
Analytica
Optimizer

3.1

Analytica 3.1 for Windows
’

Copyright notice
Information in this document is subject to change without notice and does not represent a
commitment on the part of Lumina Decision Systems, Inc. The software program described
in this document is provided under a license agreement. The software may be used or copied,
and license codes transferred, only in accordance with the terms of the agreement. It is
against the law to copy the software on any medium except as specifically allowed in the
license agreement. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or information
storage and retrieval systems, for any purpose other than the licensee's personal use, without
the express written consent of Lumina Decision Systems, Inc.

This document is 1993-2005 Lumina Decision Systems, Inc. All rights reserved.

The software programs described in this document are copyrighted:
Analytica Optimizer: 1992-2005 Lumina Decision Systems, Inc., all rights reserved.
Analytica: 1982-1991 Carnegie Mellon University,
 1992-2005 Lumina Decision Systems, Inc., all rights reserved.

Analytica Optimizer incorporates Solver.dll from Frontline Systems, Inc.: Software copyright
 1991-1999 by Frontline Systems, Inc.
Portions copyright 1989 by Optimal Methods, Inc.
Portions copyright 1994 by Software Engines.

Analytica was written using MacApp: 1985-1996 Apple Computer, Inc. Analytica
incorporates Mac2Win technology, (c) 1997 Altura Software, Inc.

The Analytica software contains software technology licensed from Carnegie Mellon
University exclusively to Lumina Decision Systems, Inc., and includes software proprietary to
Lumina Decision Systems, Inc. The MacApp software is proprietary to Apple Computer, Inc.
The Mac2Win technology is technology to Altura, Inc. Both MacApp and Mac2Win are
licensed to Lumina Decision Systems only for use in combination with the Analytica program.
Neither Lumina nor its Licensors, Carnegie Mellon University, Apple Computer, Inc., and
Altura Software, Inc., make any warranties whatsoever, either express or implied, regarding
the Analytica product, including warranties with respect to its merchantability or its fitness for
any particular purpose.

Analytica is a registered trademark of Lumina Decision Systems, Inc.

Analytica 3.1 Optimizer Guide i

Contents
1: Introducing the Analytica Optimizer
What do I need to know? .. 1
What is the Analytica Optimizer? .. 1
How do I obtain the Analytica Optimizer? 2
To Activate the Optimizer for Analytica 3
To activate Analytica Optimizer for ADE 4

2: Quick Start
Who this is for ... 5
Browsing Analytica Optimizer Functions..................................... 5
A Linear Program .. 6
A Non-linear Program ... 14

3: Formulating an Optimization Problem
Continuous, integer, and mixed-integer programs 20
Choosing the type of optimization ... 20
Solving simultaneous equations.. 21

4: Linear Optimization
Defining a Linear Optimization Problem.................................... 23
Optional parameters.. 24
Obtaining the Solution... 26
Secondary Aspects to Solution ... 27
Examples .. 30
Integer & Binary Decision Variables.. 31
Controlling The Search ... 32
Array Abstraction... 35

5: Quadratic Program Optimization
Defining a Quadratic Program... 37
Solution Properties.. 38
Common Quadratic Situations .. 39
Obtaining the Solution... 40
Examples .. 40

6: Non-linear Optimization
Problem Formulation... 42
Obtaining the Solution... 43
Optional Parameters for NLP .. 43
Integer, Binary and Mixed-Integer Programs 44
The Airline Example for NLP... 45
Intelligent Arrays, array abstraction and NLP............................ 49
Solving Systems of Equations... 59

ii Analytica 3.1 Optimizer Guide

4 Contents
Other examples..60
Giving hints to help the Optimizer ..60
Controlling the Search ...63

7: Debugging a Problem Formulation
Writing and Reading From a File ...67
Diagnosing Conflicting Constraints ..67
Debugging a Non-Linear Optimization.......................................67

8: Optimization Function Reference
Problem Definition Functions ...71
Other Functions ...72

Chapter

Analytica 3.1 Optimizer Guide 1

What do I need to know?1
1: Introducing the Analytica Optimizer

This Optimizer Guide explains how to use the Analytica
Optimizer. The Quick Start chapter is a tutorial taking you
through the key steps to create some simple example Analytica
models that use linear and nonlinear optimization. The chapter
on Formulating an Optimization helps you to formulate your
model for optimizing, and to choose whether it requires linear
programming (LP), quadratic programming (QP), and non-linear
programming (NLP). The other chapters provide more details on
each of these three types of optimization and their many options.
The final chapter gives a concise reference for all the
optimization functions.

What do I need to know?
This Guide, including the Quick Start chapter, assumes you have
basic knowledge of building models and writing expressions in
Analytica. If you do not, you might first work though the Analytica
Tutorial and scan through the Analytica User Guide.

This Guide provides an introduction to the basic concepts of
optimization, including linear, quadratic, and nonlinear
programming. It is not, however, a complete textbook on
optimization. You may find it useful, especially for more
challenging applications, to consult one of the many good
textbooks on optimization.

What is the Analytica Optimizer?
The Analytica Optimizer adds to Analytica powerful functions to
find optimal decisions and to solve equations. An optimal
decision strategy may maximize value, minimize costs, or any
quantified objective. The optimization may be subject to a set of
constraints. It offers linear programming (LP), quadratic
programming (QP), and non-linear programming (NLP). LP
requires linear objective functions and linear constraints. QP
requires quadratic objective functions and linear constraints.
NLP handles general nonlinear objective and constraint
functions. All three methods handle decision variables that are
continuous, discrete (integer or Boolean), or mixed.

The Analytica Optimizer uses the Premium Solver Platform
licensed from Frontline Systems, Inc. Frontline is the world
leader in spreadsheet optimization: It developed the optimizer/
solvers in Microsoft Excel and other spreadsheets. Their

Chapter

2 Analytica 3.1 Optimizer Guide

How do I obtain the Analytica Optimizer?1
Premium Solver is the leading add-on software for spreadsheet
optimization, and incorporates state-of-the-art technologies. The
LP and QP methods handle up to 2000 decision variables and
8000 constraints. The NLP methods offer hybrid methods using
classical gradient-search and evolutionary (genetic) algorithms
for smooth and discontinuous objective functions, with up to 500
decision variables and 250 constraints.

The Analytica Optimizer performs optimization under uncertainty
to maximize expected values, minimize loss percentiles, and
other statistical functions of objectives and constraints. The LP
and QP methods fully support Analytica's Intelligent Arrays:
Thus, you can easily create arrays of optimizations conditioned
on samples from uncertain variables, for parametric analysis of
effects of key assumptions, and for each time period in a
dynamic model. The nonlinear programming (NLP) functions do
not fully support Intelligent Arrays. But, you can optimize
nonlinear objectives that aggregate over dimensions — e.g.
expected net present value to aggregate over uncertainty and
time.

The Analytica Optimizer is an add-on module for Analytica
Enterprise 3.1. After developing optimizer-based models with
Enterprise, you can deliver them to end users on the desktop
using Analytica Power Player, or via a Web-browser on a server
computer using the Analytica Decision Engine(ADE) with an
Optimizer license.

How do I obtain the Analytica Optimizer?

You can purchase a license for the Analytica Optimizer bundled
with Analytica Enterprise, ADE, or Power Player. Or you can
purchase a license for the Optimizer as an add-on module if you
already have Enterprise or ADE.

If your copy of Analytica is for release 3.0 or earlier, you will need
to upgrade it to release 3.1, because the Optimizer does not
work with earlier releases. If you have a maintenance agreement
for Analytica 3.0 (included free for 12 months from purchase),
you can upgrade it free to Release 3.1.

If you have the Professional edition of Analytica, you will need to
upgrade it to the Enterprise edition to work with the Optimizer.

For more information, visit the Lumina web site:

http://www.lumina.com

or call Lumina at 650-212-1212.

Chapter

Analytica 3.1 Optimizer Guide 3

To Activate the Optimizer for Analytica1
To Activate the Optimizer for Analytica

If you have already installed any edition of Analytica 3.1, your
installation already includes the Optimizer: There is no need to
download new software. To activate the software to use the
Optimizer, all you need to do is to enter into Analytica a new
license code with the Optimizer option. Follow these steps:

1. Start up Analytica in the usual way, e.g. via the Windows Start
menu, or by double-clicking on an Analytica model file.

2. From Analytica’s Help menu, select the Update license…
option, to show the Analytica Licensing Information dialog
box.

3. Replace the existing license code at the bottom of the dialog
box with a new code that activates the optimizer. If you have
received the new license code in an E-mail, you can copy and
paste it directly into the dialog box.

4. Click OK.

5. Exit and restart Analytica.

You can verify successful activation of Analytica Optimizer by
examining the splash screen when Analytica starts up, or by
going to Help > About Analytica. The splash screen should
display "Analytica <edition> with Optimizer", like this:

Chapter

4 Analytica 3.1 Optimizer Guide

To activate Analytica Optimizer for ADE1
To activate Analytica Optimizer for ADE

Analytica Optimizer also works with the Analytica Decision
Engine (ADE) release 3.1. An ADE Kit license includes a license
code for Analytica Enterprise for developing models, as well as
a code ADE for the production server. Similarly, ADE with the
Optimizer includes a license code for Analytica Enterprise with
the Optimizer as well as a code for ADE with Optimizer. See the
preceding section on how to activate Analytica Enterprise with
Optimizer.

If you currently use ADE release 3.0 or earlier, you will first need
to upgrade it to release 3.1. The upgrade to ADE 3.1 with
Optimizer will include license codes for Enterprise and ADE,
each with the Optimizer.

To upgrade an existing installation of ADE 3.1 to activate the
optimizer, follow these steps to enter a new license code with the
Optimizer:

1. Open a command prompt. From the Start menu, select Run,
type cmd (or command on Win98/ME) and press OK.

2. Type: cd ADE_Dir
where ADE_Dir is the path to the directory for ADE 3.1.
On many computers this will be:
cd c:\Program Files\Lumina\ADE3.1

3. Type: ade.exe /RegServer
A dialog will appear that will allow you to enter your new
license code.

4. Enter the new license code and press OK.

Chapter

Analytica 3.1 Optimizer Guide 5

Who this is for2
2: Quick Start

Who this is for
This section leads you through a series of steps to create
Analytica models that solve some simple linear and non-linear
optimization problems. The reader should follow along by
performing the steps in Analytica.

If you’re already
familiar with linear
and non-linear
programming…

If you are already familiar with concepts of linear, quadratic and
non-linear programming, this provides a fast way to get started
creating Analytica optimization models. Since this Quick Start
chapter does not cover all the functions and features of Analytica
Optimizer, and their use in complex situations, you should review
the rest of the manual as well, especially “8: Optimization
Function Reference” on page 71.

If you’re not an expert
already…

If you do not already have a previous background in linear and
non-linear programming, performing the step-by-step
instructions in this section may be the best place to start, even if
you don’t yet understand why each step is being done.
Afterwards, read the remainder of this manual, returning to the
examples in this section as you learn more about Analytica
Optimizer. Also, be sure to explore the optimizer example
models included with Analytica Optimizer.

Analytica
prerequisites…

This manual, including this Quick Start section, assumes a basic
knowledge of modeling and writing expressions in Analytica. If
you do not yet have this background, you should go through the
Analytica Tutorial and Users Guide prior to continuing with this
manual.

Browsing Analytica Optimizer Functions
To begin, follow these steps:

1. Start Analytica in the usual way, e.g., using the menus:
Start > Programs > Analytica 3.1 > Analytica 3.1.

2. In the main application menu, select Definition.

3. Move your cursor down to the Optimizer submenu.

On the submenu that pops up, take a minute to scan the
Analytica Optimizer function names. If you do not have an
Optimizer option on your Definitions menu, it means that you do
not have an Analytica Optimizer-activating License Code. You
will need to contact Lumina at sales@lumina.com.

Chapter

6 Analytica 3.1 Optimizer Guide

A Linear Program2
4. Select the diagram window and press CTRL-2 to create a new

variable, and CTRL-E to edit its definition.

5. Select Paste Identifier… on the Definition menu.

6. Using the library pull-down, select Optimizer.

From here you can review the optimizer functions along with
parameters and function descriptions. The two main functions to
study initially are LpDefine() (to define a linear program) and
LpSolution() (to solve a linear program).

A Linear Program
This section will take you through the process of encoding a
linear program in Analytica Optimizer. The model you create
here is included in the Example Models/Optimizer
Examples directory installed with Analytica under the name Two
Mines.ANA. The problem you will encode is described as
follows:

The Two Mines Company owns two different mines that pro-
duce an ore which, after being crushed, is graded into three
classes: high, medium and low-grade. The company has con-
tracted to provide a smelting plant with 12 tons of high-grade,
8 tons of medium-grade and 24 tons of low-grade ore per
week. The two mines have different operating characteristics
as detailed below.

How many days per week should each mine be operated to
fulfill the smelting plant contract?1

LpStatusNum() Return Values

Mine Cost per
Day ($1000)

Production (tons/day)

High
Grade

Medium
Grade

Low
Grade

X 180 6 3 4

Y 160 1 1 6

1. This example was created by J.E. Beasley.
Cf. http://www.brunel.ac.uk/depts/ma/research/jeb/or/contents.html

Chapter

Analytica 3.1 Optimizer Guide 7

A Linear Program2
The first step is to identify the decision variables, in this case the
number of days per week to operate each mine, and then create
an index variable naming each decision variable:

7. Create an index name and name it Mines.
We will use this as the index for the objective variables, i.e.,
the number of days per week to operate each mine.:

8. Edit its definition attribute and set its definition pull-down to
List Of Labels.

9. Enter the labels Mine X and Mine Y:

Next, enter the mining costs, which will become the objective
coefficients that define the objective as a linear function of the
decision variables:

10. Create a variable and name it Mining_Costs. Set its units
attribute to $K/day.

Chapter

8 Analytica 3.1 Optimizer Guide

A Linear Program2
11. Edit its definition attribute and set the definition type to Table.

In the index chooser, select Mines and press OK. Populate
the table with the operating costs as follows:

In this problem, there is one production constraint for each grade
of ore. Thus, an index for ore-grade can serve as the constraint
index:

12. Create an Index variable and name it Ore_Grades. Set its
definition to a list of labels, thus:

Chapter

Analytica 3.1 Optimizer Guide 9

A Linear Program2
13. Create a decision variable and name it Ore_Production. Set

its Units to tons/day. Set its Definition type to Table and in
the Index chooser select both Mines and Ore_Grades. Fill in
the table thus:

14. Create a variable and title it "Ore Production Requirements".
For convenience, set its identifier to Ore_Prod_req. Set its
Units to tons/week.

Chapter

10 Analytica 3.1 Optimizer Guide

A Linear Program2
15. Edit the definition attribute for Ore Production Requirements

and set the definition type to Table, selecting Ore_grades as
its index. Fill in the Edit Table thus:

Note that the constraints for the problem are, for each ore grade:

Sum(Ore_production*x, Mines) >= Ore_prod_req

where x is the objective, i.e., the number of days per week to
operate each mine.

We now have all the inputs required to define the linear program.

To create the linear program to solve this problem:

16. Create a variable and name it My_LP. Enter the following
definition:

LpDefine(Vars: Mines,
constraints: Ore_grades,
objCoef: Mining_costs,
lhs: Ore_production,
sense: ">",
rhs: Ore_prod_req,
lb: 0,
ub: 5)

The parameters lhs, sense, and rhs refer to the left hand side of
the constraint equations, the constraint equation comparator
(greater than, equals, less than), and the right hand side of the

Chapter

Analytica 3.1 Optimizer Guide 11

A Linear Program2

constraint equations, respectively. The last two parameters, lb
and ub (the lower and upper bounds), specify the limits on the
number of days per work week that a mine can operate.

Note that the example above uses name-based calling syntax
for the function LpDefine: You give each parameter by name,
colon, and the expression to be passed, e.g. Vars: Mines.
You can also use more conventional position-based syntax, but
that is less comprehensible for functions like LpDefine with
many parameters and options. (See "Name-based calling
syntax" in Chapter 20 of the User Guide.)

Chapter

12 Analytica 3.1 Optimizer Guide

A Linear Program2
17. Select the My_LP node and press CTRL-R to evaluate it.

The LpDefine() function defines the linear program and
returns a special object which displays as <<LP>>; however, it
does not solve for the optimal solution. To do that:

18. Create an objective node and title it "Days per Week to
Operate Mines". Set its units attribute to Days per week,
and set its definition to LpSolution(My_LP)

Your model should now look something like:

Chapter

Analytica 3.1 Optimizer Guide 13

A Linear Program2
19. Press CTRL-R to evaluate the linear program. The result view

shows the optimal number of days per week to operate each
mine:

It is always a good idea to check the status of the optimization as
well. To check on the status of the optimization:

20. Create an objective variable and name it Status. Enter the
definition: LpStatusText(My_LP)

21. Evaluate the variable Status.

In this case, Status should be “optimal solution found,” indicating
that the solution viewed earlier was indeed the optimum. If the
search had terminated early for some reason, or it could not find
a feasible solution, Status would show you the situation. See
“Obtaining the Solution” on page 26 for the full list of possible
status values.

The example produced a non-integer solution. Suppose we
needed an integer solution — because you could operate each
mine only for an integral number of days, and partial days are not
possible. You can easily modify the problem to achieve this:

Click on My_LP and change its definition by adding a ctype
(constraint type) parameter to indicate that you want an integer
solution:

Chapter

14 Analytica 3.1 Optimizer Guide

A Non-linear Program2
LpDefine(Vars: Mines,

constraints: Ore_grades,
objCoef: Mining_costs,
lhs: Ore_production,
sense: ">",
rhs: Ore_prod_req,
ctype: "I",
lb: 0,
ub: 5)

Click on Days per Week to Operate Mine and press CTRL-R to
view the result.

A Non-linear Program
You will now define and solve a non-linear optimization. Non-
linear optimizations are treated differently from linear and
quadratic optimizations. In the previous linear programming
example, the coefficient matrices completely describe the
problem, and the optimum solution is simply computed. A non-
linear optimization, by comparison, repeatedly re-evaluates
expressions or portions of your model during a search. You will
indicate the portion of your model to re-evaluate to the
NlpDefine() function.

We will formulate the following optimization problem:

Find the dimensions of a cylinder with minimum surface area
with a volume of at least 500 cm3.

This example can be found in the Optimal can
dimensions.ANA example model in the Example Models/
Optimizer Examples directory installed with Analytica.

Chapter

Analytica 3.1 Optimizer Guide 15

A Non-linear Program2
To model this, we first create a self-indexed table, Dimensions, to
index the decision variables and to hold candidate solutions.

1. Start Analytica, or select File > New to start a new model.

2. Create a decision variable, name it Dimensions.

3. Set the definition type to Table, select Dimensions
(Self) for the index, and fill in the edit table as follows:

Since it is self-indexed, the Dimensions variable serves both as
the optimization vector and as the Vars index. During the
optimization search, the cell values will be set to candidate
solutions and other portions of the model evaluated.

For convenience, we can break out the decision variables as
Analytica variables. To do that, follow these steps:

4. Create a variable node, named Radius. Give it the definition:
Dimensions[Dimensions="r"]

5. Create a variable, named Height. Give it the definition:
Dimensions[Dimensions="h"]

Next compute the Surface Area and Volume. Surface_area will
become the objective function. Volume will become a constraint.

6. Create a variable named Volume. Give it the definition:
height * Pi * radius^2

7. Create a variable named Surface_Area. Give it the definition:
2 * Pi * radius^2 + 2 * Pi * radius * height

8. Create a constant named Req_Volume
(title: Required Volume). Set its value to 500.

Chapter

16 Analytica 3.1 Optimizer Guide

A Non-linear Program2

Next, set up the constraints, in this case there is only one. For
non-linear problems, this involves setting up a constraint index,
a left-hand side (which will be a computed expression) and a
right-hand side. Sometimes it is convenient to do this as follows:

9. Create an index named cp with the title Constraint Parts.
Define it as a list of labels: ["lhs","sense","rhs"]

10. Create a variable named Constraints. Set its definition to a
table and select Constraints (Self) and Constraint Parts as the
indexes. Set up the edit table so that Constraint Parts is on the
horizontal dimension and Constraints is on the vertical
dimension. Fill in the edit table as shown here:

Chapter

Analytica 3.1 Optimizer Guide 17

A Non-linear Program2
Now, define the non-linear optimization problem:

11. Create a variable named The_NLP. Give it the following
definition:

NlpDefine(Dimensions, Constraints,
x: Dimensions,
obj: Surface_area,
lhs: Constraints[cp="lhs"],
sense: Constraints[cp="sense"],
rhs: Constraints[cp="rhs"])

This defines the non-linear optimization problem. The objective
function is Surface_area, which is computed from the values in
the Dimensions node. The left-hand side of the constraint is also
computed from Dimensions.

When The_NLP is evaluated (by selecting the node and entering
CTRL-R), an object is created that displays as <<NLP>>.

At that point, the NLP is not solved, it is only defined. It is solved
when a function such as LpStatusText() or LpSolution() is
evaluated. To get the solution:

12. Create an objective node named Status, and set its definition
to:
LpStatusText(The_NLP)

13. Create an objective node named Optimal_Dimensions and
set its definition to:
LpSolution(The_NLP)

Chapter

18 Analytica 3.1 Optimizer Guide

A Non-linear Program2

When either of these objective nodes is evaluated, the
optimization engine will search for and report the optimal
solution. View the Status node’s result to make sure the
optimization was successful, and view the Optimal_dimensions
node to view the solution and its status.

Chapter

Analytica 3.1 Optimizer Guide 19

3
3: Formulating an Optimization Problem

The first step in performing an optimization is to formulate the
problem appropriately. An optimization problem is defined by
four parts: a set of decision variables, an objective function,
bounds on the decision variables, and constraints. The
formulation looks like this:

Decision variables A vector (one dimensional array) of the
variables whose values we can change to find an optimal
solution. A solution is a set of values assigned to these decision
variables.

Objective A function of the decision variables that gives a single
number evaluating a solution. By default, the Optimizer tries to
find the value of the decision variables that minimizes the value
of objective. It will iinstead try to maximize the objective, if you
set the optional parameter Maximize to true. For a linear
program (LP), the Objective is defined by a set of coefficients or
weights that apply to the decision variables. For a nonlinear
program (NLP), the Objective can be any expression or variable
that depends on the decision variables.

Bounds A range on the decision variables,
defining what values are allowed. These bounds define the
search space — that is the set of possible solutions. Each

Given

such that

and

x x1 x2 … xn, , ,〈 〉=

minimize f x()

lbi xi ubi,≤ ≤ i 1..n=

g1 x() b1≤

g2 x() b2≤

…
gm x() bm≤

Decision

LHS Sense

Objective

Bounds

Constraints

 RHS

variables

x x1 x2 … xn, , ,〈 〉=

f x()

lbi xi ubi,≤ ≤ i 1..n=

Chapter

20 Analytica 3.1 Optimizer Guide

Continuous, integer, and mixed-integer programs3
decision variable may have a lower bound and/or an upper
bound. If not specified, the lower and upper bounds are -INF
and +INF — that is, there are no bounds.

Constraints The constraints, e.g., , are bounds on functions of the
decsion variables. They define which solutions are acceptable.

Each constraint consists of a lefthand side (LHS) , which

is a function of the decision variables, , a Sense, (<, =, or >)

defining the direction of the constraint, and a constant, e.g .

Continuous, integer, and mixed-integer programs
Each decision variable may be specified as continuous,
meaning it is a real number (between bounds if specified), as
integer, meaning a whole number, or as binary or Boolean,
meaning its values may be True (1) or False (0). Optimization
problems are classified as continuous, meaning the decision
variables are all continuous, integer, meaning they are all
integer or binary variables, or mixed-integer if they are a mixture
of continuous and integer or binary variables. In this naming
convention, binary or Boolean variables are treated as integer
variables. The optimizer engine uses these distinctions to select
which algorithms to use.

Choosing the type of optimization
A critical issue in formulating an optimization problem is
determining whether it is linear, quadratic, or nonlinear. For a
linear program (LP), the objective must be a linear function of
the decision variables. For a quadratic program (QP), the
objective must be a linear or quadratic function of the decision
variables. The problem is a nonlinear program (NLP) if the
objective or any of the constraints are nonlinear in any of the
decision variables.

You define the type of a problem by using the function
LpDefine(), QpDefine(), or NlpDefine(), respectively. You
provide the decision variables, objective, bounds, and
constraints as parameters to the selected function, along with
some other parameters, which are optional.

Linear and quadratic optimization problems are often relatively
fast to compute. But general nonlinear optimization is a
computationally difficult problem. Many of the most famous and

g1 x() b1≤

g1 x()

x

b1

Chapter

Analytica 3.1 Optimizer Guide 21

Solving simultaneous equations3
notoriously difficult computation problems can be cast as
optimization programs, from the traveling salesman to the
solution (or non-solution) of Fermat’s last "theorem". It is,
therefore, unreasonable to expect the Optimizer engine to
succeed on any possible nonlinear problem you can formulate.
While the Frontline Solver engine used in the Analytica Optimizer
is among the best of the general purpose optimization engines
available, success with hard optimization problems depends on
your ability to formulate the problem effectively, provide
appropriate hints for the Optimizer, and adjust the search control
settings.

Linear and quadratic optimization in Analytica fully support
Intelligent Arrays™ — that is, any of their parameters may be
arrays with additional dimensions, and Analytica will perform an
array of optimizations to compute an array of optimal values. For
example, any parameter may be uncertain, defined as a random
sample; and the optimization may be carried out within a
dynamic loop, for each time step. In contrast, NLP is subject to
restrictions on array abstraction, particularly in models with
uncertain factors in the objective or constraints, or when used in
dynamic loops. However, there are ways around these
limitations, which we describe in “6: Non-linear Optimization” on
page 41. However, it is easier to manage array abstraction,
particularly in dynamic simulation, with linear or quadratic
optimization problems.

There are often several ways to formulate the same optimization
problem. The greater speed and flexibility of linear and quadratic
formulations mean it is worth careful thought to see if it is
possible to reformulate a nonlinear optimization into a linear or
quadratic optimization. Often a simple transformation,
combination, or disaggregation of the decision variables can turn
an apparently nonlinear problem into a linear or quadratic
problem.

Solving simultaneous equations
The optimizer first attempts to find a feasible solution. If found, it
then attempts to optimize within the set of feasible solutions.
Thus, the solving a set of simultaneous equations is a special
case of the optimization problem, where each constraint has a
sense of "=", the objective is irrelevant, and any feasible solution
is a solution to the system of equations.

Chapter

22 Analytica 3.1 Optimizer Guide

Solving simultaneous equations3

Chapter

Analytica 3.1 Optimizer Guide 23

Defining a Linear Optimization Problem4
4: Linear Optimization

Defining a Linear Optimization Problem
A linear optimization problem has the following standard
formulation:

In this standard form, all decision variables, xi, are real-valued
and unconstrained, ranging from -INF to +INF (to).

To encode this in Analytica, use the function LpDefine():

LpDefine(Vars, Constraints: IndexType;
 ObjCoef: Numeric[Vars];
 LHS: Numeric[Vars, Constraints];
 RHS: Numeric[Constraints])

with these required parameters:

Vars An index over the n Decision Variables, [x1, x2, ... xn], for which
we wish to find the optimal solution — that is, the values that
minimize (or maximize) the Objective. The index has one
element for each decision variable. You may define it as a list of
numbers, 1..n, or a list of labels to give meaningful names to
each Decision variable.

Constraints An index over the set of m constraints, with one element for each
constraint. Again, you may define it as a list of numbers, 1..m,
or a list of labels to give meaningful names to each Decision
variable.

Minimize c1 x1 + c2 x2+ … + cn xn

such that:
a11 x1 + a12 x2 + … + a1n xn <= b1
…
am1 x1 + am2 x2 + … + amn xn <= bm

Objective

Constraints

Objective coefficients

LHS: Left-Hand Side coeff’s RHS: Right-Hand SideSense

∞– ∞

Chapter

24 Analytica 3.1 Optimizer Guide

Optional parameters4
ObjCoef The Objective Coefficients, an array of n coefficients, [c1, c2, ...

cn], indexed by Vars. The objective we are trying to minimize (or
maximize) is the dot product of these Objective Coefficients and
the Decision variables — that is, c1 x1 + c2 x2+ … + cn xn.

LHS The Left-Hand Side of the constraints is an n by m array of
coefficients, indexed by Vars and Constraints, a11, a12, …aij ...
amn]. A range on the decision variables, defining what values are
allowed. These bounds define the search space — that is the
set of possible solutions. Each decision variable may have a
lower bound and/or an upper bound. If not specified, the lower
and upper bounds are -INF and +INF — that is, there are no
bounds.

RHS The Right-Hand Side of the constraints, being an array of m
constants,(b1, b2, ... bm) indexed by Constraints. The

constraints, e.g., , are bounds on functions of the
decsion variables. They define which solutions are acceptable.

Each constraint consists of a lefthand side (LHS) , which

is a function of the decision variables, : a Sense, (<, =, or >)

defining the direction of the constraint, and a constant, e.g .

When LpDefine() is evaluated, the result is a special linear
program object, which displays as <<LP>>. This defines the
linear program, but does not compute the optimum; that
information is obtained through a series of functions described
below under Obtaining the Solution.

Optional parameters
You can specify a wide set of optional parameters to
LpDefine() for variations on the basic formulation shown
above. Thes options include lower and/or upper bounds on the
decision variables, maximizing instead of minimizing the
objective, and changing the direction (sense) of the constraints
from "<=" to ">=" or "=".

You can specify these optional parameters to LpDefine() in
any order by listing each parameter name, followed by a colon,
followed by the value. For example:

LpDefine(VarIndex, ConIndex, ObjCoef, lhs,
rhs,

 Maximize: True,

g1 x() b1≤

g1 x()

x

b1

Chapter

Analytica 3.1 Optimizer Guide 25

Optional parameters4
 Lb: 0,
 Sense: ">=")

In this case, the first five parameters are the required indexes
and coefficients as described in the previous section, and the last
three parameters are optional parameters, specifying that we
want to Maximize the objective, each decision variable (x1, …,
xn) has a lower bound (Lb) of zero, and all constraints have
Sense ">=", instead of the default "<=".

Lower and Upper Bounds on Decision Variables
You can specify lower and upper bounds on decision variables
using the optional parameters:

Lb, Ub: Optional Numeric[Vars]

By default, Lb = -INF and Ub = +INF. If you give a single number
to one of these parameters, it will specify the same bound for all
decision variables. To specify a different bound for each decision
variable, give it an array of values indexed by Vars.

Maximizing the objective
The optional parameter Maximize should be either True or
False, specifying whether Analytica Optimizer should attempt to
maximize or minimize the objective function. If not specified, it
defaults to False, and minimizes the objective function.

Sense of Constraints
The sense of a constraint refers to whether the left-hand side is
"<=", ">=", or "=" to the right-hand side. The Sense parameter:

Sense: Optional TextType[Constraints]

is used to specify the sense for each constraint. When omitted,
it assumes "<=" by default. The following text text values are
recognized:

"<", "<=", "L" : LHS is less-than or equal to RHS
">", ">=", "G" : LHS is greater-than or equal to RHS
"=", "E" : LHS is equal to RHS

If a single value is passed to the sense parameter, that sense will
apply to all constraints. If each constraint has a different sense,
then the sense parameter should be an array indexed by
constraints.

Chapter

26 Analytica 3.1 Optimizer Guide

Obtaining the Solution4
Obtaining the Solution

The optimal values for the decison variables, x1, …, xn, are
obtained using the LpSolution() function, which takes as a
single parameter the <<LP>> object created by LpDefine(),
and which returns an array indexed by the Vars index. The value
of the objective function at the optimum is obtained using the
LpOpt() function.

LpSolution(lp: LpType)

Returns the optimal solution to the programming problem lp
defined by LpDefine(). The result is an array of decision
variables indexed by Vars. If the Optimizer cannot find an optimal
solution, it returns the best values found during the search so far.

LpOpt(lp: LpType)

Returns the value of the objective function for linear program lp
at the optimum. For a linear problem, the value it returns is equal
to:

Sum(LpSolution(lp) * ObjCoef, Vars)

LpStatusNum(lp: LpType) and LpStatusText(lp: LpType)

These two functions return, respectively, the status number and
the corresponding text describing the status of the solution, for
the programming problem lp. These may be 1 and "Optimal
solution found", or another number with text explaining why it has
not found an optimal solution.

Possible outcomes to an optimization include:

1. It found a global optimum.

2. There is no feasible solution, because the constraints are
contradictory.

3. The optimal solution is unbounded, because the constraints (if
any) do not prevent the objective function from approaching

 (for a minimization problem).

4. The search terminates with a feasible solution, but before an
optimal solution is found. This happens when the computation
time or number of pivots exceeds the termination criteria
before a feasible solution has been located (see “Controlling
The Search” on page 32).

5. The search terminates before finding a feasible solution.

∞–

Chapter

Analytica 3.1 Optimizer Guide 27

Secondary Aspects to Solution4
These different cases can be detected using the
LpStatusNum() or LpStatusText() functions, both of
which take the LP as a single parameter, and which may
return the following values for a continuous linear program:

Analytica Note: LpSolution() will generally return the best
solution "point" so far even in the cases in which the global
optimum was not located, so it is important to check the status.

Secondary Aspects to Solution
The solution to a linear program contains more information that
just the optimal solution, (x1, …,xn). Often these secondary
elements of the solution are of more value than the solution itself
for decision making purposes, since they indicate how changes
(e.g., different decisions) impact the optimum. These secondary
aspects of the solution are accessed using the functions
LpSlack(), LpObjSa(), LpRHSSa(), LpShadow(), and
LpReducedCost().

Slack or Surplus: LpSlack(lp: LpType)
When you have a constraint

ai1 x1 + ai2 x2 + … + a1n xn <= bi

the slack (or surplus) for that constraint is the positive value that,
when added to the LHS, makes both sides equal, i.e.,

Status Description (LpStatusText)

1 Optimal solution found

2 No feasible solution

3 Objective unbounded

5 Iteration limit exceeded, feasible

6 Iteration limit exceeded, not yet feasible

7 Time limit exceeded, feasible

8 Time limit exceeded, not yet feasible

65 Objective function changing too slowly

Chapter

28 Analytica 3.1 Optimizer Guide

Secondary Aspects to Solution4
ai1 x1 + ai2 x2 + … + a1n xn + slacki <= bi

The constraints that have zero slack are of particular interest,
since they are instrumental in constraining the optimum. If these
constraints are relaxed (e.g., by increasing bi), a larger maximum
value can be obtained. However, as critical constraints are
relaxed, other constraints may become relevant. For the
constraints the non-zero slack gives an indication of how close
they are to becoming critical.

The slack for each constraint is obtained from the function:

LpSlack(Lp)

It takes as input the object returned from LpDefine() and
returns an array indexed by Constraints, containing the slack at
the optimum for each constraint.

Coefficient Sensitivity: LpObjSa() & LpRhsSa()
If we change a coefficient in the objective function, the optimal
solution (x1, …,xn) will continue to be the optimal solution as long
as the coefficient remains within a certain range. Note that the
solution point is the same, but the value of the objective function
at the optimum is effected. This range can be computed with the
function

LpObjSa(Lp: LpType; Var: optional)

The first parameter, Lp, is a linear program defined using
LpDefine(). When called with only a single parameter, the
range is computed for all decision variables, and the result is
indexed by the linear program variable array, Vars. If the range
for only a single decision variable (or a small subset) is required,
the second parameter. Var, is used to indicate the decision
variable for which the sensitivity is to be computed. The second
parameter should be an element (or a subset) of the Vars index.

The result returned from LpObjSa() is dimensioned by a local
index, .range:= ['lower','upper']. Thus, to get the
smallest value for each coefficient in the objective that would
continue to produce the same solution, you would use an
expression such as:

Var sa:= LpObjSa(myLp) DO
sa[.range='lower']

Note: The LpObjSa() function can only be used with a linear-
program. It is not meaningful for quadratic or non-linear
programs.

Chapter

Analytica 3.1 Optimizer Guide 29

Secondary Aspects to Solution4
The sensitivity of the right-hand side coefficients can be
computed using the function:

LpRHSSa(Lp: LpType; constraint: Optional)

This computes the range over which coefficient in the RHS can
vary without changing the basis of the solution. In other words,
over the returned range the set of constraints with zero slack
remain the set of constraints with zero slack (i.e., the critical
constraints).

The result is indexed by a local index, .range:= ['lower',
'upper'], containing the smallest and largest values for the
corresponding RHS coefficient. If the optional second parameter
is not specified, the range is computed for all variables and the
result is indexed by Vars. If the range is needed for only a single
coefficient, the second parameter specifies an element of the
Constraints index, and only the range for that constraint is
computed.

When a coefficient can be changed an arbitrary amount without
changing the solution basis, the corresponding entry in the result
returned by LpRHSSa() or LpObjSa() will be -INF for the lower
value or +INF for the upper value.

Dual Values: Shadow Prices and Reduced Costs
If a constraint is relaxed, i.e., by increasing the right-hand side,
bi, by one unit, how will this impact the objection function? This
is referred to as the shadow price, or dual value, of the
constraint. A shadow price is valid only for small changes in bi
(the actual range for which it is valid can be obtained from the
LpRHSSa() function), and is computed by the function:

LpShadow(lp: LpType)

Where lp is a linear program object returned by LpDefine().
The result is indexed by Constraints. Mathematically, the
shadow price is given by

I.e., the partial derivative of the objective function relative to the
constraint RHS coefficient.

Warning: Not all linear programming packages use the same
convention for the sign of shadow prices. If you have
used the LINDO package, note that the convention
used by Analytica Optimizer, differs from the sign
produced by the LINDO package.

Shadowi
 Obj∂
bi∂

-------------=

Chapter

30 Analytica 3.1 Optimizer Guide

Examples4
How far can a coefficient in the objective function be increased
(in a minimization program) or decreased (in a maximization
program) before the objective function changes? When a
decision variable has a non-zero value in the optimal solution,
then any change in the objective function coefficient will change
the objective value, so for those decision variables the answer
would be zero. But for decision variables that are zero, the
coefficient can change until that variable eventually enters the
basis. This amount is known as the reduced cost (or dual value)
of the variables and is returned by the function

LpReducedCost(lp: LpType)

The result is indexed by Vars.

The Shadow Price and Reduced Cost are known as dual values,
the Shadow Price being a dual to the solution in the original (or
“primal”) problem, and the Reduced Cost being a dual to the
slack price in the original problem. To each problem in the
standard form (see “Defining a Linear Optimization Problem” on
page 23) there corresponds a dual linear program given by:

maximize b1 y1 + b2 y2 + … + bm ym

such that

a11 y1 + a21 y2 + … + am1 ym >= c1

…

a1n y1 + a2n y2 + … + amn ym >= cn

The new variables in this program, y1,y2, …,ym, are the shadow
prices, and the slack value for each constraint are the reduced
costs in the primal problem. Note that the variables in the primal
problem correspond to constraints in the dual problem, and
constraints in the primal problem correspond to decision
variables in the dual problem.

Examples
Several example linear-programming optimization models are
included in the Example Models/Optimization Examples
folder installed with Analytica. The linear program examples
include:

• Automobile production.ANA: Taking differences in
unit production cost, and labor and material availability into
consideration, figure out how many cars to produce at each
factory to meet a production goal. This example

Chapter

Analytica 3.1 Optimizer Guide 31

Integer & Binary Decision Variables4
demonstrates the use of Linear Program-related sensitivity
functions.

• Big Mac Attack.ANA: Optimize your McDonald’s-based
diet to fit your budget, nutritional needs, and minimize your
calorie or carbohydrate consumption.

• Capital Investment.ANA: Simple case of selecting
which projects to pursue given a fixed budget.

• Optimal production planning.ANA: A classic
textbook linear program: Selecting how much of each
product to produce given resource limitations.

• Production Planning LP.ANA: Another take on the
same problem, but demonstrating the interpretation of the
secondary solution aspects.

• Two Mines Model.ANA: Schedule production at multiple
mines to meet production goals given capacity constraints.
(This is the example used in Chapter 2, “2: Quick Start.”)

Integer & Binary Decision Variables
In a standard linear program the decision variables are assumed
to be continuous (real-valued) numbers. However, you can also
use Analytica Optimizer to define and optimize a linear program
with decision variables that are constrained to be integers,
Boolean or binary, including a mixture of continuous and integer
or binary variables (a mixed integer program).

You can specify the type of each decision variable as continuous,
integer, or binary using the optional parameter:

ctype: Optional TextType[Vars]

which takes one of the following values:

• "C": Continuous

• "I": Integer

• "B": Binary or Boolean value, i.e. 0 or 1

If you give the ctype parameter a single text character, it
specifies the same type for all decision variables, e.g.:

LpDefine(…, ctype: "B")

specifies that all decision variables are binary. To specify a
mixed-integer program, you supply an array of characters,
indexed by Vars, specifying the type of each decision variable.

Chapter

32 Analytica 3.1 Optimizer Guide

Controlling The Search4
In general, Integer and mixed-integer linear programs are harder
to solve than linear programs with exclusively continuous
variables. The Optimizer uses a combination of a Simplex
algorithm with a memory-efficient branch-and-bound algorithm.

In some cases, the Optimizer may fail to find a solution to a large
integer or mixed-integer linear program. Use the
LpStatusNum() and LpStatusText() functions to see
whether it has been successful, and if not, why not. They return
the following status numbers and text messages, respectively:

For a complete list of the possible values returned by
LpStatusNum(), see “LpStatusNum(lp: LpType)” on page 73.

Controlling The Search
Several optional parameters to LpDefine() can be used to
influence how the search for the optimum proceeds and when it
terminates. All the parameters described in this section may be
optionally included with the LpDefine() function.

A linear program having all continuous decision variables is
solved using a simplex algorithm. The space of feasible solutions
is called a simplex and is a convex polyhedron in N-dimensional
space, where N is the number of decision variables. A simplex
algorithm traverses the simplex from corner to corner, moving to
an adjacent corner with an improved objective value at each

Status Description

101 The MIP optimal solution found

102 MIP solution found within gap tolerance
(see “Controlling The Search” on page 32)

103 No feasible integer solution

104 Integer solution limit exceeded

105 Node limit exceeded, feasible

106 Node limit exceeded, not feasible

107 Time limit exceeded, feasible

108 Time limit exceeded, not feasible

Chapter

Analytica 3.1 Optimizer Guide 33

Controlling The Search4
iteration (pivot). The objective is improved with each pivot until
the global optimum is reached. The same algorithm is used on
an augmented simplex initially to find an initial feasible solution.

An integer, binary, or mixed-integer program uses the simplex
algorithm in combination with a branch-and-bound algorithm. It
first uses the simplex to solve the continuous version of the
problem. This bounds the optimal objective from one side and
provides a starting point for a search. Whenever it finds a
feasible integer solution, this provides a bound on the optimal
objective on the other side and allows the branch-and-bound
search to prune alternative integer solutions that would be
provably inferior to the ones already found. As the algorithm
explores solutions having one integer decision variable set to a
particular integer value, the continuous LP sub-problem is solved
again using repeated invocations of the simplex algorithm. It
terminates the search when the search space has been
exhausted (i.e., the global optimum located), when the
termination criteria has been exceeded, or when the best
solution found is within the solution (gap) tolerance.

Termination Control
ItLimit: Optional Positive Integer

Specifies the maximum number of iterations (pivots) by the
Simplex Algorithm during the optimization. If this is exceeded,
LpStatusNum() returns 5 (feasible solution found) or 6
(feasible solution not found).

Default: no limit.

TimeLimit: Optional Positive Integer

Maximum number of seconds the optimizer will spend on the
problem. If exceeded, LpStatusNum() will be 7 (feasible
found) or 8 (no feasible found) for a continuous problem, and
107 or 108 for a MIP problem.

Default: 65535 seconds (the maximum allowed).

NdLimit: Optional Positive Integer

Limits the number of nodes (or LP sub-problems) considered
by the branch-and-bound algorithm when solving an integer,
binary or mixed-integer problem. If exceeded, LpStatus-
Num() will return 105.

Default: no limit.

Chapter

34 Analytica 3.1 Optimizer Guide

Controlling The Search4
MipLimit: Optional Positive Integer

The maximum number of feasible solutions that the branch-
and-bound algorithm will visit before terminating.

Default: no limit.

GapTolerance: Optional Positive Percentage

In a MIP optimization, if the branch-and-bound algorithm can
determine that the best solution found so far is within this rel-
ative tolerance of the true optimal, it will terminate the search
and return the best solution found so far. The bound is rela-
tive, meaning a value of 10% guarantees a solution within
10% of the optimal. Often, the branch-and-bound algorithm
will quickly locate a nearly optimal solution, but then spend a
large amount of refining its best solution to the true optimum.
Specifying a non-zero gap tolerance can eliminate this addi-
tional search, thus in some cases drastically reducing compu-
tation time. The gap is computed as the absolute value of the
difference between the best solution so far, and the best
bound on the optimum, divided by the best bound on the opti-
mum. With zero gap (default), the search will continue until
the entire search space is eliminated so that the global opti-
mum is reached.

Default: 0%

Tolerance and Precision Control
OptTolerance: Optional Positive

The Optimal or Reduced Cost Tolerance. Decision Variables
whose reduced cost is less than the negative of this tolerance
are candidates for entering the basis during the Simplex
search.

Default: 10-5

Allowed range: 10-9 to 10-4

PivotTolerance: Optional Positive

During the Simplex Algorithm, elements in the solution matrix
must have an absolute value greater than this value to be
candidates for pivoting.

Default: 10-6

Allowed range: 10-6 to 10-4

Chapter

Analytica 3.1 Optimizer Guide 35

Array Abstraction4
FeasTolerance: Optional Positive

The Feasibility Tolerance for MIP problems. The tolerance is
used to determine which constraints are considered satisfied
and which decision variables are treated as integers.

Default: 10-8

Allowed range: 10-8 to 10-4

Algorithm Control
OptLb, OptUb: Optional Numeric

If you can correctly bound the objective function value for the
optimal solution in advance, this can drastically reduce the
computation time for MIP problems, since the branch-and-
bound algorithm to prune entire branches from the search
space without having to explore them at all. For a maximiza-
tion problem, only the lower bound is relevant, and for a mini-
mization problem, only the upper bound is relevant.

Default: no bounding

Scaling: Optional Boolean

Setting this to False turns off internal scaling during the
solution process. The optimizer will, by default, rescale deci-
sion variables and constraints internally for the Simplex algo-
rithm, which usually leads to be reliable results and fewer
iterations.

Default: True

Array Abstraction
As with most Analytica functions, LpDefine() and all the
functions used to retrieve the solutions to a linear program are
fully array-abstractable. If, for example, you supply an array of
coefficients to the ObjCoef parameter of LpDefine() that is
indexed by index In1 in addition to the Variables index,
LpDefine() will return multiple <<LP>> objects, with the
collection being indexed by In1. When such a result is solved,
multiple optimization problems will be run.

If any parameter that expects a particular dimension is supplied
an object without that dimension, LpDefine() will treat it as if
that dimension were specified with the value constant across that
dimension. So, for example, specifying the parameter

Chapter

36 Analytica 3.1 Optimizer Guide

Array Abstraction4
RHS: 1

would treat the right-hand-size of every constraint has having the
value 1.

Because these functions are fully array abstractable, any
coefficient, bound, or other parameter may be uncertain,
evaluated as a sample (indexed by Run), computed from
probability distributions or chance variables. When evaluated in
probabilistic mode, these models will solve a separate
optimization problem for each sample.

Linear programs involving time can also be embedded in
Dynamic loops (see Chapter 17 in the Analytica User’s Guide:
“Modeling Changes over Time”). By specifying a parameter
value that is a function of a previous time step, and using
LpDefine() from within a Dynamic loop, a separate
optimization can be performed at each Time point.

Chapter

Analytica 3.1 Optimizer Guide 37

Defining a Quadratic Program5
5: Quadratic Program Optimization

Defining a Quadratic Program
A quadratic program has the basic form:

The only difference between a quadratic and linear program
formulation is the objective function. The objective function for a
quadratic program is written here in matrix notation: is the
linear part of the objective, where is a vector of coefficients. A

quadratic program adds a second term, : to the objective.
is a square matrix with the number of rows and number of
columns equal to the number of decision variables, and is the
transpose of the decision variables.

Note: While the objective function is quadratic, all constraints
must be linear. If you have quadratic or non-linear
constraints, you will need to formulate the poblem as a
non-linear program (NLP).

To ensure that the Q matrix is square, you need to specify a
second index (Vars2 in the example on the next page), with the
same number of elements as the first index, Vars, is required. (An
array in Analytica may be indexed only once by the same index.)

Quadratic Optimization Problem: Standard Form

Minimize

such that:
a11 x1 + a12 x2 + … + a1n xn <= b1
…
am1 x1 + am2 x2 + … + amn xn <= bm

c x xTQx+⋅

Constraints

LHS: Left-Hand Side RHS: Right-Hand SideSense

Objective function

c x⋅
c

xTQx Q

xT

Chapter

38 Analytica 3.1 Optimizer Guide

Solution Properties5
A quadratic program is defined with these parameters:

{required parameters:}
QpDefine(Vars, Vars2, constraints:

IndexType:
 c: Optional Numeric[Vars]:
 q: Numeric[Vars, Vars2]:
 LHS: Numeric[Vars, constraints]:
 RHS: Numeric[constraints];

{Optional parameters:}
 sense: Optional TextType[constraints];

maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
guess: Optional Numeric[Vars];
warnIndefinite: Optional Boolean;
ItLimit, NdLimit: Optional Positive;
MipLimit, TimeLimit: Optional Positive;
OptTolerance, PivotTolerance, FeasTolerance,

GapTolerance: Optional Positive;
OptLb, OptUb: Optional Scalar;
Scaling: Optional Scalar)

When evaluated, QpDefine() returns a quadratic program
object, which displays as <<QP>>. The optimum solution is not
solved until one of the routines to access the solution, such as
LpStatusNum() or LpSolution() is called.

Optional Parameters All of the optional parameters of LpDefine() are also accepted
by QpDefine(), see Chapter 4, “4: Linear Optimization,” on
page 31. The chapter on linear programming should be
consulted for further information on these. Analytica Optimizer
supports integer, binary, and mixed-integer quadratic programs.
Two additional optional parameters, guess and warnIndefinite,
which don’t exist for linear programs, may also be supplied, and
are discussed below.

Solution Properties
The Q matrix is the Hessian, consisting of the second partial
derivatives of the objective function. Depending on the values in
this matrix, the objective function may have a number of different
shapes, and the objective may contain a single extreme
(minimum or maximum), an infinite number of extrema, or no
extreme values. The optimum value to a quadratic program may
lie at the objective’s extrema, or it may exist on a constraint
boundary.

Chapter

Analytica 3.1 Optimizer Guide 39

Common Quadratic Situations5
Positive & negative-
definiteness

When the Q matrix of a minimization problem is positive-definite,
meaning that for all non-zero : : the objective function
has a “bowl” shape with a single extrema. Similarly, for a
maximization problem if it is negative-definite it will have a cup-
shape with a single extrema. When the extrema is a feasible
solution, it will be the unique optimal solution to the quadratic
program. The quadratic programming algorithms are optimized
for this case.

Semi-definiteness When the Q matrix is positive semi-definite (or negative semi-
definite for a maximization problem), the objective will have a
“trough” with infinitely many extrema. In such a case, the
optimizer will find one of the feasible points in the trough.

Indefinite objective If the Q matrix is indefinite, the objective will have a “saddle
point”. Like an extrema, a saddle point has a zero gradient, but
is not an actual optimum. The true optima (one or many) will lie
on the constraint boundaries. In an indefinite case, the optimizer
will converge either to the saddle point, or to one of the optimum
solutions on the constraint boundaries. If it converges to the
saddle point, which might not be optimal, LpStatusNum() will
return 65 (“objective changing too slowly”). The final point
reached by the optimization depends on the initial starting point
for the search, which may optionally be specified using the
parameter guess to QpDefine():

guess: Optional Numeric[Vars];

The guess parameter is only relevant if Q is indefinite, otherwise
the same end result will be reached regardless of the starting
point.

Because QpDefine() is totally array-abstractable, you can
provide multiple guesses by dimensioning the argument to this
parameter by an index other than Vars, with different starting
points. In that case, multiple quadratic optimizations will be
solved, each at different starting points.

You can also have QpDefine() issue a warning message if the
Q matrix is indefinite by setting the optional warnIndefinite
parameter to True.

Common Quadratic Situations
Quadratic programs arise in several applications, one of the
most common being portfolio optimization.

x xTQx 0>

Chapter

40 Analytica 3.1 Optimizer Guide

Obtaining the Solution5
Portfolio allocation Assume there are N investments, each with an uncertain

outcome. The investments are not independent; for example,
two investments in the same sector may be influenced by similar
market forces and thus be highly correlated. Other pairs of
investments may be negatively correlated. A symmetric
covariance matrix, Q: can be used capture the pair-wise
covariances between investments, as well as the variances of
the individual investments (the diagonal elements of Q). Letting
each element of the vector be the fraction of the total portfolio
allocated to investment, the variance of the complete portfolio is

. As a result, various objective functions used in portfolio
optimizations will depend on the net variance of the portfolio, and
lead to quadratic programs of the form show under “Quadratic
Optimization Problem: Standard Form,” on page 37. Two such
examples are demonstrated in the example model
Asset Allocation.ana found in the Example Models\
Optimizer Examples directory.

When sample covariances are computed from historical data,
and the number of time periods used is greater than the number
of dimensions (e.g., the number of investments), the resulting Q
matrix is guaranteed to be positive-definite. As discussed in the
previous section, then property lends itself well to solution by
quadratic programming.

Obtaining the Solution
The QpDefine() function defines the quadratic program, but
does not solve it. The optimum is solved for when
LpSolution(), LpStatusNum(), LpStatusText(), or any of
the other functions that use the solution are called.

The functions LpSlack(), LpShadow(), and LpRHSSa() are
all available for quadratic programs (see the discussion for each
of these in Chapter 4, “4: Linear Optimization”)

The LpReducedCost() function can also be called on a
quadratic program.

Examples
The Example Models/Optimization Examples directory,
installed with Analytica, contains an example model
demonstrating quadratic optimization:

• Asset Allocation.ANA: Portfolio optimization is a
classic quadratic programming application. This example
demonstrates four formulations of an asset allocation
problem, two of which are quadratic programs.

x

xTQx

Chapter

Analytica 3.1 Optimizer Guide 41

6
6: Non-linear Optimization

A non-linear program (NLP) is the most general formulation for
an optimization. The objective and the constraints can be
arbitrary functions of the decision variables, continuous or
discontinuous. This generality comes at the price of longer
computation times, less precision than linear and quadratic
programs (LP and QP). There is also the possibility with smooth
NLPs, that the Optimizer will return a local optimum that is not
the global optimum solution. In general, it is hard to prove that a
solution is globally optimal or not. For these reasons, it is better
to reformulate nonlinear problems as linear or quadratic when
that is possible.

Linear and quadratic problems define the objective function as
arrays of linear or quadratic coefficients.They pass these arrays
as parameters to the Optimizer, which operates on them directly
to find a solution without further interaction with the rest of the
Analytica model. For nonlinear problems, the objective function
is defined as an Analytica expression or variable that depends on
the decision variables. In this case, the Optimizer repeatedly
evaluates the objective function as it tries assigns different
values to the decision variables in its search for a solution. It
does the same with expressions passed to LHS, the left-hand
side of the constraints.

This approach imposes certain restrictions on array abstraction
(support for Intelligent Arrays) for NLPs — for example, requiring
the objective function to return a single (scalar) number. We
devote a section of this chapter to showing how to work with
these restrictions so that you can apply NLP optimization to
create arrays of optimizations for models with uncertainty
(samples indexed by Run), for parametric analysis, and dynamic
models over time, or other Indexes.

The Optimizer has a variety of methods, including gradient-
based search, branch-and-bound, and genetic algorithms, from
which it chooses to try to suit the problem. In many cases, you
can give it information about the problem that can help it choose
the most appropriate methods, and so work faster and more
reliably. Such hints include:

• The type of dependence — i.e., whether the objective
or constraint functions vary linearly, smoothly, or discon-
tinuously with each decision variable.

Chapter

42 Analytica 3.1 Optimizer Guide

Problem Formulation6
• The gradient and Jacobian expressions to compute the

needed partial derivatives for the objective much faster
at each search point

• Control parameters to influence how the search is per-
formed.

Problem Formulation
The basic formulation for a non-linear optimization is:

where is a vector denoting the n-dimensional candidate
solution. A non-linear optimization problem is defined using the
function NlpDefine(), shown here without optional
parameters:

NlpDefine(Vars, Constraints: IndexType;
X: VariableType:
Obj, LHS: Expression:

 RHS: Numeric[Constraints])

Vars An index for the decision variables, X below.

Constraints An index for the constraints, LHS and RHS below.

X The decision variables, indexed by Vars. The parameter passed
to X must be the name (identifier) of a global variable or decision,
or a local variable, not an expression: As the NLP Optimizer
searches for better solutions, it assigns new values to the
decision variable, and computes the corresponding value of the
Objective.

Obj The objective to maximize or minimize, according to the setting
of optional parameter Maximize. It may be a variable or an
expression. It must depend on the decision variables, X, directly,
or indirectly via other variables.

Non-Linear Optimization: Basic Form

 such that minimize f x()

g1 x() b1≤

g2 x() b2≤

…
gm x() bm≤

objective function

constraints

x

Chapter

Analytica 3.1 Optimizer Guide 43

Obtaining the Solution6
LHS The Left-Hand Side of the constraints, indexed by Constraints.

Each element of LHS may be an expression or a variable. They
must depend on the decision variables X, directly or indirectly.

RHS The Right-Hand Side of the constraints, indexed by
Constraints. Each element of the array passed to RHS must
evaluate to a single number. It must not depend on the decision
variables. By default, feasible solutions are those in which the
LHS is less than or equal to the corresponding value of RHS. You
can change this with the optional Sense parameter, described
below.

Obtaining the Solution
The same functions used to obtain the solution to LP and QP
optimizations also work for NLP. These include:
LpStatusNum(), LpStatusText(), LpOpt(),
LpSolution(), LpSlack(), LpShadow(), and
LpReducedCost().

For more, see Chapter 8, “8: Optimization Function Reference,”
on page 71.

Optional Parameters for NLP
The following are optional parameters to NlpDefine():

Maximize
By default, NlpDefine() defines a minimization problem. You
should set the optional parameter

Maximize: Optional Boolean

to True when you wish to maximize the objective.

Sense
By default, each constraint specifies that the left-hand side is
less-than or equal to the right-hand side. Using the optional
Sense parameter, you can change the relationship between left-
hand and right-hand sides:

Sense: Optional TextType[Constraints]
• "<", "<=", or "L": LHS is less-than or equal to RHS

• ">", ">=", or "G": LHS is greater-than or equal to RHS

Chapter

44 Analytica 3.1 Optimizer Guide

Integer, Binary and Mixed-Integer Programs6
• "=" or "E": LHS is equal to RHS

If you pass a single text value, such as "=", to the Sense
parameter, that sense will apply to all the constraints. If you want
a different sense for each constraint, pass an array indexed by
Constraints, with each cell containing its own text value "<=",
">=", "E", etc.

Bounds
You can define upper and lower bounds on each decision
variable for an NLP problem, as for LP and QP problems, using
these optional parameters:

Lb, Ub: Optional Numeric[Vars]

If not explicitly specified, the optimizer assumes bounds of -INF
and +INF, i.e., that the decision is unbounded. If you pass a
single number to either of these parameters, that bound applies
to all decision variables. So, for example:

NlpDefine(…, Lb:0,Ub:1 …)

specifies that all decision variables are in the range 0 to 1. If
lower or upper bounds are different for each decision variable,
pass them arrays of numbers indexed by Vars.

Integer, Binary and Mixed-Integer Programs
Like the LP and QP optimizers, the NLP optimizer can handle
discrete decision variables — that is, integer or binary (Boolean)
— as well as continuous values. Use the parameter

Ctype: Optional TextType[Vars]

to specify the continuity type of each decision variable by
providing one of the following text values for each variable:

• "C": Continuous

• "I": Integer

• "B": Binary or Boolean

The non-linear optimizer uses a genetic, or evolutionary,
algorithm, when discontinuous variables are present.

Chapter

Analytica 3.1 Optimizer Guide 45

The Airline Example for NLP6
The Airline Example for NLP

Here we introduce the airline decision problem. We will use this
example in the rest of this chapter with eight cases that illustrate
how to formulate problems for NLP, including situations in which
parameters have extra indexes, for dealing with uncertainty,
parametric analysis, and dynamic models over time. You can find
this example in the Example Models/
Optimizer Examples/Airline NLP.ANA. It includes the
eight different cases described below. Please open the model in
Analytica to see full details.

A small airline is trying to decide how many planes to lease and
what fare to charge on a new route. It has two decision variables
— Num_planes, the number of planes allocated for this route,
and Fare, the price charged for trips on this route — and two
chance variables — the Demand for seats (assuming the fare is
$200) and the Elasticity1 of demand with respect to price:

Decision Num_planes := 2
Decision Fare := 200 ($/passenger trip)
Chance Base_demand :=

Triangular(300K, 400K, 500K) (trips/year)
Chance Elasticity1 := Triangular(2, 3, 4)

We assume that the demand is elastic with respect to changes in
price, using a demand function that raises the ratio of the fare to
the base fare of $200 to the negative power of the elasticity. We

Chapter

46 Analytica 3.1 Optimizer Guide

The Airline Example for NLP6
compute the actual Seats_sold as the lesser of the demand
modified for price elasticity and the actual seats available, the
product of the number of planes and Trips_per_plane:

Variable Trips_per_plane := 200 * 360 * 2
Variable Seats_sold := Min([Base_demand *

(Fare/200)^-Elasticity1,
Num_planes * Trips_per_plane])

Finally, we model the Objective variable Profit as the
difference between revenues and costs, including Fixed_cost,
the annualized fixed cost of leasing and operating each plane,
and Var_cost, the incremental cost for each new passenger:

Variable Fixed_cost := 12M ($/plane/year)
Variable Var_cost := 100 ($/passenger trip)
Objective Profit := Seats_sold*Fare
 - Seats_sold*Var_cost - Num_planes*Fixed_cost

This graph shows Profit as a function of the two decision

variables, using parametric approach to visualize the effects.
Note that for each number of planes, 1 to 5, the profit is a sharply
peaked function of the fare. The optimum fare is at the highest
peak, $195 with 3 planes.

Chapter

Analytica 3.1 Optimizer Guide 47

The Airline Example for NLP6
In this simple case, with only two decision variables, you can
visualize the objective function and find the optimal values (or
close) by parametric analysis. For more complex problems, the
Optimizer is essential. We now show how to apply that.

Reformulating the decision variables for NLP
We usually need to reformulate a decision problem, at least a
little, to apply NLP. One reason is that NLPDefine() expects a
single, array-valued decision variable for parameter X. So, if you
want to apply NLP to optimize a model, like the airline example,
whose decision variables are two or more separate Analytica
variables, you need to combine these decisions into a single
array-valued decision. If the model has n scalar decision
variables, you should define a decision variable Decisions as
a one-dimensional array with an index containing n elements.
For the airline example, we define Decisions with two
elements, corresponding to its two decisions, Num_planes and
Fare:

Index Dvars := ['Number of planes', 'Plane fare']
Decision Decisions :=Table(Dvars)(1, 200)

The values in the table are the initial values, prior to optimizing.
We must now redefine the individual decision variables so that
they obtain their values from the corresponding elements of
Decisions:

Num_planes:= Decisions[Dvars ='Number of planes']
Fare := Decisions[Dvars = 'Plane fare']

As the Optimizer searches for optimal values, it will assign
successive new candidate solutions to Decisions, and get the
resulting value of Profit, which in turn gets its values from
Decisions, via Num_planes and Fare.

If one or more of the original decision variables is an array, the
new decision variable Decisions passed to X must still have
only one dimension. Its size should be the sum of the sizes of all
the original decision variables. Again, you should assign the
current initial values of the original decision variables to the
corresponding elements of Decisions. Then you redefine each
original decision variable so that it gets each element from the
corresponding element of Decisions. See Case 7. Optimize
decisions over time below for an example, where we add the
Time dimension to Num_planes and Fare.

Chapter

48 Analytica 3.1 Optimizer Guide

The Airline Example for NLP6
Case 1. Simple NLP Optimization

We will now complete the formulation of the NL P for the airline
problem introduced above, creating a model that looks like this:

We need to specify the type of each decision — ’I’ (integer) for
Number of planes, and ’C’ (continuous) for Fare — the lower
and upper bounds for the two decisions, and the Constraints
index:

Variable Dec_type := Table(Dvars)('I','C')
Variable Lb_decisions := Table(Dvars)(1, 100)
Variable Ub_decisions := Table(Dvars)(5, 300)
Index Constraints := [0]

In this example, we use no constraints, so we set the index
Constraints to a single arbitrary single element. We can now
define the NLP using these parameters:

Variable NLP1 := NLPDefine(Vars: Dvars,
Constraints: Constraints,
X: Decisions, Obj: Profit,
LHS: 0, RHS: 1, Maximize: True,
Ctype: Dec_type,
LB: Lb_decisions, UB: Ub_decisions)

We set LHS to 0 and RHS to 1 to guarantee LHS <= RHS, since
this problem has no constraints (other than decision bounds).
Since we want the largest Profit, we set Maximize to True.

Chapter

Analytica 3.1 Optimizer Guide 49

Intelligent Arrays, array abstraction and NLP6
Finally, we define the key results of the optimization: The optimal
decisions, the profit with these decisions, and the status of the
optimization:

Decision Optimal_decisions1 := LPSolution(Nlp1)
Objective Profit_with_nlp1 := LPOpt(Nlp1)
Variable Nlp_status1 := LPStatusText(Nlp1)

When we display the result of any of these three variables, it will
perform the optimization. For example, Optimal_decisions1,
gives this table (agreeing closely with the parametric analysis):

Intelligent Arrays, array abstraction and NLP
Unlike most other Analytica functions, including linear and
quadratic optimization, nonlinear optimization does not fully
support Intelligent Arrays — that is, it will not automatically
generalize over extra dimensions for all parameters. Below we
show how you can work around these restrictions to create and
solve arrays of NLP problems, including handling uncertainty,
parametric analysis, and dynamic optimization over time.

NLP’s limitations are that the following required parameters must
be dimensioned by the specified indexes and no other indexes:

X must be indexed only by the index supplied to Vars

Obj must be scalar — a single number with no indexes

LHS must be indexed by the index supplied to Constraints, or
have no index.

Similarly, these optional parameters, if specified, must also be
dimensioned by only the specified indexes:

Gradient must be indexed only by the index supplied to Vars

Jacobian must be indexed only by the indexes supplied to
Vars and Constraints

See page 61 for details on Gradient and Jacobian.

Chapter

50 Analytica 3.1 Optimizer Guide

Intelligent Arrays, array abstraction and NLP6
Note that NLPDefine() does generalize fully over extra
dimensions for all parameters other than those five listed above.
But, for those five parameters, it is up to you, the modeler, to
make sure that they have only the required indexes. Otherwise it
will flag an error. Read on to see how to get around these
limitations.

Case 2. Maximize expected value: NLP with uncertainty
If you want to find the optimal decisions with an uncertain model,
the most common approach is to define the objective as
maximizing the expected value (i.e. mean) of the objective
function — for example, maximizing the expected profit, or the
expected utility in a decision analysis formulation. For the Airline
example, we define NLP2, which differs from NLP1 only in that
the objective takes the mean of the profit:

Variable NLP2 := NLPDefine(... ,
X: Decisions, Obj: Mean(Profit), ...)

In this case, the objective is a single scalar number (i.e., the
expected value). Although it is a function of an uncertain quantity,
it is not itself uncertain. So you can apply NLPDefine() directly,
and the restrictions on array abstraction mentioned above cause
no problems. Note the results of doing the optimization using
expected value are a bit different from the deterministic analysis,
because the profit function is not symmetric:

The same approach works if you want to maximize a statistic of
the objective other than mean, such as to minimize the 1st
percentile of an uncertain profit (loss), e.g. Getfract(Profit,
1%). If there is uncertainty in the constraint functions, you may
define the constraints using percentiles (using Getfract() or
other statistical functions) — for example, the constraint that the
cumulative cashflow has a >95% chance of being nonnegative.

Chapter

Analytica 3.1 Optimizer Guide 51

Intelligent Arrays, array abstraction and NLP6
In these cases, you are trying to find the optimal decision now,
before resolving the uncertainties that affect the objective or
constraints. You can set the model to perform a single
optimization and the result is a single optimal solution (set of
decisions) and corresponding maximum expected value (or
other statistic) of the objective. Given the optimal solution, you
can then compute a probability distribution over the objective
function to model the uncertainty over the value outcome.

Case 3. NLP with uncertainty: Probabilistic optimization
The second type of optimization under uncertainty is less
common: The optimal decisions will be made after resolving the
uncertainty, and you want to compute probability distributions
over what those optimal decisions will be now while still
uncertain. This is sometimes known as preposterior analysis
because the optimization is performed a posteriori — after the
uncertainty is resolved — but you are performing the analysis
now, before the uncertainty is resolved. (Not to be confused with
preposterous analysis, which we try to avoid.) This situation
requires a sample of optimizations to be performed. It results in
a random sample of optimal decisions, and a sample of
corresponding values of the objective for each solution.

You might try simply to compute a probabilistic value of the
optimal decision in case 1, from NLP1, by selecting a uncertain
view, e.g. Sample, in the Result for Optimal_decisions1,
shown previously: But, this would generate the warning "Value is
not probabilistic. Mid value will be shown instead." This is
because NLPDefine() always evaluates its parameters
deterministically.

Instead, we need to create an NLP that abstracts over the
Chance variables, so that the Run index does not cause
problems for NLPDefine. For convenience, we define two
functions, first ProfitFn() that encapsulates the Objective
Profit as a function of the decisions and chance variables as
parameters. This function replicates Profit in the simple airline
model. (See next page.)

Chapter

52 Analytica 3.1 Optimizer Guide

Intelligent Arrays, array abstraction and NLP6

Then we define a function Airline_nlp() that defines an NLP
using ProfitFN() that we just defined for the objective:

Chapter

Analytica 3.1 Optimizer Guide 53

Intelligent Arrays, array abstraction and NLP6
Airline_nlp() qualifies its parameters as Atomic. This means
means that, if the actual parameters are arrays, indexed by Run
or anything else, it will reduce them all to scalar values and call
the function multiple times, once for each combination of scalar
values. it calls multiple times, Each time it passes scalar
parameters to ProfitFn(), so that the objective passed to Obj
in NLPDefine() is scalar, as required. In this way, it restores
the Intelligent Array behavior that NLP otherwise lacks.

We now define a variable using this function:

Variable Nlp_3 := Airline_nlp(Num_planes, Fare,
Demand, Elasticity1)

If you show the result of this variable in a sample view (with
Samplesize set to 5 for rapid execution), it shows a sample of
NLP problems:

When we show the result of the resulting optimal decisions

Decision Optimal_decisions_3:=LPSolution(Nlp_3)

it evaluates each sample of the NLP and generate a
corresponding sample of optimal decisions:

Chapter

54 Analytica 3.1 Optimizer Guide

Intelligent Arrays, array abstraction and NLP6
This computation involves doing Samplesize optimizations. So,
it could take a long time if the NLP problem is difficult and the
sample size is large.

Case 4. NLP and parametric analysis
What if you want to examine how the optimal decisions vary as
you change one or more input parameters, such as Demand?
(See User Guide Chapter 4 "Analyzing Model Behavior" for more
on parametric analysis.) In this case, the variables you treat
parametrically will have multiple values, so you cannot apply
NLPDefine() to them directly. However, the function
Airline_nlp() that we just defined comes in handy again.
Suppose we define:

Variable Demand_param :=[200K,400K,600K,800K,1M]
Variable NLP_4 := Airline_nlp(Num_planes, Fare,

Demand_param, Elasticity1)
Decision Optimal_decisions4 := LPSolution(Nlp_4)

Because Airline_nlp() qualifies its parameters as Atomic,
NLP_4 generates an array of NLPs, one for each value of
Demand_param. The Result for Optimal_decisions4 shows
corresponding optimal values for each value of Demand_param:

Note how the optimal number of planes increases from 1 to 4, as
the demand increases, and the optimal fare varies
nonmonotonically.

Case 5. NLP over time using NPV
The most common formulations for optimization over time
involve finding a set of decisions to optimize an objective that
measures overall performance over multiple time periods, such
as the net present value (NPV). In these cases, the objective

Chapter

Analytica 3.1 Optimizer Guide 55

Intelligent Arrays, array abstraction and NLP6
function returns a single number that aggregates over the time
periods, so it poses no problem for direct application of
NLPDefine().

Consider the airline example again. We add an uncertain annual
compound growth in demand, define Time for years from 2005
to 2010, and compute the resulting Demand_by_time:

Chance Demand_growth := Triangular(0%, 10%, 20%)
Time := 2005 .. 2010
Variable Demand_by_time := Dynamic(Base_demand,

Self[Time-1] * (1 + Demand_growth))

We now define the objective of the NLP using mean of the net
present value (NPV):

Variable Nlp_5 :=
NLPDefine(Vars: Dvars, ... X: Decisions,

Obj: Mean(NPV(Discount_rate,
ProfitFn(Num_planes, Fare,
Demand_by_year, Elasticity1), Time)),...)

This causes no array-abstraction issues for the objective since
the mean of the NPV is a scalar. Notice that we are finding a
single optimal value for the decisions, Num_planes and Fare,
for all time periods: We are assuming that these decisions stay
the same over the six years. Because of the growth in demand,
the optimal number of planes is three, larger than before:

Case 6. Optimize for each year
What if you want to change the decisions, Num_planes and
Fare, in each time period? One approach is to perform a
separate optimization in each time period. This formulation
models a process in which the decisions are made at the start of
each time period to maximize profit for that time period. In this

Chapter

56 Analytica 3.1 Optimizer Guide

Intelligent Arrays, array abstraction and NLP6
case, the decisions and objectives (and possibly constraints) are
indexed by time. Again, the function Airline_NLP(), which we
defined earlier, comes in handy.

Variable Nlp_6 := Airline_nlp(Num_Planes, Fare,
Demand_by_year, Elasticity1)

Decision Optimal_decisions4 := LPSolution(Nlp_4)

Since Demand_by_year is indexed by Time, Airline_nlp()
creates an array of NLPs over time. The optimal decisions4 are
then computed separately for each year:

Case 7. NLP with Optimizations over time
If there are interactions between decisions in different years, you
may want to find the decisions in each year that collectively
maximize the NPV (or other objective that aggregates over time).
In this case, we want to perform only one optimization, but with
an expanded set of decisions, that comprises both decisions
over all time period. With 2 decisions in each of 6 time periods,
we define a Decisions vector of 12 elements. Note that
Decisions must be a one-dimensional vector with 12 elements,
not a two-dimensional table with 2 by 6 elements.

In this case, we choose to create a single table with the decision
settings -- initial values, Ctype, lower and upper bounds, for all
12 elements:

We derive the Decisions_by_time as a slice of this table:

Decision Decisions_by_time :=
Decision_params[Decision_settings='Initial']

See the module in the example model for details of how the NLP
is defined. Here are sample results for the optimal decisions:

The time to perform NLP optimization typically increases
superlinearly with the number of decision variables. So this
approach can become time consuming if you have many

Chapter

Analytica 3.1 Optimizer Guide 57

Intelligent Arrays, array abstraction and NLP6

decision variables and time periods. In general, it takes longer
than Case 6. Optimize for each year, which is linear in the
number of time periods.

Chapter

58 Analytica 3.1 Optimizer Guide

Intelligent Arrays, array abstraction and NLP6
Case 8. NLP with a dynamic model

The previous three cases are dynamic in the sense that the
model changes over time. However, they do not need to use the
Dynamic() function explicitly because the decisions in each
year do not depend on the results of the previous year. In this
final case, the optimization at each time step depends on the
results of the optimization at the previous time step, so we must
use Dynamic(): We assume that the planes are on long-term
leases: We can lease more planes each year, but cannot
decrease them because of the lease agreement. This means that
the lower bound on the number of planes decision in each period
is the value of the optimal number of planes computed in the
previous time period, thus:

Variable Nlp_5 := Dynamic(
Airline_nlp_mev(Num_planes, Fare, Demand,

Elasticity1),
Airline_nlp_mev(Optimal_num_planes[Time-1],

Fare, Demand_by_year, Elasticity1))
Decision Optimal_decisions_8:= LPSolution(Nlp_8)
Decision Optimal_num_planes :=
Optimal_decisions_8[Dvars = 'Number of planes']

Note that this creates a dynamic loop, with the time lagged
dependence shown in the diagram in gray:

Summary of array abstraction for NLP
These airline problem Cases 1 to 8 shown above illustrate ways
to reformulate a problem for NLP to deal with various issues of
array abstraction and Intelligent Arrays. Case 1 shows how to

Chapter

Analytica 3.1 Optimizer Guide 59

Solving Systems of Equations6
combine multiple scalar decisions into a single vector of
decisions, as needed for NLPDefine(). Case 7 shows how to
assemble array-valued decisions into a single vector of
decisions. Case 2 shows that you require no special
reformulation for NLP to maximizes expected value (or other
statistical function of an uncertain objective), since the objective
is a scalar, even if the underlying model has uncertainty.
Similarly, Cases 5 and 7 illustrate that maximizing the net
present value (or another objective that aggregates over time)
produces a scalar value for the objective, so you can apply
NLPDefine() directly.

In the other cases, the objective is intrinsically an array of values,
indexed by Run for uncertainty in Case 3, by a parametric
analysis (Demand) in Case 4, and by Time in Cases 6 and 8. We
handle these cases in a similar way: We encapsulate the
NLPDefine() in a function whose parameters are qualified as
Atomic, so that each call to NLPDefine() is made with the
required inputs and hence the Objective passed to X as scalar.
The result of calling these functions is an array of NLPs.
Functions of this result, such as the optimal decisions,
LPsolution(), status, LPStatusText(), and optimal value,
LPOpt(), are therefore similarly indexed by these extra
dimensions.

For more details, look at the example Analytica file that contains
these cases: Example Models/Optimizer Examples/
Airline NLP.ANA.

These examples show how to deal with array abstraction for the
objective Obj. The same approach will work for the other
parameters that are repeatedly evaluated during an optimization,
i.e. LHS, Gradient, and Jacobian. All other parameters array-
abstract automatically.

Solving Systems of Equations
Solving a system of non-linear equations is a special case of a
non-linear program. The set of solutions is the set of feasible
points. The non-linear optimizer can be used to find a solution to
a system of equations by encoding the system of equations as
the set of constraints, using a Sense of "=". You can set the
objective function (the Obj parameter) to zero if you simply care
about finding any solution, or you can use the objective to
express a preference among solutions when the system of
equations has, or may have, multiple solutions.

Chapter

60 Analytica 3.1 Optimizer Guide

Other examples6
Other examples

If you haven’t already, you may find it useful to follow through the
steps in the “Quick Start” section for creating a non-linear
optimization model (see “A Non-linear Program,” on page 14).

The Example Models/Optimizer Examples directory,
installed with Analytica, contains several models demonstrating
non-linear optimization. These models include:

• Asset Allocation.ana: A classic portfolio
optimization problem, formulated in four ways. One
formulation uses a linear objective with a quadratic
constraint, which qualifies as a non-linear problem. Another
formulation maximizes expected utility, thus demonstrating
the use of stochastic simulation within a non-linear
optimization. The other two formulations are quadratic
programs.

• NLP with Jacobian.ana: A very simple non-linear
program demonstrates the use of a gradient and Jacobian,
as well as the use of a local variable for X.

• Optimal can dimensions.ana: The example is the
one used in Chapter 2, “2: Quick Start,” of this manual. The
problem is to find the dimensions for a cylindrical can to
hold a given volume using the minimum surface area.

• Solve using NLP.ana: A very simple example of
using the non-linear optimizer to solve a non-linear system
of equations.

Giving hints to help the Optimizer
The Optimizer tries to identify characteristics of your NLP
problem so that it can choose the most efficient and reliable
algorithms. In some cases, you can improve its performance by
telling it things about the problem that it may not be able to figure
out on its own.

Type of dependence
If the Optimizer knows that the objective has smooth nonlinear
dependence on some or all of the decision variables, it can use
much faster gradient-based algorithms than in the general case
that allows discontinuous functions. You can provide this
information using these two optional parameters to
NlpDefine().

Chapter

Analytica 3.1 Optimizer Guide 61

Giving hints to help the Optimizer6
objNl: Optional TextType[Vars]
lhsNl: Optional TextType [Vars,
Constraints]

You should provide each of these parameters with one of these
text values:

• "L": Linear or no dependence

• "N": Smooth non-linear dependence

• "D": Discontinuous

You can provide a single text value to each parameter, e.g., "N",
to specify the same type of dependence for all decision variables
and, to lhsNl, for all constraints. Otherwise, if the type of
dependence varies by variables and constraints, you will
probably create a variable defined as an edit table indexed by
Vars and Constraints, to specify each dependency type.

When the objective has linear or smooth non-linear dependence
on continuous decision variables, the optimizer uses an efficient
gradient-based search method. If it knows that the dependence
is linear (and so has constant derivative), it can drastically speed
the search by reducing the number of re-evaluations of the
objective. If one or more decision variables are discontinuous,
the Optimizer uses a genetic (evolutionary) algorithm, in which
multiple candidate solutions are maintained, and the search is
performed by mutating and recombining members of the
population based on a fitness metric.

If you do not indicate the type of dependence, the optimizer will
assume the worst case, i.e., discontinuous. This limits its ability
to take advantage of the simpler dependencies that might exist.
On the other hand, if your search space is very rough, with many
local optima, the genetic algorithm may actually perform better,
so in some complex cases you may find better performance by
using "D" (or omitting these parameters). You may simply need
to try it both ways to find out.

Gradient and Jacobian Functions
If the decision variables are all continuous, you can speed up the
optimizer considerably if you can give it an analytical expression
for the gradient of the objective function and/or the Jacobian of
the constraint left-hand sides. The gradient and Jacobian enable
the Optimizer to avoid most re-evaluations of the objective and
LHS expressions, respectively, which it uses estimate the partial
derivatives based on small changes to each decision variable.

Chapter

62 Analytica 3.1 Optimizer Guide

Giving hints to help the Optimizer6
The gradient of the objective function is a vector indexed by
Vars, where each element is the partial derivative:

where is the objective function.

The Jacobian of the left-hand side of the constraints is a matrix,
indexed by Vars and Constraints, where each element is the
partial derivative:

where is the left-hand side of constraint j.

The gradient and Jacobian parameters accept an Analytica
variable or expression, which should depend on X, directly or
indirectly. The Optimizer evaluates these parameters
deterministically repeatedly at each step of the search process
Assuming X is indexed only by Vars, the gradient must be indexed
only by Vars, and the Jacobian must be indexed only by Vars and
Constraints. See “Intelligent Arrays, array abstraction and NLP,”
on page 49 for information on coping with these restrictions.

It is important for your gradient and Jacobian expressions to be
correct, otherwise you will mislead the optimizer and it may move
away from the optimum. Debugging a Jacobian expression can
be challenging. However, you can check whether the Jacobian is
correct using the optional parameter, DerivMethod, to
NlpDefine():

NlpDefine(…, DerivMethod: "check", …)

When DerivMethod is set to "check", the Optimizer compares
the supplied Jacobian expression, with the Jacobian that it
estimates using finite differencing. If they are not within a small
difference, the Optimization will stop with LpStatusNum() = 67
(“error in evaluating problem functions”). Once you have
confirmed the supplied Jacobian is correct, remember to reset
Derivmethod to "Jacobian" so that the Optimizer reaps the
benefits of not having to estimate the Jacobian itself at each
search point.

xi∂
∂ f x()

f x()

xi∂
∂ gj x()

gj x()

Chapter

Analytica 3.1 Optimizer Guide 63

Controlling the Search6
Initial Guess

If you know the approximate region that contains the optimal
solution, you can speed the Optimizer by giving it an initial
solution in that region. You specify this starting solution as an
array indexed by Vars for the optional parameter guess:

guess: Optional Numeric[Vars]

If you do not provide this parameter, and if you provide a global
variable (as opposed to a local variable) for X, the Optimizer
users the current value of X as its starting solution.

Controlling the Search
Several optional parameters to NlpDefine() can be used to
control how the search is conducted, and when the search is
terminated.

Method Parameters
Several optional parameters influence how the optimizer makes
decisions. The first group applies to gradient-based search, used
with linear and smooth non-linear functions.

Gradient-search control LinVar: Optional Boolean

When LinVar is specified and set to True, the Optimizer will
attempt to detect automatically decision variables that influence
the objective and constraints in a linear fashion. It can then save
time by pre-computing partial derivatives for these variables for
the rest of the search. This aggressive strategy can create
problems when a dependence changes dramatically throughout
the search space, particularly when a decision variable is near
linear around the starting point, but the gradient changes
elsewhere in the search space.

The DerivMethod parameter controls how derivatives are
computed:

DerivMethod: Optional TextType
• "forward": This is the default if Jacobian and gradient

parameters are not supplied. The optimizer estimates
derivatives using forward differencing, i.e.,

x()∂
∂ f x ∆+() f x()–

∆
-----------------------------------≈

Chapter

64 Analytica 3.1 Optimizer Guide

Controlling the Search6
• "central": The optimizer estimates derivatives using

central differencing, i.e.,

• "jacobian": The optimizer computes derivatives using
the supplied Jacobian and gradient expressions. This is the
default if these are supplied.

• "check": The optimizer computes derivatives using the
supplied Jacobian expression and also estimates the
Jacobian using finite differencing. If they don’t agree to
within a small tolerance, the optimization aborts with
LpStatusNum() = 67 (“error in evaluating problem
functions”). This option is useful for testing whether the
Jacobian is accurate.

The DirecMethod parameter controls how the gradient-based
search determines the next point to jump to during search:

DirecMethod: Optional TextType
• "Newton": Uses a quasi-Newton method, maintaining an

approximate Hessian matrix for the reduced gradient
function.

• "Conjugate-gradient" or "CG": Use a conjugate
gradient method, which does not require the Hessian.

The EstimMethod parameter controls the method used to
estimate the initial values for the basic decision variables at the
beginning of each one-dimensional line search:

EstimMethod: Optional TextType
• "linear": Uses linear-extrapolation from the line tangent

to the reduced objective function.

• "quadratic": Extrapolates to the extrema of a quadratic
fitted to the reduced objective at its current point.

Genetic Algorithm
Control

When a problem has discontinuous dependencies, or when the
optional objNl and lhsNl parameters are not specified, the non-
linear optimizer uses a genetic algorithm-based method. You can
use these parameters to modify how the Optimizer applies this
algorithm:

SampSz: Optional Positive
Mutate: Optional Positive

x∂
∂ f x ∆+() f x ∆–()–

2∆
--≈

Chapter

Analytica 3.1 Optimizer Guide 65

Controlling the Search6
SampSz specifies the population size of candidate solution to be
maintained by the genetic algorithm. If not specified or zero, the
algorithm will select a “reasonable” size, usually 10 times the
number of decision variables, but no more than 200.

Mutate specifies he probability that the evolutionary Optimizer
engine, on one of its major iterations, will attempt to generate a
new point by “mutating” or altering one or more decision variable
values of a current point in the population of candidate solutions.

Termination Criteria
In general, the non-linear Optimizer has no way to know whether
it has found the global optimum, since there may be many local
optima and the search space may not be convex. In such cases,
the termination criteria are particularly important. These optional
parameters control when the non-linear Optimizer stops its
search and returns a solution:

itLimit: Optional Positive:
noImpSeconds: Optional Positive:
timeLimit: Optional Positive:
convTolerance: Optional Positive

ItLimit: The maximum number of optimization steps
during the search.
Default: no limit.

NoImpSeconds: The maximum number of seconds that the
Optimizer will continue without finding any
improvement in the best solution.
Default: 30 seconds.

TimeLimit: The maximum number of seconds that the
Optimizer will spend on the entire optimization
problem. If this limit is exceeded, it returns the
best solution so far, if any; and LpStatusNum()
returns 7 (“feasible solution found”) or 8 (“no
feasible solution found yet”).
Default: no limit.

ConvTolerance: Convergence tolerance. Used to detect a slowly
changing objective. When a smooth optimizer
algorithm is employed, the optimization will
terminate when the previous 5 iterations have
not deviated by more than this amount. For the
non-smooth, non-linear optimizer (which utilizes
a genetic algorithm), the optimization will

Chapter

66 Analytica 3.1 Optimizer Guide

Controlling the Search6
terminate when 99% of the population have
“fitness values” that differ by less than this
value. In either case, the Optimizer returns
status 65 (“objective changing too slowly”).
Default: 10-4

Chapter

Analytica 3.1 Optimizer Guide 67

Writing and Reading From a File7
7: Debugging a Problem Formulation

Writing and Reading From a File
A linear or quadratic optimization formulation can be written to
(and read from) a text file using the functions

LpWrite()
LpRead()

LpWrite(lp: LpType: filename: TextType)
LpRead(filename: TextType)

LpWrite() returns the full filename path written to. LpRead()
returns an <<LP>> or <<QP>> object. Viewing the resulting file
can sometimes be useful for detecting problems with your call to
LpDefine() or QpDefine(). These functions cannot be used
on a non-linear optimization. The filename are interpreted relative
to the current Analytica data directory.

Diagnosing Conflicting Constraints
If you have conflicting constraints in your formulation, there will
be no feasible solution. When you have many constraints, you
can find the conflicting constraints by computing an Irreducibly
Infeasible Subset (IIS) of constraints using one of the functions

LpFindIIS()
LpWriteIIS()

LpFindIIS(lp: LpType)
LpWriteIIS(lp: LpType; filename: TextType)

An Irreducibly Infeasible Subset of constraints is a subset of your
constraints which contains no feasible solution, but which has
the property that if any single constraint is removed, there will be
feasible solutions. Thus, it is a minimal set of conflicting
constraints.

LpFindIIS() returns a subset of your Constraints index. This
can be used on linear, quadratic and non-linear optimizations.

LpWriteIIS() writes the IIS to an indicated file and returns the
full file path. This function can be used with linear and quadratic
optimizations, but not with non-linear optimization problems. The
file format is the same as that used by LpWrite().

Debugging a Non-Linear Optimization
After formulating a non-linear problem, you may find that the
optimization runs and returns something other than what you
expect. After viewing the LpStatusText(), it may not be clear why
it terminated where it did, or why it didn’t succeed in solving your

Chapter

68 Analytica 3.1 Optimizer Guide

Debugging a Non-Linear Optimization7
optimization as you desire. In these cases, you may need to
monitor the optimization while it is searching in order to debug
why it is doing what it is doing. Being familiar with a few Analytica
tricks can be of great assistance here.

Using MsgBox to
Debug

One of the first things to try is to simply peek at what values
optimizer is plugging in for X. You can do this by inserting a
MsgBox inside the expression that computes your objective (or
in any node downstream of X and upstream of your objective
expression). For example, if your objective expression is

obj: Sum(Exp(-a*x), Vars)

you might modify this to read:

obj: MsgBox(x,0,"X="): Sum(Exp(-a*x), Vars)

Then each time the optimizer evaluates the objective, a message
box will appear on the screen, allowing you to view progress.
Seeing the optimizer in action will often give you an
understanding of what it would take to improve the search.

There are a few quirks to be aware of when using MsgBox in this
fashion. First, the noImpSeconds parameter specifies a
maximum time the optimizer will work with no improvement in the
best feasible solution found so far. Time spent staring at the
message box will count towards time spent, and may result in an
earlier termination. If this happens, you may want to explicitly set
this parameter in your call to NlpDefine() to something large.

A second quirk is that if you decide to print out multiple pieces of
information with a message box, you must consider how they will
array abstract. MsgBox() prints out a description of your entire
array result, but its parameter is evaluated before it even
considers printing it. So, if you call MsgBox() using:

MsgBox("x=" & x)

when x is array-valued, you’ll see something like:

rather than

X=Array(Vars,[X=0.2,0.5,-0.3])

Chapter

Analytica 3.1 Optimizer Guide 69

Debugging a Non-Linear Optimization7
as you might have expected. If you plan on displaying multiple
variables in the same message box, consider using expressions
such as:

MsgBox("X=[" & join(X, Vars,",") & "]")

which outputs:

You can scatter MsgBox() calls throughout expressions to peek
at the optimization at various points as it progresses.

Writing trace to file One difficulty with using the MsgBox() trick is that you may need
to view a lot of dialogs during the course of your optimization.
Another option is to write trace information to a log file and view
it separately to understand how the search progressed.

The Analytica function

WriteTextFile(filename, text, appendFlag)

can be used for this purpose. The filename is interpreted relative
to the current Analytica data directory, and the function returns
the full file path actually written. Passing TRUE for the third
parameter appends each line to the log file, so that the full search
is captured. You can then view the log file in a separate text
editor to diagnose what went wrong. The information of interest
is provided in the text parameter, which you should ensure is
atomic and not an array. If you pass an array, each element of
the array will be written separately.

It is often convenient to define a constant named CRLF having
the definition Chr(13) & Chr(10). With such a constant, your
objective function expression might look like:

obj: LpWrite("log.out",
"x="&join(x,Vars)&crlf,
True):

Sum(Exp(-a*x), Vars)

Chapter

70 Analytica 3.1 Optimizer Guide

Debugging a Non-Linear Optimization7

Chapter

Analytica 3.1 Optimizer Guide 71

Problem Definition Functions8
8: Optimization Function Reference

Problem Definition Functions
LpDefine(Vars, constraints: IndexType;

objCoef: Numeric[Vars];
lhs: Numeric[Vars,Constraints];
rhs: Numeric[Constraints];
sense: Optional TextType[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
ItLimit, NdLimit, MipLimit,

TimeLimit: Optional Positive;
OptTolerance, PivotTolerance, FeasTolerance,

GapTolerance: Optional Positive;
OptLb,OptUb: Optional Numeric;
scaling: Optional Numeric)

Defines a linear optimization program. See the “3: Formulating
an Optimization Problem” on page 19 for a description of usage
and parameters.

QpDefine(Vars, Vars2, constraints: IndexType;
c: Numeric[Vars];
Q: Numeric[Vars,Vars2];
lhs: Numeric[Vars,Constraints];
rhs: Numeric[Constraints];
sense: Optional TextType[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
guess: Optional Numeric[Vars];
warnIndefinite: Optional Boolean;
ItLimit, NdLimit, MipLimit,

TimeLimit: Optional Positive;
OptTolerance, PivotTolerance, FeasTolerance,

GapTolerance: Optional Positive;
OptLb,OptUb: v Numeric;
scaling: Optional Numeric)

Defines a quadratic optimization program. See the “3:
Formulating an Optimization Problem” on page 19 for a
description of usage and parameters.

Chapter

72 Analytica 3.1 Optimizer Guide

Other Functions8
NlpDefine(Vars, constraints: IndexType;

x: lVarType;
obj, lhs: Expression;
rhs: Numeric[Constraints];
sense: Optional TextType[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
guess: Optional Numericl[Vars];
gradient, jacobian: Optional Expression;
objnl: Optional TextType[Vars];
lhsnl: Optional TextType[Vars, Constraints];
itLimit, noImpSeconds, timeLimit,

convTolerance: Optional Positive;
mutate: Optional Positive;
linVar: Optional Scalar;
DerivMethod, EstimMethod, DirecMethod:

Optional TextType;
SampSz: Optional Positive)

Defines a non-linear optimization problem. See the “3:
Formulating an Optimization Problem” on page 19 for a
description of usage and parameters.

Other Functions
LpFindIIS(lp: LpType)

Computes and returns the Irreducibly Infeasible Subset (IIS) of
the constraints. This is meaningful when LpStatus(lp)=2 (“no
feasible solution”), and is useful for identifying what portions of
your constraint formulation make the problem infeasible.

LpObjSa(lp: LpType; v: Optional)

Returns the sensitivity ranges for the objective function
coefficients for a linear program lp for decision variable(s) v,
which should be one of or a subset of decision variables, Vars.
If v is omitted, it computes the sensitivity for all Vars.

LpOpt(lp: LpType)

Returns the value of the objective function at the optimum.

Chapter

Analytica 3.1 Optimizer Guide 73

Other Functions8
LpRead(filename: TextType;

Vars, constraints: Optional IndexType)

Reads a linear or quadratic program definition from file
filename, previously written by LpWrite() and returns an
opaque <<LP>> or <<QP>> object. The optional Vars and
constraints are the corresponding indexes for the LP, and must
be of the same size as the problem read in.

LpReducedCost(lp: LpType)

Returns the reduced costs (dual values) of each variable as an
array indexed by Vars.

LpRHSSa(lp: LpType;constraint: Optional)

Returns the sensitivity ranges for the RHS values. The default is
to compute sensitivities for all RHS values, with the result
indexed by Constraints. If you specify the optional second
parameter, it returns the sensitivity for only that constraint or
subset of constraints.

LpShadow(lp: LpType)

Returns the shadow prices (dual values of the constraints) as an
array indexed by constraints.

LpSlack(lpv)

Returns the slack or surplus values at the optimal solution as an
array indexed by constraints. If it cannot find an optimal
solution, it generates an appropriate error.

LpSolution(lp: LpType)

Returns the optimal solution to the linear, quadratic, or non-linear
programming problem lp defined by LpDefine(),
QpDefine(), or NlpDefine(). The result is an array of
decision variables indexed by Vars. If it cannot find an optimal
solution, LpSolution() returns the best values found during
the search so far, and LpStatusNum() and LpStatusText()
indicate why it has not found an optimal solution.

LpStatusNum(lp: LpType)

Chapter

74 Analytica 3.1 Optimizer Guide

Other Functions8
LpStatusText(lp: LpType)

Returns the status number as an integer and corresponding text
message, respectively, of the optimization problem lp. It is wise
to examine the status before evaluating LpSolution() to avoid
an error message.Possible results include:

LpStatusNum() Return Values

Status Description (LpStatusText)

1 Optimal solution found

2 No feasible solution

3 Objective unbounded

5 Iteration limit exceeded, feasible

6 Iteration limit exceeded, not yet feasible

7 Time limit exceeded, feasible

8 Time limit exceeded, not yet feasible

65 Objective function changing too slowly

66 All remedies failed to find a better point

67 Error in evaluating problem functions

68 Could not allocate enough memory

69 Attempt to re-enter Optimizer engine during
solution

101 The MIP optimal solution found

102 MIP solution found within gap tolerance
(see “Controlling The Search” on page 32)

103 No feasible integer solution

104 Integer solution limit exceeded

105 Node limit exceeded, feasible

106 Node limit exceeded, not feasible

107 Time limit exceeded, feasible

108 Time limit exceeded, not feasible

Chapter

Analytica 3.1 Optimizer Guide 75

Other Functions8
LpWrite(lp: LpType; filename: TextType)

Writes a TextType description of a linear or quadratic program,
lp, defined using LpDefine() or QpDefine(), to a file with the
specified filename. Note that if lp is an array of LP problems, and
the filename does not share the same dimension, the file written
by LpWrite() will contain the result of only the last lp.

LpWriteIis(lp: LpType; filename: TextType)

Writes an Irreducibly Infeasible Subset (IIS) of a linear or
quadratic program to a file, including only a subset of constraints
that is infeasible, but with the property that if any single
constraint is removed, the resulting problem will be feasible. The
format is the same as that used by LpWrite().

Chapter

76 Analytica 3.1 Optimizer Guide

Other Functions8

	Contents
	1: Introducing the Analytica Optimizer
	What do I need to know?
	What is the Analytica Optimizer?
	How do I obtain the Analytica Optimizer?
	To Activate the Optimizer for Analytica
	To activate Analytica Optimizer for ADE

	2: Quick Start
	Who this is for
	Browsing Analytica Optimizer Functions
	A Linear Program
	LpStatusNum() Return Values

	A Non-linear Program

	3: Formulating an Optimization Problem
	Continuous, integer, and mixed-integer programs
	Choosing the type of optimization
	Solving simultaneous equations

	4: Linear Optimization
	Defining a Linear Optimization Problem
	Optional parameters
	Lower and Upper Bounds on Decision Variables
	Maximizing the objective
	Sense of Constraints

	Obtaining the Solution
	Secondary Aspects to Solution
	Slack or Surplus: LpSlack(lp: LpType)
	Coefficient Sensitivity: LpObjSa() & LpRhsSa()
	Dual Values: Shadow Prices and Reduced Costs

	Examples
	Integer & Binary Decision Variables
	Controlling The Search
	Termination Control
	Tolerance and Precision Control
	Algorithm Control

	Array Abstraction

	5: Quadratic Program Optimization
	Defining a Quadratic Program
	Quadratic Optimization Problem: Standard Form

	Solution Properties
	Common Quadratic Situations
	Obtaining the Solution
	Examples

	6: Non-linear Optimization
	Problem Formulation
	Non-Linear Optimization: Basic Form

	Obtaining the Solution
	Optional Parameters for NLP
	Maximize
	Sense
	Bounds

	Integer, Binary and Mixed-Integer Programs
	The Airline Example for NLP
	Reformulating the decision variables for NLP
	Case 1. Simple NLP Optimization

	Intelligent Arrays, array abstraction and NLP
	Case 2. Maximize expected value: NLP with uncertainty
	Case 3. NLP with uncertainty: Probabilistic optimization
	Case 4. NLP and parametric analysis
	Case 5. NLP over time using NPV
	Case 6. Optimize for each year
	Case 7. NLP with Optimizations over time
	Case 8. NLP with a dynamic model
	Summary of array abstraction for NLP

	Solving Systems of Equations
	Other examples
	Giving hints to help the Optimizer
	Type of dependence
	Gradient and Jacobian Functions
	Initial Guess

	Controlling the Search
	Method Parameters
	Termination Criteria

	7: Debugging a Problem Formulation
	Writing and Reading From a File
	Diagnosing Conflicting Constraints
	Debugging a Non-Linear Optimization

	8: Optimization Function Reference
	Problem Definition Functions
	Other Functions
	LpStatusNum() Return Values

