(ByVal eventSender As System.Object,

ByVal eventArgs As System.EventArgs) Handles OkButton.Click
Dim errorText As String
Dim pop_exp_Object As CAObject
Dim errorCode As Short
Dim errorString As String
newDefinition = PopExposedDef.Text
pop_exp_Object = adeEngine.GetObjectByName("pop_exp")
pop_exp_Object.SetAttribute("definition", newDefinition)
errorCode = adeEngine.errorCode

Chapter The Analytica Decision Engine Tutorial

18 Analytica® Decision Engine User Guide

2

If errorCode <> 0 Then
MsgBox("This error occurred while processing your definition:

" &
vbCrLf & vbCrLf & adeEngine.errorText)

PopExposedDef.Focus()
Else

Me.Close()
frmMain.DefInstance.PrintAttributes("Pop_exp", "Cost")

End If
ReleaseComObject(pop_exp_Object)

End Sub

This function grabs the new definition typed into the New Definition for Population Exposed
field and sets it to the Pop_exp object by using the SetAttribute function of CAObject object. It
then calls PrintAttributes, which evaluates the Cost object, and prints the new table.

To set a new definition for the pop_exp variable, we get the CAObject for Pop_exp, and set its
definition to the definition typed in by the user. This is done with the following code:

pop_exp_Object = adeEngine.GetObjectByName("pop_exp")
pop_exp_Object.SetAttribute "definition", newDefinition

Whenever you call SetAttribute, you should check the ErrorCode of the CAEngine automation
object (adeEngine), in case the definition is illegal.

Try entering a new definition such as Uniform(25M,35M) and click Ok. When the definition of
pop_exp is changed, the result for Cost gets recomputed by ADE when ResultTable is next
called for the Cost variable (when the application window is repainted).

Graphing with ADE
Using the same graphing engine used by Analytica 4.2, you can generate a chart or graph to dis-
play an array-valued or uncertain result. In ADE 4.2, you can use the GraphToFile and GraphTo-
Stream methods of CATable. The graphs are returned in several possible image formats, such as
image/bmp or image/jpeg.

The easiest way to select from the available graphing options is to open your model with Analytica
Enterprise. You can experiment with the settings for the various defaults or override selected vari-
ables to see how they look. When you’ve chosen the settings you want, save the model. ADE
then uses these settings when producing result graphs for each variable.

For higher-dimensional results, some work might be necessary to select the slice of the result that
will be plotted and the specific pivot (i.e., which dimensions appear on the X-axis versus in the
key). The Subscript or Slice methods of CATable can be used to select the particular slice to be
plotted and SetIndexOrder can be used to control the pivot. See “Class CATable” on page 61 for
details. In our Txc example, we have a one-dimensional result (Cost), and do not need to worry
about slicing or pivoting.

In the example, the GraphToStream method is used to transfer the graph image directly from
ADE to a user-interface method. GraphToStream is a bit more complicated to use than Graph-
ToFile, since GraphToFile requires little more than a file name to write the image to. To use
GraphToStream, we must set up a stream in memory, allow ADE to write to that stream, and then
reconstitute the image from that stream. Because .NET streams are not compatible with COM
streams, you need to use the StreamConnector class provided with ADE. The
GraphResult_Click routine in frmMain shows the use of GraphToStream. Select the Graph
Result menu option from the main application window, and the results appear in a graph as
shown in .

 Analytica® Decision Engine User Guide 19

Chapter The Analytica Decision Engine Tutorial2

Result graph

Conclusion
In this tutorial, we introduced several important aspects of the Analytica Decision Engine. We saw
how to create the ADE server object, open a model with ADE, get at an individual object in a
model, evaluate objects, access elements in a table, and modify objects in a model. But, ADE can
do a lot more!

We hope that you have learned enough about the basics so that you can now explore the more
advanced features on your own. We recommend that you now read the rest of this guide to learn
about what ADE can do.

Chapter The Analytica Decision Engine Tutorial

20 Analytica® Decision Engine User Guide

2

Chapter 3 Using the Analytica
Decision Engine Server

This chapter describes the Analytica Decision Engine server classes
CAEngine, CALicense, CAObject, CATable, CAIndex, and CARender-
ingStyle, and the server class architecture.

Chapter Using the Analytica Decision Engine Server

22 Analytica® Decision Engine User Guide

3 Server class architecture

ADE classes
ADE uses the following six classes:

• The CAEngine class contains methods and properties that allow you to open and close
existing models, create new models, create new Analytica objects, and access Analytica
objects contained in your model.

• The CALicense class contains methods that allow you to instantiate a CAEngine, to use a
special application license code, to examine certain restrictions on your ADE license, and to
access details about why a CAEngine failed to instantiate.

• The CAObject class contains methods and properties that allow you to set and obtain
information about the Analytica objects (such as variables or modules) that you obtain from
the CAEngine class.

• The CATable class is used to examine multi-dimensional results or to view and modify multi-
dimensional definition tables (also called edit tables).

• A CAIndex object provides access to one dimension of a multi-dimensional CATable.
• The CARenderingStyle class is new in ADE 4.0, and allows you to control or alter the format

in which ADE returns values.

Note: “CA” in these class names stands for “Class Analytica.”

The following sections describe how to access these Analytica Server objects from Visual Basic
or C#.

Server class architecture

COM, Automation, and .NET
ADE 4.2 supports two calling conventions: COM and ActiveX Automation. COM is an early-bind-
ing convention in which the methods and data types are resolved when your application code is
compiled. Automation is a late-binding convention where method calls are resolved at run time.
The COM convention is somewhat more efficient, although for most applications, the difference in
efficiency is far overshadowed by the time required to compute your model’s results.

In Visual Basic, the syntax for calling a method using COM or Automation is identical, and which
interface is used depends on how you declare your objects. In other languages, such as C# or
C++, the method of invocation can look quite different. In C# and C++, it is generally more conve-
nient to use the COM interface. VBScript (used by the Windows Scripting Host and older versions
of IIS ASP) supports only the Automation interface.

The COM interface can be used transparently from a .NET environment such as Visual Studio
2005. The .NET programming environment wraps COM objects with a .NET Interop object, which
gives ADE interfaces the appearance of being .NET interfaces.

In ADE 3.1 and before, the Automation interface was the recommended convention; however,
with the ADE 4.2 release, we now recommend the COM interface unless this is not an option in
your programming environment (such as VBScript).

In-process vs. out-of-process
ADE can be launched either in-process or out-of-process. When launched in-process (ADEW),
the Adew.dll library is loaded into your application’s process space. When launched out-of-pro-
cess (ADE), the ADE.exe server is launched and runs in a different process. Both types of server
use the same class interfaces, so the choice of which type of server to use can usually be
changed by editing a single line of code, i.e., the line that instantiates the CAEngine.

In-process servers have a slight performance advantage, but come with several restrictions. First,
the apartment threading model of ADEW must be compatible with your application’s threading
model. For example, The Microsoft IIS web server (IIS 5.0 or later) does not allow you to use an
apartment-threaded component under its default settings. Also, you are restricted to have only
one CAEngine instance (and thus, only one model) in memory at any one time.

 Analytica® Decision Engine User Guide 23

The AdeTest programChapter Using the Analytica Decision Engine Server3

Out-of-process instances of ADE run in a different process, and can be configured to run on a dif-
ferent computer from your application. Because data must be “marshaled” across process bound-
aries, it is less efficient, but it is far more flexible than the in-process server. Your program can
make use of multiple simultaneous instances of ADE, each with a separate model instance
loaded. As such, the out-of-process server is almost always preferred for web applications
because you can have one ADE instance for each session.

Typescript
In addition to the program interface, ADE has a fully functional command interface, known as the
typescript language. This language is described in the Analytica Scripting Guide. This lan-
guage allows access to all of ADE’s functionality. The API provides a more convenient, object-ori-
ented set of functions for communication with the engine from Visual Basic and C++ applications.
A calling program can use the API functions, or it can pass typescript commands directly to the
typescript interface.

The Analytica Decision
Engine architecture

Security permissions under IIS 5
When creating a web application that uses ADE from within Microsoft’s Active Server Pages
(ASP/ASPX) under Internet Information Server (IIS), you might need to configure permission set-
tings in order to instantiate and access the ADE COM component from your program.

When creating a web application or web service, you should use the out-of-process ADE server.
When your ASPX application is executed while serving a web page request, the ADE COM com-
ponent is launched and accessed from a special internal Windows account name. Even though
your programs can create and access ADE when run under your account, the same access might
not exist for ASP or ASPX programs. To configure security permissions so that your ASPX appli-
cation can use ADE, follows these steps:

1. From the Windows Control Panel, select Administrative Tools > Component Services.
2. In the DCOM Config folder, locate “Analytica Decision Engine Local Server 4.2.”
3. Select Properties from the right mouse menu, and select the Security tab.
4. Set Launch and Activation Permissions to Customize, then click Edit.
5. For the user {computer_name}\ASPNET, grant local launch and local activation

permissions.
6. Save these settings. You might need to reboot of the machine to finalize these changes.

When these permissions are not properly configured, a “security exception” occurs on the line of
your program that attempts to instantiate the CAEngine.

The AdeTest program
ADE 4.2 ships with a sample program called AdeTest.exe. The executable can be found in the
Examples/AdeTest/bin directory. You can use AdeTest to exercise the functionality of either
the in-process (Adew.dll) or the local process (ADE.exe) versions of ADE 4.2. Using AdeTest,

Application
 (Calling Program)

Analytica Engine
(adew.dll or ade.exe)

Typescript I/O

Using ‘Command’ and
‘Send’

Chapter Using the Analytica Decision Engine Server

24 Analytica® Decision Engine User Guide

3 The AdeTest program

you can send script commands to the engine, create ADE objects, and set or call virtually any of
the properties and methods of the ADE objects. If you have Visual Studio 2005 installed, you can
step through the code in the Visual Studio Debugger to observe the methods being called.

 shows the AdeTest program dialog. The left-hand pane shows a list of ADE objects that the pro-
gram is currently holding. The right side shows details of one of those objects. In the figure, there
are three CAEngine instances, each with a different model open. The first CAEngine is an in-
process (Adew.dll) instance, while the second two are out-of-process local servers (ADE.exe)
instances. The two buttons above the left pane can be used to create additional CAEngine
instances, while the Release button at the lower-right corner of the right-hand panel releases an
instance. The right-hand panel shows information about the third CAEngine instance. The cur-
rent values for the CAEngine properties ErrorCode, ErrorText, CurrentModule, OutputBuffer,
and Photo are displayed. You can execute a typescript command by typing the command into the
text box and clicking the Send button. Or you can execute any of the method of CAEngine by
selecting the method in the drop-down Method box, filling in the parameters, and clicking the
Execute Method button.

ADE Test dialog .

If you click an object in the left-hand pane, the properties for that object are displayed on the right-
hand side and you can set its properties or call its methods. Thus, you can simulate a series of
steps your program might execute through the graphical interface.

When a method returns an object, for example, as with CAEngine::GetObjectByName, the
returned object is added to the tree on the left as a child of the object that created it. After execut-
ing a method from a class other than CAEngine, it is a good idea to glance at the corresponding
CAEngine’s panel to check the ErrorCode, ErrorText, and OutputBuffer properties.

The Photo checkbox in the Analytica window is mirrored by the Photo property of the CAEngine
class. By default the Photo property is False, so typescript communications between the client
and ADE are not copied to the Analytica log window. Setting the Photo property to True copies all
subsequent typescript communications between the client and ADE. In Visual Basic, this would
be done as follows:

ADE.Photo=True
ADE.Photo=False

Turning on the Photo property significantly slows down communication with ADE.

 Analytica® Decision Engine User Guide 25

Sample application in Excel’s Visual BasicChapter Using the Analytica Decision Engine Server3

Sample application in Excel’s Visual Basic
Another example program called excel_exam is also included in the ADE package. The pro-
gram, Analytica.xls, in the excel_exam directory can be loaded into Microsoft Excel and
executed as a macro. This program demonstrates the use of Visual Basic for Applications in
Excel for ADE communications. This sample makes use of the local server version of ADE.

Sample ASP web application
The example in asp_exam demonstrates the use of ADE from an Active Server Pages web appli-
cation. This application produces a hierarchical outline of your model structure in HTML. The
readme.txt file in that directory contains instructions for configuring the web server to run the
example.

When using Microsoft’s ASP, we recommend that you use the local server. By using the local
server (ADE.exe), you can ensure that each web application, or even each session, uses a differ-
ent version of ADE.exe. Currently, there is a limitation in ADE that prevents creation of two or
more in-process server objects at the same time. Therefore, if you expect to have more than one
session of ADE active at one time (as is almost always the case in web-based applications),
always use the local server of ADE.

Using the ADE COM interface

From a .NET project in Visual Studio 2005
From a Visual Basic, C#, J#, ASP.NET, or C++/CLR project in Visual Studio 2005, you gain
access to ADE by adding a reference to it in your project. The same technique holds with slight
variations in older (pre-.NET) versions of Visual Basic and several other non-Microsoft develop-
ment environments.

In Visual Studio 2005, select Add reference or References from the Project menu, and in the
dialog that appears, select the COM tab (in VC++ you need to click the Add new reference but-
ton to get to the COM tab). In the list of components, locate and select one of the following:

Analytica Decision Engine Local Server 4.2
Analytica Decision Engine Server 4.2

For out-of-process ADE.exe servers, select the Local server. To use Adew.dll, select the (non-
local) server. It is also possible to add both references into a project (the AdeTest example does
this), although the need for this would be rare.

The ADE classes are exposed in the name space ADE or ADEW for the local server and in-pro-
cess server, respectively. For convenience, you can add a using declaration to the top of your
source files, like this:

Imports ADE ’ Visual basic
using ADE; // C#
using namespace ADE; // C++/CLR
import ADE.*; // J#

Of course, when using the in-process server you would type ADEW in place of ADE above. These
declarations allow you to refer to CAEngine, CAObject, etc., in your code, rather than
ADE.CAEngine, ADE.CAObject, etc., which makes it easy to convert from the local to the in-pro-
cess ADE server should the need arise.

Chapter Using the Analytica Decision Engine Server

26 Analytica® Decision Engine User Guide

3 Sample ASP web application

To begin using ADE, you need to obtain a first instantiation of CAEngine. This is done with one of
the following lines:

dim ADE as CAEngine = new CAEngineClass ’ VB
CAEngine ADE = new CAEngineClass(); // C#, J#
CAEngine^ pAde = gcnew CAEngineClass(); // C++/CLR

CAEngine is the name of a particular abstract interface, while ADEW.CAEngineClass and
ADE.CAEngineClass are the names of two particular object classes that implement that inter-
face. The CAEngineClass object is the only object that you can create directly; all other ADE
object instances are obtained by calling methods on existing objects.

To keep the use of the COM interface, always declare your variables with the class names CAEn-
gine, CAObject, CATable, CAIndex, and CARenderingStyle. Avoid assigning object instances
to variables declared as System.Object. This allows the compiler to perform early binding and
type checking.

Releasing objects in .NET
In pre-.NET Visual Basic and scripting languages, the programming environment automatically
ensures that COM objects are released immediately. This is not the case in VB.NET, ASP.NET, or
other .NET programs. From .NET, it is important that your program explicitly releases each COM
object when it is through with it. Setting a pointer to Null (or Nothing) is not sufficient, since the
actual release doesn’t occur until the next garbage collection.

To release a COM object from a .NET program, you need to execute code similar to the following
(C# syntax shown):

System.Runtime.InteropServices.Marshal.ReleaseComObject(ADE);
ADE = null;

Releasing objects in this fashion is especially important when you are using an out-of-process
COM server (e.g., ADE.CAEngine). In this case, the memory resources are predominantly con-
sumed in the ADE process, not in your program’s process. This can cause the ADE process to
run out of memory before your program’s process uses enough memory to cause an automatic
garbage collection to occur. From a .NET-based web application, old ADE.exe processes linger
long after a session has finished unless you explicitly release the CAEngine object.

This need to release COM objects is not unique to ADE. You must take care to release any COM
object, including those provided by Microsoft, especially when those COM objects are out-of-pro-
cess.

Because of this absence of deterministic destruction in .NET, it can be tedious to ensure that
every COM object is released. Therefore, you might want to occasionally force an explicit gar-
bage collection in your code, which releases all unused objects. This can be accomplished by
calling:

System.GC.Collect();

From an ATL project in C++
To use ADE 4.2 from a non-.NET C++ project, place the following two lines at the top of your
source file:

#import "ADE.exe"
using namespace ADE;

Or to use the in-process server, use these lines:
#import "Adew.dll"
using namespace ADEW;

You need to include the ADE home directory in your include path in the project settings, or spell
out the complete path in the #import declaration.

Next, obtain the first instance to an ADE engine using this code:

 Analytica® Decision Engine User Guide 27

Using the ADE Automation interfaceChapter Using the Analytica Decision Engine Server3

CoInitialize(NULL);
CAEnginePtr pAde(__uuidof(_CAEngine));
.
.
.
CoUninitialize();

CoInitialize() is a Windows system call that is required before the COM system can be used.

If your project spans multiple code files, use this in each of your source files (or once in
stdafx.h):

#import "ADE.exe" no_implementation

And then in one file only (e.g., stdafx.cpp), include this line:
#import "ADE.exe" implementation_only

Using the ADE Automation interface
VBScript is an example of a scripting language, usable from Windows Scripting Host
(CScript.exe or WScript.exe), pre-.NET versions of Active Server Pages, Internet Explorer,
and so on. JScript is another, and many other scripting OLE-Automation compliant scripting lan-
guages are available including Perl.

These scripting languages support ActiveX Automation scripting, but not COM interfaces. Using
the Automation interface, ADE can be used from these, often with no additional tools beyond a
simple text editor.

For ADE releases prior to 4.2, the Automation interface was the preferred convention to use. For
languages that support direct COM calls, the COM convention is now recommended in ADE 4.2.
Using Automation from C++ or C# is rather tedious and not covered here.

From Visual Basic or VBScript
To use the Automation interface, it is not necessary to add a reference to your Visual Basic proj-
ect. The syntax here is similar in other scripting languages. In Visual Basic, the code to instantiate
a CAEngine is:

dim ADE as Object
ADE = CreateObject("ADE4.CAEngine")

In VBScript, and some older versions of Visual Basic, the set keyword is required:
dim ADE
set ADE = CreateObject("ADE4.CAEngine")

For the in-process server, you send the parameter ADEW4.CAEngine to the CreateObject call.

ADE typescript: command language communication
The Command property and Send method of the CAEngine class allow you to use typescript
commands, sent as ASCII strings to the engine, and receive the resulting output as another ASCII
string. You might want to use a typescript command instead of an API method if:

• You want to perform your own parsing on ADE output (e.g., on tabular data that are output
from the Analytica Decision Engine as text strings of comma-delimited text).

• No appropriate API method exists.

You perform these steps to send a typescript command to ADE:

Chapter Using the Analytica Decision Engine Server

28 Analytica® Decision Engine User Guide

3 Using the ADE Automation interface

1. Assign a text string containing the command to the Command property of your CAEngine
object.

2. Use the Send method to send the command to the Engine. If the Send method returns True,
then the command was processed without error by ADE.

3. Store the error code and error text (if the return code is nonzero). These two pieces of
information are stored in the CAEngine properties ErrorCode and ErrorText.

4. Get the output by calling the OutputBuffer function in the CAEngine class.

Note: You can also combine the first two steps by calling CAEngine.SendCommand(cmd).

These steps are demonstrated below for various programming languages. After these simple
examples, subsequent examples are given using a Visual Basic syntax, but you should have no
problem extrapolating the syntax to your language of choice.

In Visual Basic Imports ADE

Module Module1
Sub Main()

Dim Result,ErrT As String
Dim ErrCode as Integer

dim ADE as CAEngine = new CAEngineClass
ADE.Command = "news" ’any typescript command
dim SendCode as Boolean = ADE.Send
If SendCode = False Then

ErrCode = ADE.ErrorCode
ErrT = ADE.ErrorText

Else
Result = ADE.OutputBuffer

End If
End Sub
End Module

In VBScript set ADE = CreateObject("ADE4.CAEngine")
ADE.Command = “news”
If ADE.Send = False Then

ErrCode = ADE.ErrorCode
ErrT = ADE.ErrorText

Else
Result = ADE.OutputBuffer

End if

In C# using System;
using ADE;
namespace ADE_from_Csharp
{

class Program
{

static void Main()
{

String errT, result;
int errCode;
CAEngine ADE = new CAEngineClass();
ADE.Command = "news";

 Analytica® Decision Engine User Guide 29

Using the ADE Automation interfaceChapter Using the Analytica Decision Engine Server3

if (!ADE.Send()) {
errCode = ADE.ErrorCode;
errT = ADE.ErrorText;

} else {
result = ADE.OutputBuffer;

}
}

}
}

In J# import ADE.*;
public class Program
{

public static void main()
{

String errT, result;
int errCode;
ADE.CAEngine ADE = new ADE.CAEngineClass();
ADE.set_Command("news");
boolean sendRes = ADE.Send();
if (!sendRes) {

errCode = ADE.get_ErrorCode();
errT = ADE.get_ErrorText();

} else {
result = ADE.get_OutputBuffer();

}
}

}

In C++/CLR using namespace System;
using namespace ADE;
void main()
{

String ^result, ^errT;
int errCode;
CAEngine^ ADE = gcnew CAEngineClass();
ADE->Command = "news";
if (!ADE->Send()) {

errCode = ADE->ErrorCode;
errT = ADE->ErrorText;

} else {
result = ADE->OutputBuffer;

}
}

In VC++ (without .NET) #import "ADE.exe"
using namespace ADE;
void main()
{

CoInitialize(NULL);
_bstr_t errT, result;
int errCode;
_CAEnginePtr pAde(__uuidof(_CAEngine));
pAde->Command = "news";

Chapter Using the Analytica Decision Engine Server

30 Analytica® Decision Engine User Guide

3 Errors and error handling

if (!pAde->Send()) {
errT = pAde->ErrorText;
errCode = pAde->ErrorCode;

} else {
result = pAde->OutputBuffer;

}
CoUninitialize();

}

Errors and error handling
The CAEngine properties ErrorCode and ErrorText should be queried after any operation with
ADE whenever an error is possible. Reading a value of a property from an ADE object does not
change the error code. Setting the value of a property might result in an error, usually indicating
an illegal value for that property. All method calls reset ErrorCode to zero if there is no error, or to
a value indicating the error.

To get additional information on an error, check the OutputBuffer property of CAEngine. Any
error messages that a user of Analytica would have seen appear in the output buffer.

Chapter 4 Working with Models,
Modules, and Files

This section contains examples of common operations and manipulations
you might perform on objects in your Analytica model.

Chapter Working with Models, Modules, and Files

32 Analytica® Decision Engine User Guide

4

Models and modules
Note: In VBScript, VBA, and pre-dot-NET versions of Visual Basic, the Set keyword was

necessary when assigning an object to a variable. In VB.NET, the Set keyword is no
longer necessary. The Set keyword is not used in the examples below.

• To create a new model:
If ADE.CreateModel("NewModelName") Then

’Model successfully created
End If

The CreateModel method only requires one parameter, a string containing a model name.

• To open an existing Analytica model:
Dim ModName as String
ModName = ADE.OpenModel("C:\ ... \Anamodel.ana")
If ModName="" then

’ Handle Error condition here
End if

If a model has already been opened, that model is closed automatically before the new model is
created. If the specified filename is not legal, OpenModel returns an empty string. In that case,
use the ErrorCode property of CAEngine to determine the cause of the error. Be aware that an
ErrorCode=2 warning is often returned even though the load is successful. For full details as to
what has caused an error or warning, use the OutputBuffer property of the CAEngine. You must
use the backward slash (\) for the path delimiter when using ADE. It does not support the forward
slash (/).

• To add a module from a file to the currently open model:
Dim Merge as Boolean = True
Dim ModName as String
ModName = ADE.AddModule ("C:\...\MyLibrary.ana", Merge)
if ModName="" Then

’ Handle error conditions here
End if

The FileSpec parameter should contain the path and filename of the module to be included. The
Merge parameter is a Boolean variable that determines whether preexisting objects with identical
names are overwritten. If Merge=True, then conflicting variables are overwritten. If
Merge=False and there are conflicting variables, then the call to AddModule fails.

• To read a script file:
If ADE.ReadScript("C:\..\MyScript.ana") Then

’ Script successfully read
End If

A script file can contain a list of typescript commands. Upon loading the file, the engine executes
the commands contained in the file. Errors encountered while running the script file are described
in the ErrorText property.

• To save a module (i.e., a subset of the current model) in a separate file:
If ADE.SaveModuleFile ("MyLibrary", "C:\...\MyLibrary.ana") Then

’ Save succeeded
End If

The first parameter is the module identifier, the second is the file name.

• To save the current model in a file:
If ADE.SaveModel("C:\...\MyNewModel.ana") Then

’ Save succeeded
End If

 Analytica® Decision Engine User Guide 33

ADE objectsChapter Working with Models, Modules, and Files4

• To close the current model without saving:
If ADE.CloseModel() Then … ’ Close succeeded

The CloseModel method takes no parameters.

ADE objects
• To create a new CAObject object:

Dim ObjName As String = "NewVariable"
Dim ObjClass As String = "Variable"
Dim var As CAObject = ADE.CreateObject(ObjName, ObjClass)

The object name and the class of the object to be created are passed into the CreateObject
method. Note that an identifier and not the title of the object should be used when giving the
object a name. Most object-related methods use their Identifier attribute, not their Title attribute.
ADE can create the following types of objects: variable, module, chance, constant, decision,
index, and objective. Refer to the Analytica User Guide for more information on these object
types.

• To delete an Analytica object from a model:
Dim obj as CAObjec
If ADE.DeleteObject(obj) Then … ’ Successful

• To set the active module:
ObjName = "ModuleToMakeActive"
ObjClass = "Module"
Var = ADE.CreateObject (ObjName, ObjClass)
ADE.CurrentModule = Var

ADE uses a hierarchy to order objects. When an object is created, it is created inside the current
module. By default, all objects are placed within the top-level module unless you set the Current-
Module property.

• To identify the current module:
Dim module As CAObject = ADE.CurrentModule

• To obtain a CAObject object when you know the name of an Analytica variable (this is
probably the most commonly used method in ADE):
Dim Var As CAObject = ADE.GetObjectByName ("IdentifierInModel")
If Var Is Nothing Then

’Analytica model associated with Ana
’does not contain variable with
’identifier "IdentifierInModel"

End If

The method CAObject::Get is synonymous with GetObjectByName.

• You can get all Analytica object attributes using the GetAttribute method:
UnitsOfVar = Var.GetAttribute ("Units")

Use the SetAttribute method to change an attribute of an Analytica object:
If Var.SetAttribute ("definition","A/B") Then

’Attribute Set Correctly
Else

’Attribute Not Set
End If

• To access or rename the identifier of an object, use the Name property:
Dim oldName As String = Var.Name
Var.Name = "NewIdentifer"

Chapter Working with Models, Modules, and Files

34 Analytica® Decision Engine User Guide

4 Retrieving computed results

For the full lists of object attributes, see Chapter 2 of The Analytica Scripting Guide.

Retrieving computed results
The CAObject class contains three methods that cause results to be computed and returned.
The Result method evaluates an object in your model and returns the result as a single value.
This is most useful if you know that the result is a single number or single text string. The Result-
Table method evaluates an object in your model and returns the result as a CATable object.
Methods and properties of the CATable object allow you to understand what dimensions are pres-
ent and to access individual elements (cells). The Evaluate method processes an arbitrary
expression and returns the result of parsing and evaluating that expression as a multi-dimen-
sional CATable.

When retrieving results, you have control over which computation mode is used to compute the
result. You can compute the deterministic mid point value, or the various probabilistic views:
Mean, Sample, PDF, CDF, Statistics, or Bands. Set the ResultType to indicate which result type
you desire (default is Mid).

Whether you are computing a scalar or a table, your program eventually accesses individual
atomic values such as numbers or text strings. You can use various RenderingStyle settings to
control the form in which these values are returned. For example, numeric values can be returned
as floating point numbers, formatted strings, or full-precision string depictions. Textual strings can
be returned with or without surrounding quotes.

• To evaluate and obtain a simple result (e.g., a scalar) of an object, use the Result method of
CAObject:
Dim Obj As CAObject
Dim Result
Obj = ADE.GetObjectByName ("ObjectToEvaluate")
Result = Obj.Result
If ADE.ErrorCode = 0 Then

’Result was successfully retrieved
Else

’An error occurred
End If

By default, the Result property of CAObject retrieves the midpoint result of the object. It returns
the result as a variant (or in .NET, as a System.Object). This method is convenient for retrieving
the results of objects that evaluate to a scalar.

• To evaluate and obtain the result of an object as something other than the midpoint, use the
ResultType property of CATable or CAObject:
Dim Obj As CAObject = ADE.GetObjectByName("ObjectToEvaluate")
Dim Result
Obj = ADE.GetObjectByName("ObjectToEvaluate")
Obj.ResultType = 1 ' get result as mean
Result = Obj.Result
If ADE.ErrorCode = 0 Then

’Result was successfully retrieved as a mean
Else

’An error occurred
End If

The ResultType property is used to indicate the type of result that Result should return. Possible
values are 0=Mid point, 1=Mean, 2=Probabilistic Sample, 3=PDF, 4=CDF, 5=Statistics, and
6=Probability Bands. When ResultType>=2, the result is always a table, even if the mid and
mean are scalars. See the next section for a discussion on retrieving table results.

• To retrieve a formatted result, set properties of the object’s RenderingStyle:

 Analytica® Decision Engine User Guide 35

Retrieving computed resultsChapter Working with Models, Modules, and Files4

Dim Obj As CAObject = ADE.GetObjectByName("ObjectToEvaluate")
Dim Result
Obj.RenderingStyle.NumberAsText = true
Obj.RenderingStyle.StringQuotes = 2 ’ double quotes.
Result = Obj.Result
If ADE.ErrorCode = 0 then

’ Result was successfully returned.
End If

In this example, numbers are returned as formatted text using the object’s number format prop-
erty. Strings are returned surrounded by double quotes. So, for example, the numeric value 1.2K
might be returned as the string "$1,200.00" if the number format happens to be fixed point, two
digits, with trailing zeros, thousand separators, and currency. This numeric value is returned as a
text string because the NumberAsText property is True. The string would be returned as
""$1,200.00"" with two extra double quote characters in the result string. This is controlled by
the StringQuotes property (0 = no quotes, 1 = 'single quotes', 2 = "double quotes").

Retrieving multi-dimensional results
Before describing how to obtain results from table objects (arrays with one or more dimensions),
let us briefly discuss the conceptual model of a table in Analytica.

An Analytica table has the following components:

• Indexes, each of which identifies a dimension of the table
• Values in the cells of the table
• Index labels, which identify the coordinates of each cell

The number of indexes determines the dimensionality of the table. So, for example, if a table con-
tains two indexes, then the table is two-dimensional.

The number of elements in the index determines the actual number of cells in the table. Suppose
table T is composed of two indexes, I and J. If I has five elements (AA, BB, CC, DD, and EE) and
J has three elements (A, B, and C), then T is either a 5x3 table, or a 3x5 table, depending on your
perspective.

Determining your perspective of a table is very important when working with ADE. It is up to you
to tell ADE how you wish to view the table. So, for example, in the paragraph above, if you tell
ADE to use index I first, followed by index J, then element 2,3 would be the element described by
position I=B, J=CC. If, however, you tell ADE to use index J first, followed by index I, then ele-
ment 2,3 would be described by position I=C, J=BB (note that tables in ADE are 1-based; that is,
each dimension goes from 1 to N where N is the size of the index). The method called SetIndex-
Order, described below, allows you to set the order of the indexes for your table so that you can
look at the table in any way you desire.

The ADE methods are very flexible in terms of how you refer to individual elements in the table.
You can either refer to the individual elements by their position number or by their label names.
So, for example, you can tell ADE to give you the element at position 2,1 (2 along the first index,
and 1 along the second index), or you can tell ADE to give you the element described by ‘BB’,’A’
where ‘BB’ and ‘A’ are label names in their respective indexes. The methods most commonly
used for these types of transactions (GetDataByElements and GetDataByLabels) are described
below.

As discussed in the previous section, the Result and ResultType methods are used to evaluate
and obtain the result of an object. For objects that evaluate to multi-dimensional results, however,
it is often inconvenient to use the Result method because the output would be a long comma-
delimited string in the following form:

Table Index1...IndexN [Value1, Value2...]

Chapter Working with Models, Modules, and Files

36 Analytica® Decision Engine User Guide

4 Retrieving computed results

Here, Index1 to IndexN are the indexes of the table, and Value1 to ValueN are the values in
the table (which are filled in row by row). So, if we wanted to get at a particular element in the
table after using the Result method, we would have to parse through the comma-delimited string
returned from Result to get at the element of interest. Fortunately, ADE provides an ADE object
of type CATable that provides methods to simplify the manipulation of tables.

• To evaluate and obtain the result of an object as a table use the ResultType method of
CAObject:

Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim TableResult As CATable = Obj.ResultTable
If Not (TableResult Is Nothing) Then
’Result table was successfully retrieved
Else
’An error occurred
End If

The ResultTable method of CAObject returns an automation object of type CATable.
CATable contains various methods that allow you to set, retrieve, and manipulate individual
elements in the table. More than likely, the first thing that you want to do after retrieving the
CATable object is to set the index order of the result table.

• To parse and evaluate an arbitrary expression, use the Evaluate method of CAObject.
Dim Obj As CAObject = ADE.GetObjectByName ("ContextObject")
Obj.ResultType = 2 ’ Sample
Dim TableResult As CATable = Obj.Evaluate("Normal(X,Y^2) / Z")
If ADE.ErrorCode <> 0 Then

’An error occurred
Else

’Evaluation successful
End If

To use Evaluate, you must first obtain a CAObject instance. Although the expression you
are evaluating might have nothing to with any specific object, the CAObject serves a couple
of purposes. First, the ResultType property of the object provides a place to specify the
result type that you want computed. Second, if you make use of the NumberAsText
rendering style, the number format stored with the indicated object determines how the
numbers are formatted. Often, however, the object you use is of no consequence; you can
even use the top-level model object as your context object.

Comparing the previous two examples demonstrates also that there are often two ways to
detect failure. The ErrorCode property is non-zero if an error occurred during the evaluation
of a method. And for many methods, the return value is Nothing or False if it fails.

• To set the index order of a CATable object, use the SetIndexOrder method:
Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) as String
Set Obj = ADE.GetObjectByName ("MultiDimObject")
Set TableResult = Obj.ResultTable
If Not (TableResult Is Nothing) Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"

If TableResult.SetIndexOrder(IndexOrder)Then
’Index Order set successfully

Else
’An error occurred in setting index order

 Analytica® Decision Engine User Guide 37

Retrieving computed resultsChapter Working with Models, Modules, and Files4

End If
Else

’An error occurred
End If

The code above assumes that we are manipulating a two-dimensional table. We set the
index order of this table so that Index2 is the first index, and Index1 is the second index.

In some computer languages, the first element of an array is considered position 0 (zero-
based), and in other languages it is position 1 (one-based). Analytica’s Slice function, and
the ADE methods are one-based. Older versions of Visual Basic are one-based, while
current versions of Visual Basic and most other modern programming languages are zero-
based. In the example above, the Visual Basic array was declared and used as follows:

Dim IndexOrder(2) As String
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"

In modern Visual Basic, this declares an array that ranges from position 0 to position 2 — an
array having three elements. Because the first element was not set, it contains the special
value Empty. ADE can recognize whether zero-based or one-based arrays are being passed
to it. So, depending on your preference, it would work equally well to use a zero-based
version, for example:

Dim IndexOrder(1) As String
IndexOrder (0) = "Index2"
IndexOrder (1) = "Index1"
ResultTable.SetIndexOrder(IndexOrder)

• To retrieve an element in a table by index order, use the GetDataByElements method:
Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) As String
Dim Pos (2) As Integer
Dim Element
Obj = ADE.GetObjectByName ("MultiDimObject")
TableResult = Obj.ResultTable
If Not (TableResult Is Nothing) Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
RetValue = TableResult.SetIndexOrder (IndexOrder)
If RetValue = True Then

’Index Order set successfully
Pos (1) = 2
Pos (2) = 1
Element = TableResult.GetDataByElements (Pos)
If ADE.ErrorCode = 0 Then

’element retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

’An error occurred

Chapter Working with Models, Modules, and Files

38 Analytica® Decision Engine User Guide

4 Retrieving computed results

End If

This code uses GetDataByElements to retrieve the element at position Index2=2,
Index1=1 and stores the result to Element.

• To retrieve an element in a table by index labels, use the GetDataByLabels method:
Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) As String
Dim Pos (2) As String
Dim Element
Obj = ADE.GetObjectByName (“MultiDimObject”)
TableResult = Obj.ResultTable
If Not TableResult Is Nothing Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
If TableResult.SetIndexOrder(IndexOrder) Then

’Index Order set successfully
Pos (1) = "SomeLabelInIndex2"
Pos (2) = "SomeLabelInIndex1"
Element = TableResult.GetDataByLabels (Pos)
If ADE.ErrorCode = 0 Then

’element retrieved successfully
Else

’an error occurred
End If

Else
’An error occurred in setting index order

End If
Else

’An error occurred
End If

The code above uses GetDataByLabels to retrieve the element at position
Index2="SomeLabelInIndex2", Index1="SomeLabelInIndex1" and stores the
result to Element.

• To control the format of elements obtained by GetDataByLabels, GetDataByElements,
AtomicValue, or GetSafeArray methods, set CATable’s RenderingStyle properties:

Dim TableResult as CATable = Obj.ResultTable
Dim rs As CARenderingStyle = TableResult.RenderingStyle
rs.NumberAsText = True
rs.FullPrecision = True
rs.UndefValue = ""
rs.StringQuotes = 1
Dim Element
If TableResult.SetIndexOrder(Split("Index2;Index1",";")) Then

Element = TableResult.GetDataByLabels(_
Split("SomeLabel1,SomeLabel2”,”,”))
If ADE.ErrorCode=0 Then

’ Element retrieved successfully
End If

End If

 Analytica® Decision Engine User Guide 39

Retrieving computed resultsChapter Working with Models, Modules, and Files4

• To retrieve the whole table into a Visual Basic or .NET array in one call, use the
GetSafeArray method:

Dim Obj As CAObject
Dim TableResult As CATable
Dim IndexOrder (2) as String
Dim Pos (2) As Integer
Dim TheWholeTable
Obj = ADE.GetObjectByName ("MultiDimObject")
TableResult = Obj.ResultTable
If Not (TableResult Is Nothing) Then

’Result table was successfully retrieved
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
If TableResult.SetIndexOrder(IndexOrder) Then

’Index Order set successfully
TheWholeTable = TableResult.GetSafeArray
If ADE.ErrorCode = 0 Then

’table retrieved successfully
Else

’an error occurred
End If
Else

’An error occurred in setting index order
End If
Else

’An error occurred
End If

The code above uses GetSafeArray to store the entire table in TheWholeTable. The
elements of each dimension associated with the table returned from GetSafeArray are
indexed 1 to N, where N is the length of the dimension. The lower bound of the safe array
can be changed to zero using this code prior to calling GetSafeArray:

TableResult.RenderingStyle.SafeArrayLowerBound = 0

The syntax for reading a multi-dimensional result in a .NET array in C# is worth mentioning:
Array theWholeTable = (Array) tableResult.GetSafeArray();

• To determine the number of dimensions of the table, use the NumDims property:
NumDimensions = ADE.Get("MultiDimObject").ResultTable.NumDims

• To get the index names associated with the table, use the IndexNames method:
Dim CurIndexName As String
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim TableResult As CATable = Obj.ResultTable
Dim NumDimensions As integer = TableResult.NumDims
Dim I as Integer
For I = 1 To NumDimensions

CurIndexName = TableResult.IndexNames(I)
MsgBox “Current index is “ & CurIndexName

Next I

The IndexNames method returns the index names of the table in the order specified to
SetIndexOrder. If SetIndexOrder has not been set for the CATable, then the default order
of the indexes is returned.

• To associate CAIndex objects with your table, use the GetIndexObject method of CATable:

Chapter Working with Models, Modules, and Files

40 Analytica® Decision Engine User Guide

4 Retrieving computed results

Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim NumDimensions As Integer = Res.NumDims
Dim CurIndexName As String = Res.IndexNames(NumDimensions)
Dim IndexObj As CAIndex = Res.GetIndexObject(CurIndexName)

The example above retrieved the last CAIndex object, with respect to the index order, from
the table. The CAIndex object provides properties and methods that allow you to obtain
information about the respective index.

• To get the number of elements in the index, use the IndexElements property:
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim NumDimensions As Integer = Res.NumDims
Dim CurIndexName As String = Res.IndexNames (NumDimensions)
Dim IndexObj As CAIndex = Res.GetIndexObject(CurIndexName)
Dim NumElsInIndex As Integer = IndexObj.IndexElements

• To get an index label at the specified position in the index, use the GetValueByNumber
method:

Dim I As Integer
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim NumDimensions As Integer = Res.NumDims
Dim CurIndexName As String = Res.IndexNames(NumDimensions)
Dim IndexObj As CAIndex = Res.GetIndexObject (CurIndexName)
Dim Str As String = "The elements in the index are: " & vbCrLf
For I=1 To IndexObj.IndexElements

Str = Str & IndexObj.GetValueByNumber(I) & " "
Next I
MsgBox Str

• To get at the position of an index label in an index, use the GetNumberByValue method:
Dim Obj As CAObject = ADE.GetObjectByName ("MultiDimObject")
Dim Res As CATable = Obj.ResultTable
Dim IndexName As String = Res.IndexNames(Res.NumDims)
Dim IndexObj As CAIndex = Res.GetIndexObject (IndexName)
Dim IndexPosition As Integer
IndexPosition = IndexObj.GetNumberByValue("SomeIndexLabel")
If ADE.ErrorCode = 0 Then

’the index position was successfully retrieved
Else

’an error occurred
End If

• To obtain the scalar value in a zero-dimensional array:
Dim Res As CATable = ADE.Get("SomeObject").ResultTable
Dim x As Object
If Res.NumDims = 0 Then

x = Res.AtomicValue
Else

’ Handle the array case.
End If

Sometimes, it is not possible to know in advance whether the evaluation of an object returns

 Analytica® Decision Engine User Guide 41

Retrieving computed resultsChapter Working with Models, Modules, and Files4

a multi-dimensional result or a scalar. In this case, use ResultTable. If the result happens to
be a scalar, NumDims returns zero. In this case, the so-called “array” isn’t an array at all, but
rather contains a single atomic value. It is also possible to end up with a zero-dimensional
array after calling the CATable::Slice or CATable::Subscript methods. To obtain the atomic
value, use the CATable::AtomicValue method.

• To reduce dimensionality in Slice and Subscript operations:
Dim PandL As CATable = ADE.Get("P_n_L_Statement").ResultTable
Dim CatIndex As CAIndex = PandL.GetIndexObject("Categories")
Dim Expenses As CATable = PandL.Subscript(CatIndex,"Expenses")
Dim Year As CAIndex = Expenses.GetIndexObject("Year")
Dim InitialExpense
InitialExpense = Expenses.Slice(Year,1).AtomicValue

The Slice and Subscript methods of CATable return a new CATable object with the number
of dimensions reduced by one. These methods are similar to the Slice and Subscript
functions built into Analytica. Slice returns the Nth slice (by position) along a given
dimension. Subscript returns the slice corresponding to a specified index value.

Creating tables and setting values in tables
We can apply the same methods described above to definition tables to retrieve values from
result tables. A definition table, as the name suggests, is when the definition of an object is a
Table function (also known as an edit table in Analytica).

The value of an Analytica variable (accessed via ResultTable) can be an array — not because it
was defined by a definition table, but simply because it is defined as an expression or function
that returns an array value.

When using an edit table, you need to pay careful attention to whether you are passing general
expressions into each table cell, or just literal strings. The RenderingStyle.GeneralExpression
property determines how string values that you send to the table are interpreted. By default, Gen-
eralExpression=true, which means that if you set a cell value to the string "Revenue", this
is an actual expression consisting of one variable identifier, and not a literal string. If you are pop-
ulating a definition table with literal constants (as you might an input table to your model), you
should either use RenderingStyle.GeneralExpressions=false, or remember to prepend
and append quotation marks on all literal string values.

An object defined as a definition table does not necessarily produce the same table when Result-
Table is called. After all, the definition table can be defined to be an array of identifiers. When
ResultTable is called, each identifier’s result is evaluated, and a new table is produced (which
would be different than the definition table). If identifiers evaluate to arrays, the result table might
have more dimensions than the definition table.

• To get the definition table of an object as a CATable, use the DefTable method of CAObject:
Dim Obj As CAObject
Dim TableDef As CATable
Obj = ADE.GetObjectByName (“MultiDimObject”)
TableDef = Obj.DefTable
If Not TableDef Is Nothing Then

’Definition table was successfully retrieved
Else

’An error occurred, or definition is not a table
End If

After the definition table is retrieved, we can use all the same methods described in the
section above (GetDataByElements, GetDataByLabels, SetIndexOrder, etc.) to retrieve
elements in the table and to obtain information about the indexes in the table. We can also

Chapter Working with Models, Modules, and Files

42 Analytica® Decision Engine User Guide

4 Retrieving computed results

use the same method that we used above in determining whether the result of the object was
multi-dimensional or scalar to determine whether the definition of the object is a table or scalar:

Dim Obj As Object
Dim TableDefinition As Object
Dim ScalarDefinition

Obj = ADE.GetObjectByName (“SomeObject”)
TableDefinition = Obj.DefTable
If TableDefinition Is Nothing Then

ScalarDefinition = Obj.GetAttribute (“definition”)
If ADE.ErrorCode = 0 Then

’you have a scalar definition
Else

’an error occurred
End If

Else
’you have a table definition

End If

• To set an element in a table by index order, use the SetDataByElements method of CATable:
Dim Obj As CAObject
Dim TableDef As CATable
Dim IndexOrder (2) As String
Dim Pos (2) As Integer
Dim Element
Obj = ADE.GetObjectByName (“MultiDimObject”)
TableDef = Obj.DefTable
If Not TableDef Is Nothing Then

’Definition table was successfully retrieved
IndexOrder (1) = “Index2”
IndexOrder (2) = “Index1”
If TableDef.SetIndexOrder (IndexOrder) Then

’Index Order set successfully
Pos (1) = 2
Pos (2) = 1
Element = “’ABC’” ’ Notice the extra quotes

If TableDef.SetDataByElements(Element,Pos) Then
’element successfully set
If TableDef.Update Then

’model successfully updated
Else

’error updating def in model
End If

Else
’an error occurred

End If
Else
’An error occurred in setting index order
End If

Else

 Analytica® Decision Engine User Guide 43

Retrieving computed resultsChapter Working with Models, Modules, and Files4

’An error occurred, or definition is scalar
End If

This code uses SetDataByElements to set the element at position Index2=2, Index1=1 to
Element. Note the use of the quotes around ABC. Here, since ABC is single quoted, we are
putting the string “ABC” in the table. If we instead set Element to “ABC”, then the expression
ABC would be placed in the table. In the latter case, ABC would likely be a variable. If an
identifier, ABC, did not exist in the model, then an error would have occurred while trying to
set the element in the latter case. The code then used Update to update the model with the
new definition. It is important to note that the model containing the object is not updated until
Update is called. Therefore, if Update is not called, and the result of a node that depends on
this object is later calculated, the old definition of this object is still used. The other important
thing to note is that Update functions very differently for result tables than for definition
tables. For result tables, Update retrieves the result from the specified object again.
Therefore, it overwrites any changes that were made to the object using
SetDataByElements and SetDataByLabels.

• To set an element in a table by index labels, use the SetDataByLabels method of CATable:
Dim Obj As CAObject
Dim TabDef As CATable
Dim IndexOrder (2) as String
Dim Pos (2) as String
Dim Element
Obj = ADE.GetObjectByName ("MultiDimObject")
TabDef = Obj.DefTable
If Not TabDef Is Nothing Then

’Definition table was successfully retrieved
TabDef.RenderingStyle.GeneralExpression = False
IndexOrder (1) = "Index2"
IndexOrder (2) = "Index1"
If TabDef.SetIndexOrder (IndexOrder) Then

’Index Order set successfully
Pos (1) = "SomeLabelInIndex2"
Pos (2) = "SomeLabelInIndex1"
Element = "ABC"
If TabDef.SetDataByLabels(Element,Pos) Then

’element set successfully
If TabDef.Update Then

’model successfully updated
Else

’an error occurred
End If

Else
’an error occurred

End If
Else

’An error occurred in setting index order
End If

Else
’An error occurred, or definition is scalar

End If

The code above uses SetDataByLabels to set the element at position
Index2="SomeLabelInIndex2", Index1="SomeLabelInIndex1" to Element. In this
example, the RenderingStyle.GeneralExpression property was set to False. This

Chapter Working with Models, Modules, and Files

44 Analytica® Decision Engine User Guide

4 Adjusting how values are returned

eliminates the need to explicitly include quotes around the string as was done in the previous
example for SetDataByElements.

• To set the whole table in one call, use PutSafeArray and Update:
Dim Obj As CAObject
Dim TableResult, TableDef As CATable
Dim RetValue
Dim TheWholeTable

Obj = ADE.GetObjectByName (“MultiDimObject”)
TableDef = Obj.DefTable
TableResult = Obj.ResultTable
TheWholeTable = TableResult.GetSafeArray
‘make changes to TheWholeTable
…
RetValue = TableDef.PutSafeArray (TheWholeTable)
If RetValue = True Then

’table successfully put
RetValue = TableDef.Update
If RetValue = True Then

’model successfully updated
End If

End If

• To create a whole table from scratch, use CreateDefTable:
Dim Obj As CAObject
Dim RetValue
Dim IndexLabs (2) As String

Obj = ADE.CreateObject (“MyNewTable”, “Variable”)
IndexLabs (1) = “I”
IndexLabs (2) = “J”
RetValue = Obj.CreateDefTable (IndexLabs)
If RetValue = True Then
’a table indexed by I and J has successfully
’been created. We are assuming that I and J
’already exist
Else
’an error occurred when creating the table
End If

The code above created a definition table indexed by I and J. The table is dimensioned
according to the size of I and J. All the cells in the table are initially set to 0. The user can
then call DefTable, and then use SetIndexOrder, SetDataByElements, SetDataByLabels,
PutSafeArray, and Update to put values into the table. Note that the function
CreateDefTable is very rarely used in an ADE program. After all, it is much easier to create
an object in Analytica than it is in ADE.

Adjusting how values are returned
Analytica models can contain several different data types for values in attributes or in the cells of
a table or index. Data types include floating point numbers, textual strings, the special values
Undefined and Null, references, and handles to other objects. When these data types are

 Analytica® Decision Engine User Guide 45

Adjusting how values are returnedChapter Working with Models, Modules, and Files4

returned and ultimately mapped to data types in the programming language you are using, you
might want or need to alter how the values are returned. You can do so using RenderingStyle.

The CAObject, CATable, and CAIndex objects all contain a property called RenderingStyle,
which returns a CARenderingStyle object. Properties of the rendering style can be changed to
alter how values are returned. You can also control whether safe arrays returned by Analytica are
1-based or 0-based. These settings impact CAObject::GetAttribute and CAObject::Result;
they also impact CATable::GetDataByElements, CATable::GetDataByLabels, CATable::Atom-
icValue, CATable::GetSafeArray, and CAIndex::GetValueByNumber.

When transferring values to cells in a DefTable, you can also control whether the cells are popu-
lated by literal strings and values, or by general expressions. This is controlled by the GeneralEx-
pression property of CARenderingStyle.

The DefaultRenderingStyle and DefaultDefTableRenderingStyle properties of CAEngine can
be set once just after the CAEngine has been instantiated to set the rendering style globally. For
example, if you always use zero-based arrays, this can be specified once.

• Retrieving numeric values as numbers:
obj.RenderingStyle.NumberAsText = False
Dim x As Double = obj.Result

Numeric values are returned as numbers by default, so unless NumberAsText is set to True
at some point, there is no need to specify this explicitly.

• Retrieving numeric values as formatted strings:
Dim TableResult As CATable = Obj.Evaluate("1 / 3 * 10 ^ 6")
TableResult.RenderingStyle.NumberAsText = True
TableResult.RenderingStyle.FullPrecision = False
Dim s As String = TableResult.AtomicValue

The number format associated with Obj is used to format the numeric value. A suffix style
with four digits returns “333.3K” for this example.

• Retrieving numeric values as strings with no loss of precision:
Dim TableResult As CATable = Obj.Evaluate("1 / 3 * 10 ^ 6")
TableResult.RenderingStyle.NumberAsText = True
TableResult.RenderingStyle.FullPrecision = True
Dim s As String = TableResult.AtomicValue

Analytica continues to use the number format associated with Obj, but the significant digits is
increased to avoid any loss in precision. So, suffix, exponential, fixed point, and percent
formats are not truncated. If a date, integer, or Boolean format is used, some truncation might
still occur. In the example, the return value would be 333.333333333333.

• Retrieving string results without quotation marks:
tab.RenderingStyle.StringQuotes = 0

• Retrieving string results with explicit quotation marks:
tab.RenderingStyle.StringQuotes = 1 ’ for single quotes
tab.RenderingStyle.StringQuotes = 2 ’ for double quotes

• Using a custom value for Undefined:
ADE.DefaultRenderingStyle.UndefValue = ""

By default, the special value Undefined is returned as a the special Windows variant type
Empty. There are some scripting languages that cannot deal with the Empty data type, so if
you encounter this problem, you might want to change this value.

• Setting the cells of a definition table to string values:
defTab.RenderingStyle.GeneralExpression = False
defTab.SetDataByElements("A & B",inds)

In this example, the indicated table cell is set to the string value "A & B". When this table is
evaluated, this cell’s result is a string containing the five characters "A & B".

Chapter Working with Models, Modules, and Files

46 Analytica® Decision Engine User Guide

4 Terminating an in-progress computation

• Setting the cells of a definition table to expressions:
defTab.RenderingStyle.GeneralExpression = True
defTab.SetDataByElements("A & B",inds)

Here the cell is set to the expression "A & B". When this table is evaluated, the variable
named A and the variable B is evaluated, and their results are coerced to strings and
concatenated by the & operator.

You can set table cells to literal strings with GeneralExpression=True, but you must
embed explicit quotations marks in the expression. For example:

defTab.RenderingStyle.GeneralExpression = True
defTab.SetDataByElements("’A & B’",inds)
GeneralExpression=True by default.

Terminating an in-progress computation
Methods such as CAObject.ResultTable, CAObject.Result, or CAObject.Evaluate can initiate
lengthy evaluations that could tie up your application. Some models can take many minutes, or
even several hours, to compute the result. Normally, your call to ResultTable does not return until
the result is fully computed.

You might want to provide your end user with the capability to abort the current computation, such
as when a "break" key or button is pressed. Alternatively, you might want to terminate the current
computation if your application is suddenly being terminated while a lengthly computation is still
processing, so that ADE also terminates.

To implement the ability to abort a computation, you need to have some form of multi-threading in
your application. The thread that calls ADE is occupied waiting for ADE to return, so some other
thread in your application must detect the request to terminate the computation. When this
request is detected, the second thread communicates this request to ADE through a global sys-
tem event object. You must obtain the information required to locate this global event object from
ADE before you have started the length computation. Each CAEngine instance has its own event
object with a unique global name, but the same event object applies to the same CAEngine
instance for the entire lifetime of the CAEngine instance.

To obtain the event object (using Windows Platform SDK calls):
Dim abortEventName As String
Dim abortHandle as Handle ’ This needs to be global
ade.SendCommand("GetProcessInfo(’Abort Event Object’)")
abortEventName = ade.OutputBuffer
abortHandle = OpenEvent(EVENT_MODIFY_STATE, FALSE, abortEventName)
...
’ Launch the computation
tab = obj.ResultTable

In a separate thread that detects a request to terminate the computation, the following code sends
that request to ADE (using Windows Platform SDK calls):

SetEvent(abortHandle)

Note that OpenEvent and SetEvent are Windows Platform SDK calls, not part of ADE. Also
notice that the abortHandle variable must be a global that is accessible from both threads.
However, the second thread does not require access to the ADE objects themselves. Alterna-
tively, the abortEventName can be shared and the second thread can call OpenEvent.

When the event has been flagged, ADE backs out of the current computation and returns from the
current method. A small delay might be experienced while ADE backs out of the current computa-
tion. When it has returned, the CAEngine.ErrorCode is set to 78 (“Computation aborted”). Your
application might continue using the same ADE instance as it would have prior to the call that was
aborted.

 Analytica® Decision Engine User Guide 47

Instantiating CAEngine using CALicenseChapter Working with Models, Modules, and Files4

Instantiating CAEngine using CALicense
To start using ADE, the first thing you need to do is instantate a CAEngine object. You have the
option of instantiating your CAEngine object directly, or you can instantiate a CALicense object
first and use it to instantiate your CAEngine object. When you’ve successfully obtained a CAEn-
gine object, it doesn’t matter which of these two methods you used to get it. The difference is that
if you use a CALicense object to instantiate your CAEngine, more information about why it failed
is available. In particular, if the failure is due to a license code problem, your application has an
opportunity to handle the error gracefully.

If you are creating an ADE-based application that are to be redistributed to many end users, who
would otherwise not have an ADE license, you need to make arrangements with Lumina to
license ADE for distribution with your application. This form of licensing requires your application
to provide a special type of license code to ADE, called an application license code, since your
end users usually do not have a license code of ADE on their computer. Note that a license to
redistribute ADE in this fashion is not included as part of the standard ADE license agreement,
and additional license fees apply. To use an application license code, you must use a CALicense
to instantiate your CAEngine, since your application uses the CALicense object to supply the
license code to Analytica.

The steps for instaniating a CAEngine using a CALicense are as follows, e.g.,:
’ In VB
Imports ADE
...

Dim license As CALicense = New CALicense
Dim ade As CAEngine = license.NewCAEngine
If (ade Is Nothing) Then

' substitute error handling routine here
ReportError(license.ErrorText)

End If

// In C#
Using ADE;
...

CALicense license = new CALicense();
CAEngine ade = license.NewCAEngine();
if (ade==null) {

ReportError(license.ErrorText);
}

If you have an application license code, insert a call to SetApplicationLicenseCode:
license = new CALicense
license.SetApplicationLicenseCode("1234-5678-ABCD-EFGH-IJKL")
ade = license.NewCAEngine

Using the Analytica Graphing Engine
When you have a CATable result with at least one dimension, you can obtain a graph of the result
as an image. One use of this is to embed graphs as JPEG images in a web page that uses ADE
on the back end.

Obtaining the graph of a result requires the following steps:

1. Select the appropriate graph settings, such as chart type, axis range settings, colors, fonts,
and so on. The easiest way is to open the model in Analytica Enterprise, and select the
settings you want for each variable using the Graph Setup dialog.

The graph template you create using the Graph Setup dialog is stored in the GraphSetup

Chapter Working with Models, Modules, and Files

48 Analytica® Decision Engine User Guide

4 Using the Analytica Graphing Engine

attribute of the object. You can copy the GraphSetup attribute from an existing variable if you
need to change the style template.

2. From ADE, obtain a CATable with the result to be graphed.
3. Set the GraphWidth and GraphHeight properties of the CATable object to indicate the

desired size of the graph in pixels.
4. If your result has more than two dimensions, call Slice or Subscript to reduce the

dimensionality to the desired dimensionality for the plot (usually one dimension if there is no
key or two dimensions if there is a key).

5. If you have more than one dimension, call SetIndexOrder to select the desired pivot for the
graph.

6. If you are sending the graph to an output stream, obtain a Windows IStream interface to the
stream. If you have a .NET Stream (System.io.Stream), you need to use a wrapper class
(see below).

7. Call either the GraphToStream or GraphToFile methods of CATable, depending on where
you want the graph written to. The graph can be created in different MIME types (e.g., image/
JPEG).

If you are able to view the result graph in Analytica with no slicers, then steps 4 and 5 are unnec-
essary.

• Writing a result graph to a file:
Dim res As CATable = obj.ResultTable
res.GraphWidth = 640
res.GraphHeight = 400
If res.GraphToFile("C:\Temp\Result.JPG","image/JPEG") Then

’ success
End If

• Dynamically generating a result graph from an ASP.NET web page:
<%
Response.ContentType = "image/JPEG"
Dim varName As String = Request.QueryString("var")
Dim ADE As CAEngine = Session("ADE") ’ assume existing session
Dim res As CATable = ADE.Get(varName).ResultTable
res.GraphWidth = 640
res.GraphHeight = 400
Dim stream As StreamConnector = _

 new StreamConnector(Response.OutputStream)
If res.GraphToStream(stream, "image/JPEG") Then
’ success
End If
%>

In this example code, Response, Request, and Session are Active Server Page objects.
The HTTP in the client browser would contain a tag like this:

When Microsoft introduced .NET, they did not make the base Stream class interface in .NET
compatible with the IStream interface in Windows. Because of this, it is necessary to create a
stream wrapper that implements the IStream interface around the .NET Stream before
passing it to GraphToStream. This wrapper, class StreamConnector, is included in the
example AdeTest. To use the example above, add the file StreamConnector.vb to your
project.

Chapter 5 ADE Server Class
Reference

This chapter lists the properties and methods for the six ADE server
classes CAEngine, CALicense, CAObject, CATable, CAIndex, and
CARenderingStyle.

Chapter ADE Server Class Reference

50 Analytica® Decision Engine User Guide

5 Class CAEngine

ADE server classes
The five ADE server classes are CAEngine, CAObject, CATable, CAIndex, and CARendering-
Style. They are listed below in that order, with a complete description of the properties and meth-
ods of each class.

Class CAEngine

Properties

Command
Description Sets a typescript language command for execution by the ADE Automation Server. The Send

method causes Command to be sent to ADE for execution. For the list of typescript commands,
see the Analytica Scripting Guide.

Data type string

Access read/write

Usage ADE.Command = “value obj1”

CurrentModule
Description The currently open module.

Data type CAObject

Access read/write

Usage Dim Obj As Object
Set Obj = ADE.CurrentModule

Remarks Newly created objects are placed into CurrentModule; so, you should set CurrentModule before
creating any new objects. Setting CurrentModule = Nothing means that no module is open,
so all new objects are created in the top-level Module or Model of the currently opened model.

API errors 44 – “Module could not be set”

DefaultDefTableRenderingStyle
Description The default rendering style controlling how definition table values are transferred to and from

ADE. All definition tables returned from CAObject::DefTable inherits these settings when they
are first created.

Data type CARenderingStyle

Access read/write

Usage ADE.DefaultRenderingStyle.GeneralExpression = false

DefaultRenderingStyle
Description The default rendering style controlling how result values are returned from ADE. All CAObject

instances inherit this rendering style when they are created.

Data type CARenderingStyle

Access read/write

Usage ADE.DefaultRenderingStyle.StringQuotes = 2

 Analytica® Decision Engine User Guide 51

Class CAEngineChapter ADE Server Class Reference5

ErrorCode
Description Returns the error code generated by the last communication with the Analytica Decision Engine

Server. The property ErrorCode should be checked after setting and retrieving critical CAEngine
properties and calling CAEngine methods. An ErrorCode of zero indicates the last action was
successful.

Data type integer

Access read

Usage Dim x As Integer
x = ADE.ErrorCode

ErrorText
Description Short text explanation of error from ErrorCode.

Data type string

Usage Dim x As String
x = ADE.ErrorText

Access read

Log
Description A record of all commands sent to the ADE typescript and the results received from those com-

mands, when the Photo property is true.

Data type string

Usage Dim x As String
x = ADE.Log

Access read

OutputBuffer
Description A text string buffer that contains the result of the last typescript (i.e., using the Command property

and Send method) interaction with the ADE.

Data type string

Usage Dim x As String
x = ADE.OutputBuffer

Access read

Photo
Description When Photo is True, ADE records all typescript commands and results into the Log property.

Data type boolean

Access read/write

Usage ADE.Photo = True

Remarks Setting Photo property to True slows down computation speed of the engine.

Methods

AddModule(fileName, merge)
Description Adds a module from file fileName into the CurrentModule. The merge parameter currently has

no effect and should be set to True.

Chapter ADE Server Class Reference

52 Analytica® Decision Engine User Guide

5 Class CAEngine

Parameters fileName – string

merge – Boolean

Return value ModuleName – string

Usage ModName = ADE.AddModule ("C:\MYMOD\MYMOD.ANA", True)

API errors 39 – “Module could not be found”

CloseModel
Description Closes the model.

Usage ADE.CloseModel

CreateObject(objName, objClass)
Description Creates a new Analytica object with identifier objName and class objClass in the CurrentMod-

ule and returns it as a CAObject.

Parameters objName – string

objClass – string

Return value CAObject

Usage Dim obj As CAObject
Set obj = ADE.CreateObject ("NewVar","Chance")

Remarks objClass can be one of the following values: Decision, Variable, Chance, Constant,
Index, Module, Objective, Determ, Alias, or Formnode.

API errors 40 – “Object could not be created”
41 – “Invalid name for object”
42 – “Object name already in use”
48 – “Invalid object class”

CreateModel(modelName)
Description Creates a new Analytica model with identifier modelName.

Parameters modelName – string

Return value Boolean (success or failure)

Usage boolval = ADE.CreateModel ("MyNewModel")

API errors 45 – “Model could not be created”

DeleteObject(obj)
Description Deletes CAObject obj from the current model.

Parameters obj – CAObject

Usage Dim Obj As CAObject
Set Obj = ADE.GetObjectByName(“ObjToDelete”)
ADE.DeleteObject (Obj)

API errors 41 – “Invalid object”

GetObjectByName(objName)
Get(objName)

Description Returns an object of type CAObject for an existing Analytica object with identifier objName.

Parameters objName – string

Return value CAObject

 Analytica® Decision Engine User Guide 53

Class CAEngineChapter ADE Server Class Reference5

Usage Dim Obj As CAObject
Set Obj = ADE.GetObjectByName (“MyObject”)
Set Obj = ADE.Get("MyObject") ’alternate equiv. form

API errors 41 – “Invalid name for object”

MonitorProcess(pid)
Description Sets up a monitor thread inside ADE to detect the termination of the process with the indicated

process id, and to terminate the ADE process if the indicated pid terminates first.

Parameters pid – An integer process id, which must be on the same machine as the ADE process.

Usage Dim pid as Long = System.Diagnostics.Process.GetCurrentProcess().Id
ADE.MonitorProcess(pid)

Remarks It is useful to call this immediately after obtaining a CAEngine object, so that if you stop your pro-
gram prematurely while debugging, or your own code crashes without releasing the CAEngine
object, the ADE process will terminate along with your program.

Requires release 4.2.3 or later.

API errors 85 – MonitorProcess(pid)could not open the indicated process.
See also ADE.OutputBuffer for additional elaboration for why it failed.

OpenModel
Description Reads a model from a disk file and opens it as the current model.

Parameters FileSpec – string (the filename containing the model)

Return value ModelName – string (actual model name)

Usage modName = ADE.OpenModel ("C:\TMP\MYMODEL.ANA")

Remarks Failure should be detected by checking whether the return value is "", not by checking for a zero
ErrorCode. It is possible that some errors or warnings might occur during loading, and is thus
reflected in the ErrorCode, ErrorText, and OutputBuffer properties, even though the load was
successful.

API errors 2 – Warning (but load was successfully completed)
3 – Lexical error (load was only partially successful)
4 – Statement error (load was only partially successful)
39 – “Model could not be found”

ReadScript(filePath)
Description Reads an Analytica script file and executes it.

Parameters filePath – string

Usage ADE.ReadScript ("C:\TMP\SCRIPT.MOD")

API errors 39 – “Script file could not be found”

ResetError
Description Resets the error code, error text string associated with the error code, and the output buffer to

default values. This function is normally used internally, but could be useful in other circum-
stances as well.

Usage ADE.ResetError

SaveModel(filePath)
Description Saves the model to file filePath.

Parameters filePath – string

Chapter ADE Server Class Reference

54 Analytica® Decision Engine User Guide

5 Class CAEngine

Usage ADE.SaveModel("C:\TMP\CHANGES.ANA")

API errors 46 – “Model could not be saved”
49 – “There is no model to save”

SaveModuleFile(modName, filePath)
Description Saves module with identifier modName into file filePath.

Parameters modName – string
filePath – string

Return value Boolean (success or failure)

Usage b = ADE.SaveModuleFile("Function_lib", "C:\TEMP\NEWMOD.ANA")

API errors 41 – “Invalid name for object”
46 – “Module could not be saved”

Send
Description Sends the string contained in the Command property as a command to be executed by ADE.

See the Analytica Scripting Guide for details of commands and syntax.

Return value Boolean (success or failure)

API errors 1 – “Unimplemented”
2 – “Warning”
3 – “Lexical error”
4 – “Statement error”
5 – “Expression error”
6 – “Execution error”
7 – “System error”
8 – “Fatal error”
9 – “Undefined variable error”
10 – “Aborted”

SendCommand(command)
Description Sends the string command property as a typescript command to be executed by ADE. See the

Analytica Scripting Guide for details of commands and syntax.

SendCommand is a single method that is faster way to execute a typescript command than
using the Send method. Using Send requires these two statements to execute a command.

ade.Command = "profile Va1"
b = ade.Send()

This can be done with a single SendCommand statement.
b = ade.SendCommand("profile Va1")

Return value Boolean (success or failure)

API errors 1 – “Unimplemented”
2 – “Warning”
3 – “Lexical error”
4 – “Statement error”
5 – “Expression error”
6 – “Execution error”
7 – “System error”
8 – “Fatal error”
9 – “Undefined variable error”
10 – “Aborted”

 Analytica® Decision Engine User Guide 55

Class CAEngineChapter ADE Server Class Reference5

Class CALicense
A CALicense object can be obtained directly, for example:

license = new CALicense;

Or:
license = CreateObject("CALicense")

The CALicense provides a method for instantiating a CAEngine, and provides details about why
such an instantiation failed, which would otherwise not be available if you instantiate the CAEn-
gine directly. It also provides some information about limitations in your license to use ADE.

A CALicense instance can be obtained even if your ADE license code is invalid, expired, etc.
This makes it possible for your application to say “failed because”.

Properties

AvailableLicenseInstances
Description Number of additional ADE instances that can still be instantiated using the current license,

beyond those that are already running.

Data type integer

Access read

Usage nAvail = license.AvailableLicenseInstances

Remarks Your license to use ADE might or might not limit the number of instances of ADE that can be
simultaneously active on the same computer. For licenses that do impose a limit, this property
how many additional ADE instances (equivalent to the number of CAEngine instances) can be
created on this computer within the limit imposed by the license.

CanUseOptimizer
Description Indicates whether your ADE license allows your models to make use of the Optimizer. If you don’t

have this ability, then models that use LpDefine, QpDefine or NlpDefine functions cannot per-
form those optimizations within ADE. This flag makes it possible to detect that limitation before
actually starting your application.

Data type boolean

Access read

Usage if (license.CanUseOptimizer){ ... }

ErrorCode
Description Status code (reason for failure) from the previous method call. In particular, after calling the

CALicense.NewCAEngine method, this provides information about the cause of the failure.

Descriptive text for any error code can be obtained using the ErrorCode property. Some codes
that could encountered (this is not comprehensive) include:

71 – “The maximum number of CAEngine instances allowed are already in use”

72 – “Invalid license code”

73 – “Stale license code”

74 – “Expired license code”

75 – “No ADE license code is present”

76 – “Not an application license code” (from SetApplicationLicenseCode method)

Data type integer

Chapter ADE Server Class Reference

56 Analytica® Decision Engine User Guide

5 Class CAEngine

Access read

Usage errCode = license.ErrorCode

ErrorText
Description Status text describing the reason for a failure in the previous method call. In particular, after call-

ing the CALicense.NewCAEngine method, this provides information about the cause of the fail-
ure.

Data type string

Access read

Usage errDescription = license.ErrorText

MaxLicenseInstances
Description Total number of ADE instances allowed on current license, including any currently running.

Data type integer

Access read

Usage nAvail = license.MaxLicenseInstances

Remarks Your license to use ADE might or might not limit the number of instances of ADE that can be
simultaneously active on the same computer. For licenses that do impose a limit, this property
provides access to what that number is (which will be greater than 0). If you have no limit, this is
zero.

RlmHostId
Description The Reprise License Manager host id (used for license activation and validation) for the computer

running the ADE process.

Data type string

Access read

Usage hostId = License.RlmHostId

Remarks Requires build 4.2.3 or later.

RlmPath
Description The path used by the Reprise License Manager when searching for a valid license.

Data type string

Access read

Usage path = License.RlmPath

Remarks Requires build 4.2.3 or later.

RlmUserId
Description The Reprise License Manager user id for the computer running the ADE process.

Data type string

Access read

Usage userId = License.RlmUserId

Remarks Requires build 4.2.3 or later.

 Analytica® Decision Engine User Guide 57

Class CAEngineChapter ADE Server Class Reference5

Methods

NewCAEngine
Description Attempts to create an instance of CAEngine. If this is not possible, perhaps due to a limitation in

your ADE license, the ErrorCode and ErrorText properties are set to indicate the reason for the
failure.

Parameters none

Return value CAEngine, or Null upon failure

Usage ade = license.NewCAEngine

API errors See description for ErrorCode property.

SetApplicationLicenseCode
Description Specifies an ADE license code that is to be used for the instantiation of a CAEngine when CALi-

cense.CAEngine is called. When this is used, a valid ADE license code does not need to be
stored in the system registry, and ADE runs according to the licensed features of the specified
license code, which might be different from the license code used when ADE was installed (if
any). This only accepts “ADE application license codes.” The license code you use when you
install ADE is not an application license code. Application license codes are obtained through
special arrangement with Lumina for applications that have been licensed through Lumina for
redistribution.

Parameters licenseCode – string

Return value CAEngine, or Null upon failure

Usage license.NewCAEngine("ABCD-1234-EFGH-I5J6-KLMN-7890")

API errors See description for ErrorCode property.

Class CAObject

Properties

ClassType
Description Contains the type of the Analytica object.

Data type string

Access read/write

Usage classType = obj.ClassType

Remarks ADE currently supports the following types of Analytica objects: decision, chance, constant,
index, module, and variable.

DefinitionType
Description Provides quick information about how a variable is defined.

Data type integer

Access read

Return value -1 = Definition not parsed (e.g., no definition)
0 = General expression
1 = Edit table
2 = Prob Table

Chapter ADE Server Class Reference

58 Analytica® Decision Engine User Guide

5 Class CAEngine

3 = Determ Table
4 = Sub-Table
5 = List
6 = List of Labels
7 = Choice

Usage defType = obj.DefinitionType

MethodEvaluationTime
Description A maximum time limit for evaluations, in milliseconds. If exceeded in any given call, the compu-

tation aborts. This can cause calculations by the methods Result, ResultTable, or Evaluate to
terminate before the computation is complete.

Data type integer

Access read/write

Usage obj.MethodEvaluationTime = 30000 /*ms*/
tab = obj.ResultTable
if (ade.ErrorCode == 77) { /*timeout occurred*/ }

Name
Description Contains the name given to the Analytica object.

Data type string

Access read/write

Usage obj.Name = "NewName"

API errors 41 – “Invalid name for object”

RenderingStyle
Description Contains a CARenderingStyle object that controls how data is returned from Analytica. This

property is inherited from the DefaultRenderingStyle property of CAEngine when the object is
first instantiated. Its settings control how data is returned from CAObject::Result and CAOb-
ject::GetAttribute. Also, the settings are inherited by any CATable created from the object by the
Evaluate or ResultTable methods.

Data type CARenderingStyle

Access read/write

Usage obj.RenderingStyle.StringQuotes = 0

ResultType
Description Specifies the treatment of uncertainty in the value obtained using the Result or ResultTable

properties:

0 – Mid value (default)
1 – Mean
2 – Sample
3 – PDF
4 – CDF
5 – Statistics
6 – Confidence Bands

Data type short

Access read/write

Usage CAObject.ResultType = 1

 Analytica® Decision Engine User Guide 59

Class CAEngineChapter ADE Server Class Reference5

Methods

CreateDefTable(indexList)
Description Creates an input table object in the definition attribute of the specified Analytica object with

dimension specified by the indexList. The IndexList parameter must contain an array of identifi-
ers of existing index variables (identical in form to the IndexNames method of class CATable).
The number of indexes in indexList determines the number of dimensions of the table. One
index can be Self, meaning that one of the dimensions are indexed by the Indexvals attribute of
this variable. should be one of the entries in the array. Initially, the input table object’s array is filled
with null elements, which can be changed using the SetDataByElements and SetDataByLabels
methods of the class CATable.

Parameters indexList – array of strings

Return value Boolean (success or failure)

Usage Var.CreateDefTable (IndexList)

API errors 25 – “Subscripts cannot be accessed”
26 – “Lower bound of subscript array inaccessible”
27 – “Upper bound of subscript array inaccessible”
28 – “Must specify at least one element in table”
32 – “Index object not found”

DefTable
Description Gives object of class CATable containing the input table for an Analytica variable, or Nothing if the

variable was not defined as an input table.

Data type CATable

Access read/write

Usage Dim tab As CATable
Set tab = obj.DefTable

API errors 34 – “Definition table not found”

Evaluate(expr)
Description Parses and evaluates an Analytica expression expr.

Parameters expr – string

Return value CATable

Usage dim tab As CATable = _
obj.Evaluate("Sum(Revenue,Division)")

API errors 35 – “Attribute could not be retrieved”

GetAttribute(attribName)
Description Gets the value of attribute attribName of the object.

Parameters attribName – string

Return value variant

Usage X = obj.GetAttribute("definition")

API errors 35 – “Attribute could not be retrieved”

PictureToFile(fileName, mimeType)
Description Causes ADE to retrieve CAObject object’s picture, if any, and save it to file fileName, in the for-

mat specified by mimeType.

Chapter ADE Server Class Reference

60 Analytica® Decision Engine User Guide

5 Class CAEngine

Return value Boolean (success)

Parameters fileName – string
mimeType – string (usually "image/jpeg", "image/bmp", "image/tiff", or
"image/png")

Usage obj = ade.Get("Pi1");
bSuccess = obj.PictureToFile(@"C:\Temp\myPict.jpg","image/jpeg")

PictureToStream(stream, mimeType)
Description Causes ADE to retrieve CAObject object’s picture, if any, and send it to the stream specified by

stream, in the format specified by mimeType.

Return value Boolean (success)

Parameters stream – string
MimeType – string (usually "image/jpeg", "image/bmp", "image/tiff", or "image/
png")

Usage dim outStream as MyStreamWrapper = _
new MyStreamWrapper(Response.OutputStream)

bSuccess = obj.PictureToStream(outStream,"image/jpeg")

Result
Description Gives the result value of the object as a single value (not a table). ADE first evaluates the value if

it has not already been evaluated. If the value is an array, it returns it as a string of comma-delim-
ited elements.

Data type variant

Access read

Usage Dim x
X = obj.Result

API errors 37 – “Could not retrieve result”

ResultTable
Description Gives the value of the object as a CATable, with zero or more dimensions, or Nothing if the

object cannot be evaluated. ADE first evaluates the variable if necessary.

Data type CATable

Access read

Usage Dim res As CATable
Set res = obj.ResultTable

API errors 38 – “Could not get result table”

SetAttribute(attribName, value)
Description Sets the attribute attribName of the object to value. It returns true if successful or false if not.

Parameters attribName – string
value – Variant

Return value Boolean

Usage bool = obj.SetAttribute ("definition","A/B")

API errors 36 – “Attribute could not be set”

 Analytica® Decision Engine User Guide 61

Class CAEngineChapter ADE Server Class Reference5

Class CATable

Properties

GraphHeight
Description Controls the height of the graph image returned by GraphToStream or GraphToFile.

Data type integer (number of pixels)

Access read/write

Usage tab.GraphHeight = NumDims

GraphWidth
Description Controls the width of the graph image returned by GraphToStream or GraphToFile.

Data type integer (number of pixels)

Access read/write

Usage x = tab.TableType

NumDims
Description The number of dimensions of the table (zero if it is a scalar with no dimensions).

Data type short

Access read

Usage x = tab.NumDims

RenderingStyle
Description Contains a CARenderingStyle object that controls how atomic values are interpreted when

transferred to and from table cells. Definition tables inherit this property from the DefaultDefT-
ableRenderingStyle property of CAEngine. Result table inherits this property from the CAOb-
ject that created the table.

Data type CARenderingStyle

Access read/write

Usage tab.Renderingstyle.NumberAsText = true

ResultType
Description Contains the type of result that was computed, and controls the type of result computed if the

table is updated. Possible value are the same as for CAObject::ResultTable.

Data type short

Access read/write

Usage x = tab.ResultType

TableType
Description This property holds the type of the table ("D" for a definition table, and "V" for a result table)

Data type string

Access read

Usage x = tab.TableType

Chapter ADE Server Class Reference

62 Analytica® Decision Engine User Guide

5 Class CAEngine

Methods

AtomicValue
Description Retrieves the scalar value from a zero-dimensional CATable object. A zero-dimensional table

results when a result is not an array, or when you call Slice or Subscript on a one-dimensional
array.

Return value variant

Parameters none

Usage x = tab.AtomicValue

GetDataByLabels(indexLabels)
Description Retrieves the value of an input table cell according to indexLabels, which specify the label for

each index of the table in order.

Return value variant

Parameters Values of indexes (Variant); the number of elements in Variant must be equal to NumDims.

Usage IndexLabs (1) = 3
IndexLabs (2) = "green"
W = Var.DefTable.GetDataByLabels (IndexLabs)

Or
IndexLabs (1) = 3
IndexLabs (2) = "green"
W = Var.ResultTable.GetDataByLabels (IndexLabs)

If the table has only one dimension, the parameter need not be an array:
W = Var.ResultTable.GetDataByLabels("green")

API errors 24 – “Subscripts must be an array of variants”
25 – “Subscripts cannot be accessed”
26 – “Lower bound of subscript array inaccessible”
27 – “Upper bound of subscript array inaccessible”
28 – “Must specify at least one element in table”
30 – “Position does not exist”

GetDataByElements
Description Retrieves the value of input table cell according to index values.

Return value variant

Parameters Index values (variant), number of elements in the variant must be equal to NumDims.

Usage IndexPtrs (1) = 1
IndexPtrs (2) = 2
W = Var.DefTable.GetDataByElements (IndexPtrs)

Or
IndexPtrs (1) = 1
IndexPtrs (2) = 2
W = Var.ResultTable.GetDataByElements (IndexPtrs)

If the table is one-dimensional, then an array is not needed:
W = Var.ResultTable.GetDataByElements (1)

API errors 24 – “Subscripts must be an array of variants”
25 – “Subscripts cannot be accessed”
26 – “Lower bound of subscript array inaccessible”

 Analytica® Decision Engine User Guide 63

Class CAEngineChapter ADE Server Class Reference5

27 – “Upper bound of subscript array inaccessible”
28 – “Must specify at least one element in table”
29 – “Position specified is out of bounds”
30 – “Position does not exist’
31 – “Illegal Position Specified In Table”

GetIndexObject
Description Retrieves an index object by its name

Return value CAIndex

Parameters index name: string

Usage dim AI as CAIndex
Set AI = AObj.GetIndexObject (IndexName)

Remarks If ObjName is not valid the method returns Nothing.

API errors 32 – “Index object not found”

GetSafeArray
Description Retrieves the CATable as a safe array (i.e., a Visual Basic array). The ordering of the dimensions

is controlled by the SetIndexOrder method. The elements of each dimension are indexed 1 to N,
where N is the size of each index.

Return value Array

Usage dim Var As CAObject
Dim curTable
curTable = Var.GetSafeArray

GraphToFile(fileName, mimeType)
Description Creates a graph image of the data contained in the CATable object formatted using the mime-

Type and writes it to file fileName. It uses attribute settings for the CAObject from which the
CATable was obtained to control graph settings, uncertainty settings, and number format. The
GraphWidth and GraphHeight properties control the size of the graph image in pixels.

Return value Boolean (success)

Parameters fileName – string
mimeType – string (usually "image/jpeg", "image/bmp", "image/tiff", or
"image/png")

Usage tab.GraphWidth = 350
tab.GraphHeight = 200
b = tab.GraphToFile("C:\data\trends.jpg","image/bmp")

GraphToStream(stream, mimeType)
Description Creates a graph image of the data contained in the CATable object formatted using the mime-

Type, and writes it to stream, a Windows IStream.

Note: Note: An IStream is not interchangeable with a .NET System.Io.Stream object (including
a Response.OutputStream object in ASP.NET). A wrapper class is necessary for
converting between these. The size of the image in pixels is controlled by the
GraphWidth and GraphHeight properties of the table.

Return value Boolean (success)

Parameters stream – string
MimeType – string (usually "image/jpeg", "image/bmp", "image/tiff", or
"image/png")

Usage tab.GraphWidth = 350

Chapter ADE Server Class Reference

64 Analytica® Decision Engine User Guide

5 Class CAEngine

tab.GraphHeight = 200
dim outStream as MyStreamWrapper = _
new MyStreamWrapper(Response.OutputStream)
b = tab.GraphToStream(outStream, "image/jpeg")

IndexName(IndexNumber)
Description Takes one parameter, IndexNumber, and returns the name of the corresponding index for CAT-

able.

Return value string

Parameters IndexNumber – short int

Usage dim string as indexTitle = Var.DefTable.IndexName (1)

IndexNames
Description Returns the names of the indexes of the table as an array. Use indexes in this order when using

the GetDataBy and SetDataBy methods to get or set elements of the table. You can change the
order with the SetIndexOrder method.

Data type string array with dimension from 1 to object’s NumDims property

Access read

Usage Dim names(k) of String = Var.DefTable.IndexNames (k)

PutSafeArray
Description Replaces the current table represented by this object with another table of the same dimensions.

Return Value CATable

Parameters The table (Visual Basic array) that replaces the current table.

Usage Dim Var As Object
Dim TheArray
TheArray = Var.GetSafeArray
Var.PutSafeArray (TheArray)

API errors 24 – “Subscripts must be an array of variants”
50 – “Safe-array has incorrect size or number of dimensions”

SetDataByLabels
Description Sets the value of an input table cell according to its index labels.

Return value Boolean (success or failure)

Parameters Cell value (Variant), values of indexes (Variant), number of elements in this variant must be equal
to NumDims.

Usage IndexVals (1) = 3
IndexVals (2) = ‘green’
RetVal= Var.DefTable.SetDataByLabels (W, IndexVals)

If the table is one-dimensional, then an array is not needed:
W = Var.DefTable.SetDataByLabels (W, "green")

API errors 24 – “Subscripts must be an array of variants”
25 – “Subscripts cannot be accessed”
26 – “Lower bound of subscript array inaccessible”
27 – “Upper bound of subscript array inaccessible”
28 – “Must specify at least one element in table”
30 – “Position does not exist”
31 – “Illegal position specified in table”

 Analytica® Decision Engine User Guide 65

Class CAEngineChapter ADE Server Class Reference5

SetDataByElements(value, indexVals)
Description Sets the input table cell specified by indexVals to value. indexVals must contain a label for each

index of the table, so the number of labels must equal NumDims. If the table has just one dimen-
sion, indexVals can be the label for that one index rather than an array of labels.

Return value Boolean (success or failure)

Parameters value: Variant, indexVals: Variant

Usage IndexPtrs (1) = 1
IndexPtrs (2) = 2
RetVal = Var.DefTable.SetDataByElements (W, IndexPtrs)

If the table is one-dimensional, then an array is not needed:
W = Var.DefTable.SetDataByElements (W, 1)

API errors 24 – “Subscripts must be an array of variants”
25 – “Subscripts cannot be accessed”
26 – “Lower bound of subscript array inaccessible”
27 – “Upper bound of subscript array inaccessible”
28 – “Must specify at least one element in table”
29 – “Position specified is out of bounds”
31 – “Illegal position specified in table”
51 – “Element position is non-numeric”

SetIndexOrder(indexNames)
Description Sets the order of the indexes in the table to the order of indexNames, which must contain the

names of only and all the indexes of the table, assuming it has more than one index. This order
determines the order used by SetDataByElements, SetDataByLabels, GetDataByElements,
and GetDataByLabels to access a cell in a table.

Return value Boolean (success or failure)

Parameters indexNames – array of strings

Usage IndexVals (1) = ‘X’
IndexVals (2) = ‘Y’
RetVal = Var.DefTable.SetIndexOrder (W, IndexVals)

API errors 24 – “Subscripts must be an array of variants”
26 – “Lower bound of subscript array inaccessible”
27 – “Upper bound of subscript array inaccessible”
28 – “Must specify at least one element in array”
52 – “Specified name is not an index of the array”

Slice(indexObj, n)
Description Returns the nth slice of the table over index indexObj. The result is a new CATable object with

one fewer dimensions than the table to which it is applied. When used on a DefTable, the sliced
DefTable acts as a SubTable, changing elements in the slice of the original table.

Parameters indexObj: CAObject
n : Integer – the 1-based slice position along index

Return value CATable

Usage dim In1 as CAIndex = tab.GetIndexObject("In1")
dim subTab as CATable = tab.Slice(In1, 1)

Subscript(indexObj, label)
Description Returns a slice of a table for which index indexObj is equal to label. It returns a new CATable

object with one fewer dimension than the original table. When used on a DefTable, the sliced
DefTable acts as a SubTable, changing elements in the slice of the original table.

Chapter ADE Server Class Reference

66 Analytica® Decision Engine User Guide

5 Class CAEngine

Parameters indexObj: CAObject
label : variant – the label in index

Return value CATable

Usage dim In1 as CAIndex = tab.GetIndexObject("In1")
dim subTab as CATable = tab.Slice(In1, "SomeLabel")

Update
Description For definition tables: Updates an existing input table in the definition attribute of an Analytica

object. Use this method after setting one or more SetDataBy methods to direct the API to send
the new table data to the Analytica Decision Engine Server.

For result tables: Retrieves an updated version of the result table from the Analytica Decision
Engine Server.

Return value Boolean (success or failure)

Usage Var.DefTable.Update

Remarks Use the CreateDefTable method to replace the current definition attribute of an Analytica object
with an input table.

Class CAIndex

Properties

IndexElements
Description Returns the number of elements in the index.

Data type integer

Access read

Usage x = theIndex.IndexElements

Name
Description Contains the name given to the Analytica index.

Data type string

Access read/write

Usage theName = theIndex.Name

API errors 41 – “Invalid name for object”

RenderingStyle
Description Contains a CARenderingStyle object that controls how values are returned from GetValue-

ByNumber.

Data type CARenderingStyle

Access read/write

Usage theIndex.RenderingStyle.StringQuotes = 1

 Analytica® Decision Engine User Guide 67

Class CAEngineChapter ADE Server Class Reference5

Methods

GetNumberByValue
Description Returns the position of an index label in an index.

Parameters Value – variant

Return value integer

Usage n = theIndex.GetNumberByValue (Value)

API errors 22 – “Value not found in index”

GetValueByNumber
Description Returns the index label at the specified position in the index.

Parameters Number – integer

Return value variant

Usage W = theIndex.GetValueByNumber (Number)

API errors 23 – “Illegal position in index”

Class CARenderingStyle

Properties

GeneralExpression
Description Determines how string values are interpreted when they are written to a definition table. When

True (default), a string is taken to be an expression, which must parse to be a valid expression.
When False, a string value is stored as a literal string. For example, the value “Pi” would be inter-
preted as the identifier Pi when GeneralExpression is true, and would thus evaluate to
3.141592654, but the same string would be interpreted as a literal character string when Gener-
alExpression is false, and would evaluate to two-character textual string.

Data type Boolean

Access read/write

Usage deftab.RenderingStyle.GeneralExpression = false

FullPrecision
Description When True, a numeric value is rendered as text (see the NumberAsText property below) and has

the maximum number digits needed to represent the number at full precision (usually 16). If
False, a loss of precision does not occur.

Data type Boolean

Access read/write

Usage dim res As CATable = obj.Evaluate("sqrt(2)")
res.RenderingStyle.NumberAsText = true
res.RenderingStyle.FullPrecision = false
dim s As String = res.AtomicValue ’ returns "1.414"
res.renderingStyle.FullPrecision = true
s = res.AtomicValue ’ returns "1.4142135623731"

Chapter ADE Server Class Reference

68 Analytica® Decision Engine User Guide

5 Class CAEngine

NumberAsText
Description Controls whether numeric results or numeric table cell definitions are returned as floating point

numbers or as formatted strings. When true, the number format for the current object controls
how the number is formatted as a string (except that the FullPrecision property can override the
number of digits in the number format).

Data type Boolean

Access read/write

Usage deftab.RenderingStyle.NumberAsText = true

ReferenceAsText
Description Some Analytica expressions can evaluate structured value (such as a tree) containing refer-

ences. This property controls whether references are returned as CATable objects (containing the
de-referenced value), or rendered as text. By default, they are returned as CATable objects. Note
that in Analytica, a reference is treated as atomic, even though its dereferenced value can be
array valued.

Data type Boolean

Access read/write

Usage obj.SetAttribute("definition", "\(A^t)")
def res as CATable = obj.Evaluate("\(A^t)")
res.RenderingStyle.ReferencesAsText = false
def derefdVal as CATable = res.AtomicValue

SafeArrayLowerBound
Description The lower bound for safe arrays returned by CATable::GetSafeArray. Default is 1.

Data type Integer

Access read/write

Usage ADE.DefaultRenderingStyle.SafeArrayLowerBound = 0

StringQuotes
Description Controls whether textual values are returned with explicit quotation marks surrounding a string,

according to its value:
0 = no quotes around strings, e.g., 0.25
1 = single quotes, e.g., '0.25'
2 = double quotes, e.g., "0.25"

When NumberAsText is true, with no quotation marks around string values, the numeric value
0.25 and the string containing the four characters "0.25" would be indistinguishable. If you want
to be able to distinguish them, set the value of StringQuotes to 1 or 2.

Data type Short:
0 = no quotes
1 = 'single quotes'
2 = "double quotes"

Access read/write

Usage deftab.RenderingStyle.StringQuotes = 2

UndefValue
Description This property specifies the value returned when the Analytica value is Undefined. By default,

ADE returns the special value variant Empty — for example, when GetAttribute is applied to an
attribute that was not set. Some scripting languages cannot manipulate the value Empty. In this
case, you can set UndefValue to something more convenient, such as Null or the empty string.

 Analytica® Decision Engine User Guide 69

Class CAEngineChapter ADE Server Class Reference5

Data type Variant

Access read/write

Usage ADE.DefaultRenderingStyle.UndefValue = Null

HandleFormat
Description Controls how a Handle (a pointer to an Analytica object) is returned. A Handle can occur in a def-

inition cell of a table if that definition consists of a single identifier. There are also some rare Ana-
lytica expressions that can produce a Handle in a result. If HandleFormat = 0, it returns the
identifier of the Analytica object as a string; if 1, a CAObject for the Analytica object; or if 2, the
title of the object as a string.

Data type Short:
0 = identifier
1 = CAObject
2 = title

Access read/write

Usage deftab.RenderingStyle.HandleFormat = 1

Chapter ADE Server Class Reference

70 Analytica® Decision Engine User Guide

5 Class CAEngine

Appendix A

Appendix

72 Analytica® Decision Engine User Guide

A API error codes

Error Codes
This appendix provides you with the complete list of ADE error messages.

ADE error codes

API error codes

Error Code Meaning/Error Text

0 “OK”

1 “Unimplemented”

2 “Warning”

3 “Lexical error”

4 “Statement error”

5 “Expression error”

6 “Execution error”

7 “System error”

8 “Fatal error”

9 “Undefined variable error”

10 “Aborted”

11 “Analytica expired — contact Lumina”

12 Insufficient Memory

13 Parameter Error

14 not currently used

15 not currently used

16 not currently used

17 not currently used

18 not currently used

19 not currently used

20 “Analytica is uninitialized”

Error Code Meaning/Error Text

7 “Bad parameter passed”

22 “Value not found in index”

23 “Illegal position in index”

24 “Subscripts must be an array of variants”

25 “Subscript cannot be accessed”

26 “Lower bound of subscript array inaccessible”

 Analytica® Decision Engine User Guide 73

API error codesAppendix A

27 “Upper bound of subscript array inaccessible”

28 “Must specify at least one element in table”

29 “Position specified is out of bounds”

30 “Position does not exist”

31 “Illegal position specified in table”

32 “Index object not found”

33 “Illegal index number specified”

34 “Definition table not found”

35 “Attribute could not be retrieved”

36 “Attribute could not be set”

37 “Could not retrieve result”

38 “Could not get result table”

39 “Module/Model/Script could not be found”

40 “Object could not be created”

41 “Invalid name for object”

42 “Object name already in use”

43 “Current module could not be retrieved”

44 “Module could not be set”

45 “Model could not be created”

46 “Model/Module could not be saved”

47 “Illegal command”

48 “Invalid object class”

49 “There is no model in memory to save”

50 “Safe-array has incorrect size or number of dimensions”

51 “Element position is non-numeric”

52 “Specified name is not an index of the array”

53 “Insufficient memory”

54 “Unrecognized MIME type”

55 “Value is not atomic”

56 “Operation allowed only on a result CATable, not on a definition table”

57 “First param is not an IStream*”

58 “Subscript array contains the wrong number of elements There should be one
element for each dimension”

59 “CATable is not associated with an object, so it cannot be updated”

60 “A result table is read-only”

Error Code Meaning/Error Text

Appendix

74 Analytica® Decision Engine User Guide

A API error codes

61 “Expression could not be parsed”

62 “Error evaluating expression”

63 “GraphWidth and GraphHeight must be positive”

64 “Value is atomic (not an array) To get value, use AtomicValue method”

65 “Index value could not be computed”

66 “No picture stored with object”

67 “Internal picture format not supported”

68 “Filename too long”

69 “Result cannot be graphed”

70 “Definition is Hidden”

71 The maximum number of CAEngine instances allowed by license are already in
use

72 Invalid license code

73 Stale license code

74 Expired license code

75 No ADE license code is present. Re-install ADE

76 Not an application license code

77 Method Evaluation Time Limit exceeded

78 Computation aborted

79 License is not valid for this computer

80 Linked module not found

81 License is not valid for 64-bit edition

82 Must include at least one index to CreateDefTable

83 Operation allowed only on a definition table, not a result table

84 The license for ADE is not valid for this computer

85 CAEngine::MonitorProcess(pid) could not open the indicated process id

Error Code Meaning/Error Text

 Analytica® Decision Engine User Guide 75

Index
Symbols
_ (underscore) 11

A
AddModule method 51
ADE.exe

launching 22
vs. Adew.dll 2

AdeTest program
about 7
dialog 24
working with 23

Adew.dll
loading 22
vs. ADE.exe 2

application license codes 57
applications, writing 10
arbitrary expression, parsing 36
architecture, server class 22
arrays

about 3
first element 37
obtaining scalar value 40
retrieving tables 39

asp_exam program
about 7
using 25

ASP.NET pages, generating graphs 48
atomic values

about 3
controlling formats 16
rendering 34
tables 15

AtomicValue method 62
attributes

about 14
getting 2, 14, 33
setting 2

Automation interface
C++ and C# 27
using 27
Visual Basic and VBScript 27
vs. COM interface 12, 22

AvailableLicenseInstances property 55

C
C#

calling conventions 22
sending typescript commands 28

C++
calling conventions 22
sending typescript commands 29
using the COM interface 26

CAEngine class
about 2, 22
instantiating 26, 27
methods 51–54
obtaining objects 12

Index

76 Analytica® Decision Engine User Guide

opening models 13
properties 50

CAIndex class
about 3, 22
getting information 16
methods 67
properties 66

CALicense class
about 55
methods 57
properties 55

CALicense object, obtaining 3
calling conventions 22
CanUseOptimizer property 55
CAObject class

about 2, 22
computing results 34
creating objects 33
methods 59–60
obtaining objects 33
properties 57

CARenderingStyle class
about 3, 22
properties 67–69

CATable class
about 3, 22
atomic value formats 16
dimensions 3
getting information 16
methods 62–66
properties 61

CD, installation files 6
cells

about 3
literal strings 46
populating 45
setting values 45

Class Analytica 2
classes

CAEngine, see CAEngine class
CAIndex, see CAIndex class
CAObject, see CAObject class
CARenderingStyle, see CARenderingStyle class
CATable, see CATable class
five main 2, 22
module 2
OLE object 2
reference 49

ClassType property 57
CloseModel method 52
COM interface

projects in C++ 26
releasing in .NET 26
using 25
vs. Automation interface 12, 22

Command property 50
CreateDefTable method 59
CreateModel method 52
CreateObject method 52

CurrentModule property 50

D
data types 44
DefaultDefTableRenderingStyle property 50
DefaultRenderingStyle property 50
definition tables

about 41
creating from scratch 44
getting 41
setting cell values 45
using 41

DefinitionType property 57
DefTable method 59
DeleteObject method 52
deterministic values

computing 34
obtaining 14

dimensions
determining for tables 15
reducing 41

E
edit tables

see also definition tables
ordering elements 42
using 41

elements
controlling format 38
first in arrays 37
getting the number in an index 40
retrieving 16
retrieving by index labels 38
retrieving by index order 37
setting by index labels 43
setting by index order 42

ErrorCode property 51
ErrorCode property, of CALicense 55
errors

codes and descriptions 72–74
handling 30
script files 32

ErrorText property 51
ErrorText property, of CALicense 56
Evaluate method 59
excel_exam program

about 7
using 25

expressions, parsing 36

F
FullPrecision property 67

G
GeneralExpression property 67
Get method 52
GetAttribute method 59
GetDataByElements method 62
GetDataByLabels method 62

Index

 Analytica® Decision Engine User Guide 77

GetIndexObject method 63
GetNumberByValue method 67
GetObjectByName method 52
GetSafeArray method 63
GetValueByNumber method 67
GraphHeight property 61
graphs

dimensions 48, 61
generating from ASP.NET pages 48
obtaining 47
selecting options 18
working with 18, 47
writing to files 48

GraphToFile method 63
GraphToStream method 63
GraphWidth property 61

H
HandleFormat property 69

I
identifiers

accessing 33
distinguishing from titles 11
renaming 33
showing in influence diagrams 11

index labels
getting at a specified position 40
getting position 40
setting elements by 43

IndexElements property 66
indexes

getting from tables 15
getting information 16
names associated with tables 39
number of elements 40
number of table cells 35
setting order 36
table dimensionality 35

IndexName method 64
IndexNames method 64
influence diagrams, showing identifiers 11
in-process vs.out-of-process servers 22
installation

example programs 7
from CD 6
from network 6
list of ADE files 6
manuals 7
obtaining files 6
prerequisites 6
removing ADE 7
system requirements 6
upgrades from earlier versions 7

J
J#, sending typescript commands 29
JScript, using the Automation interface 27

L
language requirements 6
licenses

entering new code 7
obtaining 6
refreshing stale code 6

local servers 12
Log property 51

M
MaxLicenseInstances property 56
MethodEvaluationTime property 58
mid values

computing 34
obtaining 14

models
building and editing 2
closing 32
closing without saving 33
graphing options 18
opening 13, 32
retrieving objects 13
saving in files 32

modules
adding to models 32
classes 2
identifying current 33
saving 32
setting as active 33

MonitorProcess method 13, 53
multi-dimensional results 35

N
Name property

CAIndex class 66
CAObject class 58

.NET
releasing objects 26
retrieving tables 39
stream wrappers 48
using the COM interface 25

NewCAEngine method 57
NumberAsText property 68
numbers 3
NumDims property 61

O
objects

accessing or renaming identifiers 33
associating with tables 39
creating CAObject 33
creating in Visual Basic 12
defined as definition tables 41
deleting from models 33
evaluating 14
getting attributes 14, 33
getting information 16
modifying 17
obtaining 33

Index

78 Analytica® Decision Engine User Guide

releasing in .NET 26
retrieving from models 13
working with 33

OLE classes 2
OpenModel method 53
operating system requirements 6
out-of-process servers

using 12
vs. in-process 22
web applications 23

OutputBuffer property 51

P
permissions

configuring 23
security exceptions 23
under IIS 5 23

Photo property 51
PictureToFile method 59
PictureToStream method 60
pivots, about 18
probabilistic values

computing 34
obtaining 14

projects, adding references 25
properties, about 14
PutSafeArray method 64

R
RAM requirements 6
ReadScript method 53
ReferenceAsText property 68
references, adding to projects 25
rendering style 45
RenderingStyle property

CAIndex class 66
CAObject class 58
CATable class 61

requirements, system 6
ResetError method 53
result graphs, see graphs
Result method 60
results

as tables 36
atomic 14
computation mode 34
formatted 34
multi-dimensional 35
objects other than midpoints 34
retrieving 14, 34
setting type 34
simple 34

ResultTable method 60
ResultType property

CAObject class 58
CATable class 61

RlmHostId property 56
RlmPath property 56
RlmUserId 56

S
SafeArrayLowerBound property 68
SaveModel method 53
SaveModuleFile method 54
scalar values

computing 34
in tables 15

script files
reading 32
typescript commands 32

security permissions 23
Send method 54
SendCommand method 54
servers

class architecture 22
comparison 2
in-process vs. out-of-process 22
local 12
out-of-process 12

SetApplicationLicenseCode method 57
SetAttribute method 60
SetDataByElements method 65
SetDataByLabels method 64
SetIndexOrder method 65
Slice method 65
slices

about 3
selecting 18

stale license code, refreshing 6
stream wrappers for .NET 48
StringQuotes property 68
strings 3
Subscript method 65
system requirements 6

T
tables

about 3
access methods 16
Associating objects 39
components 35
computing 34
conceptual model 35
creating 41
definition, see definition tables
determining features 35
dimensions 15
edit, see edit tables
getting index elements 15
getting information 16
index names 39
number of dimensions 39
retrieving elements by index labels 38
retrieving elements by index order 37
retrieving into arrays 39
setting elements by index labels 43
setting elements by index order 42
setting in one call 44
setting values 41

Index

 Analytica® Decision Engine User Guide 79

TableType property 61
TestTxc program 11
text values 3
titles, distinguishing from identifiers 11
Tutorial.NET program 7
TXC.ana model 10
typescript language

about 23
C# code 28
C++/CLR code 29
J# code 29
script files 32
sending commands to ADE 27
using 27
VBScript code 28
VC++ code 29
Visual Basic code 28

U
UndefValue property 68
underscore character 11
uninstall process 7
Update method 66
upgrades from earlier versions 7

V
values

adjusting return 44
methods of retrieving 45
mid 14
numeric 45
probabilistic 14
quotation marks 45
rendering style 45
setting in tables 41

variables
accessing values 3
classes 2
getting values 14
identifiers 11
redefining 18
titles 11

variants 16
VarTermFormat property 69
VBScript

calling conventions 22
sending typescript commands 28
using the Automation interface 27

VC++, sending typescript commands 29
Visual Basic

array positions 37
calling conventions 22
creating ADE objects 12
retrieving tables 39
sending typescript commands 28
TestTxc program 11
using the Automation interface 27

Visual Studio, adding references 25

W
Windows System Installer (WSI) 6

Index

80 Analytica® Decision Engine User Guide

	Contents
	About ADE
	Using the ADE server
	How to use this document

	Installation
	Installing the Analytica Decision Engine files
	Installing from the network
	Installing from CD
	Entering a new license code
	Upgrading from an earlier version of ADE
	Uninstalling ADE

	The Analytica Decision Engine Tutorial
	What’s next?
	Distinguishing title from identifier
	Creating an ADE object from within Visual Basic
	COM vs. Automation interface
	Monitoring the Process
	Opening a model with ADE
	Retrieving objects from the Analytica model
	Getting object attributes
	Evaluating objects and retrieving results
	Getting the index elements of a table

	Getting information from CATable and CAIndex
	Controlling formats of atomic values
	Other ways to access tables
	Modifying objects

	Graphing with ADE
	Conclusion

	Using the Analytica Decision Engine Server
	Server class architecture
	COM, Automation, and .NET
	In-process vs. out-of-process
	Typescript
	Security permissions under IIS 5

	The AdeTest program
	Sample application in Excel’s Visual Basic
	Sample ASP web application
	Using the ADE COM interface
	From a .NET project in Visual Studio 2005
	Releasing objects in .NET
	From an ATL project in C++

	Using the ADE Automation interface
	From Visual Basic or VBScript

	ADE typescript: command language communication
	Errors and error handling

	Working with Models, Modules, and Files
	ADE objects
	Retrieving computed results
	Retrieving multi-dimensional results
	Creating tables and setting values in tables
	Adjusting how values are returned
	Terminating an in-progress computation
	Instantiating CAEngine using CALicense
	Using the Analytica Graphing Engine

	ADE Server Class Reference
	Class CAEngine
	Properties
	Methods

	Class CALicense
	Properties
	Methods

	Class CAObject
	Properties
	Methods

	Class CATable
	Properties
	Methods

	Class CAIndex
	Properties
	Methods

	Class CARenderingStyle
	Properties

	Error Codes
	API error codes

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

