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What do I need to know?1
1: Introducing the Analytica Optimizer

This Optimizer Guide explains how to use the Analytica 
Optimizer. The Quick Start chapter is a tutorial taking you 
through the key steps to create some simple example Analytica 
models that use linear and nonlinear optimization. The chapter 
on Formulating an Optimization helps you to formulate your 
model for optimizing, and to choose whether it requires linear 
programming (LP), quadratic programming (QP), and non-linear 
programming (NLP). The other chapters provide more details on 
each of these three types of optimization and their many options. 
The final chapter gives a concise reference for all the 
optimization functions.

What do I need to know?
This Guide, including the Quick Start chapter, assumes you have 
basic knowledge of building models and writing expressions in 
Analytica. If you do not, you might first work though the Analytica 
Tutorial and scan through the Analytica User Guide.

This Guide provides an introduction to the basic concepts of 
optimization, including linear, quadratic, and nonlinear 
programming. It is not, however, a complete textbook on 
optimization. You may find it useful, especially for more 
challenging applications, to consult one of the many good 
textbooks on optimization.

What is the Analytica Optimizer?
The Analytica Optimizer adds to Analytica powerful functions to 
find optimal decisions and to solve equations. An optimal 
decision strategy may maximize value, minimize costs, or any 
quantified objective. The optimization may be subject to a set of 
constraints. It offers linear programming (LP), quadratic 
programming (QP), and non-linear programming (NLP). LP 
requires linear objective functions and linear constraints. QP 
requires quadratic objective functions and linear constraints. 
NLP handles general nonlinear objective and constraint 
functions. All three methods handle decision variables that are 
continuous, discrete (integer or Boolean), or mixed. 

The Analytica Optimizer uses the Premium Solver Platform 
licensed from Frontline Systems, Inc. Frontline is the world 
leader in spreadsheet optimization: It developed the optimizer/
solvers in Microsoft Excel and other spreadsheets. Their 



Chapter  

2 Analytica 3.1 Optimizer Guide

How do I obtain the Analytica Optimizer?1
Premium Solver is the leading add-on software for spreadsheet 
optimization, and incorporates state-of-the-art technologies. The 
LP and QP methods handle up to 2000 decision variables and 
8000 constraints. The NLP methods offer hybrid methods using 
classical gradient-search and evolutionary (genetic) algorithms 
for smooth and discontinuous objective functions, with up to 500 
decision variables and 250 constraints.

The Analytica Optimizer performs optimization under uncertainty 
to maximize expected values, minimize loss percentiles, and 
other statistical functions of objectives and constraints. The LP 
and QP methods fully support Analytica's Intelligent Arrays: 
Thus, you can easily create arrays of optimizations conditioned 
on samples from uncertain variables, for parametric analysis of 
effects of key assumptions, and for each time period in a 
dynamic model. The nonlinear programming (NLP) functions do 
not fully support Intelligent Arrays. But, you can optimize 
nonlinear objectives that aggregate over dimensions — e.g. 
expected net present value to aggregate over uncertainty and 
time. 

The Analytica Optimizer is an add-on module for Analytica 
Enterprise 3.1. After developing optimizer-based models with 
Enterprise, you can deliver them to end users on the desktop 
using Analytica Power Player, or via a Web-browser on a server 
computer using the Analytica Decision Engine(ADE) with an 
Optimizer license.

How do I obtain the Analytica Optimizer?

You can purchase a license for the Analytica Optimizer bundled 
with Analytica Enterprise, ADE, or Power Player. Or you can 
purchase a license for the Optimizer as an add-on module if you 
already have Enterprise or ADE. 

If your copy of Analytica is for release 3.0 or earlier, you will need 
to upgrade it to release 3.1, because the Optimizer does not 
work with earlier releases. If you have a maintenance agreement 
for Analytica 3.0 (included free for 12 months from purchase), 
you can upgrade it free to Release 3.1.

If you have the Professional edition of Analytica, you will need to 
upgrade it to the Enterprise edition to work with the Optimizer. 

For more information, visit the Lumina web site:

http://www.lumina.com

or call Lumina at 650-212-1212.
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To Activate the Optimizer for Analytica1
To Activate the Optimizer for Analytica

If you have already installed any edition of Analytica 3.1, your 
installation already includes the Optimizer: There is no need to 
download new software. To activate the software to use the 
Optimizer, all you need to do is to enter into Analytica a new 
license code with the Optimizer option. Follow these steps:

1. Start up Analytica in the usual way, e.g. via the Windows Start 
menu, or by double-clicking on an Analytica model file.

2. From Analytica’s Help menu, select the Update license… 
option, to show the Analytica Licensing Information dialog 
box.

3. Replace the existing license code at the bottom of the dialog 
box with a new code that activates the optimizer. If you have 
received the new license code in an E-mail, you can copy and 
paste it directly into the dialog box. 

4. Click OK.

5. Exit and restart Analytica.

You can verify successful activation of Analytica Optimizer by 
examining the splash screen when Analytica starts up, or by 
going to Help > About Analytica.  The splash screen should 
display "Analytica <edition> with Optimizer", like this:
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To activate Analytica Optimizer for ADE1
To activate Analytica Optimizer for ADE

Analytica Optimizer also works with the Analytica Decision 
Engine (ADE) release 3.1. An ADE Kit license includes a license 
code for Analytica Enterprise for developing models, as well as 
a code ADE for the production server. Similarly, ADE with the 
Optimizer includes a license code for Analytica Enterprise with 
the Optimizer as well as a code for ADE with Optimizer. See the 
preceding section on how to activate Analytica Enterprise with 
Optimizer. 

If you currently use ADE release 3.0 or earlier, you will first need 
to upgrade it to release 3.1. The upgrade to ADE 3.1 with 
Optimizer will include license codes for Enterprise and ADE, 
each with the Optimizer. 

To upgrade an existing installation of ADE 3.1 to activate the 
optimizer, follow these steps to enter a new license code with the 
Optimizer:

1. Open a command prompt. From the Start menu, select Run, 
type cmd (or command on Win98/ME) and press OK.

2. Type: cd ADE_Dir
where ADE_Dir is the path to the directory for ADE 3.1. 
On many computers this will be:
cd c:\Program Files\Lumina\ADE3.1

3. Type: ade.exe /RegServer
A dialog will appear that will allow you to enter your new 
license code.

4. Enter the new license code and press OK.
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Who this is for2
2: Quick Start

Who this is for
This section leads you through a series of steps to create 
Analytica models that solve some simple linear and non-linear 
optimization problems. The reader should follow along by 
performing the steps in Analytica. 

If you’re already 
familiar with linear 
and non-linear 
programming…

If you are already familiar with concepts of linear, quadratic and 
non-linear programming, this provides a fast way to get started 
creating Analytica optimization models. Since this Quick Start 
chapter does not cover all the functions and features of Analytica 
Optimizer, and their use in complex situations, you should review 
the rest of the manual as well, especially “8: Optimization 
Function Reference” on page 71.

If you’re not an expert 
already…

If you do not already have a previous background in linear and 
non-linear programming, performing the step-by-step 
instructions in this section may be the best place to start, even if 
you don’t yet understand why each step is being done. 
Afterwards, read the remainder of this manual, returning to the 
examples in this section as you learn more about Analytica 
Optimizer. Also, be sure to explore the optimizer example 
models included with Analytica Optimizer.

Analytica 
prerequisites…

This manual, including this Quick Start section, assumes a basic 
knowledge of modeling and writing expressions in Analytica. If 
you do not yet have this background, you should go through the 
Analytica Tutorial and Users Guide prior to continuing with this 
manual.

Browsing Analytica Optimizer Functions
To begin, follow these steps:

1. Start Analytica in the usual way, e.g., using the menus: 
Start > Programs > Analytica 3.1 > Analytica 3.1.

2. In the main application menu, select Definition.

3. Move your cursor down to the Optimizer submenu.

On the submenu that pops up, take a minute to scan the 
Analytica Optimizer function names. If you do not have an 
Optimizer option on your Definitions menu, it means that you do 
not have an Analytica Optimizer-activating License Code. You 
will need to contact Lumina at sales@lumina.com.
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A Linear Program2
4. Select the diagram window and press CTRL-2 to create a new 

variable, and CTRL-E to edit its definition.

5. Select Paste Identifier… on the Definition menu.

6. Using the library pull-down, select Optimizer.

From here you can review the optimizer functions along with 
parameters and function descriptions. The two main functions to 
study initially are LpDefine() (to define a linear program) and 
LpSolution() (to solve a linear program).

A Linear Program
This section will take you through the process of encoding a 
linear program in Analytica Optimizer. The model you create 
here is included in the Example Models/Optimizer 
Examples directory installed with Analytica under the name Two 
Mines.ANA. The problem you will encode is described as 
follows:

The Two Mines Company owns two different mines that pro-
duce an ore which, after being crushed, is graded into three 
classes: high, medium and low-grade. The company has con-
tracted to provide a smelting plant with 12 tons of high-grade, 
8 tons of medium-grade and 24 tons of low-grade ore per 
week. The two mines have different operating characteristics 
as detailed below.

How many days per week should each mine be operated to 
fulfill the smelting plant contract?1 

LpStatusNum() Return Values

Mine Cost per 
Day ($1000)

Production (tons/day)

High 
Grade

Medium 
Grade

Low 
Grade

X 180 6 3 4

Y 160 1 1 6

1. This example was created by J.E. Beasley. 
Cf. http://www.brunel.ac.uk/depts/ma/research/jeb/or/contents.html 
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A Linear Program2
The first step is to identify the decision variables, in this case the 
number of days per week to operate each mine, and then create 
an index variable naming each decision variable: 

7. Create an index name and name it Mines.
We will use this as the index for the objective variables, i.e., 
the number of days per week to operate each mine.: 

8. Edit its definition attribute and set its definition pull-down to 
List Of Labels.

9. Enter the labels Mine X and Mine Y:

Next, enter the mining costs, which will become the objective 
coefficients that define the objective as a linear function of the 
decision variables:

10. Create a variable and name it Mining_Costs. Set its units 
attribute to $K/day.
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A Linear Program2
11. Edit its definition attribute and set the definition type to Table. 

In the index chooser, select Mines and press OK. Populate 
the table with the operating costs as follows:

In this problem, there is one production constraint for each grade 
of ore. Thus, an index for ore-grade can serve as the constraint 
index:

12. Create an Index variable and name it Ore_Grades. Set its 
definition to a list of labels, thus:
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A Linear Program2
13. Create a decision variable and name it Ore_Production. Set 

its Units to tons/day. Set its Definition type to Table and in 
the Index chooser select both Mines and Ore_Grades. Fill in 
the table thus:

14. Create a variable and title it "Ore Production Requirements". 
For convenience, set its identifier to Ore_Prod_req. Set its 
Units to tons/week. 
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A Linear Program2
15. Edit the definition attribute for Ore Production Requirements 

and set the definition type to Table, selecting Ore_grades as 
its index. Fill in the Edit Table thus:

Note that the constraints for the problem are, for each ore grade:

Sum(Ore_production*x, Mines) >= Ore_prod_req

where x is the objective, i.e., the number of days per week to 
operate each mine. 

We now have all the inputs required to define the linear program.

To create the linear program to solve this problem:

16. Create a variable and name it My_LP. Enter the following 
definition:

LpDefine(Vars: Mines, 
constraints: Ore_grades,
objCoef: Mining_costs,
lhs: Ore_production,
sense: ">",
rhs: Ore_prod_req,
lb: 0,
ub: 5)

The parameters lhs, sense, and rhs refer to the left hand side of 
the constraint equations, the constraint equation comparator 
(greater than, equals, less than), and the right hand side of the 
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A Linear Program2

constraint equations, respectively. The last two parameters, lb 
and ub (the lower and upper bounds), specify the limits on the 
number of days per work week that a mine can operate. 

Note that the example above uses name-based calling syntax 
for the function LpDefine: You give each parameter by name, 
colon, and the expression to be passed, e.g. Vars: Mines. 
You can also use more conventional position-based syntax, but 
that is less comprehensible for functions like LpDefine with 
many parameters and options. (See "Name-based calling 
syntax" in Chapter 20 of the User Guide.)
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A Linear Program2
17. Select the My_LP node and press CTRL-R to evaluate it.

The LpDefine() function defines the linear program and 
returns a special object which displays as <<LP>>; however, it 
does not solve for the optimal solution. To do that:

18. Create an objective node and title it "Days per Week to 
Operate Mines". Set its units attribute to Days per week, 
and set its definition to LpSolution(My_LP)

Your model should now look something like: 
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A Linear Program2
19. Press CTRL-R to evaluate the linear program. The result view 

shows the optimal number of days per week to operate each 
mine: 

It is always a good idea to check the status of the optimization as 
well. To check on the status of the optimization:

20. Create an objective variable and name it Status. Enter the 
definition: LpStatusText(My_LP)

21. Evaluate the variable Status.

In this case, Status should be “optimal solution found,” indicating 
that the solution viewed earlier was indeed the optimum. If the 
search had terminated early for some reason, or it could not find 
a feasible solution, Status would show you the situation. See 
“Obtaining the Solution” on page 26 for the full list of possible 
status values.

The example produced a non-integer solution. Suppose we 
needed an integer solution — because you could operate each 
mine only for an integral number of days, and partial days are not 
possible. You can easily modify the problem to achieve this:

Click on My_LP and change its definition by adding a ctype 
(constraint type) parameter to indicate that you want an integer 
solution:
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A Non-linear Program2
LpDefine(Vars: Mines, 

constraints: Ore_grades,
objCoef: Mining_costs,
lhs: Ore_production,
sense: ">",
rhs: Ore_prod_req,
ctype: "I",
lb: 0,
ub: 5)

Click on Days per Week to Operate Mine and press CTRL-R to 
view the result. 

A Non-linear Program
You will now define and solve a non-linear optimization. Non-
linear optimizations are treated differently from linear and 
quadratic optimizations. In the previous linear programming 
example, the coefficient matrices completely describe the 
problem, and the optimum solution is simply computed. A non-
linear optimization, by comparison, repeatedly re-evaluates 
expressions or portions of your model during a search. You will 
indicate the portion of your model to re-evaluate to the 
NlpDefine() function.

We will formulate the following optimization problem:

Find the dimensions of a cylinder with minimum surface area 
with a volume of at least 500 cm3. 

This example can be found in the Optimal can 
dimensions.ANA example model in the Example Models/
Optimizer Examples directory installed with Analytica.
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A Non-linear Program2
To model this, we first create a self-indexed table, Dimensions, to 
index the decision variables and to hold candidate solutions. 

1. Start Analytica, or select File > New to start a new model.

2. Create a decision variable, name it Dimensions.

3. Set the definition type to Table, select Dimensions 
(Self) for the index, and fill in the edit table as follows: 

Since it is self-indexed, the Dimensions variable serves both as 
the optimization vector and as the Vars index. During the 
optimization search, the cell values will be set to candidate 
solutions and other portions of the model evaluated.

For convenience, we can break out the decision variables as 
Analytica variables. To do that, follow these steps:

4. Create a variable node, named Radius. Give it the definition:
Dimensions[Dimensions="r"]

5. Create a variable, named Height. Give it the definition:
Dimensions[Dimensions="h"]

Next compute the Surface Area and Volume. Surface_area will 
become the objective function. Volume will become a constraint.

6. Create a variable named Volume. Give it the definition:
height * Pi * radius^2

7. Create a variable named Surface_Area. Give it the definition:
2 * Pi * radius^2 + 2 * Pi * radius * height

8. Create a constant named Req_Volume 
(title: Required Volume). Set its value to 500.
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A Non-linear Program2

Next, set up the constraints, in this case there is only one. For 
non-linear problems, this involves setting up a constraint index, 
a left-hand side (which will be a computed expression) and a 
right-hand side. Sometimes it is convenient to do this as follows:

9. Create an index named cp with the title Constraint Parts. 
Define it as a list of labels: ["lhs","sense","rhs"]

10. Create a variable named Constraints. Set its definition to a 
table and select Constraints (Self) and Constraint Parts as the 
indexes. Set up the edit table so that Constraint Parts is on the 
horizontal dimension and Constraints is on the vertical 
dimension. Fill in the edit table as shown here:
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A Non-linear Program2
Now, define the non-linear optimization problem:

11. Create a variable named The_NLP. Give it the following 
definition:

NlpDefine(Dimensions, Constraints, 
x: Dimensions, 
obj: Surface_area,
lhs: Constraints[cp="lhs"],
sense: Constraints[cp="sense"],
rhs: Constraints[cp="rhs"])

This defines the non-linear optimization problem. The objective 
function is Surface_area, which is computed from the values in 
the Dimensions node. The left-hand side of the constraint is also 
computed from Dimensions.

When The_NLP is evaluated (by selecting the node and entering 
CTRL-R), an object is created that displays as <<NLP>>. 

At that point, the NLP is not solved, it is only defined. It is solved 
when a function such as LpStatusText() or LpSolution() is 
evaluated. To get the solution:

12. Create an objective node named Status, and set its definition 
to:
LpStatusText(The_NLP)

13. Create an objective node named Optimal_Dimensions and 
set its definition to:
LpSolution(The_NLP)
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A Non-linear Program2

When either of these objective nodes is evaluated, the 
optimization engine will search for and report the optimal 
solution. View the Status node’s result to make sure the 
optimization was successful, and view the Optimal_dimensions 
node to view the solution and its status.
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3
3: Formulating an Optimization Problem

The first step in performing an optimization is to formulate the 
problem appropriately. An optimization problem is defined by 
four parts: a set of decision variables, an objective function, 
bounds on the decision variables, and constraints. The 
formulation looks like this:

Decision variables A vector (one dimensional array)  of the 
variables whose values we can change to find an optimal 
solution. A solution is a set of values assigned to these decision 
variables. 

Objective A function  of the decision variables that gives a single 
number evaluating a solution. By default, the Optimizer tries to 
find the value of the decision variables that minimizes the value 
of objective. It will iinstead try to maximize the objective, if you 
set the optional parameter Maximize to true. For a linear 
program (LP), the Objective is defined by a set of coefficients or 
weights that apply to the decision variables. For a nonlinear 
program (NLP), the Objective can be any expression or variable 
that depends on the decision variables.

Bounds A range  on the decision variables, 
defining what values are allowed. These bounds define the 
search space — that is the set of possible solutions. Each 

Given 

such that

and

x x1 x2 … xn, , ,〈 〉=

minimize f x( )

lbi xi ubi,≤ ≤ i 1..n=

g1 x( ) b1≤

g2 x( ) b2≤

…
gm x( ) bm≤

Decision 

LHS Sense

Objective

Bounds

Constraints

 RHS

variables

x x1 x2 … xn, , ,〈 〉=

f x( )

lbi xi ubi,≤ ≤ i 1..n=
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Continuous, integer, and mixed-integer programs3
decision variable may have a lower bound and/or an upper 
bound. If not specified, the lower and upper bounds are -INF 
and +INF — that is, there are no bounds.

Constraints The constraints, e.g., , are bounds on functions of the 
decsion variables. They define which solutions are acceptable. 

Each constraint consists of a lefthand side (LHS) , which 

is a function of the decision variables, , a Sense, (<, =, or >) 

defining the direction of the constraint, and a constant, e.g . 

Continuous, integer, and mixed-integer programs
Each decision variable may be specified as continuous, 
meaning it is a real number (between bounds if specified), as 
integer, meaning a whole number, or as binary or Boolean, 
meaning its values may be True (1) or False (0). Optimization 
problems are classified as continuous, meaning the decision 
variables are all continuous, integer, meaning they are all 
integer or binary variables, or mixed-integer if they are a mixture 
of continuous and integer or binary variables. In this naming 
convention, binary or Boolean variables are treated as integer 
variables. The optimizer engine uses these distinctions to select 
which algorithms to use. 

Choosing the type of optimization
A critical issue in formulating an optimization problem is 
determining whether it is linear, quadratic, or nonlinear. For a 
linear program (LP), the objective must be a linear function of 
the decision variables. For a quadratic program (QP), the 
objective must be a linear or quadratic function of the decision 
variables. The problem is a nonlinear program (NLP) if the 
objective or any of the constraints are nonlinear in any of the 
decision variables. 

You define the type of a problem by using the function 
LpDefine(), QpDefine(), or NlpDefine(), respectively. You 
provide the decision variables, objective, bounds, and 
constraints as parameters to the selected function, along with 
some other parameters, which are optional. 

Linear and quadratic optimization problems are often relatively 
fast to compute. But general nonlinear optimization is a 
computationally difficult problem. Many of the most famous and 

g1 x( ) b1≤

g1 x( )

x

b1
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Solving simultaneous equations3
notoriously difficult computation problems can be cast as 
optimization programs, from the traveling salesman to the 
solution (or non-solution) of Fermat’s last "theorem". It is, 
therefore, unreasonable to expect the Optimizer engine to 
succeed on any possible nonlinear problem you can formulate. 
While the Frontline Solver engine used in the Analytica Optimizer 
is among the best of the general purpose optimization engines 
available, success with hard optimization problems depends on 
your ability to formulate the problem effectively, provide 
appropriate hints for the Optimizer, and adjust the search control 
settings.

Linear and quadratic optimization in Analytica fully support 
Intelligent Arrays™ — that is, any of their parameters may be 
arrays with additional dimensions, and Analytica will perform an 
array of optimizations to compute an array of optimal values. For 
example, any parameter may be uncertain, defined as a random 
sample; and the optimization may be carried out within a 
dynamic loop, for each time step. In contrast, NLP is subject to 
restrictions on array abstraction, particularly in models with 
uncertain factors in the objective or constraints, or when used in 
dynamic loops. However, there are ways around these 
limitations, which we describe in “6: Non-linear Optimization” on 
page 41. However, it is easier to manage array abstraction, 
particularly in dynamic simulation, with linear or quadratic 
optimization problems.

There are often several ways to formulate the same optimization 
problem. The greater speed and flexibility of linear and quadratic 
formulations mean it is worth careful thought to see if it is 
possible to reformulate a nonlinear optimization into a linear or 
quadratic optimization. Often a simple transformation, 
combination, or disaggregation of the decision variables can turn 
an apparently nonlinear problem into a linear or quadratic 
problem. 

Solving simultaneous equations
The optimizer first attempts to find a feasible solution. If found, it 
then attempts to optimize within the set of feasible solutions. 
Thus, the solving a set of simultaneous equations is a special 
case of the optimization problem, where each constraint has a 
sense of "=", the objective is irrelevant, and any feasible solution 
is a solution to the system of equations.
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Solving simultaneous equations3
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Defining a Linear Optimization Problem4
4: Linear Optimization

Defining a Linear Optimization Problem
A linear optimization problem has the following standard 
formulation: 

In this standard form, all decision variables, xi, are real-valued 
and unconstrained, ranging from -INF to +INF (  to ).

To encode this in Analytica, use the function LpDefine():

LpDefine(Vars, Constraints: IndexType;
  ObjCoef: Numeric[Vars];
  LHS: Numeric[Vars, Constraints];
  RHS: Numeric[Constraints])

with these required parameters:

Vars An index over the n Decision Variables, [x1, x2, ... xn], for which 
we wish to find the optimal solution — that is, the values that 
minimize (or maximize) the Objective. The index has one 
element for each decision variable. You may define it as a list of 
numbers, 1..n, or a list of labels to give meaningful names to 
each Decision variable.

Constraints An index over the set of m constraints, with one element for each 
constraint. Again, you may define it as a list of numbers, 1..m, 
or a list of labels to give meaningful names to each Decision 
variable.

Minimize c1 x1 + c2 x2+ … + cn xn

such that:
a11 x1 + a12 x2 + … + a1n xn <=    b1
…
am1 x1 + am2 x2 + … + amn xn <=   bm

Objective

Constraints

Objective coefficients

LHS: Left-Hand Side coeff’s RHS: Right-Hand SideSense

∞– ∞
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ObjCoef The Objective Coefficients, an array of n coefficients, [c1, c2, ... 

cn], indexed by Vars. The objective we are trying to minimize (or 
maximize) is the dot product of these Objective Coefficients and 
the Decision variables — that is, c1 x1 + c2 x2+ … + cn xn.

LHS The Left-Hand Side of the constraints is an n by m array of 
coefficients, indexed by Vars and Constraints, a11, a12, …aij ... 
amn]. A range  on the decision variables, defining what values are 
allowed. These bounds define the search space — that is the 
set of possible solutions. Each decision variable may have a 
lower bound and/or an upper bound. If not specified, the lower 
and upper bounds are -INF and +INF — that is, there are no 
bounds.

RHS The Right-Hand Side of the constraints, being an array of m 
constants,(b1, b2, ... bm) indexed by Constraints. The 

constraints, e.g., , are bounds on functions of the 
decsion variables. They define which solutions are acceptable. 

Each constraint consists of a lefthand side (LHS) , which 

is a function of the decision variables, : a Sense, (<, =, or >) 

defining the direction of the constraint, and a constant, e.g . 

When LpDefine() is evaluated, the result is a special linear 
program object, which displays as <<LP>>. This defines the 
linear program, but does not compute the optimum; that 
information is obtained through a series of functions described 
below under Obtaining the Solution.

Optional parameters
You can specify a wide set of optional parameters to 
LpDefine() for variations on the basic formulation shown 
above. Thes options include lower and/or upper bounds on the 
decision variables, maximizing instead of minimizing the 
objective, and changing the direction (sense) of the constraints 
from "<=" to ">=" or "=". 

You can specify these optional parameters to LpDefine() in 
any order by listing each parameter name, followed by a colon, 
followed by the value. For example:

LpDefine(VarIndex, ConIndex, ObjCoef, lhs, 
rhs, 

  Maximize: True, 

g1 x( ) b1≤

g1 x( )

x

b1
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  Lb: 0,
  Sense: ">=")

In this case, the first five parameters are the required indexes 
and coefficients as described in the previous section, and the last 
three parameters are optional parameters, specifying that we 
want to Maximize the objective, each decision variable (x1, …, 
xn) has a lower bound (Lb) of zero, and all constraints have 
Sense ">=", instead of the default "<=".

Lower and Upper Bounds on Decision Variables
You can specify lower and upper bounds on decision variables 
using the optional parameters:

Lb, Ub: Optional Numeric[Vars]

By default, Lb = -INF and Ub = +INF. If you give a single number 
to one of these parameters, it will specify the same bound for all 
decision variables. To specify a different bound for each decision 
variable, give it an array of values indexed by Vars.

Maximizing the objective
The optional parameter Maximize should be either True or 
False, specifying whether Analytica Optimizer should attempt to 
maximize or minimize the objective function. If not specified, it 
defaults to False, and minimizes the objective function.

Sense of Constraints
The sense of a constraint refers to whether the left-hand side is 
"<=", ">=", or "=" to the right-hand side. The Sense parameter:

Sense: Optional TextType[Constraints]

is used to specify the sense for each constraint. When omitted, 
it assumes "<=" by default. The following text text values are 
recognized:

"<", "<=", "L" : LHS is less-than or equal to RHS
">", ">=", "G" : LHS is greater-than or equal to RHS
"=", "E" : LHS is equal to RHS

If a single value is passed to the sense parameter, that sense will 
apply to all constraints. If each constraint has a different sense, 
then the sense parameter should be an array indexed by 
constraints.
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Obtaining the Solution4
Obtaining the Solution

The optimal values for the decison variables, x1, …, xn, are 
obtained using the LpSolution() function, which takes as a 
single parameter the <<LP>> object created by LpDefine(), 
and which returns an array indexed by the Vars index. The value 
of the objective function at the optimum is obtained using the 
LpOpt() function. 

LpSolution(lp: LpType)

Returns the optimal solution to the programming problem lp 
defined by LpDefine(). The result is an array of decision 
variables indexed by Vars. If the Optimizer cannot find an optimal 
solution, it returns the best values found during the search so far. 

LpOpt(lp: LpType)

Returns the value of the objective function for linear program lp 
at the optimum. For a linear problem, the value it returns is equal 
to:

Sum(LpSolution(lp) * ObjCoef, Vars)

LpStatusNum(lp: LpType) and LpStatusText(lp: LpType)

These two functions return, respectively, the status number and 
the corresponding text describing the status of the solution, for 
the programming problem lp. These may be 1 and "Optimal 
solution found", or another number with text explaining why it has 
not found an optimal solution.

Possible outcomes to an optimization include:

1. It found a global optimum.

2. There is no feasible solution, because the constraints are 
contradictory.

3. The optimal solution is unbounded, because the constraints (if 
any) do not prevent the objective function from approaching 

 (for a minimization problem).

4. The search terminates with a feasible solution, but before an 
optimal solution is found. This happens when the computation 
time or number of pivots exceeds the termination criteria 
before a feasible solution has been located (see “Controlling 
The Search” on page 32). 

5. The search terminates before finding a feasible solution.

∞–
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These different cases can be detected using the 
LpStatusNum() or LpStatusText() functions, both of 
which take the LP as a single parameter, and which may 
return the following values for a continuous linear program:

Analytica Note:  LpSolution() will generally return the best 
solution "point" so far even in the cases in which the global 
optimum was not located, so it is important to check the status. 

Secondary Aspects to Solution
The solution to a linear program contains more information that 
just the optimal solution, (x1, …,xn). Often these secondary 
elements of the solution are of more value than the solution itself 
for decision making purposes, since they indicate how changes 
(e.g., different decisions) impact the optimum. These secondary 
aspects of the solution are accessed using the functions 
LpSlack(), LpObjSa(), LpRHSSa(), LpShadow(), and 
LpReducedCost().

Slack or Surplus: LpSlack(lp: LpType)
When you have a constraint

ai1 x1 + ai2 x2 + … + a1n xn <= bi

the slack (or surplus) for that constraint is the positive value that, 
when added to the LHS, makes both sides equal, i.e., 

Status Description (LpStatusText)

1 Optimal solution found

2 No feasible solution

3 Objective unbounded

5 Iteration limit exceeded, feasible

6 Iteration limit exceeded, not yet feasible

7 Time limit exceeded, feasible

8 Time limit exceeded, not yet feasible

65 Objective function changing too slowly
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ai1 x1 + ai2 x2 + … + a1n xn + slacki <= bi

The constraints that have zero slack are of particular interest, 
since they are instrumental in constraining the optimum. If these 
constraints are relaxed (e.g., by increasing bi), a larger maximum 
value can be obtained. However, as critical constraints are 
relaxed, other constraints may become relevant. For the 
constraints the non-zero slack gives an indication of how close 
they are to becoming critical.

The slack for each constraint is obtained from the function:

LpSlack(Lp)

It takes as input the object returned from LpDefine() and 
returns an array indexed by Constraints, containing the slack at 
the optimum for each constraint.

Coefficient Sensitivity: LpObjSa() & LpRhsSa()
If we change a coefficient in the objective function, the optimal 
solution (x1, …,xn) will continue to be the optimal solution as long 
as the coefficient remains within a certain range. Note that the 
solution point is the same, but the value of the objective function 
at the optimum is effected. This range can be computed with the 
function

LpObjSa(Lp: LpType; Var: optional)

The first parameter, Lp, is a linear program defined using 
LpDefine(). When called with only a single parameter, the 
range is computed for all decision variables, and the result is 
indexed by the linear program variable array, Vars. If the range 
for only a single decision variable (or a small subset) is required, 
the second parameter. Var, is used to indicate the decision 
variable for which the sensitivity is to be computed. The second 
parameter should be an element (or a subset) of the Vars index.

The result returned from LpObjSa() is dimensioned by a local 
index, .range:= ['lower','upper']. Thus, to get the 
smallest value for each coefficient in the objective that would 
continue to produce the same solution, you would use an 
expression such as:

Var sa:= LpObjSa(myLp) DO
sa[.range='lower']

Note: The LpObjSa() function can only be used with a linear-
program. It is not meaningful for quadratic or non-linear 
programs. 
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The sensitivity of the right-hand side coefficients can be 
computed using the function:

LpRHSSa(Lp: LpType; constraint: Optional)

This computes the range over which coefficient in the RHS can 
vary without changing the basis of the solution. In other words, 
over the returned range the set of constraints with zero slack 
remain the set of constraints with zero slack (i.e., the critical 
constraints).

The result is indexed by a local index, .range:= ['lower', 
'upper'], containing the smallest and largest values for the 
corresponding RHS coefficient. If the optional second parameter 
is not specified, the range is computed for all variables and the 
result is indexed by Vars. If the range is needed for only a single 
coefficient, the second parameter specifies an element of the 
Constraints index, and only the range for that constraint is 
computed.

When a coefficient can be changed an arbitrary amount without 
changing the solution basis, the corresponding entry in the result 
returned by LpRHSSa() or LpObjSa() will be -INF for the lower 
value or +INF for the upper value.

Dual Values: Shadow Prices and Reduced Costs
If a constraint is relaxed, i.e., by increasing the right-hand side, 
bi, by one unit, how will this impact the objection function? This 
is referred to as the shadow price, or dual value, of the 
constraint. A shadow price is valid only for small changes in bi 
(the actual range for which it is valid can be obtained from the 
LpRHSSa() function), and is computed by the function:

LpShadow(lp: LpType)

Where lp is a linear program object returned by LpDefine(). 
The result is indexed by Constraints. Mathematically, the 
shadow price is given by

I.e., the partial derivative of the objective function relative to the 
constraint RHS coefficient.

Warning: Not all linear programming packages use the same 
convention for the sign of shadow prices. If you have 
used the LINDO package, note that the convention 
used by Analytica Optimizer, differs from the sign 
produced by the LINDO package. 

Shadowi
 Obj∂
bi∂

-------------=
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How far can a coefficient in the objective function be increased 
(in a minimization program) or decreased (in a maximization 
program) before the objective function changes? When a 
decision variable has a non-zero value in the optimal solution, 
then any change in the objective function coefficient will change 
the objective value, so for those decision variables the answer 
would be zero. But for decision variables that are zero, the 
coefficient can change until that variable eventually enters the 
basis. This amount is known as the reduced cost (or dual value) 
of the variables and is returned by the function

LpReducedCost(lp: LpType)

The result is indexed by Vars.

The Shadow Price and Reduced Cost are known as dual values, 
the Shadow Price being a dual to the solution in the original (or 
“primal”) problem, and the Reduced Cost being a dual to the 
slack price in the original problem. To each problem in the 
standard form (see “Defining a Linear Optimization Problem” on 
page 23) there corresponds a dual linear program given by:

maximize b1 y1 + b2 y2 + … + bm ym

such that

a11 y1 + a21 y2 + … + am1 ym >= c1

…

a1n y1 + a2n y2 + … + amn ym >= cn

The new variables in this program, y1,y2, …,ym, are the shadow 
prices, and the slack value for each constraint are the reduced 
costs in the primal problem. Note that the variables in the primal 
problem correspond to constraints in the dual problem, and 
constraints in the primal problem correspond to decision 
variables in the dual problem.   

Examples
Several example linear-programming optimization models are 
included in the Example Models/Optimization Examples 
folder installed with Analytica. The linear program examples 
include:

• Automobile production.ANA: Taking differences in 
unit production cost, and labor and material availability into 
consideration, figure out how many cars to produce at each 
factory to meet a production goal. This example 
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demonstrates the use of Linear Program-related sensitivity 
functions.

• Big Mac Attack.ANA: Optimize your McDonald’s-based 
diet to fit your budget, nutritional needs, and minimize your 
calorie or carbohydrate consumption.

• Capital Investment.ANA: Simple case of selecting 
which projects to pursue given a fixed budget.

• Optimal production planning.ANA: A classic 
textbook linear program: Selecting how much of each 
product to produce given resource limitations.

• Production Planning LP.ANA: Another take on the 
same problem, but demonstrating the interpretation of the 
secondary solution aspects.

• Two Mines Model.ANA: Schedule production at multiple 
mines to meet production goals given capacity constraints. 
(This is the example used in Chapter 2, “2: Quick Start.”)

Integer & Binary Decision Variables
In a standard linear program the decision variables are assumed 
to be continuous (real-valued) numbers. However, you can also 
use Analytica Optimizer to define and optimize a linear program 
with decision variables that are constrained to be integers, 
Boolean or binary, including a mixture of continuous and integer 
or binary variables (a mixed integer program).

You can specify the type of each decision variable as continuous, 
integer, or binary using the optional parameter:

ctype: Optional TextType[Vars]

which takes one of the following values:

• "C": Continuous

• "I": Integer

• "B": Binary or Boolean value, i.e. 0 or 1

If you give the ctype parameter a single text character, it 
specifies the same type for all decision variables, e.g.:

LpDefine(…, ctype: "B")

specifies that all decision variables are binary. To specify a 
mixed-integer program, you supply an array of characters, 
indexed by Vars, specifying the type of each decision variable.
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In general, Integer and mixed-integer linear programs are harder 
to solve than linear programs with exclusively continuous 
variables. The Optimizer uses a combination of a Simplex 
algorithm with a memory-efficient branch-and-bound algorithm.

In some cases, the Optimizer may fail to find a solution to a large 
integer or mixed-integer linear program. Use the 
LpStatusNum() and LpStatusText() functions to see 
whether it has been successful, and if not, why not. They return 
the following status numbers and text messages, respectively:

For a complete list of the possible values returned by 
LpStatusNum(), see “LpStatusNum(lp: LpType)” on page 73.

Controlling The Search
Several optional parameters to LpDefine() can be used to 
influence how the search for the optimum proceeds and when it 
terminates. All the parameters described in this section may be 
optionally included with the LpDefine() function.

A linear program having all continuous decision variables is 
solved using a simplex algorithm. The space of feasible solutions 
is called a simplex and is a convex polyhedron in N-dimensional 
space, where N is the number of decision variables. A simplex 
algorithm traverses the simplex from corner to corner, moving to 
an adjacent corner with an improved objective value at each 

Status Description

101 The MIP optimal solution found

102 MIP solution found within gap tolerance 
(see “Controlling The Search” on page 32)

103 No feasible integer solution

104 Integer solution limit exceeded

105 Node limit exceeded, feasible

106 Node limit exceeded, not feasible

107 Time limit exceeded, feasible

108 Time limit exceeded, not feasible
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iteration (pivot). The objective is improved with each pivot until 
the global optimum is reached. The same algorithm is used on 
an augmented simplex initially to find an initial feasible solution. 

An integer, binary, or mixed-integer program uses the simplex 
algorithm in combination with a branch-and-bound algorithm. It 
first uses the simplex to solve the continuous version of the 
problem. This bounds the optimal objective from one side and 
provides a starting point for a search. Whenever it finds a 
feasible integer solution, this provides a bound on the optimal 
objective on the other side and allows the branch-and-bound 
search to prune alternative integer solutions that would be 
provably inferior to the ones already found. As the algorithm 
explores solutions having one integer decision variable set to a 
particular integer value, the continuous LP sub-problem is solved 
again using repeated invocations of the simplex algorithm. It 
terminates the search when the search space has been 
exhausted (i.e., the global optimum located), when the 
termination criteria has been exceeded, or when the best 
solution found is within the solution (gap) tolerance.

Termination Control
ItLimit: Optional Positive Integer

Specifies the maximum number of iterations (pivots) by the 
Simplex Algorithm during the optimization. If this is exceeded, 
LpStatusNum() returns 5 (feasible solution found) or 6 
(feasible solution not found). 

Default: no limit.

TimeLimit: Optional Positive Integer

Maximum number of seconds the optimizer will spend on the 
problem. If exceeded, LpStatusNum() will be 7 (feasible 
found) or 8 (no feasible found) for a continuous problem, and 
107 or 108 for a MIP problem. 

Default: 65535 seconds (the maximum allowed).

NdLimit: Optional Positive Integer

Limits the number of nodes (or LP sub-problems) considered 
by the branch-and-bound algorithm when solving an integer, 
binary or mixed-integer problem. If exceeded, LpStatus-
Num() will return 105. 

Default: no limit.
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MipLimit: Optional Positive Integer

The maximum number of feasible solutions that the branch-
and-bound algorithm will visit before terminating. 

Default: no limit.

GapTolerance: Optional Positive Percentage

In a MIP optimization, if the branch-and-bound algorithm can 
determine that the best solution found so far is within this rel-
ative tolerance of the true optimal, it will terminate the search 
and return the best solution found so far. The bound is rela-
tive, meaning a value of 10% guarantees a solution within 
10% of the optimal. Often, the branch-and-bound algorithm 
will quickly locate a nearly optimal solution, but then spend a 
large amount of refining its best solution to the true optimum. 
Specifying a non-zero gap tolerance can eliminate this addi-
tional search, thus in some cases drastically reducing compu-
tation time. The gap is computed as the absolute value of the 
difference between the best solution so far, and the best 
bound on the optimum, divided by the best bound on the opti-
mum. With zero gap (default), the search will continue until 
the entire search space is eliminated so that the global opti-
mum is reached.

Default: 0%

Tolerance and Precision Control
OptTolerance: Optional Positive 

The Optimal or Reduced Cost Tolerance. Decision Variables 
whose reduced cost is less than the negative of this tolerance 
are candidates for entering the basis during the Simplex 
search. 

Default: 10-5

Allowed range: 10-9 to 10-4

PivotTolerance: Optional Positive 

During the Simplex Algorithm, elements in the solution matrix 
must have an absolute value greater than this value to be 
candidates for pivoting. 

Default: 10-6

Allowed range: 10-6 to 10-4
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FeasTolerance: Optional Positive 

The Feasibility Tolerance for MIP problems. The tolerance is 
used to determine which constraints are considered satisfied 
and which decision variables are treated as integers. 

Default: 10-8

Allowed range: 10-8 to 10-4

Algorithm Control
OptLb, OptUb: Optional Numeric

If you can correctly bound the objective function value for the 
optimal solution in advance, this can drastically reduce the 
computation time for MIP problems, since the branch-and-
bound algorithm to prune entire branches from the search 
space without having to explore them at all. For a maximiza-
tion problem, only the lower bound is relevant, and for a mini-
mization problem, only the upper bound is relevant.

Default: no bounding

Scaling: Optional Boolean

Setting this to False turns off internal scaling during the 
solution process. The optimizer will, by default, rescale deci-
sion variables and constraints internally for the Simplex algo-
rithm, which usually leads to be reliable results and fewer 
iterations.

Default: True

Array Abstraction
As with most Analytica functions, LpDefine() and all the 
functions used to retrieve the solutions to a linear program are 
fully array-abstractable. If, for example, you supply an array of 
coefficients to the ObjCoef parameter of LpDefine() that is 
indexed by index In1 in addition to the Variables index, 
LpDefine() will return multiple <<LP>> objects, with the 
collection being indexed by In1. When such a result is solved, 
multiple optimization problems will be run.

If any parameter that expects a particular dimension is supplied 
an object without that dimension, LpDefine() will treat it as if 
that dimension were specified with the value constant across that 
dimension. So, for example, specifying the parameter
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RHS: 1

would treat the right-hand-size of every constraint has having the 
value 1. 

Because these functions are fully array abstractable, any 
coefficient, bound, or other parameter may be uncertain, 
evaluated as a sample (indexed by Run), computed from 
probability distributions or chance variables. When evaluated in 
probabilistic mode, these models will solve a separate 
optimization problem for each sample.

Linear programs involving time can also be embedded in 
Dynamic loops (see Chapter 17 in the Analytica User’s Guide: 
“Modeling Changes over Time”). By specifying a parameter 
value that is a function of a previous time step, and using 
LpDefine() from within a Dynamic loop, a separate 
optimization can be performed at each Time point.
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5: Quadratic Program Optimization

Defining a Quadratic Program
A quadratic program has the basic form: 

The only difference between a quadratic and linear program 
formulation is the objective function. The objective function for a 
quadratic program is written here in matrix notation:  is the 
linear part of the objective, where  is a vector of coefficients. A 

quadratic program adds a second term, : to the objective.  
is a square matrix with the number of rows and number of 
columns equal to the number of decision variables, and  is the 
transpose of the decision variables. 

Note: While the objective function is quadratic, all constraints 
must be linear. If you have quadratic or non-linear 
constraints, you will need to formulate the poblem as a 
non-linear program (NLP).

To ensure that the Q matrix is square, you need to specify a 
second index (Vars2 in the example on the next page), with the 
same number of elements as the first index, Vars, is required. (An 
array in Analytica may be indexed only once by the same index.) 

Quadratic Optimization Problem: Standard Form

Minimize  

such that:
a11 x1 + a12 x2 + … + a1n xn <= b1
…
am1 x1 + am2 x2 + … + amn xn <= bm

c x xTQx+⋅

Constraints

LHS: Left-Hand Side RHS: Right-Hand SideSense

Objective function

c x⋅
c

xTQx Q

xT
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A quadratic program is defined with these parameters:

{required parameters:}
QpDefine(Vars, Vars2, constraints:

IndexType:
 c: Optional Numeric[Vars]:
 q: Numeric[Vars, Vars2]:
 LHS: Numeric[Vars, constraints]:
 RHS: Numeric[constraints];

{Optional parameters:}
 sense: Optional TextType[constraints];

maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
guess: Optional Numeric[Vars];
warnIndefinite: Optional Boolean;
ItLimit, NdLimit: Optional Positive;
MipLimit, TimeLimit: Optional Positive;
OptTolerance, PivotTolerance, FeasTolerance,

GapTolerance: Optional Positive;
OptLb, OptUb: Optional Scalar;
Scaling: Optional Scalar)

When evaluated, QpDefine() returns a quadratic program 
object, which displays as <<QP>>. The optimum solution is not 
solved until one of the routines to access the solution, such as 
LpStatusNum() or LpSolution() is called. 

Optional Parameters All of the optional parameters of LpDefine() are also accepted 
by QpDefine(), see Chapter 4, “4: Linear Optimization,” on 
page 31. The chapter on linear programming should be 
consulted for further information on these. Analytica Optimizer 
supports integer, binary, and mixed-integer quadratic programs. 
Two additional optional parameters, guess and warnIndefinite, 
which don’t exist for linear programs, may also be supplied, and 
are discussed below.

Solution Properties 
The Q matrix is the Hessian, consisting of the second partial 
derivatives of the objective function. Depending on the values in 
this matrix, the objective function may have a number of different 
shapes, and the objective may contain a single extreme 
(minimum or maximum), an infinite number of extrema, or no 
extreme values. The optimum value to a quadratic program may 
lie at the objective’s extrema, or it may exist on a constraint 
boundary.
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Positive & negative-
definiteness

When the Q matrix of a minimization problem is positive-definite, 
meaning that for all non-zero : : the objective function 
has a “bowl” shape with a single extrema. Similarly, for a 
maximization problem if it is negative-definite it will have a cup-
shape with a single extrema. When the extrema is a feasible 
solution, it will be the unique optimal solution to the quadratic 
program. The quadratic programming algorithms are optimized 
for this case.

Semi-definiteness When the Q matrix is positive semi-definite (or negative semi-
definite for a maximization problem), the objective will have a 
“trough” with infinitely many extrema. In such a case, the 
optimizer will find one of the feasible points in the trough.

Indefinite objective If the Q matrix is indefinite, the objective will have a “saddle 
point”. Like an extrema, a saddle point has a zero gradient, but 
is not an actual optimum. The true optima (one or many) will lie 
on the constraint boundaries. In an indefinite case, the optimizer 
will converge either to the saddle point, or to one of the optimum 
solutions on the constraint boundaries. If it converges to the 
saddle point, which might not be optimal, LpStatusNum() will 
return 65 (“objective changing too slowly”). The final point 
reached by the optimization depends on the initial starting point 
for the search, which may optionally be specified using the 
parameter guess to QpDefine():

guess: Optional Numeric[Vars];

The guess parameter is only relevant if Q is indefinite, otherwise 
the same end result will be reached regardless of the starting 
point.

Because QpDefine() is totally array-abstractable, you can 
provide multiple guesses by dimensioning the argument to this 
parameter by an index other than Vars, with different starting 
points. In that case, multiple quadratic optimizations will be 
solved, each at different starting points.

You can also have QpDefine() issue a warning message if the 
Q matrix is indefinite by setting the optional warnIndefinite 
parameter to True.

Common Quadratic Situations
Quadratic programs arise in several applications, one of the 
most common being portfolio optimization.

x xTQx 0>
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Portfolio allocation Assume there are N investments, each with an uncertain 

outcome. The investments are not independent; for example, 
two investments in the same sector may be influenced by similar 
market forces and thus be highly correlated. Other pairs of 
investments may be negatively correlated. A symmetric 
covariance matrix, Q: can be used capture the pair-wise 
covariances between investments, as well as the variances of 
the individual investments (the diagonal elements of Q). Letting 
each element of the vector  be the fraction of the total portfolio 
allocated to investment, the variance of the complete portfolio is 

. As a result, various objective functions used in portfolio 
optimizations will depend on the net variance of the portfolio, and 
lead to quadratic programs of the form show under “Quadratic 
Optimization Problem: Standard Form,” on page 37. Two such 
examples are demonstrated in the example model 
Asset Allocation.ana found in the Example Models\ 
Optimizer Examples directory.

When sample covariances are computed from historical data, 
and the number of time periods used is greater than the number 
of dimensions (e.g., the number of investments), the resulting Q 
matrix is guaranteed to be positive-definite. As discussed in the 
previous section, then property lends itself well to solution by 
quadratic programming.

Obtaining the Solution
The QpDefine() function defines the quadratic program, but 
does not solve it. The optimum is solved for when 
LpSolution(), LpStatusNum(), LpStatusText(), or any of 
the other functions that use the solution are called.

The functions LpSlack(), LpShadow(), and LpRHSSa() are 
all available for quadratic programs (see the discussion for each 
of these in Chapter 4, “4: Linear Optimization”)

The LpReducedCost() function can also be called on a 
quadratic program. 

Examples
The Example Models/Optimization Examples directory, 
installed with Analytica, contains an example model 
demonstrating quadratic optimization:

• Asset Allocation.ANA: Portfolio optimization is a 
classic quadratic programming application. This example 
demonstrates four formulations of an asset allocation 
problem, two of which are quadratic programs.

x

xTQx
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6: Non-linear Optimization

A non-linear program (NLP) is the most general formulation for 
an optimization. The objective and the constraints can be 
arbitrary functions of the decision variables, continuous or 
discontinuous. This generality comes at the price of longer 
computation times, less precision than linear and quadratic 
programs (LP and QP). There is also the possibility with smooth 
NLPs, that the Optimizer will return a local optimum that is not 
the global optimum solution. In general, it is hard to prove that a 
solution is globally optimal or not. For these reasons, it is better 
to reformulate nonlinear problems as linear or quadratic when 
that is possible.

Linear and quadratic problems define the objective function as 
arrays of linear or quadratic coefficients.They pass these arrays 
as parameters to the Optimizer, which operates on them directly 
to find a solution without further interaction with the rest of the 
Analytica model. For nonlinear problems, the objective function 
is defined as an Analytica expression or variable that depends on 
the decision variables. In this case, the Optimizer repeatedly 
evaluates the objective function as it tries assigns different 
values to the decision variables in its search for a solution. It 
does the same with expressions passed to LHS, the left-hand 
side of the constraints.

This approach imposes certain restrictions on array abstraction 
(support for Intelligent Arrays) for NLPs — for example, requiring 
the objective function to return a single (scalar) number. We 
devote a section of this chapter to showing how to work with 
these restrictions so that you can apply NLP optimization to 
create arrays of optimizations for models with uncertainty 
(samples indexed by Run), for parametric analysis, and dynamic 
models over time, or other Indexes.

The Optimizer has a variety of methods, including gradient-
based search, branch-and-bound, and genetic algorithms, from 
which it chooses to try to suit the problem. In many cases, you 
can give it information about the problem that can help it choose 
the most appropriate methods, and so work faster and more 
reliably. Such hints include: 

• The type of dependence — i.e., whether the objective 
or constraint functions vary linearly, smoothly, or discon-
tinuously with each decision variable.
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• The gradient and Jacobian expressions to compute the 

needed partial derivatives for the objective much faster 
at each search point

• Control parameters to influence how the search is per-
formed. 

Problem Formulation
The basic formulation for a non-linear optimization is:

where  is a vector denoting the n-dimensional candidate 
solution. A non-linear optimization problem is defined using the 
function NlpDefine(), shown here without optional 
parameters:

NlpDefine(Vars, Constraints: IndexType;
X: VariableType:
Obj, LHS: Expression:

 RHS: Numeric[Constraints])

Vars An index for the decision variables, X below.

Constraints An index for the constraints, LHS and RHS below.

X The decision variables, indexed by Vars. The parameter passed 
to X must be the name (identifier) of a global variable or decision, 
or a local variable, not an expression: As the NLP Optimizer 
searches for better solutions, it assigns new values to the 
decision variable, and computes the corresponding value of the 
Objective.

Obj The objective to maximize or minimize, according to the setting 
of optional parameter Maximize. It may be a variable or an 
expression. It must depend on the decision variables, X, directly, 
or indirectly via other variables.

Non-Linear Optimization: Basic Form

 such that minimize f x( )

g1 x( ) b1≤

g2 x( ) b2≤

…
gm x( ) bm≤

objective function

constraints

x
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LHS The Left-Hand Side of the constraints, indexed by Constraints. 

Each element of LHS may be an expression or a variable. They 
must depend on the decision variables X, directly or indirectly.

RHS The Right-Hand Side of the constraints, indexed by 
Constraints. Each element of the array passed to RHS must 
evaluate to a single number. It must not depend on the decision 
variables. By default, feasible solutions are those in which the 
LHS is less than or equal to the corresponding value of RHS. You 
can change this with the optional Sense parameter, described 
below.

Obtaining the Solution
The same functions used to obtain the solution to LP and QP 
optimizations also work for NLP. These include: 
LpStatusNum(), LpStatusText(), LpOpt(), 
LpSolution(), LpSlack(), LpShadow(), and 
LpReducedCost(). 

For more, see Chapter 8, “8: Optimization Function Reference,” 
on page 71.

Optional Parameters for NLP
The following are optional parameters to NlpDefine():

Maximize
By default, NlpDefine() defines a minimization problem. You 
should set the optional parameter

Maximize: Optional Boolean

to True when you wish to maximize the objective.

Sense
By default, each constraint specifies that the left-hand side is 
less-than or equal to the right-hand side. Using the optional 
Sense parameter, you can change the relationship between left-
hand and right-hand sides:

Sense: Optional TextType[Constraints]
• "<", "<=", or "L": LHS is less-than or equal to RHS

• ">", ">=", or "G": LHS is greater-than or equal to RHS
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• "=" or "E": LHS is equal to RHS

If you pass a single text value, such as "=", to the Sense 
parameter, that sense will apply to all the constraints. If you want 
a different sense for each constraint, pass an array indexed by 
Constraints, with each cell containing its own text value "<=", 
">=", "E", etc.

Bounds
You can define upper and lower bounds on each decision 
variable for an NLP problem, as for LP and QP problems, using 
these optional parameters:

Lb, Ub: Optional Numeric[Vars]

If not explicitly specified, the optimizer assumes bounds of -INF 
and +INF, i.e., that the decision is unbounded. If you pass a 
single number to either of these parameters, that bound applies 
to all decision variables. So, for example:

NlpDefine(…, Lb:0,Ub:1 …)

specifies that all decision variables are in the range 0 to 1. If 
lower or upper bounds are different for each decision variable, 
pass them arrays of numbers indexed by Vars.

Integer, Binary and Mixed-Integer Programs
Like the LP and QP optimizers, the NLP optimizer can handle 
discrete decision variables — that is, integer or binary (Boolean) 
— as well as continuous values. Use the parameter

Ctype: Optional TextType[Vars]

to specify the continuity type of each decision variable by 
providing one of the following text values for each variable:

• "C": Continuous

• "I": Integer

• "B": Binary or Boolean

The non-linear optimizer uses a genetic, or evolutionary, 
algorithm, when discontinuous variables are present. 
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The Airline Example for NLP

Here we introduce the airline decision problem. We will use this 
example in the rest of this chapter with eight cases that illustrate 
how to formulate problems for NLP, including situations in which 
parameters have extra indexes, for dealing with uncertainty, 
parametric analysis, and dynamic models over time. You can find 
this example in the Example Models/
Optimizer Examples/Airline NLP.ANA. It includes the 
eight different cases described below. Please open the model in 
Analytica to see full details.

A small airline is trying to decide how many planes to lease and 
what fare to charge on a new route. It has two decision variables 
— Num_planes, the number of planes allocated for this route, 
and Fare, the price charged for trips on this route — and two 
chance variables — the Demand for seats (assuming the fare is 
$200) and the Elasticity1 of demand with respect to price:

Decision Num_planes := 2
Decision Fare := 200 ($/passenger trip)
Chance Base_demand := 

Triangular(300K, 400K, 500K) (trips/year)
Chance Elasticity1 := Triangular(2, 3, 4) 

We assume that the demand is elastic with respect to changes in 
price, using a demand function that raises the ratio of the fare to 
the base fare of $200 to the negative power of the elasticity. We 
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compute the actual Seats_sold as the lesser of the demand 
modified for price elasticity and the actual seats available, the 
product of the number of planes and Trips_per_plane: 

Variable Trips_per_plane := 200 * 360 * 2
Variable Seats_sold := Min([Base_demand * 

(Fare/200)^-Elasticity1, 
Num_planes * Trips_per_plane])

Finally, we model the Objective variable Profit as the 
difference between revenues and costs, including Fixed_cost, 
the annualized fixed cost of leasing and operating each plane, 
and Var_cost, the incremental cost for each new passenger:

Variable Fixed_cost := 12M ($/plane/year)
Variable Var_cost := 100 ($/passenger trip)
Objective Profit := Seats_sold*Fare 
 - Seats_sold*Var_cost - Num_planes*Fixed_cost 

This graph shows Profit as a function of the two decision 

variables, using parametric approach to visualize the effects. 
Note that for each number of planes, 1 to 5, the profit is a sharply 
peaked function of the fare. The optimum fare is at the highest 
peak, $195 with 3 planes. 
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In this simple case, with only two decision variables, you can 
visualize the objective function and find the optimal values (or 
close) by parametric analysis. For more complex problems, the 
Optimizer is essential. We now show how to apply that.

Reformulating the decision variables for NLP
We usually need to reformulate a decision problem, at least a 
little, to apply NLP. One reason is that NLPDefine() expects a 
single, array-valued decision variable for parameter X. So, if you 
want to apply NLP to optimize a model, like the airline example, 
whose decision variables are two or more separate Analytica 
variables, you need to combine these decisions into a single 
array-valued decision. If the model has n scalar decision 
variables, you should define a decision variable Decisions as 
a one-dimensional array with an index containing n elements. 
For the airline example, we define Decisions with two 
elements, corresponding to its two decisions, Num_planes and 
Fare:

Index Dvars := ['Number of planes', 'Plane fare']
Decision Decisions :=Table(Dvars)(1, 200)

The values in the table are the initial values, prior to optimizing. 
We must now redefine the individual decision variables so that 
they obtain their values from the corresponding elements of 
Decisions:

Num_planes:= Decisions[Dvars ='Number of planes']
Fare := Decisions[Dvars = 'Plane fare']

As the Optimizer searches for optimal values, it will assign 
successive new candidate solutions to Decisions, and get the 
resulting value of Profit, which in turn gets its values from 
Decisions, via Num_planes and Fare.

If one or more of the original decision variables is an array, the 
new decision variable Decisions passed to X must still have 
only one dimension. Its size should be the sum of the sizes of all 
the original decision variables. Again, you should assign the 
current initial values of the original decision variables to the 
corresponding elements of Decisions. Then you redefine each 
original decision variable so that it gets each element from the 
corresponding element of Decisions. See Case 7. Optimize 
decisions over time below for an example, where we add the 
Time dimension to Num_planes and Fare.
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Case 1. Simple NLP Optimization

We will now complete the formulation of the NL P for the airline 
problem introduced above, creating a model that looks like this:

We need to specify the type of each decision — ’I’ (integer) for 
Number of planes, and ’C’ (continuous) for Fare — the lower 
and upper bounds for the two decisions, and the Constraints 
index:

Variable Dec_type := Table(Dvars)('I','C')
Variable Lb_decisions := Table(Dvars)(1, 100)
Variable Ub_decisions := Table(Dvars)(5, 300)
Index Constraints := [0]

In this example, we use no constraints, so we set the index 
Constraints to a single arbitrary single element. We can now 
define the NLP using these parameters:

Variable NLP1 := NLPDefine(Vars: Dvars, 
Constraints: Constraints, 
X: Decisions, Obj: Profit,
LHS: 0, RHS: 1, Maximize: True, 
Ctype: Dec_type, 
LB: Lb_decisions, UB: Ub_decisions)

We set LHS to 0 and RHS to 1 to guarantee LHS <= RHS, since 
this problem has no constraints (other than decision bounds). 
Since we want the largest Profit, we set Maximize to True. 
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Finally, we define the key results of the optimization: The optimal 
decisions, the profit with these decisions, and the status of the 
optimization:

Decision Optimal_decisions1 := LPSolution(Nlp1)
Objective Profit_with_nlp1 := LPOpt(Nlp1)
Variable Nlp_status1 := LPStatusText(Nlp1)

When we display the result of any of these three variables, it will 
perform the optimization. For example, Optimal_decisions1, 
gives this table (agreeing closely with the parametric analysis):

Intelligent Arrays, array abstraction and NLP
Unlike most other Analytica functions, including linear and 
quadratic optimization, nonlinear optimization does not fully 
support Intelligent Arrays — that is, it will not automatically 
generalize over extra dimensions for all parameters. Below we 
show how you can work around these restrictions to create and 
solve arrays of NLP problems, including handling uncertainty, 
parametric analysis, and dynamic optimization over time.

NLP’s limitations are that the following required parameters must 
be dimensioned by the specified indexes and no other indexes:

X must be indexed only by the index supplied to Vars

Obj must be scalar — a single number with no indexes

LHS must be indexed by the index supplied to Constraints, or 
have no index.

Similarly, these optional parameters, if specified, must also be 
dimensioned by only the specified indexes:

Gradient must be indexed only by the index supplied to Vars

Jacobian must be indexed only by the indexes supplied to 
Vars and Constraints

See page 61 for details on Gradient and Jacobian. 
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Note that NLPDefine() does generalize fully over extra 
dimensions for all parameters other than those five listed above. 
But, for those five parameters, it is up to you, the modeler, to 
make sure that they have only the required indexes. Otherwise it 
will flag an error. Read on to see how to get around these 
limitations.

Case 2. Maximize expected value: NLP with uncertainty
If you want to find the optimal decisions with an uncertain model, 
the most common approach is to define the objective as 
maximizing the expected value (i.e. mean) of the objective 
function — for example, maximizing the expected profit, or the 
expected utility in a decision analysis formulation. For the Airline 
example, we define NLP2, which differs from NLP1 only in that 
the objective takes the mean of the profit:

Variable NLP2 := NLPDefine(... ,
X: Decisions, Obj: Mean(Profit), ...)

In this case, the objective is a single scalar number (i.e., the 
expected value). Although it is a function of an uncertain quantity, 
it is not itself uncertain. So you can apply NLPDefine() directly, 
and the restrictions on array abstraction mentioned above cause 
no problems. Note the results of doing the optimization using 
expected value are a bit different from the deterministic analysis, 
because the profit function is not symmetric:

The same approach works if you want to maximize a statistic of 
the objective other than mean, such as to minimize the 1st 
percentile of an uncertain profit (loss), e.g. Getfract(Profit, 
1%). If there is uncertainty in the constraint functions, you may 
define the constraints using percentiles (using Getfract() or 
other statistical functions) — for example, the constraint that the 
cumulative cashflow has a >95% chance of being nonnegative. 



Chapter 

Analytica 3.1 Optimizer Guide 51

Intelligent Arrays, array abstraction and NLP6
In these cases, you are trying to find the optimal decision now, 
before resolving the uncertainties that affect the objective or 
constraints. You can set the model to perform a single 
optimization and the result is a single optimal solution (set of 
decisions) and corresponding maximum expected value (or 
other statistic) of the objective. Given the optimal solution, you 
can then compute a probability distribution over the objective 
function to model the uncertainty over the value outcome.

Case 3. NLP with uncertainty: Probabilistic optimization
The second type of optimization under uncertainty is less 
common: The optimal decisions will be made after resolving the 
uncertainty, and you want to compute probability distributions 
over what those optimal decisions will be now while still 
uncertain. This is sometimes known as preposterior analysis 
because the optimization is performed a posteriori — after the 
uncertainty is resolved — but you are performing the analysis 
now, before the uncertainty is resolved. (Not to be confused with 
preposterous analysis, which we try to avoid.) This situation 
requires a sample of optimizations to be performed. It results in 
a random sample of optimal decisions, and a sample of 
corresponding values of the objective for each solution.

You might try simply to compute a probabilistic value of the 
optimal decision in case 1, from NLP1, by selecting a uncertain 
view, e.g. Sample, in the Result for Optimal_decisions1, 
shown previously: But, this would generate the warning "Value is 
not probabilistic. Mid value will be shown instead." This is 
because NLPDefine() always evaluates its parameters 
deterministically. 

Instead, we need to create an NLP that abstracts over the 
Chance variables, so that the Run index does not cause 
problems for NLPDefine. For convenience, we define two 
functions, first ProfitFn() that encapsulates the Objective 
Profit as a function of the decisions and chance variables as 
parameters. This function replicates Profit in the simple airline 
model. (See next page.)
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Then we define a function Airline_nlp() that defines an NLP 
using ProfitFN() that we just defined for the objective: 
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Airline_nlp() qualifies its parameters as Atomic. This means 
means that, if the actual parameters are arrays, indexed by Run 
or anything else, it will reduce them all to scalar values and call 
the function multiple times, once for each combination of scalar 
values. it calls multiple times, Each time it passes scalar 
parameters to ProfitFn(), so that the objective passed to Obj 
in NLPDefine() is scalar, as required. In this way, it restores 
the Intelligent Array behavior that NLP otherwise lacks. 

We now define a variable using this function:

Variable Nlp_3 := Airline_nlp( Num_planes, Fare,  
Demand, Elasticity1)

If you show the result of this variable in a sample view (with 
Samplesize set to 5 for rapid execution), it shows a sample of 
NLP problems:

When we show the result of the resulting optimal decisions

Decision Optimal_decisions_3:=LPSolution(Nlp_3)

it evaluates each sample of the NLP and generate a 
corresponding sample of optimal decisions:
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This computation involves doing Samplesize optimizations. So, 
it could take a long time if the NLP problem is difficult and the 
sample size is large. 

Case 4. NLP and parametric analysis
What if you want to examine how the optimal decisions vary as 
you change one or more input parameters, such as Demand? 
(See User Guide Chapter 4 "Analyzing Model Behavior" for more 
on parametric analysis.) In this case, the variables you treat 
parametrically will have multiple values, so you cannot apply 
NLPDefine() to them directly. However, the function 
Airline_nlp() that we just defined comes in handy again. 
Suppose we define:

Variable Demand_param :=[200K,400K,600K,800K,1M]
Variable NLP_4 := Airline_nlp( Num_planes, Fare, 

Demand_param, Elasticity1)
Decision Optimal_decisions4 := LPSolution(Nlp_4)

Because Airline_nlp() qualifies its parameters as Atomic, 
NLP_4 generates an array of NLPs, one for each value of 
Demand_param. The Result for Optimal_decisions4 shows 
corresponding optimal values for each value of Demand_param: 

Note how the optimal number of planes increases from 1 to 4, as 
the demand increases, and the optimal fare varies 
nonmonotonically.

Case 5. NLP over time using NPV
The most common formulations for optimization over time 
involve finding a set of decisions to optimize an objective that 
measures overall performance over multiple time periods, such 
as the net present value (NPV). In these cases, the objective 
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function returns a single number that aggregates over the time 
periods, so it poses no problem for direct application of 
NLPDefine(). 

Consider the airline example again. We add an uncertain annual 
compound growth in demand, define Time for years from 2005 
to 2010, and compute the resulting Demand_by_time:

Chance Demand_growth := Triangular(0%, 10%, 20%)
Time := 2005 .. 2010
Variable Demand_by_time := Dynamic(Base_demand, 

Self[Time-1] * (1 + Demand_growth))

We now define the objective of the NLP using mean of the net 
present value (NPV):

Variable Nlp_5 := 
NLPDefine(Vars: Dvars, ... X: Decisions,

Obj: Mean(NPV(Discount_rate, 
ProfitFn( Num_planes, Fare,  
Demand_by_year, Elasticity1), Time)),...)

This causes no array-abstraction issues for the objective since 
the mean of the NPV is a scalar. Notice that we are finding a 
single optimal value for the decisions, Num_planes and Fare, 
for all time periods: We are assuming that these decisions stay 
the same over the six years. Because of the growth in demand, 
the optimal number of planes is three, larger than before:

Case 6. Optimize for each year
What if you want to change the decisions, Num_planes and 
Fare, in each time period? One approach is to perform a 
separate optimization in each time period. This formulation 
models a process in which the decisions are made at the start of 
each time period to maximize profit for that time period. In this 
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case, the decisions and objectives (and possibly constraints) are 
indexed by time. Again, the function Airline_NLP(), which we 
defined earlier, comes in handy. 

Variable Nlp_6 := Airline_nlp( Num_Planes, Fare, 
Demand_by_year, Elasticity1 )

Decision Optimal_decisions4 := LPSolution(Nlp_4)

Since Demand_by_year is indexed by Time, Airline_nlp() 
creates an array of NLPs over time. The optimal decisions4 are 
then computed separately for each year:

Case 7. NLP with Optimizations over time
If there are interactions between decisions in different years, you 
may want to find the decisions in each year that collectively 
maximize the NPV (or other objective that aggregates over time). 
In this case, we want to perform only one optimization, but with 
an expanded set of decisions, that comprises both decisions 
over all time period. With 2 decisions in each of 6 time periods, 
we define a Decisions vector of 12 elements. Note that 
Decisions must be a one-dimensional vector with 12 elements, 
not a two-dimensional table with 2 by 6 elements. 

In this case, we choose to create a single table with the decision 
settings -- initial values, Ctype, lower and upper bounds, for all 
12 elements:

We derive the Decisions_by_time as a slice of this table:

Decision Decisions_by_time := 
Decision_params[Decision_settings='Initial']

See the module in the example model for details of how the NLP 
is defined. Here are sample results for the optimal decisions:

The time to perform NLP optimization typically increases 
superlinearly with the number of decision variables. So this 
approach can become time consuming if you have many 
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decision variables and time periods. In general, it takes longer 
than Case 6. Optimize for each year, which is linear in the 
number of time periods.
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Case 8. NLP with a dynamic model

The previous three cases are dynamic in the sense that the 
model changes over time. However, they do not need to use the 
Dynamic() function explicitly because the decisions in each 
year do not depend on the results of the previous year. In this 
final case, the optimization at each time step depends on the 
results of the optimization at the previous time step, so we must 
use Dynamic(): We assume that the planes are on long-term 
leases: We can lease more planes each year, but cannot 
decrease them because of the lease agreement. This means that 
the lower bound on the number of planes decision in each period 
is the value of the optimal number of planes computed in the 
previous time period, thus:

Variable Nlp_5 := Dynamic( 
Airline_nlp_mev(Num_planes, Fare, Demand,  

Elasticity1),
Airline_nlp_mev(Optimal_num_planes[Time-1], 

Fare, Demand_by_year, Elasticity1 ))
Decision Optimal_decisions_8:= LPSolution(Nlp_8)
Decision Optimal_num_planes := 
Optimal_decisions_8[Dvars = 'Number of planes']

Note that this creates a dynamic loop, with the time lagged 
dependence shown in the diagram in gray:

Summary of array abstraction for NLP
These airline problem Cases 1 to 8 shown above illustrate ways 
to reformulate a problem for NLP to deal with various issues of 
array abstraction and Intelligent Arrays. Case 1 shows how to 
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combine multiple scalar decisions into a single vector of 
decisions, as needed for NLPDefine(). Case 7 shows how to 
assemble array-valued decisions into a single vector of 
decisions. Case 2 shows that you require no special 
reformulation for NLP to maximizes expected value (or other 
statistical function of an uncertain objective), since the objective 
is a scalar, even if the underlying model has uncertainty. 
Similarly, Cases 5 and 7 illustrate that maximizing the net 
present value (or another objective that aggregates over time) 
produces a scalar value for the objective, so you can apply 
NLPDefine() directly.

In the other cases, the objective is intrinsically an array of values, 
indexed by Run for uncertainty in Case 3, by a parametric 
analysis (Demand) in Case 4, and by Time in Cases 6 and 8. We 
handle these cases in a similar way: We encapsulate the 
NLPDefine() in a function whose parameters are qualified as 
Atomic, so that each call to NLPDefine() is made with the 
required inputs and hence the Objective passed to X as scalar. 
The result of calling these functions is an array of NLPs. 
Functions of this result, such as the optimal decisions, 
LPsolution(), status, LPStatusText(), and optimal value, 
LPOpt(), are therefore similarly indexed by these extra 
dimensions. 

For more details, look at the example Analytica file that contains 
these cases: Example Models/Optimizer Examples/
Airline NLP.ANA.

These examples show how to deal with array abstraction for the 
objective Obj. The same approach will work for the other 
parameters that are repeatedly evaluated during an optimization, 
i.e. LHS, Gradient, and Jacobian. All other parameters array-
abstract automatically.

Solving Systems of Equations
Solving a system of non-linear equations is a special case of a 
non-linear program. The set of solutions is the set of feasible 
points. The non-linear optimizer can be used to find a solution to 
a system of equations by encoding the system of equations as 
the set of constraints, using a Sense of "=". You can set the 
objective function (the Obj parameter) to zero if you simply care 
about finding any solution, or you can use the objective to 
express a preference among solutions when the system of 
equations has, or may have, multiple solutions.
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Other examples

If you haven’t already, you may find it useful to follow through the 
steps in the “Quick Start” section for creating a non-linear 
optimization model (see “A Non-linear Program,” on page 14).

The Example Models/Optimizer Examples directory, 
installed with Analytica, contains several models demonstrating 
non-linear optimization. These models include:

• Asset Allocation.ana: A classic portfolio 
optimization problem, formulated in four ways. One 
formulation uses a linear objective with a quadratic 
constraint, which qualifies as a non-linear problem. Another 
formulation maximizes expected utility, thus demonstrating 
the use of stochastic simulation within a non-linear 
optimization. The other two formulations are quadratic 
programs.

• NLP with Jacobian.ana: A very simple non-linear 
program demonstrates the use of a gradient and Jacobian, 
as well as the use of a local variable for X.

• Optimal can dimensions.ana: The example is the 
one used in Chapter 2, “2: Quick Start,” of this manual. The 
problem is to find the dimensions for a cylindrical can to 
hold a given volume using the minimum surface area.

• Solve using NLP.ana: A very simple example of 
using the non-linear optimizer to solve a non-linear system 
of equations.

Giving hints to help the Optimizer
The Optimizer tries to identify characteristics of your NLP 
problem so that it can choose the most efficient and reliable 
algorithms. In some cases, you can improve its performance by 
telling it things about the problem that it may not be able to figure 
out on its own.

Type of dependence
If the Optimizer knows that the objective has smooth nonlinear 
dependence on some or all of the decision variables, it can use 
much faster gradient-based algorithms than in the general case 
that allows discontinuous functions. You can provide this 
information using these two optional parameters to 
NlpDefine().
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objNl: Optional TextType[Vars]
lhsNl: Optional TextType [Vars, 
Constraints]

You should provide each of these parameters with one of these 
text values:

• "L": Linear or no dependence

• "N": Smooth non-linear dependence

• "D": Discontinuous 

You can provide a single text value to each parameter, e.g., "N", 
to specify the same type of dependence for all decision variables 
and, to lhsNl, for all constraints. Otherwise, if the type of 
dependence varies by variables and constraints, you will 
probably create a variable defined as an edit table indexed by 
Vars and Constraints, to specify each dependency type.

When the objective has linear or smooth non-linear dependence 
on continuous decision variables, the optimizer uses an efficient 
gradient-based search method. If it knows that the dependence 
is linear (and so has constant derivative), it can drastically speed 
the search by reducing the number of re-evaluations of the 
objective. If one or more decision variables are discontinuous, 
the Optimizer uses a genetic (evolutionary) algorithm, in which 
multiple candidate solutions are maintained, and the search is 
performed by mutating and recombining members of the 
population based on a fitness metric. 

If you do not indicate the type of dependence, the optimizer will 
assume the worst case, i.e., discontinuous. This limits its ability 
to take advantage of the simpler dependencies that might exist. 
On the other hand, if your search space is very rough, with many 
local optima, the genetic algorithm may actually perform better, 
so in some complex cases you may find better performance by 
using "D" (or omitting these parameters). You may simply need 
to try it both ways to find out.

Gradient and Jacobian Functions
If the decision variables are all continuous, you can speed up the 
optimizer considerably if you can give it an analytical expression 
for the gradient of the objective function and/or the Jacobian of 
the constraint left-hand sides. The gradient and Jacobian enable 
the Optimizer to avoid most re-evaluations of the objective and 
LHS expressions, respectively, which it uses estimate the partial 
derivatives based on small changes to each decision variable.
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The gradient of the objective function is a vector indexed by 
Vars, where each element is the partial derivative:

where  is the objective function. 

The Jacobian of the left-hand side of the constraints is a matrix, 
indexed by Vars and Constraints, where each element is the 
partial derivative:

where  is the left-hand side of constraint j.

The gradient and Jacobian parameters accept an Analytica 
variable or expression, which should depend on X, directly or 
indirectly. The Optimizer evaluates these parameters 
deterministically repeatedly at each step of the search process 
Assuming X is indexed only by Vars, the gradient must be indexed 
only by Vars, and the Jacobian must be indexed only by Vars and 
Constraints. See “Intelligent Arrays, array abstraction and NLP,” 
on page 49 for information on coping with these restrictions.

It is important for your gradient and Jacobian expressions to be 
correct, otherwise you will mislead the optimizer and it may move 
away from the optimum. Debugging a Jacobian expression can 
be challenging. However, you can check whether the Jacobian is 
correct using the optional parameter, DerivMethod, to 
NlpDefine():

NlpDefine(…, DerivMethod: "check", …)

When DerivMethod is set to "check", the Optimizer compares 
the supplied Jacobian expression, with the Jacobian that it 
estimates using finite differencing. If they are not within a small 
difference, the Optimization will stop with LpStatusNum() = 67 
(“error in evaluating problem functions”). Once you have 
confirmed the supplied Jacobian is correct, remember to reset 
Derivmethod to "Jacobian" so that the Optimizer reaps the 
benefits of not having to estimate the Jacobian itself at each 
search point.

xi∂
∂ f x( )

f x( )

xi∂
∂ gj x( )

gj x( )
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Initial Guess

If you know the approximate region that contains the optimal 
solution, you can speed the Optimizer by giving it an initial 
solution in that region. You specify this starting solution as an 
array indexed by Vars for the optional parameter guess:

guess: Optional Numeric[Vars]

If you do not provide this parameter, and if you provide a global 
variable (as opposed to a local variable) for X, the Optimizer 
users the current value of X as its starting solution.

Controlling the Search
Several optional parameters to NlpDefine() can be used to 
control how the search is conducted, and when the search is 
terminated.

Method Parameters
Several optional parameters influence how the optimizer makes 
decisions. The first group applies to gradient-based search, used 
with linear and smooth non-linear functions.

Gradient-search control LinVar: Optional Boolean

When LinVar is specified and set to True, the Optimizer will 
attempt to detect automatically decision variables that influence 
the objective and constraints in a linear fashion. It can then save 
time by pre-computing partial derivatives for these variables for 
the rest of the search. This aggressive strategy can create 
problems when a dependence changes dramatically throughout 
the search space, particularly when a decision variable is near 
linear around the starting point, but the gradient changes 
elsewhere in the search space.

The DerivMethod parameter controls how derivatives are 
computed:

DerivMethod: Optional TextType
• "forward": This is the default if Jacobian and gradient 

parameters are not supplied. The optimizer estimates 
derivatives using forward differencing, i.e.,

x( )∂
∂ f x ∆+( ) f x( )–

∆
-----------------------------------≈
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• "central": The optimizer estimates derivatives using 

central differencing, i.e.,

• "jacobian": The optimizer computes derivatives using 
the supplied Jacobian and gradient expressions. This is the 
default if these are supplied.

• "check": The optimizer computes derivatives using the 
supplied Jacobian expression and also estimates the 
Jacobian using finite differencing. If they don’t agree to 
within a small tolerance, the optimization aborts with 
LpStatusNum() = 67 (“error in evaluating problem 
functions”). This option is useful for testing whether the 
Jacobian is accurate.

The DirecMethod parameter controls how the gradient-based 
search determines the next point to jump to during search:

DirecMethod: Optional TextType
• "Newton": Uses a quasi-Newton method, maintaining an 

approximate Hessian matrix for the reduced gradient 
function.

• "Conjugate-gradient" or "CG": Use a conjugate 
gradient method, which does not require the Hessian.

The EstimMethod parameter controls the method used to 
estimate the initial values for the basic decision variables at the 
beginning of each one-dimensional line search:

EstimMethod: Optional TextType
• "linear": Uses linear-extrapolation from the line tangent 

to the reduced objective function.

• "quadratic": Extrapolates to the extrema of a quadratic 
fitted to the reduced objective at its current point.

Genetic Algorithm 
Control

When a problem has discontinuous dependencies, or when the 
optional objNl and lhsNl parameters are not specified, the non-
linear optimizer uses a genetic algorithm-based method. You can 
use these parameters to modify how the Optimizer applies this 
algorithm:

SampSz: Optional Positive
Mutate: Optional Positive

x∂
∂ f x ∆+( ) f x ∆–( )–

2∆
--------------------------------------------≈
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SampSz specifies the population size of candidate solution to be 
maintained by the genetic algorithm. If not specified or zero, the 
algorithm will select a “reasonable” size, usually 10 times the 
number of decision variables, but no more than 200.

Mutate specifies he probability that the evolutionary Optimizer 
engine, on one of its major iterations, will attempt to generate a 
new point by “mutating” or altering one or more decision variable 
values of a current point in the population of candidate solutions.

Termination Criteria
In general, the non-linear Optimizer has no way to know whether 
it has found the global optimum, since there may be many local 
optima and the search space may not be convex. In such cases, 
the termination criteria are particularly important. These optional 
parameters control when the non-linear Optimizer stops its 
search and returns a solution:

itLimit: Optional Positive:
noImpSeconds: Optional Positive:
timeLimit: Optional Positive:
convTolerance: Optional Positive

ItLimit: The maximum number of optimization steps 
during the search. 
Default: no limit.

NoImpSeconds: The maximum number of seconds that the 
Optimizer will continue without finding any 
improvement in the best solution.
Default: 30 seconds.

TimeLimit: The maximum number of seconds that the 
Optimizer will spend on the entire optimization 
problem. If this limit is exceeded, it returns the 
best solution so far, if any; and LpStatusNum() 
returns 7 (“feasible solution found”) or 8 (“no 
feasible solution found yet”).
Default: no limit. 

ConvTolerance: Convergence tolerance. Used to detect a slowly 
changing objective. When a smooth optimizer 
algorithm is employed, the optimization will 
terminate when the previous 5 iterations have 
not deviated by more than this amount. For the 
non-smooth, non-linear optimizer (which utilizes 
a genetic algorithm), the optimization will 
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terminate when 99% of the population have 
“fitness values” that differ by less than this 
value. In either case, the Optimizer returns 
status 65 (“objective changing too slowly”). 
Default: 10-4
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7: Debugging a Problem Formulation

Writing and Reading From a File
A linear or quadratic optimization formulation can be written to 
(and read from) a text file using the functions 

LpWrite()
LpRead()

LpWrite(lp: LpType: filename: TextType)
LpRead(filename: TextType)

LpWrite() returns the full filename path written to. LpRead() 
returns an <<LP>> or <<QP>> object. Viewing the resulting file 
can sometimes be useful for detecting problems with your call to 
LpDefine() or QpDefine(). These functions cannot be used 
on a non-linear optimization. The filename are interpreted relative 
to the current Analytica data directory.

Diagnosing Conflicting Constraints
If you have conflicting constraints in your formulation, there will 
be no feasible solution. When you have many constraints, you 
can find the conflicting constraints by computing an Irreducibly 
Infeasible Subset (IIS) of constraints using one of the functions

LpFindIIS()
LpWriteIIS()

LpFindIIS(lp: LpType)
LpWriteIIS(lp: LpType; filename: TextType)

An Irreducibly Infeasible Subset of constraints is a subset of your 
constraints which contains no feasible solution, but which has 
the property that if any single constraint is removed, there will be 
feasible solutions. Thus, it is a minimal set of conflicting 
constraints.

LpFindIIS() returns a subset of your Constraints index. This 
can be used on linear, quadratic and non-linear optimizations.

LpWriteIIS() writes the IIS to an indicated file and returns the 
full file path. This function can be used with linear and quadratic 
optimizations, but not with non-linear optimization problems. The 
file format is the same as that used by LpWrite().

Debugging a Non-Linear Optimization
After formulating a non-linear problem, you may find that the 
optimization runs and returns something other than what you 
expect. After viewing the LpStatusText(), it may not be clear why 
it terminated where it did, or why it didn’t succeed in solving your 
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optimization as you desire. In these cases, you may need to 
monitor the optimization while it is searching in order to debug 
why it is doing what it is doing. Being familiar with a few Analytica 
tricks can be of great assistance here.

Using MsgBox to 
Debug

One of the first things to try is to simply peek at what values 
optimizer is plugging in for X. You can do this by inserting a 
MsgBox inside the expression that computes your objective (or 
in any node downstream of X and upstream of your objective 
expression). For example, if your objective expression is 

obj: Sum(Exp(-a*x), Vars)

you might modify this to read:

obj: MsgBox(x,0,"X="): Sum(Exp(-a*x), Vars)

Then each time the optimizer evaluates the objective, a message 
box will appear on the screen, allowing you to view progress. 
Seeing the optimizer in action will often give you an 
understanding of what it would take to improve the search.

There are a few quirks to be aware of when using MsgBox in this 
fashion. First, the noImpSeconds parameter specifies a 
maximum time the optimizer will work with no improvement in the 
best feasible solution found so far. Time spent staring at the 
message box will count towards time spent, and may result in an 
earlier termination. If this happens, you may want to explicitly set 
this parameter in your call to NlpDefine() to something large.

A second quirk is that if you decide to print out multiple pieces of 
information with a message box, you must consider how they will 
array abstract. MsgBox() prints out a description of your entire 
array result, but its parameter is evaluated before it even 
considers printing it. So, if you call MsgBox() using:

MsgBox("x=" & x)

when x is array-valued, you’ll see something like:

rather than 

X=Array(Vars,[X=0.2,0.5,-0.3])
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as you might have expected. If you plan on displaying multiple 
variables in the same message box, consider using expressions 
such as:

MsgBox("X=[" & join(X, Vars,",") & "]")

which outputs:

You can scatter MsgBox() calls throughout expressions to peek 
at the optimization at various points as it progresses.

Writing trace to file One difficulty with using the MsgBox() trick is that you may need 
to view a lot of dialogs during the course of your optimization. 
Another option is to write trace information to a log file and view 
it separately to understand how the search progressed.

The Analytica function

WriteTextFile(filename, text, appendFlag)

can be used for this purpose. The filename is interpreted relative 
to the current Analytica data directory, and the function returns 
the full file path actually written. Passing TRUE for the third 
parameter appends each line to the log file, so that the full search 
is captured. You can then view the log file in a separate text 
editor to diagnose what went wrong. The information of interest 
is provided in the text parameter, which you should ensure is 
atomic and not an array. If you pass an array, each element of 
the array will be written separately.

It is often convenient to define a constant named CRLF having 
the definition Chr(13) & Chr(10). With such a constant, your 
objective function expression might look like:

obj: LpWrite("log.out",
"x="&join(x,Vars)&crlf, 
True): 

Sum(Exp(-a*x), Vars)
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8: Optimization Function Reference

Problem Definition Functions
LpDefine(Vars, constraints: IndexType;

objCoef: Numeric[Vars];
lhs: Numeric[Vars,Constraints];
rhs: Numeric[Constraints];
sense: Optional TextType[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
ItLimit, NdLimit, MipLimit,

TimeLimit: Optional Positive; 
OptTolerance, PivotTolerance, FeasTolerance,

GapTolerance: Optional Positive;
OptLb,OptUb: Optional Numeric;
scaling: Optional Numeric)

Defines a linear optimization program. See the “3: Formulating 
an Optimization Problem” on page 19 for a description of usage 
and parameters.

QpDefine(Vars, Vars2, constraints: IndexType;
c: Numeric[Vars];
Q: Numeric[Vars,Vars2];
lhs: Numeric[Vars,Constraints];
rhs: Numeric[Constraints];
sense: Optional TextType[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
guess: Optional Numeric[Vars];
warnIndefinite: Optional Boolean;
ItLimit, NdLimit, MipLimit,

TimeLimit: Optional Positive; 
OptTolerance, PivotTolerance, FeasTolerance,

GapTolerance: Optional Positive;
OptLb,OptUb: v Numeric;
scaling: Optional Numeric)

Defines a quadratic optimization program. See the “3: 
Formulating an Optimization Problem” on page 19 for a 
description of usage and parameters.
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NlpDefine(Vars, constraints: IndexType;

x: lVarType;
obj, lhs: Expression;
rhs: Numeric[Constraints];
sense: Optional TextType[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Numeric[Vars];
ctype: Optional TextType[Vars];
guess: Optional Numericl[Vars];
gradient, jacobian: Optional Expression;
objnl: Optional TextType[Vars];
lhsnl: Optional TextType[Vars, Constraints];
itLimit, noImpSeconds, timeLimit, 

convTolerance: Optional Positive;
mutate: Optional Positive;
linVar: Optional Scalar;
DerivMethod, EstimMethod, DirecMethod: 

Optional TextType;
SampSz: Optional Positive)

Defines a non-linear optimization problem. See the “3: 
Formulating an Optimization Problem” on page 19 for a 
description of usage and parameters.

Other Functions
LpFindIIS(lp: LpType)

Computes and returns the Irreducibly Infeasible Subset (IIS) of 
the constraints. This is meaningful when LpStatus(lp)=2 (“no 
feasible solution”), and is useful for identifying what portions of 
your constraint formulation make the problem infeasible. 

LpObjSa(lp: LpType; v: Optional)

Returns the sensitivity ranges for the objective function 
coefficients for a linear program lp for decision variable(s) v, 
which should be one of or a subset of decision variables, Vars. 
If v is omitted, it computes the sensitivity for all Vars.

LpOpt(lp: LpType)

Returns the value of the objective function at the optimum.
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LpRead(filename: TextType; 

Vars, constraints: Optional IndexType)

Reads a linear or quadratic program definition from file 
filename, previously written by LpWrite() and returns an 
opaque <<LP>> or <<QP>> object. The optional Vars and 
constraints are the corresponding indexes for the LP, and must 
be of the same size as the problem read in.

LpReducedCost(lp: LpType)

Returns the reduced costs (dual values) of each variable as an 
array indexed by Vars.

LpRHSSa(lp: LpType;constraint: Optional)

Returns the sensitivity ranges for the RHS values. The default is 
to compute sensitivities for all RHS values, with the result 
indexed by Constraints. If you specify the optional second 
parameter, it returns the sensitivity for only that constraint or 
subset of constraints.

LpShadow(lp: LpType)

Returns the shadow prices (dual values of the constraints) as an 
array indexed by constraints.

LpSlack(lpv)

Returns the slack or surplus values at the optimal solution as an 
array indexed by constraints. If it cannot find an optimal 
solution, it generates an appropriate error.

LpSolution(lp: LpType)

Returns the optimal solution to the linear, quadratic, or non-linear 
programming problem lp defined by LpDefine(), 
QpDefine(), or NlpDefine(). The result is an array of 
decision variables indexed by Vars. If it cannot find an optimal 
solution, LpSolution() returns the best values found during 
the search so far, and LpStatusNum() and LpStatusText() 
indicate why it has not found an optimal solution.

LpStatusNum(lp: LpType)
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LpStatusText(lp: LpType)

Returns the status number as an integer and corresponding text 
message, respectively, of the optimization problem lp. It is wise 
to examine the status before evaluating LpSolution() to avoid 
an error message.Possible results include:

LpStatusNum() Return Values

Status Description (LpStatusText)

1 Optimal solution found

2 No feasible solution

3 Objective unbounded

5 Iteration limit exceeded, feasible

6 Iteration limit exceeded, not yet feasible

7 Time limit exceeded, feasible

8 Time limit exceeded, not yet feasible

65 Objective function changing too slowly

66 All remedies failed to find a better point

67 Error in evaluating problem functions

68 Could not allocate enough memory

69 Attempt to re-enter Optimizer engine during 
solution

101 The MIP optimal solution found

102 MIP solution found within gap tolerance
(see “Controlling The Search” on page 32)

103 No feasible integer solution

104 Integer solution limit exceeded

105 Node limit exceeded, feasible

106 Node limit exceeded, not feasible

107 Time limit exceeded, feasible

108 Time limit exceeded, not feasible
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LpWrite(lp: LpType; filename: TextType)

Writes a TextType description of a linear or quadratic program, 
lp, defined using LpDefine() or QpDefine(), to a file with the 
specified filename. Note that if lp is an array of LP problems, and 
the filename does not share the same dimension, the file written 
by LpWrite() will contain the result of only the last lp. 

LpWriteIis(lp: LpType; filename: TextType)

Writes an Irreducibly Infeasible Subset (IIS) of a linear or 
quadratic program to a file, including only a subset of constraints 
that is infeasible, but with the property that if any single 
constraint is removed, the resulting problem will be feasible. The 
format is the same as that used by LpWrite().
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