
User Guide

Analytica 3.1 for Windows

Copyright Notice
Information in this document is subject to change without notice
and does not represent a commitment on the part of Lumina
Decision Systems, Inc. The software program described in this
document is provided under a license agreement. The software
may be used or copied, and registration numbers transferred,
only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifi-
cally allowed in the license agreement. No part of this document
may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other
than the licensee's personal use, without the express written con-
sent of Lumina Decision Systems, Inc.

This document is © 1993-2005 Lumina Decision Systems, Inc. All
rights reserved.

The software program described in this document, Analytica, is
copyrighted:
© 1982-1991 Carnegie Mellon University
© 1992-2005 Lumina Decision Systems, Inc., all rights reserved.

Analytica was written using MacApp®: © 1985-1996 Apple Com-
puter, Inc.

Analytica incorporates Mac2Win technology, © 1997 Altura Soft-
ware, Inc.

The Analytica® software contains software technology licensed
from Carnegie Mellon University exclusively to Lumina Decision
Systems, Inc., and includes software proprietary to Lumina Deci-
sion Systems, Inc. The MacApp software is proprietary to Apple
Computer, Inc. The Mac2Win technology is technology to Altura,

Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
Phone: (650) 212-1212
Fax: (650) 240-2230
Web Site: www.lumina.com

Inc. Both MacApp and Mac2Win are licensed to Lumina Decision
Systems only for use in combination with the Analytica program.
Neither Lumina nor its Licensors, Carnegie Mellon University,
Apple Computer, Inc., and Altura Software, Inc., make any war-
ranties whatsoever, either express or implied, regarding the Ana-
lytica product, including warranties with respect to its
merchantability or its fitness for any particular purpose.

Analytica is a registered trademark of Lumina Decision Systems,
Inc.

Analytica User Guide v

Contents
About Analytica .. 3
Welcome .. 3
If you don’t read manuals... 3
Requirements... 4
Installation and license codes .. 4
Editions of Analytica... 6
Online help and electronic documentation 9
What’s new in Analytica 3.0 and 3.1? 11
Conventions used in this guide .. 16
Online help ... 17
User guide examples folder ... 17
How to contact us... 17
Credits.. 19

Chapter 1: Examining a Model
Opening, closing, and switching models 23
The tool palette .. 24
Browsing with input and output nodes 26
Influence diagram window.. 28
Node types ... 30
Selecting nodes.. 32
The Object window... 32
The Attribute panel... 34
Showing mid values ... 36
Printing ... 38

Chapter 2: Results
The result window .. 45
Viewing a result as a table ... 49
Viewing a result as a graph.. 51
Uncertainty view options .. 52
Comparing results .. 57

Chapter 3: Analyzing model behavior
Varying input parameters ... 61
Analyzing model behavior results .. 64

vi Analytica User Guide

Chapter 4: Creating and editing a model
Creating and saving a model .. 71
The model Object window... 72
Creating and editing nodes in a diagram 73
Drawing arrows in a diagram window 77
Arrows between Variables in different modules........................ 81
Alias nodes ... 82
Alias nodes ... 84
Editing Attributes... 85
Changing the class of a node ... 86
Preferences dialog box ... 88

Chapter 5: Building effective models
Creating a model... 97
Testing and debugging a model.. 102
Expanding your model .. 105

Chapter 6: Creating lucid Influence Diagrams
Guidelines for creating lucid and elegant diagrams 112
Organizing a module hierarchy ... 117
Color in Influence Diagrams.. 119
Diagram Style dialog box .. 121
Node Style dialog box ... 123
Changing the size of the diagram ... 124
Taking screenshots of diagrams ... 125

Chapter 7: Formatting graphs and tables
Graph Setup dialog box .. 129
Selecting the Graphing Tool ... 130
Graph Frame setup option .. 131
Graph Style setup option .. 132
Number Format dialog box ... 135
Using Excel Graph with Analytica ... 139

Chapter 8: Creating and editing definitions
Creating or editing a definition .. 145
How a valid definition may change the diagram 149
The Expression popup menu .. 150

Analytica User Guide vii

Object Finder dialog box .. 152
Pasting from a library in the Definition menu 155
Checking the validity of a Variable’s values 156

Chapter 9: Creating models used by others
Using input nodes .. 161
Creating a popup menu.. 163
Using output nodes .. 164
Resizing controls.. 165
Changing display style ... 166
Using form modules ... 166
Adding icons to nodes.. 168
Graphics, frames, and text in a diagram 169
Models in XML file format... 170
Hyperlinks in model documentation 173

Chapter 10: Expressions
Numbers... 177
Text values... 179
Boolean or logical values ... 180
Operators ... 180
Conditional operators ... 183
Functions.. 188
Math functions.. 190
Advanced math functions... 192
Text functions... 194
Datatype functions ... 200
Null, Undefined, NAN, and INF .. 201

Chapter 11: Arrays and indexes
Introduction to arrays ... 207
Operations on arrays.. 211
Creating an index ... 215
Editing a list .. 221
Functions that create indexes .. 221
Creating an array with an Edit Table...................................... 225
Editing a table .. 228
Calculating with arrays ... 231

viii Analytica User Guide

Chapter 12: Function reference
Overview ... 237
Intelligent Arrays™.. 237
Functions that create arrays ... 242
Array-reducing functions ... 247
Transforming functions ... 251
Selecting, slicing, and subscripting arrays 255
Array flattening functions .. 259
Interpolation functions... 262
Other array functions .. 265
Matrix functions... 267
Financial functions .. 272

Chapter 13: Expressing uncertainty
Choosing an appropriate distribution 283
Defining a Variable as a distribution 287
Including a distribution in a definition 289
Probabilistic calculation... 290
Uncertainty Setup dialog box .. 291

Chapter 14: Probability distributions
Built-in probability distributions ... 301
Parametic discrete distributions .. 302
Custom Discrete probabilities ... 304
Parametric Continuous distributions 313
Custom continuous distributions ... 323
Multivariate distributions ... 327
Advanced Probability Functions.. 329

Chapter 15: Uncertainty and sensitivity
Statistical functions ... 335
Importance analysis .. 343
Sensitivity analysis functions .. 346
X-Y results .. 355
Scatter plots .. 357

Chapter 16: Modeling changes over time
The Time index ... 361

Analytica User Guide ix

Using the Dynamic function ... 362
More about the Time index .. 364
Initial values for Dynamic ... 367
Using arrays in Dynamic .. 368
Dependencies with Dynamic.. 369
Uncertainty and Dynamic ... 371

Chapter 17: Importing, exporting, & OLE linking
data
Copying and pasting .. 375
Using OLE to link results to other applications....................... 377
Linking data from other applications into Analytica 381
Importing and exporting ... 386
Printing to a file .. 388
Edit Table data import/export format...................................... 388

Chapter 18: Working with large models
Show module hierarchy preference 396
The Outline window.. 397
Finding Variables ... 399
Managing attributes.. 400
Invalid Variables... 403
Using filed modules and libraries ... 404
Adding a module or library ... 406
Combining models into an integrated model.......................... 408
Managing windows... 412
Optimization and speed-up .. 413

Chapter 19: Building functions and libraries
Example function.. 418
Using a function ... 419
Creating a function ... 420
Attributes of a function ... 421
Parameter qualifiers ... 422
Libraries ... 429

Chapter 20: Procedural programming
An example of procedural programming 435

x Analytica User Guide

Summary of programming constructs 438
Programming constructs ... 439
Iteration loops and recursion... 443
Local indexes .. 450
Ensuring array abstraction .. 451
References and data structures.. 458
Miscellaneous functions.. 464

Chapter 21: Analytica Enterprise
Accessing external databases .. 473
Database functions ... 484
Protecting intellectual property.. 487
Huge arrays .. 492
Time profiling .. 493
Memory profiling ... 495

Appendices ... 499
Selecting the sample size ...499
Menus ...503
Analytica specifications ...522
Memory ...524
Reserved Words ...526
Error message types ...527
Forward and backward compatibility531
Bibliography ..534

Function list .. 539

Glossary .. 543

Alphabetical Index .. 555

Analytica windows and dialogs 571

Analytica Quick Reference 572

Introduction

About
Analytica

In this Chapter

This introduction tells you how to:

• Use this manual

• Install Analytica

• Use the online help system

• Access Analytica examples

It also reviews the features that are new
to release 3.0 and 3.1.

Introduction Welcome

Analytica User Guide 3

I

About Analytica

Welcome
This document describes how to use Analytica 3.1 for Windows.
If you want a hands-on introduction to the basics of Analytica, we
encourage you to start with the Analytica Tutorial. This User
Guide provides more depth and complete coverage.

Click on cross references
If you are reading this Guide on your computer, you can click on
any cross reference to jump to that page (see page 8).

If you have any questions or comments about this Upgrade
Guide or the Analytica 3.1 software, please email us at sup-
port@lumina.com.

If you don’t read manuals
You may find that you can use many of Analytica’s features with-
out reading this User Guide, especially after going through the
Analytica Tutorial. If so, use this User Guide as a reference when
you need more help. You may still find it valuable to scan through
selected chapters, which give valuable tips you may not other-
wise find. We especially recommend these Chapters:

Chapter 5 provides guidelines for creating effective models, dis-
tilled from the experience of master modelers. It offers a practical
guide for building effective models that are clear, reliable, and
focus on what really matters—the decisions, objectives, and key
uncertainties. These tips are helpful with any modeling software,
but we designed Analytica to make them especially easy to
adopt—for example, how to use Analytica’s hierarchical Influence
Diagrams to make large models comprehensible.

Chapter 6 offers tips on how to create diagrams that are truly
lucid, clear and elegant—and how to avoid creating incompre-
hensible spaghetti diagrams.

Chapter 11 explains Analytica’s Intelligent Arrays™. These let
you create complex multidimensional models with surprising
ease—once you understand the essential concepts. But, prior

mailto:support@lumina.com
mailto:support@lumina.com

Introduction Requirements

4 Analytica Users Guide

I
experience with spreadsheets or arrays in programming lan-
guages may actually get in your way if you don’t take a little time
to understand them. So, we suggest you scan Chapter 11 if you
plan to create models with extensive use of arrays.

Chapter 13 discusses how to select appropriate probability distri-
butions to express uncertainties. It also provides an overview of
how Analytica computes probability distributions using Monte
Carlo and other random sampling methods, and your options for
controlling and displaying probabilistic values.

Requirements
To use Analytica, you need the following minimum configuration:

• 486-66MHz (Pentium 500MHz+ recommended)

• 20MB disk space

• 32MB RAM (256MB recommended or more for large models)

• 8-bit color display

• Windows 98, 2000, NT 4, ME, or XP

Installation and license codes
After downloading the Analytica 3.1 installer from
www.lumina.com, or inserting the Analytica CD-ROM into your
CD or DVD drive, just double click on the installer to start installa-
tion. It will install onto your hard drive the software executable, all
documentation as Adobe PDF files, libraries and example mod-
els. If you currently have Analytica 2.0 or Analytica 3.0 on your
computer, it will leave it there.

The setup program requires some responses from you. For
example, you will be asked to verify the directory name in which
Analytica will be installed. Most users can accept the defaults
provided by the setup program. By default Analytica is installed in
C:\Program Files\Analytica 3.1

License codes
When you order or download a copy of Analytica, whether a
Player, Trial, or purchased edition, Lumina will email you your
license code, which you will need to activate the software. If

Introduction Installation and license codes

Analytica User Guide 5

I
someone else purchased Analytica for you, you may need to ask
that person to forward you the email with your license code.

During installation, Analytica will asks you for a license code. You
can copy and paste from the email or just type it into the field. The
license code will activate Analytica with the specified edition (e.g.,
Player, Trial, Professional, Enterprise). It also activates the Opti-
mizer if you that option.

Stale license codes
Each license code must be used within a few days, after which it
goes stale. If yours is stale—perhaps, because you didn’t use it
right away, or months later want to install Analytica on another
computer—fear not! Click on the URL on the registration screen,
or go to http://www.lumina.com/ana/stale. Provide the requested
information, and it will immediately email you a fresh license
code. The purpose of this mechanism, is to prevent unauthorized
use of old license codes. Authorized users can always get a fresh
license code.

Expiration dates
Some license codes—notably, for the Trial edition—have a lim-
ited life, after which they expire. On expiration, Analytica reverts
to the Player edition, so you will still be able to open, view, and
evaluate your models. You just won’t be able to make or save
changes. This is not the same as going stale. A second Trial
license code will not reactivate the Trial edition on the same com-
puter. To reactivate Analytica after expiration, you may need to
purchase a copy.

Updating your edition with a new license code
If you want to change your edition—say, purchase Analytica after
testing the Trial edition, or upgrade from the Professional to
Enterprise edition—you do not need to download and reinstall
Analytica. Just select Update License from the Help menu to
show the Licensing Information dialog (see next page) and
enter your new license code. NB: ADE is a different application,
and does require installation, even if you already have another
edition of Analytica installed.

Introduction Editions of Analytica

6 Analytica Users Guide

I

Uninstalling Analytica 2.0 or 3.0
Analytica 2.0 and 3.0 have uninstallers. If you wish to remove
Analytica 2.0, say, select Programs from your Windows Start
Menu. Find the Analytica 2.0 folder, and select Remove
Analytica 2.0.

Editions of Analytica
Analytica 3.1 is available in several editions, with varying sets of
features. Below are descriptions and a table listing key features.

Professional The "standard" edition. It provides most functionality, including
the ability to create, edit, and save models.

Introduction Editions of Analytica

Analytica User Guide 7

I
Enterprise Provides all the features of Analytica Professional, plus Huge

Arrays, ODBC library for access to relational databases, profiling
for analysis of computational effort by Variable, andobfuscation
(encryption) of sensitive model elements. See Chapter 21 for
details on Enterprise features.

Player Lets you review, explore, and run models without purchasing
Analytica. With the Player, you can change designated inputs to a
model, run the model, view results, and examine selected model
diagrams and Variables. It does not let you create new models,
make changes other than to selected inputs, or save models.

Power Player Power Player is designed to distribute applications created in
Analytica Enterprise to end users. Power Player users change
inputs and import input and output data from external applications
and save models with their changes to input values. Power
Player users can also access databases, utilize huge arrays, and
evaluate all Enterprise-only functions.

Trial A free edition of Analytica that provides the full functionality of
Analytica Professional for a limited time, usually 30 days. After
that, it reverts to the functionality of Analytica Player, so you can
still view and run any models you have created, but not save
changes.

Lite The Lite edition is available only for educational purposes, teach-
ing and research. It omits these features from the Professional
edition: Graphing with Microsoft Excel, OLE hot-linking, ability to
create input and output nodes and forms.

The Analytica
Decision Engine
(ADE)

ADE runs models built with Analytica Enterprise on a server com-
puter. It provides an API (Application Programming Interface) to
provide access to view, edit, and run models from another appli-
cation, including a web server. You can create a user interface to
models via a web browser, so that many end users may view and
run a model via the Internet.

ADE supports all the modelling features of Analytica Enterprise—
that is, all features not associated with the Analytica user inter-
face. The ADE Kit is distributed with a copy of Analytica Enter-
prise, which serves as the development tool for ADE models.

Optimizer The Analytica Optimizer provides powerful solver and optimiza-
tion methods, including linear programming (LP), quadratic pro-
gramming, and nonlinear programming (NLP). The Optimizer is
an extension to Analytica Enterprise and ADE. The Optimizer is
available as an extension to Analytica Enterprise, Power Player,
and ADE. See the Analytica Optimizer Guide for details.

Introduction Editions of Analytica

8 Analytica Users Guide

I
Product features by edition

Features

Editions of Analytica 3.1

Pl
ay

er

Po
w

er
 P

la
ye

r

Tr
ia

l

Li
te

Pr
of

es
si

on
al

En
te

rp
ris

e

A
D

E
K

it

A
D

E
Ex

tr
a

Open models, change inputs, & view results

Create, edit, and save changed models -/
No marking of printout

Hierarchical influence diagrams

Monte Carlo uncertainty analysis

Intelligent Arrays™, see page XXX

Procedural programming

Graphing & OLE Linking to/from Excel, see
page 139 & page 377

Outline Window, see page 397

Create Input and Output controls and Forms,
see page 161

General Function libraries: Math, Array,
Distributions, Special, Statistical, Text

Advanced Function libraries: Advanced math,
Financial, and Matrix

Save browse-only models and hide sensitive
model details, see page 487

Huge Arrays™ — dimension or sample size up
to 100 million, see page 492

ODBC database access, see page 484

Time and Memory Profiling, see page 493

Optimizer available

Application Programming Interface

Introduction Online help and electronic documentation

Analytica User Guide 9

I
Online help and electronic documentation

Analytica provides its User Guide and Tutorial as Adobe PDF
documents for online help, available while you are using Analyt-
ica. You can read and search these documents using the free
Adobe® Reader.

The expandable
outline

You can expand and contract chapters and sections of the outline by
clicking the or icons. Click on a section title to jump to that
section.

Magnification You can change the page magnification and window size to suit your
screen and eyesight.

Introduction Online help and electronic documentation

10 Analytica Users Guide

I
Obtaining Adobe
Reader

If you don’t already have the Adobe® Reader (formerly known as the
Acrobat Reader), you can download a free copy from http://
www.adobe.com/.

Accessing help from
Analytica

You can access electronic documentation via the Help menu (see below)
or simply by pressing the F1 key.

Alphabetical index If you find too many unhelpful occurrences of the term, try the
Alphabetical Index in the bookmarks, which usually links to the best
explanation for each term.

Help menu
The Help menu contains these options:

Analytica Note: The options that appear on the help menu will
vary depending on your computer setup and the version of
Analytica you have. If you do not have Adobe Acrobat installed on
your computer, the items that appear above the line will change to
only:

• User guide
• Optimizer (if you have purchased the Optimizer)
• Tutorial

Users with free Acrobat Reader version 6.0 or earlier, or users
with Acrobat Standard or Acrobat Professional, see the expanded
listing shown. Users with the free Acrobat Reader version 7.0 or
later will only see the truncated list.

Content outline Opens the User Guide with Acrobat showing chapters, sections,
and subsections as an expandable outline, using bookmarks.

Function list Opens a page listing all functions, operators, and other con-
structs, organized by type. Click on a name to jump straight to an
explanation of how to use it.

http://www.adobe.com/
http://www.adobe.com/

Introduction What’s new in Analytica 3.0 and 3.1?

Analytica User Guide 11

I
Index Opens the User Guide to its alphabetized index. Select the first

letter of the term from the bookmark outline, and click the term
you want to see details.

Find… Opens the Find dialog box in Adobe Acrobat so you can search
for a term.

What’s new in 3.1 Opens the "What’s New in 3.1" section in the Analytica 3.1 User
Guide.

Tutorial Opens the Analytica Tutorial, with the bookmark outline for quick
access to any section.

Optimizer help Opens the Analytica Optimizer Guide (available with Analytica
Optimizer only).

Web tech support Opens Lumina’s Analytica tech support web page in your default
Web browser, showing answers to frequent questions.

Email tech support Starts an email using your default email program to be sent to
Lumina’s tech support.

Contact Lumina… Opens a dialog box showing Lumina contact information includ-
ing web and email.

Update license… Opens the Licensing Information dialog box so you can review
your or enter a new License Code to upgrade your copy of Ana-
lytica.

About Analytica… Opens the startup flash screen, showing information about Ana-
lytica and your License Code

What’s new in Analytica 3.0 and 3.1?
Analytica releases 3.0 and 3.1 introduce a wide range of new and
improved features. We selected most of these directly in
response to users’ requests. Below is an overview of the changes
since 2.0 (Online viewers may click on page numbers to see
details).

New to release 3.0
Procedural
programming

Release 3.1 adds most of the standard constructs of a procedural
programming language, such as Visual Basic or C, including
Begin-End blocks, local Variables, assignment, While loops,
recursion, and dimensional specifications in function declara-
tions. These constructs add great power and flexibility for those
that like to program. They also enable the creation of convenient

Introduction What’s new in Analytica 3.0 and 3.1?

12 Analytica Users Guide

I
function libraries for the benefit those who do not like to program
themselves. (See page 438 for a table summarizing the new con-
structs and page 435 for an example and overview.)

Local indexes You can now create index Variables within a Variable definition to
identify dimensions of the resulting arrays. These local indexes
greatly simplify using Variables and functions that generate
arrays with new dimensions. (See page 450.)

Improved support for
Intelligent Arrays™

Some users think Intelligent Arrays are Analytica’s most valuable
feature: It lets you define Variables and functions without having
to worry about the number of dimensions of the Variables they
use—except when a particular dimension is relevant to the opera-
tion. (See page 451 for an overview of the Benefits of Intelligent
Arrays.) Most functions and constructs inherently support Intelli-
gent Arrays. Analytica 3.1 adds some new features to help you
ensure that all definitions support Intelligent Arrays, even when
they use those one of the few constructs that do not. (See
page 451.)

Complex data
structures

The new reference, \, and dereference, #, operators let you con-
struct complex data types, such as trees and some types of non-
rectangular arrays. (See page 458.)

New functions We have added about 30 new built-in functions, including:

Text Functions: &, Asc, Chr, FindinText, TextUppercase, Text-
Lowercase, TextSentenceCase, JoinText, SplitText, TextReplace,
SelectText. (See page 194.)

Probability distributions: Poisson, Geometric, Hypergeometric,
Exponential, Weibull, ChiSquared, Logistic, StudentT. (See
page 313.)

Others: attrib Of x, CopyIndex, Evaluate, IsUndef, Iterate, Error,
MsgBox, ReadTextFile, MDTable, Slice(L,x), SingularValueDe-
comp. (See Chapter 12, “Advanced Array Functions”.)

Web links in models Model documentation can include hyperlinks (URLs) to any page
on the world wide web, to provide detailed explanation, refer-
ences, and justifications for a model assumptions. (See
page 173.)

Electronic user
documentation

Online help now provides direct access to electronic copies of
Analytica’s acclaimed User Guide and Tutorial as Adobe PDF
files, using the free Adobe Acrobat reader. The PDF format pro-
vides clear layout and illustrations comparable to the printed
manuals, with rapid search, an expandable outline, and hyper-
linked cross-references, contents, and index. (See page 9.)

Introduction What’s new in Analytica 3.0 and 3.1?

Analytica User Guide 13

I
XML format for model
files

Analytica saves models in new file format, using the hugely popu-
lar XML (extended Markup Language). This enables model files
to be viewed, edited, and exchanged with a large number of other
applications, including Internet Explorer and most database sys-
tems. Release 3.1 can still read and write the earlier file formats
for upward and backward compatibility. (See page 170.)

Huge arrays In earlier releases of Analytica, the largest size of an index is
30,000 elements. The Enterprise and ADE editions of Release
3.1 can handle arrays of up to 100 million elements per index—
limited only by available memory. Huge Arrays allow a corre-
sponding 3000-fold expansion of sample size for probabilistic
simulations and for the size of datasets read in from databases.
(See page 492.)

Time and memory
profiling

The Enterprise edition records how long it takes to evaluate each
variable and will list the most compute-expensive variables to
help you optimize large models. (See page 493.)

Speed doubling Analytica 3.1 contains numerous optimizations which together
typically speed up model evaluation by an average factor about
two—depending on the model. (See page 413.)

Superseded
constructs

New functions and constructs have superseded a few of the old
ones. “Forward and backward compatibility” on page 531 lists the
superseded functions and their recommended replacements.

New to release 3.1
Parameter qualifiers Syntax and qualifiers for parameters to user-defined functions:

3.1 introduces a much richer syntax calling parameters, which
allows optional parameters and the ability to specify parameters
by name instead of by position, analogous to how Analytica lets
you specify array indexes by name rather than position. It also
offers a much richer set of qualifiers to use in parameter declara-
tions to specify what type of parameter is expected and how it
should be treated. Evaluation Mode Qualifiers specify whether
parameter should be evaluated deterministically (Determtype),
probabilistically (ProbType or Sample) or passed as a Variable
name (VarType) or Index (IndexType). Type Checking Qualifiers
include Numeric, Positive, TextType, and ReferenceType. Array
Type Qualifiers specify whether a parameter should be a single
value (Scalar), have one dimension (Vector), or an Array with
listed Indexes. They can make sure functions generalize appro-
priately for array-valued parameters. (See page 422.)

Introduction What’s new in Analytica 3.0 and 3.1?

14 Analytica Users Guide

I
Colors Analytica 3.1 provides a revised set of default colors for each

type of Object in diagrams and the background. You can still
change the colors of selected nodes or the background, using
Show Color Palette from the Diagram menu. (See page 120.)

Assignment to global
Variables

Analytica desn’t let you assign new definitions or values to global
Variables in the Definitions of Variables — to keep models under-
standable and predictable. But, now you can assign to global
variables in Button Scripts, or in Functions called from Button
Scripts, using (x := expr). This is very useful, for example, if you
have a very long computation whose result you want to save for
reuse in the future without having to compute it again. You can
assign the result value or table as the definition of a variable in a
Button Script. You can also assign new values to other attributes
(other than Definition) of an Object using (attrib Of obj := expr).
See “Assignment to a non-local Variable” on page 441.

Better graphing of
discrete distributions

When the samples from a distribution are numeric, it is not always
clear whether the distribution is discrete or continuous, and thus
whether the result should be graphed as a probability distribution
function or a probability mass.

Analytica 3.1 makes more intelligent guesses about whether a
distribution sample is from a discrete or continuous distribution.
When displaying a probability mass or cumulative mass, the solid
bar graph style is used, and when displaying a continuous den-
sity, the histograph style is used.

Power Player Power Player allows users to view existing models created with
Analytica Enterprise. With Power Player, users can do everything
they can do with Analytica Player, plus change inputs and import
input and output data from external applications. Unlike the free
Analytica Player, users can save models with their changes to
input values; they can also access databases, utilize huge arrays,
and evaluate all Enterprise-only functions. Power Player is
designed to distribute applications created in Analytica Enterprise
to end users who need to use models with Enterprise-level fea-
tures, but do not need the ability to create new models or refine
existing ones.

When a browse-only model, created using Analytica Enterprise
Edition, is loaded into Analytica Professional or Analytica Lite it
runs in Power Player mode.

Optimizer module The Optimizer module is a powerful, general purpose solver and
optimizer, available as an extension to Analytica Enterprise,
Power Player, and ADE. It offers efficient linear programming
(LP) with up to 1000 decision Variables and 2000 constraints,

Introduction What’s new in Analytica 3.0 and 3.1?

Analytica User Guide 15

I
mixed integer programming, quadratic programming (QP), and a
powerful hybrid classic and evolutionary nonlinear programming
(NLP) optimizer for up to 500 decision Variables. For more
details, see

http://www.lumina.com/ana/optimizer.html

from where you can download the Analytica Optimizer User
Guide.

New functions We have added about 20 new built-in and library functions,
including:

Probability distributions: Pert, Log_Normal_m_s_sd (see “14:
Probability distributions” on page 301).

Multivariate Distributions: There is a new multivariate distribu-
tion library containing the following new functions: Binormal,
Correlate_Dists, Correlate_With, Dirichlet, Gaussian, Multino-
mial, and SampleCovariance (see “Multivariate distributions” on
page 327).

Control Functions: CurrentDataDirectory, CurrentModelDirec-
tory , WriteTextFile, MemoryInUseBy,IgnoreWarnings (see “Itera-
tion loops and recursion” on page 443).

Others: IsNotSpecified, CurrentDataDirectory , CurrentModel-
Directory, WriteTextFile, MatrixMultiply, EigenDeComp. (See
Chapter 12, “Advanced Array Functions”.)

New current directory
mangement

Analytica 3.1 now maintains two "current" directories: A current
model directory and a data directory. When you first load a model,
they start out the same (normally "My Documents"), but either can
be changed through the File Finder dialog or using the Current-
ModelDirectory or CurrentDataDirectory functions. The load-
ing of models and modules use the current model directory, while
data functions (ReadTextFile, WriteTextFile, Export...,
Import.., etc.) use the current data directory.

Analytica will use your "My Documents" folder by default initially,
but you can change this with the registry setting: HKCU\Soft-
ware\Lumina Decision Systems\ Analytica\StartFolder

New example models Analytica 3.1 comes with new sample models. The Optimizer
module comes with ten optimizer example models. In addition,
the following areas have new sample models:

• Data Analysis: Principle Components.ana

• Data Analysis: Moving Average Example.ana

Introduction Conventions used in this guide

16 Analytica Users Guide

I
• Function Examples: Lookup reindexing.ana

• Dynamic Models: Tunnel through earth.ana

• Decision Analysis: Multi-Attribute Utility Analysis.ana

New keyboard
shortcuts

With Analytica 3.1, you can use the keyboard shortcut F2 to
switch between edit and arrow modes.

For nodes in same diagram, there is now a shortcut for typing
identifier names in an Attribute pane. While typing a definition,
depress the ALT key and click on the desired node; the node’s
identifier is inserted into the definition. (This only works from the
Attribute pane.)

Use of up to 3 GB in
Windows Application
Server

Windows XP, 2000, NT, Me, and 98 limit the memory space of
any 32-bit process to 2 Gigabytes. However, Windows Applica-
tion Server 2003 allows 32-bit processes to access up to 3
Gigabytes. Analytica 3.1 and ADE 3.1 are now able to utilize up
to 3 Gigabytes in Windows Application Server.

Consolidated user
documentation

Analytica 3.1 documentation has consolidated the previous Users
Guide for Alaytica 2.0, the Analytica 3.0 Upgrade Guide, and the
documentation for the new Analytica 3.1 features into a single
Analytica 3.1 Users Guide.

Conventions used in this guide
This guide uses the following conventions.

Typographic conventions
Example Meaning

behavior analysis Key terms when introduced. Most of these
terms are included in the Glossary

Diagram Menus and menu commands

Sequence() Functions

Price - DownPmt Expressions, definitions

Enter A key on keyboard

Foxes at end Title or identifier of a Variable or other
Analytica Object

Introduction Online help

Analytica User Guide 17

I
Terms for interacting with your computer

Analytica Note: These notes give you useful or important
information.

Online help
At any point, you can access Analytica’s online help system by
pressing the F1 key or by using the pull-down Help menu.

User guide examples folder
In the Examples folder distributed with Analytica is a folder of
User Guide Examples. This folder contains an Analytica model
for each of Chapters 9, 10, 11, 12, 14, 15, and 16, and three Ana-
lytica models for Chapter 17. Use these models to more closely
examine the examples shown in this Analytica User Guide.

See Chapter 8 in the Tutorial for a brief description of all the mod-
els contained in the Examples folder.

How to contact us
If you have any questions or comments about Analytica, or just
want to keep up to date on changes to Analytica, please contact
us.

Term Meaning

press Press and hold down the mouse button

click Press and release the mouse button once

double-click Press and release the mouse button twice in quick
succession

drag Press and hold down the mouse button, move the
cursor to a new location on the screen, and then
release the mouse button

select Click on an interface Object, such as a node in a
diagram or a cell in a table; selected objects appear
highlighted

Introduction How to contact us

18 Analytica Users Guide

I
By mail
Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
USA

By electronic mail
• Sales or customer support: info@lumina.com

• Technical support: support@lumina.com

By phone
(650) 212-1212

Web site
For the latest information about Analytica, please visit our Web
Site located at

http://www.lumina.com

Introduction Credits

Analytica User Guide 19

I
Credits

Analytica User Guide
The Analytica User Guide was written by Max Henrion, Brian
Arnold, Lonnie Chrisman, Fred Brunton, David Dvorkin, and
Lynda Korsan with Randa Mulford (Expert Support, Inc.).

The User Guide for Analytica 3.1 was written and edited by Lon-
nie Chrisman, Max Henrion, and Richard Morgan. Previous
releases were edited by Jason Harlan, Lynda Korsan, Rich Son-
nenblick, Brian Sterling, Eric Wainwright, and Randa Mulford and
Adrienne Esztergar (Expert Support, Inc.).

Layout design by Mike Marsh.

This document was created electronically using Adobe Frame-
maker® Release 5.5 and 7.0 for Microsoft Windows®.

The color used in this manual is Pantone Matching System® 668.

Cover design and production by Zoom Studio, Portland, Oregon.

Printing and binding by Bridgetown Printing, Portland, Oregon.

Introduction Credits

20 Analytica Users Guide

I

Chapter 1

Examining a
Model

In this Chapter

This chapter shows you how to:

• Start up a model

• Explore its Diagram window

• Explore its Object window

• Explore its Result window

• Print the contents of windows

Chapter Opening, closing, and switching models

Analytica User Guide 23

1

1: Examining a Model
This chapter introduces the basics of interacting with a model in
Analytica. It describes how to start up and explore a model,
including its Diagram, Object, and Result windows, and how to
print the contents of windows.

Opening, closing, and switching models

Models
A model is a collection of Variables and modules used to repre-
sent a situation of interest. Between sessions, a model is stored
in an Analytica document file with the file type ".ana".

Opening a model
To open an existing model, do the following:

1. Start Analytica. The program begins with a new, untitled
model open.

2. Click on File and select Open Model in the pull-down menu.
A file dialog prompts you to locate and open a model.

As the model is read, a dialog box indicates progress:

Analytica Note: Clicking on the Stop button halts the model
reading process and results in a partially loaded model (the
diagram will be incomplete).

After reading in the model, Analytica checks the definitions.

Chapter The tool palette

24 Analytica Users Guide

1

Analytica Note: Clicking on the Stop button halts the checking of
definitions and results in a diagram with missing arrows.

If the model contains Variables without syntactically correct defini-
tions, the "invalid Variables" window displays (see “Invalid Vari-
ables” on page 403).

Closing a model
To close a model, select Close Model from the File menu. If you
have made any changes to the model, a dialog box asks you
whether you want to save the changes before closing.

Switching to another model
Only one Analytica model can be open at a time. To switch to
another model, first close the model. Then select Open Model
from the File menu. A dialog box prompts you to locate and open
another model.

Quitting Analytica
To quit Analytica, select Exit from the File menu. If you have
made any changes, a Save dialog asks you whether you want to
save your model before quitting.

The tool palette
When you open a model, the tool palette appears across the top
of your screen. It provides a set of buttons to navigate around a
model, to open different views of a model, and to change
between browse and edit modes.

Chapter The tool palette

Analytica User Guide 25

1

The first five buttons on the tool palette apply to the active Analyt-
ica window (the frontmost window).

Parent Diagram button
Opens a Diagram window for the module or model containing
the active diagram window or Variable. This button is grayed
out if you are looking at the Diagram window for the top-level
(or root) model.

Outline button
Opens the Outline window and highlights the selected node
or active module in the outline. See “The Outline window” on
page 397

Object button
Opens an Object window for the selected node or active
module. See “The Object window” on page 32

Result button
Opens a Result window for the selected Variable. (See “The
result window” on page 45) This button is grayed out if no
Variable is selected. The keyboard equivalent for the result
button is Ctrl-R.

Definition button
Opens a view of the definition of the selected Variable. If the
Variable is defined as a distribution or sequence, the Object
Finder opens (see “Object Finder dialog box” on page 152); if
it is defined as a table or probability table, its Edit Table
window opens (see “Viewing an array as an Edit table” on
page 209). Otherwise, an Attribute panel (see “The Attribute
panel” on page 34) or an Object window (see “The Object
window” on page 32) opens, depending on the Edit Attributes
setting in the Preferences dialog box (see “Preferences
dialog box” on page 88.) This button is grayed out if no
Variable is selected. The keyboard equivalent for the

Pa
re

nt
 D

ia
gr

am
 b

ut
to

n

O
bj

ec
t b

ut
to

n

De
fin

itio
n

bu
tto

n

Re
su

lt
bu

tto
n

O
ut

lin
e

bu
tto

n

Br
ow

se
 to

ol
 b

ut
to

n
Ed

it
to

ol
 b

ut
to

n
Ar

ro
w

to
ol

 b
ut

to
n

Chapter Browsing with input and output nodes

26 Analytica Users Guide

1
definition button is Ctrl-E.

The three tool buttons determine the mode of interaction with the
model. One mode is always selected.

Browse tool button
Use to interact with the model in Browse mode. See
“Browsing the window” on page 27

Edit tool button
Use to interact with the model in Edit mode. See “Creating
and editing nodes in a diagram” on page 73.

Arrow tool button
Use to interact with the model in Arrow mode, to add or
delete arrows (dependencies) among the components of the
model. See “Drawing arrows in a diagram window” on
page 77

Browsing with input and output nodes
When you open a model with input and output nodes, Analytica
first displays a top level Diagram window, similar to the example
here.

Output node

Input nodes

Hand tool is highlighted
to show that you are

browsing

Chapter Browsing with input and output nodes

Analytica User Guide 27

1
The input nodes show values that you can change to see their
effects on the final values. The output nodes each show a Calc
button. At least one node contains the details of the model.

Browsing the window
An existing model opens in Browse mode. In Browse mode, the
Browse tool button is highlighted in the tool palette, and the cur-
sor is a hand ().

Use the Browse tool to change input node values, view output
node results, and examine the model by opening windows to see
more detail.

Viewing input node values
An input field lets you see a single numeric or text value. Click in
the box to change the value.

A popup menu lets you choose from a menu of alternatives. To
see the alternatives, click on the popup menu. To select an alter-
native, click on it.

A List button lets you see an ordered set of values. To see the
values, click on the button. To change a value, click in its cell. For
more about lists, see “Editing a list” on page 221.

An Edit Table button lets you see a multidimensional set of val-
ues in one or more tabular spreadsheet-like windows. To see the
values, click on the button. To change a value, click in its cell. For
more about tables, see “Editing a table” on page 228.

A Distribution button lets you see a probability distribution. To
see the distribution and its parameters, click on the button. For
more about probability distributions, see “Probabilistic calcula-
tion” on page 290

Viewing output node values
If the value of an output node has not yet been computed, the
Calc button appears in the node. Click on the Calc button to com-
pute and display the value. Chapter 2, “Viewing Results”,
describes how to interpret and redisplay results.

Chapter Influence diagram window

28 Analytica Users Guide

1
Opening model details

To see the structure of the model, double-click on the details
(rounded, thick-outline) node. A diagram window showing an
Influence Diagram will display (see “Influence diagram window”
on page 28).

Influence diagram window
When you open a model detail window, or a model without input
and output nodes, Analytica displays a Diagram window for the
model. The Diagram window depicts the model as an Influence
Diagram. An Influence Diagram is an intuitive graphical view of
the structure of a model, consisting of nodes and arrows. Each
node depicts a Variable or a module.

A Variable is any Object that has a value or can be evaluated.
Nodes with thin outlines depict Variables. A module, with a thick
outline, contains its own Influence Diagram.

The arrows in a Diagram window depict the influences among
the Variables. An influence arrow from one Variable to another
means that the value of the first Variable directly affects the value
(or probability distribution) of the second Variable.

For example, in the preceding diagram, the arrow from Buying
price to Cost to Buy means that the price of the house affects the

Selected node
is highlighted

Nodes

Chapter Influence diagram window

Analytica User Guide 29

1
overall cost of purchasing it. A higher price means a greater cost,
given a fixed Rate of inflation and Discount rate. The Influence
Diagram shows the essential qualitative structure of the model,
unobscured by details of the numbers or mathematical formulas
that may underlie that structure.

For more on using Influence Diagrams to build clear models, see
Chapter 6, “Creating Lucid Influence Diagrams”.

Opening details from a diagram
To see more details of a model, double-click on nodes in the Dia-
gram window:

• Double-click on a Variable (thin outline) node to open its
Object window. See “The Object window” on page 32.

• Double-click on a module (thick outline) node to see its
Diagram window, showing the next level of detail of the
model.

Going to the parent diagram
To see the diagram that contains the active module or Variable,
click on the Parent Diagram button in the tool palette. The mod-
ule or Variable will be highlighted in the parent diagram.

Analytica Note: If the active diagram is of the top model, it has
no parent diagram, and the Parent Diagram button is grayed out.

Finding remote inputs and outputs
When a Variable depends on a remote Variable—that is, a Vari-
able in another module that is not visible—a small arrowhead
appears to the left of the node. If a Variable has a remote output,
a small arrowhead appears to the right of the node.

To go to the Diagram window containing a remote Variable:

1. Click on the small arrowhead. A popup menu appears listing
all inputs (or outputs), including those that are not remote.

Small arrowhead
indicates that this

Variable has remote
inputs

Chapter Node types

30 Analytica Users Guide

1

2. Click on the desired input (or output). The Diagram window
containing the remote Variable opens, and the remote
Variable’s node is highlighted.

Viewing results
Click on a Variable node to select it; it becomes highlighted. Then
click on the Result button in the tool palette to show the value of
the Variable as a table or graph in a Result window. Chapter 2,
“Viewing Results,” discusses how to interpret and redisplay
results.

Analytica Note: If the value has not already been computed, you
may need to wait while the result calculates, and the waiting cursor
() appears.

Node types
Each node shape in a diagram represents a different class of
objects. Here are the classes and their corresponding node
shapes:

A rectangular node depicts a decision Variable—that is, a quan-
tity that the decision maker can control directly. For example,
whether or not you take an umbrella to work is your decision. If
you are bidding on a contract, how much you bid is your decision.

A rounded, thin-outline node depicts a general Variable—that is,
a quantity whose class is not determined more precisely, or a
quantity that the decision maker cannot affect directly and that is
not defined as probabilistic. Use a general Variable initially if
you’re not sure what kind of Variable you’ll need, then change the
node class later, if appropriate.

An oval node depicts a chance Variable—that is, a Variable that
is uncertain and that the decision maker cannot control directly. A
chance Variable is usually defined by a probability distribution.
For example, whether or not it rains is a chance Variable (unless
you are a rain god). And whether or not your bid is the winning bid

Popup menu of inputs

Decision

Variable

Chance

Chapter Node types

Analytica User Guide 31

1
is a chance Variable in your model, although it is a decision Vari-
able for the person or organization requesting the bid.

A hexagonal node depicts an objective Variable—that is, a
quantity that evaluates the relative desirability of possible out-
comes of combinations of decision and chance Variables. Most
models should contain a single objective node, although the
objective can comprise several sub-objectives.

A rounded, thick-outline node depicts a module—that is, a collec-
tion of nodes organized as a separate diagram. Modules can
themselves contain nested modules.

A parallelogram-shaped node depicts an index Variable. An
index is used to define a dimension of an array. For example,
Year is an index for an array containing the U.S. GNP for the past
20 years. Or Nation name is an index for an array of GNPs for a
collection of nations (see “Introduction to arrays” on page 207).
Index values appear in the row and column headers of a table,
and in the x axis and key of a graph.

A trapezoid-shaped node depicts a constant—that is, a Variable
whose value is fixed. A constant has no inputs and is not com-
puted. Examples of numerical constants are the atomic weight of
oxygen or the number of feet in a kilometer. It is good practice to
define such values as constants, so you can refer to them by
name; otherwise, you must type their numerical values into each
expression that includes them and search for the values when
you need to change them.

A node resembling an arrow tail pointing right depicts a function.
You can define functions to augment the functions provided in
Analytica; see Chapter 19, “Building Functions and Libraries”.

An oval node with a double rounded outline depicts a determ
(deterministic) Variable—that is, a Variable whose value cannot
be directly controlled by the decision maker, and that is not uncer-
tain or probabilistic. This node class is not included in the node
palette to encourage use of the general Variable.

A gray rectangular node depicts a button Object—that is, a
graphical interface Object that triggers a script when the button is
pressed. The button’s script is written in a programming language
called Typescript. Typescript is a language different from the
expression syntax used in definitions. Typescript is explained in
the Analytica Scripting Reference, distributed with ADE.

Objective

Module

Index

Constant

Function

Determ

Button

Chapter Selecting nodes

32 Analytica Users Guide

1
Selecting nodes

To perform an operation on a diagram, you must first select a
node (or a set of nodes), then select the operation to perform.
There are various ways to select nodes (similar to selecting icons
in the Finder):

To select one node
Click once on the node to select it. The selected node is high-
lighted.

You can also press the tab key to select one node at a time.

To select multiple nodes
Select one node, then click on another node while holding down
the shift key. This operation adds the new node to the set of
selected nodes, highlighting them all. By repeating this process,
you can select as many nodes as you wish.

If the nodes are close together, you can also select them by drag-
ging a selection rectangle around them.

To deselect one node
Click on a selected node while holding down the shift key. This
operation removes the node from the selection, leaving the
remaining nodes selected.

To deselect all nodes
Click on the background of the diagram to deselect all nodes.

The Object window
The Object window shows the attributes that together specify a
node. For a Variable, as shown in the following figure, these
attributes include the class, identifier (a brief, unique name), title,
units, description, definition, inputs, and outputs. See the Glos-
sary for descriptions of the attributes.

Chapter The Object window

Analytica User Guide 33

1

Opening an Object window
There are several ways to open the Object window for an Object
titled X:

• Double-click on X’s node in its Diagram window (see
page 28).

• Select X in its Diagram window and click on the Object button

() in the tool palette.

• Double-click on the entry for X in the Outline window (see
“The Outline window” on page 397).

• If a Result window for X is displayed, click on the Object

button () in the tool palette.

• Double-click on the entry for X in the Inputs or Outputs field of
another Variable.

Examining inputs and outputs
When you are looking at an Object window for a Variable, you
can easily view the Object window for any of the Variable’s inputs
or outputs. Double-click on a node symbol, identifier, or title of a
Variable in the list of inputs or outputs.

Double-click on an input
or output to open its

Object window

Class Identifier

Expressions popup menu
(see page 150)

Editable field

Chapter The Attribute panel

34 Analytica Users Guide

1
Returning to the parent diagram

Click on the Parent Diagram button in the tool palette to see the
diagram that contains this node, with the node highlighted.

Displaying additional Attributes
• To display the value of a Variable and its inputs, see

“Showing mid values” on page 36.

• To display additional attributes and create new attributes, see
“Managing attributes” on page 400.

The Attribute panel
The Attribute panel provides an alternative way to view
attributes of a node. The Attribute panel appears as an exten-
sion below a Diagram window.

Selected node whose
Attribute is displayed below

Title of Object

Attribute fieldContents of the
Attribute

Attribute popup menu
selects the Attribute

PartitionKey icon is open

Size box

Chapter The Attribute panel

Analytica User Guide 35

1
Displaying the Attribute

1. Click on the Key icon () to display the Attribute panel.

2. Select a node to examine by clicking on it in the diagram.

Analytica Note: If multiple nodes are selected, click on the
diagram background to deselect them, then click on the node you
wish to examine.

3. To examine a different Attribute, click on the Attribute popup
menu, and select the desired Attribute.

4. To examine the same Attribute for another node, select that
node in the Diagram window. If no node is selected (you have
clicked on the background of the diagram), the corresponding
Attribute for the module is displayed.

The Attribute popup menu
When the Attribute panel is displayed, the Attribute popup menu
is located at the top center of the Attribute panel. Use this popup
menu to select another Attribute to view. Variables, modules, and
functions have different sets of attributes, as shown here:

Variables Modules Functions

Chapter Showing mid values

36 Analytica Users Guide

1
See the Glossary for descriptions of these attributes. To display
other attributes or to add new ones, see “Managing attributes” on
page 400.

Changing the panel size
To change the height of the diagram in relation to the diagram’s
Attribute panel, drag the partition up or down.

To change the size and shape of the Attribute panel, drag the size
box up or down; the height of the Diagram panel remains fixed.

To change the width and shape of the Diagram and Attribute pan-
els, drag the size box right or left.

Closing the Attribute panel
To close the Attribute panel, click on the Key icon ().

Showing mid values
The mid value or deterministic result of a Variable is computed
by holding each uncertain (probabilistic) input at a single, central
value. The mid value for a probability distribution is its median.
The mid value of a Variable is computed by using the mid value of

Chapter Showing mid values

Analytica User Guide 37

1
each input. If all inputs are certain (non probabilistic), the calcu-
lated value is still referred to as the mid value in Analytica.

To show the mid values of Variables in the value Attribute, select
Show with Values from the Object menu. Mid values that are
single values will display in Object windows and the Attribute
panel. You can display these values to check that a calculation is
performing correctly, or to find errors in the model.

Array values
If the mid value of the selected Variable is an array, rather than a
single number, the Result button appears.

To display the array, click on the Result button. (This is equiva-
lent to clicking on the Result button on the tool palette, described
in “The tool palette” on page 24.) A Result window opens, show-
ing the values either as a graph or as a table. For information
about the Result window, see Chapter 2, “Viewing Results.”

Values of inputs
When Show with Values is turned on, the list of inputs displays
one of the following for each input:

List of inputs, with
units and values

Value of selected Variable

Chapter Printing

38 Analytica Users Guide

1
• The mid value, if it is a a single number (or text) and has been

computed.

• Calc if it has not been computed. To calculate and view the
value, select the input as the Variable you are examining and
display its Object window or value Attribute.

• Result if the mid value is an array. To display it, select the
input node as the Variable you are examining. The value
Attribute displays the Result button; click on the Result
button to see the values.

Printing
To print the contents of any window (Diagram, Outline, Object,
Result Table, or aResult Graph window), activate the window and
select the Print... command from the File menu. To set printing
options such as page orientation, paper size, or scaling, use the
Print Setup... command on the File menu. Any print settings that
you specify are associated only with window that was active
when you selected the Print Setup... command.

Previewing page breaks before printing
When you select the Print preview command on the File menu,
a Preview window appears before printing. This window shows
what will be printed with an indication of where page breaks will
occur. Print settings such as scaling can be conveniently adjusted
by selecting the Setup... button until the desired page breaks
have been obtained. When previewing a result table or graph, an
option for showing or hiding the index Variable titles can be tog-
gled.

When viewing a diagram, outline, or Object window, page breaks
can be viewed while working by enabling Show Page Breaks on
the Window menu.

Chapter Printing

Analytica User Guide 39

1

Scaling printouts
You can adjust the magnification of your printouts using the Print
Setup... command on the File menu, or by using the Setup...
button on the Print Preview window. You can specify magnifica-
tion in two ways:

• Adjust to p% of normal size.

p< 100% shrinks the output (fits more on a page).
p>100% enlarges the output

• Fit to n page(s) wide by m page(s) tall.

Shrinks the output if necessary to fit on a maximum of n
pages wide by m pages tall. The output is never enlarged to
fill out the specified number of pages. Also, the aspect ratio is
preserved, so the actual number of pages printed may be
less than n x m.

If checked,
shows axes and

other
dimensions

Opens the
Print dialog
box

Prints without
opening the
Print dialog box

Chapter Printing

40 Analytica Users Guide

1

Printing the background
There is a check box on the Print Setup... window for controlling
whether a diagram's background color is printed. By not printing
the background color, one can save on ink or toner. Whether the
background is printed or not is controlled by the Print influence
diagram background color check box. By default, it does not
print the background.

Printing multiple windows
To print the contents of several windows at one time, use the
Print Report command in the File menu. Each window that is
printed uses the print settings that have been specified for that
window.

Settings to
magnify or
shrink print
output

Check box to
print
background

Chapter Printing

Analytica User Guide 41

1

In addition to the Diagram, Result, and Object window options,
there are two check boxes:

Print Outline (All Objects)
If checked, this option prints an outline of all of the objects in
the model. It prints a list of all nodes by title, indented to show
their position in the module hierarchy.

Print Outline (Modules Only)
If checked, this option prints the model hierarchy as an
indented list containing only the modules.

Diagram window
printing options

Result window
printing options

Object window printing
options

Chapter Printing

42 Analytica Users Guide

1

Chapter 2

Viewing
Results

In this Chapter

This chapter shows you how to:

• Interpret Result windows

• View results as graphs and as
tables

• View results that have more than
two dimensions

Chapter The result window

Analytica User Guide 45

2

2: Results
This chapter describes the elements of Result windows, how to
view results as graphs and as tables, and how to view results that
have more than two dimensions. It also discusses how to select a
method for displaying uncertainty about probabilistic values.

The result window
Analytica computes the value of a Variable from that Variable’s
definition and displays the value in a Result window. If the value
is probabilistic or an array, or both, it is displayed in a Result win-
dow as either a table or graph. The following figure shows a
Result window of an array with the graph superimposed on a
table.

Chapter The result window

46 Analytica Users Guide

2

Opening a result window
To open a result window for a Variable in an Influence Diagram,
select the Variable and do any of the following:

• Click on the Result button ().

• Select Show Result from the Result menu.

Uncertainty View
popup menu

Table view
Graph view

Index selection areaResult tool palette

Chapter The result window

Analytica User Guide 47

2
• Select an uncertainty view option (such as Mid Value or Mean

Value) from the Result menu.

• Select Value from the Attribute panel’s popup menu.

• Select Probvalue from the Attribute panel’s popup menu.

• Press Ctrl-R.

To open a Result window for an output node, click on the Calc or
Result button.

The result tool palette
The Result tool palette, in the upper left corner of the Result
window, contains three items:

• The Uncertainty View popup menu. Pressing this popup
menu brings up a menu of options for viewing the result data
(see page 53).

• The Table View button. Clicking this button displays the
results as a table (see page 49).

• The Graph View button. Clicking this button displays the
results as a graph (see page 51).

Toggle between the table and graph views using the Table View
and Graph View buttons.

Index selection area
The top portion of a Result window is the index selection area,
which identifies the rows and columns of a table, or the x-axis and
key of a graph. Buttons and popup menus allow you to rearrange
the table or graph by interchanging indexes.

The index selection area contains these items (example Variables
and indexes in the following text refer to the figure above):

Totals row or column

Title of the result

Row or key index
Column or x axis index

Index navigation buttons

Third or higher
dimensions

X-Y button

Chapter The result window

48 Analytica Users Guide

2
• The title of the result, including the active uncertainty view,

title of the Variable and units, if any; here, it is Mid Value of
Costs of buying and renting ($).

• Index navigation buttons, if the result has three or more
dimensions (see the next page).

• The third or higher dimensions, if any (Buying price is a third
dimension).

• The row or key index (Buy or rent).

• The column or x-axis index (Appreciation rate (%/year)).

• The totals check boxes. These control whether numeric row
or column totals are displayed in a result table. Also when this
box is checked for a given index, the index slice will default to
the "Totals" option if this index is transposed to a third or
higher dimension.

Click on the popup menu (indicated by the down arrow ()
for either index (row or column) to select a different index (or
"No Index").

• The X-Y button (see “X-Y results” on page 355).

Index navigation buttons
When the result has three or more dimensions, not all values can
display on the table or graph. For each index, or dimension,
beyond the second, a set of navigation buttons appears in the
index selection area.

Use the index navigation buttons to move among index values for
the third (or higher) dimension of results:

• Click the left arrow () to select the previous index value.

• Click the right arrow () to select the next index value.

• Click the down arrow () to open a dialog box showing all
the values for this index.

Popup menu

Chapter Viewing a result as a table

Analytica User Guide 49

2

The default view
When you first display a Result window, Analytica displays the
result as a graph, if possible, and otherwise as a table. You can
change the default option with the "Default result view" setting in
the Preferences dialog box (see “Preferences dialog box” on
page 88).

When you display the Result window again, the view to be dis-
played is recalled from earlier in the session or from the previ-
ously saved session.

Recomputing results
When a Result window is open, and then the value of an input to
the evaluated Variable is changed, a Calculate button appears in
the index selection area.

Click on the button to recalculate the result.

Viewing a result as a table

Displaying a table
If a graph is displayed, change it to the corresponding table by
clicking on the Table View button ().

Dialog box listing all
values for the selected

index (Buying Price)

Selected value is 120K
Click on a value to select it and to close
the dialog box

Totals option. When selected, the view
displays numeric totals across this
index (Buying price).

Chapter Viewing a result as a table

50 Analytica Users Guide

2
Display of values

The table view displays one or two dimensions of a Variable.

The display options depend on the number of dimensions in the
Variable.

One dimension
The index is displayed vertically (there are no options).

Two dimensions
You can choose which index is displayed horizontally using
the column index popup menu (), and which index is
displayed vertically using the row index popup menu ().

Three or more dimensions
You can select a two-dimensional view using the row and
column popup menus. Select specific values for the third or
higher dimensions using the index navigation buttons.

Formatting numbers
You can specify the number format for a table’s contents, using
the Number Format dialog box.

To display the Number Format dialog box:

1. Select the row(s), column(s), or cell that you wish to format.

2. Choose Number Format from the Result menu or press
Ctrl-B.

Three-dimensional table

Result Tool palette
(see page 47)

Index
selection
area
(see page 47

Chapter Viewing a result as a graph

Analytica User Guide 51

2
See “Number Format dialog box” on page 135 for details on the
number format options.

Viewing a result as a graph

Displaying a graph
If a table is displayed, change it to the corresponding graph by
clicking on the Graph View button ().

Display of values
A graph displays the values from an array.

The vertical y axis shows the Variable’s values.

The display options depend on the number of dimensions in the
Variable.

One dimension
The values of the dimension are shown horizontally, along

x axiskey

Result tool palette
(see page 47)

Index selection area
(see page 47)

y axis

Chapter Uncertainty view options

52 Analytica Users Guide

2
the x axis (there are no options).

Two or more dimensions
You can choose which index is displayed along the x axis by
using the x axis popup menu, and which index produces
multiple curves by using the key index popup menu.

The key shows the value of the index Variable that
corresponds to each curve, indicated by pattern or color.

Select specific values for the third or higher dimensions using
the index navigation buttons.

Changing graph ranges and styles
You can override the default ranges and styles for a graph, or you
can change the default for all graphs, using the Graph Setup dia-
log box.

To display the Graph Setup dialog box, do one of the following:

• Select Graph Setup from the Result menu.

• Double-click anywhere on a graph in the Result window.

See “Graph Setup dialog box” on page 129 for details on the
Graph Setup options.

Uncertainty view options
The value of a Variable in an Analytica model can be either cer-
tain (deterministic) or uncertain (probabilistic). An uncertain
value can be viewed in several different ways. Select the uncer-
tainty view in either:

• The Result menu.

• The Uncertainty View popup menu (top left corner of the
Result window).

Chapter Uncertainty view options

Analytica User Guide 53

2

The check mark indicates the currently selected uncertainty view
option. If the active window is not a Result window, selecting an
uncertainty view option opens a Result window for the selected
Variable.

The uncertainty view options are described briefly here. For more
information on these options, see their entries in the Glossary
and consult any standard statistics textbook.

The following examples use the Variable Typical Uncertainty,
which is defined as a normal distribution having a mean of 50 and
a standard deviation of 30.

Mid Value
The mid value is the deterministic value, computed by
holding probability distributions at their median values. This
value is computed very quickly compared to the uncertainty
values. The mid value is the only option available for a certain
(non probabilistic) Variable.

Mean Value
The mean value is an estimate of the expected value of the
uncertain value. For a symmetrical distribution, such as a

Uncertainty View popup menu

Currently selected
uncertainty view option

Result menu uncertainty
view options

Chapter Uncertainty view options

54 Analytica Users Guide

2
normal distribution, the mean is the same as the median
(mid) value.

Statistics
Statistics for the uncertain value, such as mean and standard
deviation, are provided in a table. Select the statistics to be
calculated using the Uncertainty Setup dialog (see “Statistics
option” on page 296).

Probability Bands
Probability bands are specified at given percentile values.
Select the probability bands you wish to show using the
Uncertainty Setup dialog (see “Probability Bands option” on
page 296).

Chapter Uncertainty view options

Analytica User Guide 55

2

Probability Density or Probability Mass
If the quantity is a continuous probability distribution,
Analytica displays a probability density function. The
horizontal (x) axis plots possible values of the uncertain
quantity. The height of the curve (probability density) is
proportional to the likelihood that the quantity will have the x
value. The highest point on the curve is the most likely value
(the mode). Where the curve is at zero height or invisible,
there is zero probability that the quantity will have that value.
(For a discrete probability distribution, Analytica graphs the
probability mass).

The "common index" of Step is a counter to relate the
Variable’s values to the probability density; at the first and last
value of Step, the probability density is zero.

Chapter Uncertainty view options

56 Analytica Users Guide

2
Cumulative probability

The cumulative probability distribution plots the possible
values of the uncertainty quantity along the horizontal (x)
axis. The height of the graph at each value of x shows the
probability that the quantity will be less than or equal to that x
value. The cumulative distribution ranges from a probability of
0 on the left to probability of 1 on the right, without
decreasing. The steeper the curve, the more likely the
quantity will have a value in that region.

The "common index" of Step is a counter to relate the
Variable’s values to the cumulative probability; at the first
value of Step, the cumulative probability is zero and at the
last value of Step, the cumulative probability is 1.

Sample
A sample is an array of the random sample of values
generated by the sampling process. The sample is the
underlying representation for an uncertain quantity.

All other representations of uncertainty are estimated from
the sample. The precision of the estimates depends on the
sample size and the sampling method (see “Selecting the
sample size” on page 499 for selecting the sample size and
“Uncertainty Setup dialog box” on page 291 for setting the
sample size).

Chapter Comparing results

Analytica User Guide 57

2

Analytica Note: Continuous distributions, such as Normal(0,1),
have real-valued samples and are described by probability density
functions (PDFs) and cumulative density functions (CDFs).
Discrete distributions (e.g., ChanceDist) have a finite set of
possible values for each sample point and are described by their
probability mass and cumulative mass. There can be an ambiguity
when the samples from a distribution are numeric; in that situation,
it is not always clear whether the distribution is discrete or
continuous, and thus whether the result should be graphed as a
probability distribution function or a probability mass.

Analytica 3.1 makes more intelligent guesses about whether a
sample is from a discrete or continuous distribution. So, for
example, it will usually correctly induce that the samples from a
Poisson distribution are discrete, even though they are numeric.
When displaying a probability mass or cumulative mass, the solid
bar graph style is used, and when displaying a continuous density
(PDF or CDF), the histograph style is used. If Analytica guesses
incorrectly, you can override this by selecting solid bar (if you want
to view discrete mass) or histogram (if you want continuous
density) graph style.

Comparing results
To directly compare the values of two or more Variables in one
table or graph, select all the Variables together and open a Result
window (see page 46). A dialog box asks for confirmation.

Chapter Comparing results

58 Analytica Users Guide

2

Analytica creates a new node with a default title and displays the
values in one table or graph.

In this example, we have compared the changing values of three
Variables—Mortgage payments, Interest payments, and Property
taxes—over ten time periods.

Chapter 3

Analyzing
Model
Behavior

In this Chapter

This chapter shows you how to perform
a parametric analysis on a model by

• Selecting Variables as parameters

• Specifying alternative values for the
parameters

• Examining the results

Chapter Varying input parameters

Analytica User Guide 61

3

3: Analyzing model behavior
A potent source of insight into a model is examining the behavior
of its outputs as you systematically vary one or more of its inputs.
This technique is called model behavior analysis. Each input
that you vary systematically is called a parameter, and so this
technique is also known as parametric analysis. Since you can
view this as exploring hypothetical scenarios, it is also called sce-
nario or what-if analysis. Analytica makes it simple to analyze
model behavior in this way. All you have to do is to assign a list of
alternative values to each input parameter. When you view the
result of any output, Analytica computes and displays a table or
graph showing how the output values vary for all combinations of
the values for each input.

This chapter describes how to select Variables as parameters,
how to specify alternative values for the parameters, and how to
examine the results.

Varying input parameters
The first step in analyzing model behavior is to select one or more
input Variables as parameters and to assign each parameter a list
of possible values.

Which inputs to vary
You can vary any numerical input Variable of your model, includ-
ing decisions and chance Variables. Often you will want to vary
each decision Variable to see which value gives the best results
according to the objectives. You may also want to vary some
chance Variables to see how they affect the results. It is often
best to look first at the decision or chance Variables that you
expect to have the largest effect on the model outputs. In compli-
cated models, you may want to start with an importance analysis,
to identify which chance Variables are likely to be most important.
(see Chapter 15, “Sensitivity and Uncertainty Analysis”). You can
then select the most important Variables as the parameters to
vary to analyze model behavior.

Chapter Varying input parameters

62 Analytica Users Guide

3
How many values to assign

Usually it is best to assign a list of three alternative values to each
parameter—a low, medium, and high value. In some cases, two
values may be sufficient. If you have a special interest in a partic-
ular parameter (for example, if you suspect it may have a strongly
nonlinear effect) you may want to assign more than three values
to examine in more detail the model behavior as the parameter
varies. Naturally, the computation time increases with the number
of values.

Creating a list
To create a list of values for a Variable, change its definition fol-
lowing these steps:

1. Select the Variable by clicking on its node in the Influence
Diagram.

2. Display the Variable's definition by clicking on the Definition
button in the tools palette.

3. Click on the Expressions popup menu above the definition
and select the List option. (Do not select the List of Labels
option.)

4. A dialog box asks for confirmation. Click OK.

Analytica displays a list with one element, containing the old
definition of the Variable.

Chapter Varying input parameters

Analytica User Guide 63

3

5. Select the element by clicking on it.

6. Type in the lowest value for the Variable.

7. Press Enter and type in the next value.

8. Repeat step 7 until you have all the values you want.

Analytica Note: After you have entered two or more values into
a list, the next item receives a default value. For example, if the
last two values are 10 and 20, Analytica offers 30 as the next
value.

For details on how to edit a list, see “Editing a list” on page 221.

If you want to create a list with a large number of evenly spaced
values, use the Sequence() function (see page 223).

How many inputs to vary
Typically you should start a model behavior analysis by varying
just one input Variable, the one you expect to be most important.
Vary additional Variables one at a time, in order of their expected
importance. If a Variable turns out to have little effect, you may
restore it to its original value or probability distribution. If you have
many inputs whose effects on model behavior you would like to
explore, vary just a few at a time, rather than trying to vary them
all simultaneously.

New one-element list

Chapter Analyzing model behavior results

64 Analytica Users Guide

3
Each parameter that you vary becomes a new dimension of your
output result array. The computation time and memory needed
increase roughly exponentially as you add parameters. Moreover,
you may find it hard to interpret an array with more than three or
four dimensions. Remember that the goal is to obtain insight into
what affects the model behavior and how.

Analyzing model behavior results
Once you have assigned a list to one or more inputs, you can
examine their effect by viewing the result on an output Variable. If
your model has an objective, you might start by looking at that
Variable.

1. Select the Variable you wish to view by clicking on its node in
the diagram.

2. View the result by clicking on the result button in the tool
palette. The result displays as a table or graph.

The result is an array with a dimension for each input parameter
that you have varied (in this example, Buying price and Apprecia-
tion rate). If an input parameter does not appear as a dimension
of the result, it implies that the result Variable does not depend on
the input. The result may also have other dimensions that are not
input parameters you have varied—for example, Time for a
dynamic model.

Chapter Analyzing model behavior results

Analytica User Guide 65

3
It is generally easiest to look first at the result graph to see the
model’s general behavior. You need to look only at the result table
if you want to see the precise numerical values. If you are varying
more than one input parameter, try rearranging the dimensions
(see “Index selection area” on page 47) to get additional insights
into model behavior.

Understanding unexpected behavior
If you find the model’s behavior unexpected or inexplicable, you
may want to look more deeply into how the behavior arises. An
easy way to do this is simply to look at the results for other Vari-
ables between the input(s) and the output(s) in which you’re inter-
ested. You can work forwards from an input towards the output,
or backwards from the output towards the inputs. Look at the
behavior of each intermediate Variable, and see if you can under-
stand why the inputs affect it the way they do.

Typically, the reason for unexpected behavior will quickly become
clear to you. It may be that some intermediate relationship has an
effect different from what you expected. It may turn out that there
is an error in a definition. In either case, this kind of exploration
can be very revealing about the model. You may end up improv-
ing the model or gaining a deeper understanding of the system it
represents.

Result graph with
dimensions reversed

Chapter Analyzing model behavior results

66 Analytica Users Guide

3
Understanding model behavior

By examining result graphs, you can learn if each input affects
the output, if the effect is linear or non-linear, and if there are
interactions among inputs in their effect on the output. Below are
some typical graph patterns and their qualitative interpretations.

• A horizontal line shows that changes in the input over the
specified range have no effect on the output.

• A straight line shows that the output depends linearly on the
input—provided that you have specified more than two
different values for the input.

• A bent or curved line shows that there is a nonlinear
dependence. (If you have only two values for the input, the

Chapter Analyzing model behavior results

Analytica User Guide 67

3
graph will be a straight line even if there is a nonlinear
dependence.)

Chapter Analyzing model behavior results

68 Analytica Users Guide

3

Chapter 4

Creating and
Editing a Model

In this Chapter

This chapter shows you how to:

• Create a new model

• Save changes

• Create and edit nodes

• Draw arrows

• Make aliases

Chapter Creating and saving a model

Analytica User Guide 71

4

4: Creating and editing a model
This chapter introduces you to the elements for building Influence
Diagrams. It describes how to create a new model and save
changes, how to create and edit nodes, and how to draw arrows
and make aliases.

Creating and saving a model
You can create new models in Analytica, as well as edit your
models and save the changes that you make.

Creating a new model
To create a model, do one of the following:

• Start Analytica. The program begins with a new, untitled
model open.

• If Analytica is already running, click on File and select New
Model in the pull-down menu.

If an existing model is currently open, Analytica does one of
the following:

• If the model is unchanged, Analytica closes it.

• If the model has been changed, Analytica displays a
dialog box that allows you to

• save the model before closing it

• close it without saving

• or cancel the action.

Saving a model
To save changes to the model, select the Save command from
the File menu (Ctrl-S).

To save the model file under a new name, select the Save As or
Save a Copy In command from the File menu. After you use the
Save As command, selecting the Save command will save the
model with the new name. After you use the Save a Copy In

Chapter The model Object window

72 Analytica Users Guide

4
command, selecting the Save command will save the model with
its original name.

The model Object window
The model Object window shows information about the model,
such as the author(s), and creation and save dates; it also
includes space for a description of the model’s purpose.

When you create a model, an Object window is displayed for the
new model, initially untitled, with the fields shown in the following
figure. Enter information as appropriate.

See the Glossary for descriptions of the Attributes.

After entering information into the model Object window, bring the
Diagram window to the top in any of three ways:

• Click on the Parent Diagram button.

• Click anywhere in the Diagram window behind the Object
window.

• Click on the Object window’s Close box.

You can now draw a diagram for the new model (see “Creating
and editing nodes in a diagram” on page 73).

Attributes

Blank Diagram window

Chapter Creating and editing nodes in a diagram

Analytica User Guide 73

4
Creating and editing nodes in a diagram

To create new nodes, or move or modify existing nodes, the Edit
tool must be selected.

When a Diagram window for a new model is first opened, the Edit
tool is selected by default. When a Diagram window for an exist-
ing model is first opened, the Browse tool is selected (see
“Browsing the window” on page 27), so you can examine, but not
change, the diagram.

To begin editing a diagram, click on the Edit tool (), if it is not
selected.

When you are in Edit mode or Arrow mode, the node palette
appears at the right of the tool palette.

Nodes

Selected node

Node paletteThe Edit tool is
highlighted to show

that it is selected

Chapter Creating and editing nodes in a diagram

74 Analytica Users Guide

4

For details about the node classes in the node palette, see “Node
types” on page 30.

Creating a node
To create a new node, press on the appropriate icon in the node
palette, then drag the outline into the diagram. After placing the
node in the diagram, use the keyboard to enter its title.

Editing a node title
To edit the title of a node, first select the node, then click on that
node’s text field. Pause between the mouse click to select the
node and the mouse click to select the text; otherwise, your
action may be interpreted as a double-click, opening the node’s
Object window. The node’s appearance changes to match the
illustration of the node on the left, below. When you have finished
typing, press Alt-Enter (or Enter on the numeric keypad) to accept
the title change and resize the node to fit the text.

When a node’s title is first created, its identifier is created from
the first 20 characters of the title (underscores replace spaces).
The node’s identifier is the name used to refer to this node in the
mathematical definition of other nodes. The node keeps this iden-
tifier until it is explicitly edited, unless the Change Identifier prefer-
ence is set (see page 90).

The node palette is displayed
when either the Edit tool or
Arrow tool is selected.

Ch
an

ce

Va
ria

bl
e

De
cis

io
n

O
bj

ec
tiv

e

In
de

x

Fu
nc

tio
n

M
od

ul
e

Co
ns

ta
nt

Te
xt

 B
ox

You can edit the title when
The node is resizedthe node looks like this

 to fit the text

Chapter Creating and editing nodes in a diagram

Analytica User Guide 75

4
Selecting nodes

To select a node, single-click on it. Handles indicate that you
have selected the node. To deselect a selected node, click any-
where outside of it.

To select or deselect multiple nodes, Shift-click. You can also
select a group of nodes by dragging a rectangle around them.
Move the cursor to a corner of the diagram (not in a node), press
the mouse button, and drag the mouse to draw a rectangle. When
you release the button, all the nodes completely inside the rect-
angle are selected.

Working with nodes
You can manipulate the nodes in a diagram in a variety of ways.

Moving a node
To move a node, press the mouse while the cursor is inside
the node but not on a handle, then drag the node.

You can also move a selected node using the arrow keys (up,
down, left, right).

Moving a node into a module
To move a node into a module in the diagram, drag the node
onto the module until the module becomes highlighted. When
you release the mouse button, the node goes into the
module.

Alternatively, double-click on the module to open its diagram
window. Move the module diagram window so both it and the
node to be moved are visible. Then drag the node onto the
module diagram window.

Changing the size of a node
To change the size of a node, drag a handle until the node is
the size you desire.

handles

Chapter Creating and editing nodes in a diagram

76 Analytica Users Guide

4
By default, a node is resized keeping the center in place (that
is, all four corners expand or contract). This helps to keep
nodes on the grid and lined up with each other. To turn off the
default so one corner at a time can be resized, uncheck the
Resize Centered option in the Diagram menu.

Deleting a node
To delete a node, first select it. Then, choose Clear from the
Edit menu, or press the Delete key. You will be prompted to
confirm your intentions before the node is deleted.

Copying and pasting nodes
To create nodes that have substantial information in common,
you can use the standard Copy and Paste commands.
Initially, the copies are identical except for their identifiers
(which have numbers appended to them to make them
unique).

Duplicating nodes
To create two sets of nodes that have substantial information
in common, create the first set. Select the nodes, then
choose Duplicate Nodes from the Edit menu. This is
equivalent to using Copy and Paste, without writing to the
clipboard.

Aligning to the grid
When the grid is on (the default), each node that you create or
move is centered on a grid point. This default makes it easier for
you to position nodes so that arrows are exactly horizontal or ver-
tical when nodes are aligned vertically or horizontally.

To re-center nodes, select Align Selection to Grid from the Dia-
gram menu (Ctrl-J).

Cutting a node Select Cut from the Edit menu(Ctrl-X).

Copying a node Select Copy from the Edit menu (Ctrl-C).

Pasting a node Select Paste from the Edit menu (Ctrl-V).

Chapter Drawing arrows in a diagram window

Analytica User Guide 77

4
To turn the grid off in edit mode, uncheck Snap to Grid from the
Diagram menu. When the grid is off in edit mode, the grid is still
visible; you can move the nodes pixel by pixel.

Adjusting node Z-order
The node Z-order specifies what diagram elements will display on
top of others if the items overlap. By defaults, text and picture
nodes are behind arrows, and arrows are behind nodes. The Z-
order can be changed by selecting a node or nodes and using the
Send to Back and Bring to Front commands, which are found
only on the right mouse button menu.

Drawing arrows in a diagram window
Use the Arrow tool to draw or remove arrows (influences)
between Variable nodes.

Arrow tool
The Arrow tool must be selected before you can manipulate
arrows. To select the Arrow tool, click on the arrow button ()
in the floating tool palette. Notice that the cursor changes to an
arrow.

Chapter Drawing arrows in a diagram window

78 Analytica Users Guide

4

Arrows and nodes

Arrow from Variable node to Variable node
Indicates that the target Variable depends on the origin
Variable.

Arrow from Variable node to module node
Indicates that at least one Variable in the target module
depends on the origin Variable.

Arrow from module node to Variable node
Indicates that the target Variable depends on at least one
Variable in the origin module.

Arrow from module node to module node
Indicates that the target module contains at least one
Variable that depends on at least one Variable in the origin
module.

Arrow from module to
Variable

Arrow from Variable
to module

The Arrow tool is
highlighted to show

that it is selected

Chapter Drawing arrows in a diagram window

Analytica User Guide 79

4
Double-headed arrow between module nodes

Indicates that each module contains at least one Variable that
depends on at least one Variable in the other module.

Small arrowhead to the right or left of a Variable node
Indicates that the Variable has a remote input or output—a
Variable that is not inside the displayed Variable’s module
(see “Finding remote inputs and outputs” on page 29).

Creating and removing arrows
To draw an arrow, first be sure the arrow tool () is selected.

1. Drag from the origin node (it becomes highlighted) to the
destination node (which also becomes highlighted).

2. When you release the mouse button, the arrow is drawn.

To draw multiple arrows to a single destination node, select all the
origin nodes. Then drag from any origin node to the destination
node.

To remove an arrow, do one of the following:

• Select the arrow, then press the Backspace or Delete key.

• Repeat the process of drawing an arrow from the origin node
to the destination node.

Analytica Note: An arrow is also drawn whenever the identifier
of a Variable is added to the definition of a Variable (see “Creating
or editing a definition” on page 145).

Model changes when creating an arrow
Creating an arrow between two nodes changes the model. The
change depends on the classes of the two nodes.

Arrow between two Variable nodes
When you draw an arrow from a Variable node A to another
Variable node B, A becomes an input of B. You can then use

Chapter Drawing arrows in a diagram window

80 Analytica Users Guide

4
this input in creating or editing the definition of B (See
Chapter 8, “Creating and Editing Definitions”).

Arrow between a Variable node and a module node
When you draw an arrow from a Variable into a module, or
from a module to a Variable, Analytica creates an alias of the
Variable inside the module (see “Alias nodes” on page 82).
You can then open the module and draw arrows between the
alias and other Variables in the module.

Arrow between two module nodes
When you draw an arrow from one module node to another,
Analytica creates a new Variable node in the first module and
an alias of that Variable in the second module (see “Alias
nodes” on page 82). You can then open each module and
draw arrows between the new nodes and other Variables in
the module.

Model changes when deleting an arrow
If B already has a definition that includes A and you delete the
arrow from A to B, Analytica removes A from B’s definition. For
example, if A is an index and B is defined as a table, Analytica
removes A as an index of B.

In some cases, removing A does not leave a valid definition for B
(for example, when A is part of a mathematical expression such
as 1/A). Under these circumstances, A is replaced with the key-
word Expr and the entire expression is surrounded with Func-
tionOf(). This notation indicates that the definition is invalid and
must be edited.

For example, suppose you had a definition that was X+Y and
then deleted X. The definition would be replaced with
FunctionOf(expr + Y)

Cyclic dependency
A cyclic dependency occurs when a Variable depends on itself
directly or indirectly so that the arrows form a directed circular
path.

A cyclic dependency is permitted only in a dynamic model (see
Chapter 16, “Modeling Changes over Time”), provided that the
Variable depends on its value in an earlier time period.

Chapter Arrows between Variables in different modules

Analytica User Guide 81

4
Arrows between Variables in different modules

There are two direct methods and two indirect methods for draw-
ing an arrow between two Variables in different modules. The fol-
lowing examples demonstrate the direct methods of drawing an
arrow from the Variable Buying price to the Variable Mortgage
loan amount in another module (see the following figure).

Drawing arrows across windows
1. Open both module Diagram windows and bring to the top the

module Diagram window containing the origin Variable,
Buying price.

2. Position the Diagram windows so the Variable Mortgage loan
amount is exposed in the window underneath.

3. Draw an arrow from the origin Variable (Buying price) to the
second Variable (Mortgage loan amount).

Result
An arrow points from Buying price to the Cost to Buy module; a
small arrowhead points into Mortgage loan amount to indicate
that a source node is in a different diagram.

Destination
Variable

Source node

Chapter Alias nodes

82 Analytica Users Guide

4

Moving, drawing, and moving back
1. Select Mortgage loan amount, then choose Move Into Parent

from the Diagram menu to move the Variable into the parent
diagram.

2. Draw an arrow from Buying price to Mortgage loan amount.

3. Move Mortgage loan amount back into its module by dragging
it onto the Cost to Buy module node.

Indirectly drawing an arrow
The two indirect methods of drawing an arrow between two Vari-
ables in different modules are:

• Edit the definition of the target Variable, entering the identifier
of the input Variable directly (see “Creating or editing a
definition” on page 145). The arrow appears when the
definition is accepted.

• Use an alias node (see “Alias nodes” on page 82).

Alias nodes
An alias is a copy of a node, referring to the same Variable or
module as the original node. You can use an alias node to display
the same Variable in more than one module diagram. For exam-
ple, often the inputs to a Variable are in one module, while its out-
puts are in other modules. To display an input Variable’s node in
the modules containing the outputs, create an alias in each of
those modules.

Small arrowhead
indicates that this

Variable has remote
inputs

Chapter Alias nodes

Analytica User Guide 83

4
A Variable or module can have only a single original node. You
can create an unlimited number of alias nodes for any original
node.

Create an alias in any of the three following ways.

Use the Make Alias command
Select the original node. Then choose the Make Alias option
from the Object menu(Ctrl-M). The alias node appears next to
the original node. You can then move it into another module by
dragging it.

Use this method to make an alias of a module, if you want to
show a module node in more than one diagram.

Draw arrow between Variable and module
Draw an arrow from the original node to a module node, or from
the module node to the original node. An alias for the original
node appears in the module.

Example Draw an arrow from a Variable (Buying price) to a module (Cost
to Buy).

An arrow is displayed from the Buying price Variable to the Cost
to Buy module.

Original node

Alias node

Chapter Alias nodes

84 Analytica Users Guide

4
The new alias node appears in the diagram for the Cost to Buy
module.

Draw arrow between two modules
Draw an arrow from one module node (Cost to Buy) to another
module node (Total Cost).

Analytica creates a new Variable node with a default title, such as
Va1, in the first module, and creates an alias of Va1 in the second
module.

Alias nodes
An alias looks and behaves similar to the original node that it is
derived from, except that its title is in italics.

Chapter Editing Attributes

Analytica User Guide 85

4

Analytica Note: An alias of a module does not display any input
or output arrows.

You can treat an alias node just as if it were the original node.
Click once on an alias to select it (for example, to display its
result). Double-click on an alias to open the Object window for the
original node.

To use a Variable with an alias as an input to another node, draw
an arrow either from the original node or from its alias.

To create a new input to a Variable with an alias, draw an arrow
either to the Variable or to its alias. An arrow to an alias of a Vari-
able creates a corresponding arrow to its original node in its dia-
gram, if the original node is in the same module as the new input
or an alias of the new input.

Modifying an alias node
When you create an alias node, it looks just like its original node,
including its node shape, color, label font, and icons. The only dif-
ference is that the title is in italics.

If you edit the title of an alias, the title of the original node
changes to match the alias. Conversely, if you edit the title of the
original node, the alias’s title changes to match the original.

To change the appearance of an alias node alone, use the Set
Node Style option from the Diagram menu (see “Node Style dia-
log box” on page 123). If you use the Node Style dialog box to
change the appearance of an alias node, its original node does
not change. Similarly, using the Node Style dialog box to change
the appearance of an original node does not affect any of its pre-
viously created aliases.

Editing Attributes
You can edit a user-modifiable Attribute either in the Attribute
panel (see “The Attribute panel” on page 34) or in the Object win-
dow (see “The Object window” on page 32). To change a node’s
class, see “Changing the class of a node” on page 86.

To edit an Attribute:

1. If in the Attribute panel, select the Attribute in the Attribute
popup menu.

Chapter Changing the class of a node

86 Analytica Users Guide

4
2. Click in the Attribute field. If a gray outline appears around the

Attribute and the cursor is blinking, the Attribute is
user-modifiable.

3. Edit the Attribute using the standard text-editing methods.

The edited text is stored when you click anywhere outside the
Attribute field, or when you press Alt-Enter.

Attribute changes
Any changes to Attributes propagate to all other displayed win-
dows. For example, if you change the title of an Object, the new
title is displayed in that Object’s diagram. If you change the defini-
tion of a Variable, the arrows are redrawn to reflect changes in
dependencies.

Cancel and Undo
While you are editing an Attribute, you can cancel and revert to
the previous value at any time by pressing the Esc (escape) key.
If you have finished entering the value of the Attribute, but now
want to revert to the previous value of the Attribute, select Undo
from the Edit menu(Ctrl-Z).

Changing the class of a node
Use the Class popup menu to change the class of a node. This
menu appears:

• In the top left corner of the Object window.

• In the Attribute panel when Class is the selected Attribute.

Chapter Changing the class of a node

Analytica User Guide 87

4

The contents of the Class popup menu depend on whether the
node is a Variable or a module (see the preceding figure).

Analytica Note: You cannot change a Variable into a module, or
vice versa. You also cannot change a function into a Variable or
module, or vice versa.

To change a node’s class, press on the Class popup menu and
select another class.

Module Classes
The Variable classes are described in the section “Node types”
on page 30. The module classes are described below.

Model
A module or hierarchy of linked modules that you work on
during a session with Analytica. A model is saved in a file (an
Analytica document) between sessions. Only a model saves
preferences (see “Preferences dialog box” on page 88) and
uncertainty options (see “Uncertainty Setup dialog box” on
page 291).

Module
A collection of nodes that are displayed in a single diagram. A
module is depicted on its parent diagram as a rounded node

Variable classes

Module classes

Chapter Preferences dialog box

88 Analytica Users Guide

4
with a thick outline.

Filed module
A module whose contents are saved in a file separate from
the model that contains it. A filed module can be shared
among several models, without having to make a copy for
each model. See “Using filed modules and libraries” on
page 404

Library
A module that contains functions and/or Variables. User
libraries appear in the Definition menu below the system
function libraries, giving easy access to their contents. See
“Libraries” on page 429

Filed library
A library whose contents are saved in a file separate from the
model that contains it. A filed library can be shared among
several models, without having to make a copy for each
model. See “Using filed modules and libraries” on page 404

Form
A module that creates an input node alias or an output node
alias when you draw an arrow from a node to the form. See
Chapter 9, “Creating Models Used by Others”.

Preferences dialog box
Use the Preferences dialog box to inspect and set a variety of
preferences for the operation of Analytica. All preference settings
are saved with a model of class Model.

To display the Preferences dialog box, select Preferences from
the Edit menu.

Chapter Preferences dialog box

Analytica User Guide 89

4

Windows of each kind
Use the options in this box to control how many windows of vari-
ous kinds are displayed at once (see “Managing windows” on
page 412).

One only
Check this box to close an existing window (if there is one)
whenever you open a new window.

Any number
Check this box to keep all windows open until you explicitly
close them.

Result windows
Enter a value in this field to indicate the number of Result
windows that you can keep open simultaneously. The default

Window control options

Variable naming options

Edit Attribute options

Result format options

Safe
Intermediates

Chapter Preferences dialog box

90 Analytica Users Guide

4
(and minimum) number is 2; the maximum number is 20.

Change identifier
Use the options in this box to control the changing of identifiers.
See “Creating and editing nodes in a diagram” on page 73 for a
description of how identifiers are initially assigned.

When title changes
Check this box to change a Variable’s identifier whenever you
change its title. Analytica uses up to the number of specified
characters (20 by default, range from 2 to 20), replacing
spaces and returns with an underscore character (_), and
omitting anything between parentheses.

If the box is not checked, the identifier is changed only when
you explicitly edit it.

Ask before renaming
Check this box to see a confirmation dialog box before
automatic changing of a Variable’s identifier.

 Opens
Use the options in this box to specify the window that displays
when you select the edit definition button (Ctrl-E). When you are
prompted (for example, via an error message) to edit a definition,
and you click on OK, this preference setting determines the win-
dow to display.

Object window
Select this option to open the Object window and select the
definition text.

Diagram Attribute panel
Select this option to open the Attribute panel on the
appropriate Diagram window and select the definition text.

Chapter Preferences dialog box

Analytica User Guide 91

4
Default result view

Use the options in this box to control how data appear in Result
windows the first time a result is calculated for a node (see “2:
Results” on page 45).

 Select this option to display a table.

 Select this option to display a graph.

Checkboxes
Use these checkboxes to control various aspects of how Analyt-
ica looks and behaves.

Check Variable class
If checked, a warning displays for the following
inconsistencies between a Variable’s class and definition:

• A non-chance Variable whose definition includes a
probability distribution.

• A constant whose definition is dependent on any other
Variables. However, a constant defined as a table may
have indexes as inputs.

• An index Variable defined as a single value, array, or any
function other than Sequence().

Check value bounds
If checked, the check Attributes are computed. See
“Checking the validity of a Variable’s values” on page 156

Show undefined
If checked, nodes without a valid definition display with a
cross-hatch pattern.

Show module hierarchy
If checked, a bar at the top of each Diagram window indicates

Node is filled with diagonal pattern:
the definition is missing
or is syntactically incorrect

Chapter Preferences dialog box

92 Analytica Users Guide

4
the hierarchy depth of the active module. See “Show module
hierarchy preference” on page 396

Show result warnings
If checked, when a warning condition is encountered during
result evaluation, evaluation is interrupted, and a warning
message displays for action. If unchecked, when a warning
condition is encountered during result evaluation, no warning
message is displayed, and evaluation continues.

Use Return to enter data
A standard windows keyboard has a Return key located on
the alphanumeric section of the keyboard, and a separate
Enter key located on the numeric keyboard. When this
checkbox is unchecked (the default), the return key starts a
new line in a multi-lined text field (such as a definition) while
the Enter key or Alt-Return signal that the data entry is
complete. When this checkbox is checked, these are
reversed, with Enter or Alt-Return starting a new line and
Return completing the entry of data.

Safe Intermediates
In the most general case, Intelligent Array Abstraction requires
an extra internal, but somewhat costly, step during evaluation to
make sure all intermediate arrays are fully rectangular. Skipping
this step seldom has an impact on the final result, but can speed
things up dramatically for certain models, especially those using
dynamic simulation extensively. Unfortunately, in the very rare
cases where it does make a difference, skipping the step can
lead in incorrect results.

You can control this with the Safe Intermediates checkbox. If
there is a check in the Safe Intermediates checkbox, Analytica
will make sure all intermediate arrays are fully rectangular.
Removing the check will speed up performance, but might cause
incorrect results. By default, Analytica 3.0 uses the safe but
slower setting.

Auto recompute outgoing OLE links
If you have used the OLE linking feature to linked an
Analytica result in your model to an external application, this
checkbox controls whether this data is automatically

Chapter Preferences dialog box

Analytica User Guide 93

4
recomputed and updated whenever the result, or anything
the result depend on, changes. When making several
changes in computationally intensive models, it is often
convenient to turn this checkbox off so that large
recomputations after each small change. See OLE linking in
“17: Importing, exporting, & OLE linking data” on page 375.

Chapter Preferences dialog box

94 Analytica Users Guide

4

Chapter 5

Building
Effective
Models

In this Chapter

This chapter shows you how to build
models that are

• Focused

• Simple

• Clear

• Comprehensible

• Correct

Chapter Creating a model

Analytica User Guide 97

5

5: Building effective models
Creating useful models is a challenging activity, even for experi-
enced modelers; effective use of Influence Diagrams can make
the process substantially easier and clearer. This chapter pro-
vides tips and guidelines from master modelers (including New-
ton and Einstein) on how to build a model that is effective, one
that focuses on what matters, and that is simple, clear, compre-
hensible, and correct. The key is to start simple and progressively
refine and extend the model where tests of initial versions sug-
gest it will be most important.

Most of the material in this chapter, unlike the other chapters in
this User Guide, is not specific to Analytica. These guidelines are
useful whether you are using Analytica, a spreadsheet, or any
other modeling tool. However, Analytica makes it especially easy
to follow these guidelines, using its hierarchical Influence Dia-
grams, uncertainty tools, and Intelligent Arrays.

These guidelines have been distilled from many years of experi-
ence by master modelers, using Analytica and a variety of other
modeling software. However, they are general guidelines, not
rules to be adhered to absolutely. We suggest you read this chap-
ter early in your work with Analytica and revisit it from time to time
as you gain experience.

Creating a model
Below are general guidelines to help you build models that pro-
vide the greatest value with the least effort.

Identify the objectives
What are the objectives of the decision maker? Sometimes the
objective is simply to maximize expected monetary profit. More
often there are a variety of other objectives, such as maximizing
safety, convenience, reliability, social welfare, or environmental
health, depending on the domain and the decision maker. Utility
theory and multiattribute decision analysis provide an array of
methods to help structure and quantify objectives in the form of
utility. Whatever approach you take, it is important to represent
the objectives in an explicit and quantifiable form if the objectives

Chapter Creating a model

98 Analytica Users Guide

5
are to be the basis for recommending one decision option over
another.

It is a useful convention to put the objective Variable or Variables
(hexagonal nodes) on the right of the diagram window, leaving
space on the left side for the rest of the diagram.

The most common mistake in specifying objectives is to select
objectives that are too narrow, by concentrating on the most eas-
ily quantifiable objective—typically, near-term monetary costs—
and to forget about the other, less tangible objectives. For exam-
ple:

• When buying software you may want to consider the usability
and reliability of different software packages, not just cost and
performance.

• In pricing a product, you may want to consider the long-term
effects of increased market share in developing new
customers and markets and not just short-term revenues.

• In selecting a medical treatment, you may want to consider
the quality of life if you survive the treatment, and not just the
probability of survival.

For an excellent guide on how to identify and structure objectives,
see Value-Focused Thinking by Ralph Keeney.

Identify the decisions
The purpose of modeling is usually to help you (or your col-
leagues, organization, or clients) discover which decision options
will best meet your (or their) objectives. You should aim, there-
fore, to include the decisions and objectives explicitly in your
model.

Chapter Creating a model

Analytica User Guide 99

5
A decision Variable is one that the decision maker can affect
directly—which computer to buy, how much to bid on the con-
tract, which medical treatment to choose, when to start construc-
tion, and so on. Occasionally, people want to build a model just
for the sake of furthering understanding, without explicitly consid-
ering any decisions. Most often, however, the ultimate purpose is
to make a better decision. In those cases, the decision Variables
are where you should start your model.

When starting a new Influence Diagram, put the decision Vari-
ables—as rectangular nodes—on the left of the diagram window,
leaving space for the rest of the Influence Diagram to the right.

Link the decisions to the objectives
The decisions and objectives are the starting and ending points of
your model. Once you have identified them, you have reduced
the diagram construction to the process of creating the links
between the decisions and objectives, via intermediate Variables.
You may wish to work forward from the decisions, or backward
from the objectives. Some people find it easiest to alternate,
working inward from the left and the right until they can link every-
thing up in the middle.

Chapter Creating a model

100 Analytica Users Guide

5

It helps to identify the decisions and objectives early during model
construction, to maintain focus on what matters. There may be a
bewildering variety of Variables in the situation that may seem to
be of potential relevance. But, you only need to worry about Vari-
ables that influence how the decisions might affect the objectives.
You can ignore any Variable that has no effect on the objectives.

Focus on identifying the Variables that make clear distinctions—
Variables whose interpretations won’t change with time or viewer.
Extra effort here will be repaid in model accuracy and cogency.

Move from the qualitative to the quantitative
An Influence Diagram is a purely qualitative representation of a
model. It shows the Variables and their dependencies. It is usu-
ally best to draw in most or all of the first version of your model
just as an Influence Diagram, or hierarchy of diagrams, before
trying to quantify the values and relationships between the Vari-
ables. In this way, you can concentrate on the essential qualita-
tive issues of what Variables to include, before having to worry
about the details of how to quantify the relationships.

When the model is intended to reflect the views and knowledge of
a group of people, it is especially valuable to start by drawing up
Influence Diagrams as a group. A small group can sit around the
computer screen; for a larger group, it is best if you have the
means to project the image onto a large screen, so that the entire
group can see and comment on the diagram as they create it.
The ability to focus on the qualitative structure initially lets you
involve early in the process participants who might not have the
time or interest to be involved in the detailed quantitative analy-
sis. With this approach, you can often obtain valuable insights

Chapter Creating a model

Analytica User Guide 101

5
and early buy-in to the modeling process from key people who
would not otherwise be available.

Keep it simple
"A theory should be as simple as possible, but no simpler."
Albert Einstein

Perhaps the most common mistake in modeling is to try to build a
model that is too complicated or that is complicated in the wrong
ways. Just because the situation you are modeling is complicated
doesn’t necessarily mean your model should be complicated.
Every model is unavoidably a simplification of reality; otherwise it
would not be a model. The question is not whether your model
should be a simplification, but rather how simple it should be. A
large model requires more effort to build, takes longer to execute,
is harder to test, and is more difficult to understand than a smaller
model. And it may not even be more accurate.

Reuse and adapt existing models
"If I have seen further than [others] it is by standing
upon the shoulders of Giants."
Sir Isaac Newton

Building a new model from scratch can be a challenge. If you can
find an existing model for a problem similar to the one you are
now facing, it is usually much easier to start with the existing
model and adapt it to the new application. In some cases, you
may find parts or modules of existing models that you can extract
and combine to address a new problem.

To find a suitable model to adapt, you can start by looking through
the example models distributed with Analytica. If there is an Ana-
lytica users’ group in your own organization, it may collect a
model library of classes of problems of interest to your organiza-
tion.

Aim for clarity and insight
The goal of building a model is to obtain clarity about the situa-
tion, about which decision options will best further your objec-
tives, and why. If you are already clear about what decision to
make, you don’t need to build a model, unless, perhaps, you are
trying to clarify the situation and explain the recommended deci-
sions for others. Either way, your goal is greater clarity. This goal

Chapter Testing and debugging a model

102 Analytica Users Guide

5
is another reason to aim for simplicity. Large and complicated
models are harder to understand and explain.

Testing and debugging a model
Even with Analytica, it is rare to create the first draft of a model
without mistakes. For example, on your first try, definitions may
not express what you really intended. It is important to test and
evaluate your model to make sure it is expresses what you have
in mind. Analytica is designed specifically to make it as easy as
possible to scrutinize model structures and dependencies, to
explore model implications and behaviors, and to understand the
reasons for them. Accordingly, it is relatively easy to debug mod-
els once you have identified potential problems.

Test as you build
With Analytica, you can evaluate any Variable once you have pro-
vided a definition for the Variable and all the Variables on which it
depends, even if many other Variables in the model remain to be
defined. We recommend that you evaluate each Variable as soon
as you can, immediately after you have provided definitions for
the relevant parts of the model. In this way, you’ll discover prob-
lems as soon as possible after specifying the definitions that may
have caused them. You can then try to identify the cause and fix
the problem while the definitions are still fresh in your memory.
Moreover, you’ll be less likely to repeat the mistake in other parts
of the model.

If you wait until you believe you have completed the model before
testing it, it may contain several errors that interact in confusing
ways. Then you’ll have to search through much larger sections of
the model to track them down. But if you have already tested the
model components independently, you’ll have already removed
most of the errors, and it will usually be much easier to track
down any that remain.

Test the model against reality
The best way to check that your model is well-specified is to com-
pare its predictions against past empirical observations. For
example, if you’re trying to predict future changes in the composi-
tion of acid rain, you should try to compare its "predictions" for
past years for which you have empirical observations. Or, if

Chapter Testing and debugging a model

Analytica User Guide 103

5
you’re trying to forecast the future profitability of an existing enter-
prise, you should first calibrate your model for past years for
which accounting data are available.

Test the model against other models
Often you don’t have the luxury of empirical measurements or
data for the system of interest. In some cases, you’re building a
new model to replace an old model that is out-of-date, too limited,
or not probabilistic. In these cases, it is usually wise to start by
reimplementing a version of the old model, before updating and
extending it. You can then compare the new model against the
old one to check for discrepancies. Of course, differences may be
due to errors in the new model or the old model. Once you have
resolved any discrepancies, you can be confident that you are
building on a foundation that you understand.

If the model is hard to test against reality in advance of using it,
and if the consequences of mistakes could be catastrophic, you
can borrow a technique that NASA uses widely for the space pro-
gram. You can get two independent modelers (or two modeling
teams) each to build their own model, and then check the models
against each other. It is important that the modelers be indepen-
dent, and not discuss their work ahead of time, to reduce the
chance that they will both make the same mistake. For a sponsor
of models for critical applications in public or private policy, this
multiple model approach can be very effective and insightful. The
competition keeps the modelers on their toes. Comparing the
models’ structure and behavior often leads to valuable insights.

Have other people review your model
It’s often very helpful to have outside reviewers scrutinize your
model. Experts with different views and experiences may have
valuable comments and suggestions for improving it. One of the
advantages of using Analytica over conventional modeling envi-
ronments is that it’s usually possible for an expert in the domain
to review the model directly, without additional paper documenta-
tion. The reviewer can scrutinize the diagrams, the Variables,
their definitions, and the behavior of the model electronically. You
can share models electronically on diskette, over a network, or by
electronic mail.

Chapter Testing and debugging a model

104 Analytica Users Guide

5
Test model behavior and sensitivities

Many problems become immediately obvious when you look at a
result—for example, if it has the wrong sign, the wrong order of
magnitude, or the wrong dimensions, or if Analytica flags an eval-
uation error. Other problems, of course, are not immediately obvi-
ous—for example, if the value is wrong by only a few percentage
points. For more thorough testing, it is often helpful to analyze the
model behavior by specifying a list of alternative values for one or
two key inputs (see Chapter 3, “Analyzing Model Behavior”), and
to perform sensitivity analysis (see Chapter 15, “Sensitivity and
Uncertainty Analysis”). If the model behaves in an unexpected
way, this may be a sign of some mistake in the specification. For
example, suppose that you are planning to borrow money to buy
a new computer, and the net value increases with the interest
rate on the loan; you might suspect a problem in the model.

Celebrate and learn from unexpected behavior
If analyzing the behavior or sensitivities of your model creates
unexpected results, there are logically two possibilities:

• Your model contains an error, in that it does not correctly
express what you intended.

• Your expectations about how the model should behave were
wrong.

You should first check the model carefully to make sure it con-
tains no errors, and does indeed express what you intended.
Explore the model to try to figure out how it generates the unex-
pected results. If after thorough exploration you can find no mis-
take, and the model persists in its unexpected behavior, do not
despair! It may be that your intuitions were wrong in the first
place. This discovery should be a cause for celebration rather
than disappointment. If models always behaved exactly as
expected, there would be little reason to build them. The most
valuable insights come from models that behave counter-intu-
itively. When you understand how their behavior arises, you can
deepen your understanding and improve your intuition—which is,
after all, a fundamental goal of modeling.

Document the model as you build it
Give your Variables and modules meaningful titles, so that oth-
ers—or you, when you revisit the model a year later—can more

Chapter Expanding your model

Analytica User Guide 105

5
easily understand the model from looking at its Influence Dia-
grams. It’s better to call your Variable Net rental income than
NRI23.

It’s also a good idea to document your model as you construct it
by filling in the Description and Units attributes for each Variable
and module. You may find that entering a line or three of descrip-
tion for each Variable explaining clearly what the Variable repre-
sents will help to keep you clear about the model. Entering units
of measurement for each Variable can help you avoid simple mis-
takes in model specification. Avoid the temptation to put docu-
mentation off until the end of the project, when you may run out of
time, or may have forgotten key aspects.

Most models, once built, spend the majority of their lives being
used and modified by people other than their original author.
Clear and thorough documentation pays continuing dividends; a
model is incomplete without it.

Expanding your model

Extend the model by stages
The best way to develop a model of appropriate size is to start
with a very simple model, and then to extend it in stages in those
ways that appear to be most important. With this approach, you’ll
have a usable model early on. Moreover, you can analyze the
sensitivities of the simple model to find out where the key uncer-
tainties and gaps are, and use this to set priorities for expanding
the model. If instead you try to create a large model from the
start, you run the risk of running out of time or computer
resources before you have anything usable. And you may end up
putting much work into creating an elaborate module for an
aspect of the problem that turns out to be of little importance.

Identify ways to improve the model
There are many ways to expand a model:

• Add Variables that you think will be important.

• Add objectives or criteria for evaluating outcomes.

Chapter Expanding your model

106 Analytica Users Guide

5
• Expand the number of decision options specified for a

decision Variable, or the number of possible outcomes for a
discrete chance Variable.

• Expand a single decision into two or more sequential
decisions, with the later decision being made after more
information is revealed.

• For a dynamic model, expand the time horizon (say, from 10
years to 20 years) or reduce the time steps (say, from annual
to quarterly time periods).

• Disaggregate a Variable by adding a dimension (say,
projecting sales and costs by each division of the company
instead of only for the company as a whole).

Before plunging in to one of these approaches to expanding a
model, it’s best to list the alternatives explicitly and think carefully
about which is most likely to improve the model the most for the
least effort. Where possible, perform experiments or sensitivity
analysis to figure out how much effect alternative kinds of expan-
sion may have.

Changing the size or numbers of dimensions of tables is a difficult
and time-consuming task in conventional modeling environments.
Analytica makes it relatively easy, since you only need to change
those definitions that directly depend on the dimension (for exam-
ple, the Edit Tables).

Discover what parts are important to guide expansion
A major advantage of starting with a simple model is that you use
it to guide extensions in the ways that will be most valuable in
improving the model’s results. You can analyze the sensitivities of
the simple model (for example, using importance analysis, as
described in “Importance analysis” on page 343) to identify which
sources of uncertainty contribute most to the uncertainty in the
results. Typically, only a handful of Variables contribute the lion’s
share of the overall uncertainty. You can then concentrate your
future modeling efforts on those Variables and avoid wasting your
energy on Variables whose influence is trivial.

Early intuitions about what aspects of a model are important are
frequently wrong, and the results of the sensitivity analysis may
come as a surprise. Consequently, it’s much safer to base model
development on sensitivity analysis of simple models than to rely
on your intuitions about where to spend your efforts in model con-
struction.

Chapter Expanding your model

Analytica User Guide 107

5
Once you have identified the most important Variables in your
simple model, there are several ways to reduce the uncertainty
they contribute. You can refine the estimated probability distribu-
tion by consulting a better-informed expert, by analyzing more
existing data, by collecting new data, or by developing a more
elaborate model to calculate the Variable based on other avail-
able information.

Simplify where possible
There’s no reason that a model must grow successively more
complex as you develop it. Sensitivity analysis may reveal that a
Variable or submodel is just not very important to the results. In
this case, consider eliminating it. You may find that some dimen-
sions of tables are unimportant—for example, that there’s little
difference in the performance of different divisions. If so, again,
consider aggregating over the divisions and eliminating that
dimension from your model.

Simplifying a model has many benefits. It becomes easier to
understand and explain, faster to run, and cheaper to maintain.
These savings may afford you the opportunity to elaborate on
more significant aspect of the model.

Chapter Expanding your model

108 Analytica Users Guide

5

Chapter 6

Creating Lucid
Influence
Diagrams

In this Chapter

This chapter shows you how to:

• Build Influence Diagrams

• Customize your diagrams

Chapter

Analytica User Guide 111

6

6: Creating lucid Influence Diagrams
This chapter presents guidelines for building Influence Diagrams
in Analytica and explains how to customize your diagrams.

Hierarchical Influence Diagrams can provide an intuitive form to
display the essential qualitative structure of a model with great
clarity, uncluttered by the quantitative details.

It is also possible to create Influence Diagrams that are impene-
trable spaghetti!

Chapter Guidelines for creating lucid and elegant diagrams

112 Analytica Users Guide

6

Guidelines for creating lucid and elegant
diagrams

Where aesthetics are involved, rules cannot be hard and fast.
You may want to adapt and modify these guidelines to suit your
particular applications.

Use clear, meaningful node titles
Aim to make each diagram stand by itself and be as comprehen-
sible as possible. Each node title can contain up to 255 charac-
ters of any kind, including spaces. Use clear, concise language in
titles, not private codes or names (as are often used for naming
computer Variables). Mixed-case text (first letter uppercase and
remaining letters lowercase) is clearer than all letters uppercase.

Chapter Guidelines for creating lucid and elegant diagrams

Analytica User Guide 113

6

Use consistent node sizes
Diagrams usually look best if most of the Variable nodes are of
the same size, rather than sized to fit their title text.

Node sizes will be uniform if you set the default minimum node
size in the Diagram Style dialog box (see page 121) large enough
so that it will fit the full title for almost all of the nodes. The default
minimum is used unless the text is too lengthy, in which case the
node expands vertically to fit the text.

If you have nodes of several different sizes, you can make them
more consistent by selecting Adjust Size (Ctrl-T) from the Dia-
gram menu. All of the selected nodes are resized to the default

Good Object titlesPoor Object titles

Inconsistent node sizes Consistent node sizes

Chapter Guidelines for creating lucid and elegant diagrams

114 Analytica Users Guide

6
minimum node size, or the minimum size needed to enclose each
node’s title, whichever is larger.

You can also resize several nodes by the same amount simulta-
neously by following these steps:

1. Select the nodes to resize.

2. Resize one of the selected nodes by dragging one of its
handles. All the other selected nodes are also resized.

Use small and large nodes sparingly
Sometimes it is more effective to make a few specialized nodes
extra large or small. For example, start and end nodes, which
may link to other models, often look best when they are very
small. Conversely, you may want to make key input nodes con-
taining large tables or model nodes containing the "guts" of a
model unusually large to convey their importance.

Arrange nodes from left to right (or top to bottom)
People like to read diagrams, like text, from left to right, or top to
bottom.1 Try to put the decision node(s) on the left or top and the
objective node(s) on the right or bottom of the diagram, with all of
the other Variables or modules arranged between them.

You may want to allow a few arrows to go counter to the general
flow in order to reduce crossing arrows, or overlaps. In dynamic
models, there may be feedback loops (depicted with dashed
arrows), which may appropriately go counter to the general flow.

1. For applications in Arabic, Hebrew, or other languages written from right
to left, you may want to reverse this convention.

Chapter Guidelines for creating lucid and elegant diagrams

Analytica User Guide 115

6

Tolerate spaghetti at first…
It is often hard to figure out a clear diagram arrangement in
advance. It is usually easiest to start a new model using the larg-
est Diagram window you can get. Click the maximize box to have
the diagram fill your screen. You may want to create key deci-
sions and other input nodes near the left or top of the window,
and objectives or output nodes near the right or bottom of the
window. Aside from that, create nodes wherever you like, without
worrying too much about clarity.

…reorganize later
When you start linking nodes, the diagram may start to look tan-
gled. This is the time to start reorganizing the diagram to create
some clarity. Try to move linked nodes together into a module.
Develop vertical or horizontal lines of linked nodes. Accentuate
symmetries, if you see them. Gradually, order will emerge.

Align nodes horizontally or vertically
It usually looks best to align nodes with their centers on the same
horizontal or vertical lines, so that many arrows are exactly hori-
zontal or vertical. The square grid of 9x9 points underlying each
diagram makes this easy. When Resize Centered is selected in

Decision Variables
on the left

Objective Variable on the right

Chapter Guidelines for creating lucid and elegant diagrams

116 Analytica Users Guide

6
the Diagram menu (the default), each node is centered on a grid
point.

If nodes are not centered on a grid point, re-center them by fol-
lowing these steps:

1. Select all nodes in the diagram with the Select All (Ctrl-A)
command from the Edit menu.

2. Select Align Selection To Grid from the Diagram menu.

Hide less important arrows
Sometimes nodes are so interrelated that it is hard or impossible
to arrange a diagram to avoid arrows crossing each other or
crossing nodes. It may be helpful to hide some arrows that show
less important linkages. For example, indexes are often con-
nected to many other Variables; therefore, hiding the arrows from
indexes can greatly simplify a diagram.

You can hide all of the arrows linking indexes, functions, or mod-
ules, or the dashed feedback arrows in dynamic models, using
the Set Diagram Style command from the Diagram menu (see
page 121). You can also hide the input or output arrows from
each node individually, using the Set Node Style command (see
page 123).

Keep diagrams compact
Screen space is valuable. To save space, keep nodes close
together, leaving enough space between them for the arrows to
be visible.

Good alignmentPoor alignment

Chapter Organizing a module hierarchy

Analytica User Guide 117

6
When first creating a diagram, use plenty of space. Your diagram
window can be as large as your monitor screen. Using this space,
find a clear arrangement, one that minimizes arrow crossing and
avoids node overlaps.

After you have a clear arrangement, you can usually make the
diagram more compact by moving the nodes closer together and
moving the entire diagram closer to the upper left corner of the
window. You can then reduce the window size to fit the diagram

Organizing a module hierarchy
In addition to properly arranging the nodes in a single diagram,
you can also improve the clarity of your models by using module
hierarchies effectively.

A spread-out diagram

A compact diagram

Chapter Organizing a module hierarchy

118 Analytica Users Guide

6
Group related nodes in the same diagram

When assigning nodes to diagrams, the goal is to put groups of
nodes with many links among them in the same diagram, and to
separate them from other groups with which they have few or no
links. For example, the diagram below shows that a group of
nodes related to annual housing costs have been organized into
the Annual costs module within the larger model.

Sometimes you have a good idea of how to group nodes before
you create them. In such cases, it is easy to create the modules
first, and then create and link the nodes in groups in each mod-
ule.

In other cases, it may not be obvious what groupings will work
best. It is then often best to create all the nodes in a single large
diagram. After drawing all the arrows, you may have a confusing
spaghetti diagram. At this point, try to move the nodes around to
identify groups containing 5 to 15 nodes, with many links within
each group and fewer links between groups. When you arrive at a

Chapter Color in Influence Diagrams

Analytica User Guide 119

6
satisfactory grouping, create a module node for each group and
move the group of Variables into its own module.

Use 5 to 15 nodes per diagram
In creating a hierarchy of diagrams of a model that contains 100
Variables, you could create a single module with 100 nodes, 10
modules with an average of 11 nodes each, 20 modules with 6
nodes each, or 50 modules with 3 nodes each.2

A module containing more than 15 nodes is often hard to deci-
pher, unless there are very strong regularities in the structure. On
the other hand, if the modules are small, averaging fewer than 5
nodes, you need so many modules that it is easy for users to get
lost.

The range of 5 to 15 nodes per diagram is a good general goal.
But don’t feel too constrained by it if a few diagrams must be
much smaller or larger than this range.

Contrast the module hierarchy in the illustration on page 118 with
the spaghetti on page 111. The relationships among objects are
much easier to see and understand in the model with 10 nodes in
the top-level module and 12 nodes in the embedded module
(page 118) than in the model with 25 top-level nodes (page 111).

Color in Influence Diagrams
Color can greatly improve the clarity and appeal of diagrams. The
diagram’s background and its nodes are all lightly colored by
default. You can change the colors to meet your special needs.

Use colors judiciously
Selecting garish, uncoordinated colors can take attention away
from the diagram. Light colors work best because the black
arrows and text are easier to read over them. Analytica’s default
colors provide a light neutral color for the background and a
slightly stronger color for the nodes.

2. Each module also creates a new node, so the total number of nodes is
the number of Variables plus the number of modules.

Chapter Color in Influence Diagrams

120 Analytica Users Guide

6
Background color

Light background colors work best so that the black arrows dis-
play clearly.

Node colors
If you wish to change the color of nodes, it is best to have all sim-
ilar nodes be the same color. It generally looks messy to have
nodes in many different colors.

Changing background or node colors
To change the color of the diagram background, or one or more
nodes, select the Edit Tool and bring the diagram window to the
front. Select Show Color Palette from the Diagram menu.

Select the node or nodes, or click in the diagram background to
select the background for changing color. The current color dis-
plays in the single square at the top of the color palette. Click on a
color square to select the new color.

For more color selections, click on the Other button to display a
color wheel with the colors available on your monitor.

In the color wheel, select a color by clicking with the mouse
pointer at the desired color.

Grouping nodes by color
Additional visual organization can be achieved by grouping
related nodes in rectangular boxes of varying colors, as used in
the following form.

Chapter Diagram Style dialog box

Analytica User Guide 121

6

To create grouping rectangle, create a text node using the T but-
ton on the toolbar palette, leave the text blank or enter text as
desired, and resize the node to the size of the group. When resiz-
ing, you may find it convenient to deselect the Resized centered
option on the Diagram menu. With the node selected, check the
fill color option on the Set Node Style... dialog from the Dia-
gram menu, and use the color palette to choose the background
color. Finally, if the rectangle is obscuring other items on the dia-
gram, select Send to Back from the right mouse button menu.

If you plan to print your diagram on a black and white printer, you
should select a color other than pure white, or include a node bor-
der for the group (from the Set Node Style dialog). Since Analyt-
ica suppresses the diagram background color when printing to a
black and white printer, pure white groupings without borders will
not show up on printouts.

Diagram Style dialog box
Use the Diagram Style dialog box to control various aspects of
the diagram display: the default font size and typeface for the
node labels, whether arrows are displayed for specified node
classes, and the default node size.

To display the Diagram Style dialog box, select Set Diagram
Style... from the Diagram menu.

Chapter Diagram Style dialog box

122 Analytica Users Guide

6

Show arrows to/from
Use the options in this box to control various arrow displays.

Default node size
Drag the handle in this box to set the default node size. When
you create a new Variable or select the Adjust Size command
from the Diagram menu, the node is made this size. When you
change the title of a node, its size is adjusted to this size if the
new title fits within it.

Font Style
Use the options in this box to set a default typeface and font
(size) for all the nodes in the model.

Diagram arrow
display options

Diagram font
style options

Drag to set default
node size

Indexes Turns on or off the display of arrows into and out of
index Variables.

Functions Turns on or off the display of arrows into and out of
functions.

Modules Turns on or off the display of arrows into and out of
modules.

Dynamic Shows and hides dynamic arrows (for Variables
defined using the Dynamic() function, see
page 362).

Chapter Node Style dialog box

Analytica User Guide 123

6
Node Style dialog box

Use the Node Style dialog box to control the display of one or
more nodes in a diagram.

You can specify the typeface and font (size), and whether to dis-
play the incoming arrows, outgoing arrows, the node outline, or
the node label. The options for each node override the defaults
specified for the entire diagram in the Diagram Style dialog box.

Changing the node style
To change the node style:

1. Select one or more nodes.

2. Choose Set Node Style... from the Diagram menu.

Display
Use the options in this box to control various display options:

Check box filled in
with light gray

Input arrows Display arrows coming into a node.

Output arrows Display arrows going out of a node.

Label Display the node label (title or identifier).

Border Display the node border.

Chapter Changing the size of the diagram

124 Analytica Users Guide

6

Analytica Note: A check box filled in with light gray indicates that
this option is not the same for all selected nodes. If you leave it
unchanged (gray), each node keeps its current setting for this
option. If you change this option (on or off), all nodes are changed
to the new setting.

Font Style
Use the options in this box to change the typeface and font (size)
from the defaults (see page 122) to a custom style for the
selected node(s).

Changing the size of the diagram
The diagram is preset to display and print in the orientation deter-
mined by the setting in the Page Setup dialog box. On your moni-
tor, the size is shown by the extent of the colored background.
You can change the size of the diagram in whole-page incre-
ments.

To change the size of the diagram:

1. Drag a node into the region beyond the current diagram
extent.

This causes the diagram to expand in whole page
increments. If the Print Setup for the diagram is set to fit on
mxn pages, this may simply change the location of the page
breaks.

A second (obsolete) method for changing the size of a diagram
is:

1. Bring the diagram window to the front.

2. Select Set Diagram Size... from the Diagram menu.

Fill color Display the node color. If unchecked, the
node will appear transparent.

Bevel Display the border beveling (3D button
effect).

Chapter Taking screenshots of diagrams

Analytica User Guide 125

6

3. Specify the size diagram you want.

Each rectangle in the grid represents a page. The size of the
page is determined by the paper size and the Reduce or
Enlarge percentage setting in Page Setup. To increase or
decrease the size by whole-page increments, click the
rectangle that you want to have as the bottom-right boundary
of the diagram.

Analytica Note: If you are decreasing the diagram size, you
cannot remove pages that contain nodes.

4. Click on Set.

When you save a model and later open it, the diagram size is
reset to the number of pages holding the nodes.

Since the diagram extent automatically expands to be no smaller
than the extent of existing nodes, use of the Diagram Size dialog
to set the extent is only necessary if you wish to have the diagram
extent larger than the extent of existing nodes. You should not
explicitly set the diagram size with this method if you use or plan
to use the Print Setup option Fit on mxn pages.

Taking screenshots of diagrams
This section contains some tips for taking good screenshots of
Influence Diagrams and other Analytica windows for use in hard-
copy documents.

Use Browse mode
When making screen captures of a Diagram window, be sure that
the Browse mode () is selected rather than the Edit or Arrow

Chapter Taking screenshots of diagrams

126 Analytica Users Guide

6
mode. The diagram is clearer in Browse mode, without the back-
ground grid visible.

Switch off cross-hatching
By default, the nodes of undefined Variables show a cross-
hatched pattern around the title. To get rid of this pattern, deselect
the Show undefined option in the Preferences dialog box (see
“Preferences dialog box” on page 88).

Diagram colors
Use white for the background if you plan to print screenshots of
the diagram on a black and white printer at less than 600 dpi
(dots per inch). A light gray works well on a printed version if you
have a 600 dpi or better printer.

Use a common level of reduction
When scaling down screenshots of windows, use a consistent
reduction value. If your page setup precision bitmap alignment
option is on, use a multiple of 25%; if the precision bitmap align-
ment option is off, use a multiple of 24%. Other reductions can
create interference in printing and result in distorted screenshots.

Chapter 7

Formatting
Graphs and
Tables

In this Chapter

This chapter shows you how to control
the display of results in graphs and
tables.

Chapter Graph Setup dialog box

Analytica User Guide 129

7

7: Formatting graphs and tables
This chapter describes how to control the display of results in
graphs and tables.

Graph Setup dialog box
Use the Graph Setup dialog box to select the graphing tool and
control graphing options.

Display the Graph Setup dialog box in one of three ways:

• Select Graph Setup from the Result menu.

• Select Graph Setup from the right mouse button menu.

• Double-click on a graph in the Result window.

To set defaults for all new graphs, open the Graph Setup dialog
box when no graph is the active window.

To establish settings for the graph of results of a specific Variable,
open the Graph Setup dialog box when that graph is the active
window.

The settings are saved when you save the model.

Setup option popup menu
Several options for viewing and changing settings in the Graph
Setup dialog box are accessible using its Setup option popup
menu.

Chapter Selecting the Graphing Tool

130 Analytica Users Guide

7
Buttons

Set Default
Accepts all Graph Setup settings for the current and all future
graphs, and closes the dialog box.

Cancel
Leaves the Graph Setup settings unchanged, and closes the dia-
log box.

When you first open the Graph Setup dialog box for a model, the
Graph Frame setup option displays.

Selecting the Graphing Tool
Analytica results may be displayed using either Analytica’s built-in
graphing engine, or Excel’s graphing engine. To use Excel Graph
you must have Microsoft Excel 8 (also known as Excel 97) or
Excel 2000 installed on your computer (Excel is not included with
Analytica).

To select the graphing tool, select Excel Graph® from the setup
option pull-down menu.

Chapter Graph Frame setup option

Analytica User Guide 131

7
Analytica® (built-in)

By default, Analytica’s graphing tool is selected. If you previously
had selected Excel Chart, use this option to choose Analytica’s
graphing tool.

Excel Chart®
Select this option to use Excel’s graphing engine. Excel will
launch when you select this icon, and will remain active as long
as the graph is displayed. In future sessions, Excel graph will
launch whenever a result graph for the evaluated Variable is set
to use Excel graph. Once the graph is viewed, graph settings can
be adjusted from the Excel window. Double click on the graph in
Analytica to bring the Excel window to the foreground. See “Using
Excel Graph with Analytica” on page 139

Graph Frame setup option
To change the graph frame in an Analytica graph, select the
Graph Frame setup option from the popup menu.

y-axis maximum
value

Number of intervals
between tick marks

along
y-axis

y-axis minimum
value

x-axis minimum
value

x-axis maximum
value

Number of intervals
between tick marks
along x-axis

Chapter Graph Style setup option

132 Analytica Users Guide

7
Value entry boxes

Number of intervals between tick marks
If 0, Analytica chooses the number of intervals. If you enter a
number, n, Analytica uses either n or n+1, depending on the min-
imum and maximum values.

Minimum/maximum value
After unchecking the Choose axis ranges automatically check
box, you can enter the desired value.

Check boxes

Choose axis ranges automatically
Controls whether the ranges on the axes are set automatically.
You must uncheck this box before you can edit the minimum and
maximum fields for each axis. For bar graphs, you can change
only the y-axis values.

You cannot uncheck this box to set defaults for all new graphs.
You must uncheck it for each graph.

Display key
Shows the key (for a result of two or more dimensions).

Include 0
Includes 0 (the origin) on the given axis.

Graph Style setup option
To change the graph style in an Analytica graph, select the
Graph Style setup option from the popup menu.

Chapter Graph Style setup option

Analytica User Guide 133

7

Grid
Controls whether a background grid displays, and if it is com-
prised of dots or lines.

Frame
Controls whether the graph displays the axes alone, or with a
frame around the graph.

Tick marks
Controls how the tick marks appear along the axes.

None
Display no tick marks.

Bottom and Left Only
Display tick marks along the bottom and left hand axes.

All Sides
Display tick marks all around the frame.

Open or closed
frame

Tick marks on x
and y axes

Grid marks

Plot data as lines,
points, symbols,

bars

Font for labels in
graph

Chapter Graph Style setup option

134 Analytica Users Guide

7
Show Numbers/Labels

Display numbers or labels along the axes.

Line Style
Controls the style of the graph.

Line graph
Different line styles and colors are used for each key value.

Line and data markers
Different line styles, colors, and symbols are used for each
key value. You can size the symbols.

Data markers (dots)
Useful with a large number of data points.

Data markers only
Different symbols are used for each key value; you can size
the symbols.

Bar chart
Bars are of equal width and are center labeled on the
horizontal axis. (Default for Probability Mass Function of a
Probtable.)

Selecting bar chart will also force probability density function
(PDF) or cumulative distribution function (CDF) views to
treat the sample data as discrete, rather than continuous,
and, therefore, will display a probability mass graph, rather
than a probability density graph.

Overlap
Specifies the vertical spacing of bars within the same group.
Positive values cause the bars within a group to overlap,
negative values introduce space between bars of the same
group.

Origin
Specifies the y-value for the base of the bars in the graph.
The default is zero (i.e., bars extend from the y-origin to the
plotted value). The value in this field may be a number, or it
may be an Analytica expression. If the result is dimensioned
by the x-axis or key indexes, each bar can have its base
positioned independently.

Chapter Number Format dialog box

Analytica User Guide 135

7
Histogram

Horizontal lines are plotted for each result point, positioned
so that they extend to midway between the point and its
neighbors on both sides. (This is the default style for
probability density functions and cumulative distribution
functions when viewed with equal x-axis steps.)

If your sample is numeric, and your Variable has no domain
Attribute, selecting histogram will force the probability
density function (PDF) and cumulative distribution function
(CDF) views to treat the data as continuous.

Symbol Size
Enter the desired symbol size in points.
Minimum size: 4
Default size: 6
Maximum size: 36

Font Style
Sets the typeface for the graph. (Font size is determined by the
window size and is adjusted when the window is resized.)

Number Format dialog box
Number formats can be specified for a table’s contents, its row
and column indexes, and for the y axis on a graph.

The number format for a Variable affects the display of all of its
values everywhere they appear. For example, if you set the num-
ber format for an Index Variable in one Result window, the same
number format is used if the Index Variable appears in another
Result window.

To set the number format:

1. Open a Result window.

2. If the Result window is a table, select a row, column, or cell.

3. Choose Number Format from the Result menu or Ctrl-B to
display the Number Format dialog box.

Chapter Number Format dialog box

136 Analytica Users Guide

7

The top line shows the Variable to which the number format will
be applied.

Formats
Choose from the following number formats:

The suffix characters are:

Format choices

Variable

Example of
format

Options
(depend on format
choice)

Format Description Example

Suffix the default (see the following table) 12.35K

Exponent scientific exponential 1.235e04

Fixed Point fixed decimal point 12345.68

Integer fixed point with no decimals 12346

Percent percentage 1234568%

Date text date 12 Jan 93

Boolean true or false True

Power
of 10

Suffix Prefix Power
of 10

Suffix Prefix

3 K Kilo -2 % percent

6 M Mega or Million -3 m milli

9 G Giga -6 µ micro (mu)

Chapter Number Format dialog box

Analytica User Guide 137

7

Analytica Note: If integer or fixed point is selected, a number
larger than 109 displays in exponent format.

Analytica for Windows uses the $ for a currency symbol, the
comma for a thousands separators (‘,’), and a period (‘.’) for a
decimal point.

Options
The options in the Number Format dialog box depend on the for-
mat selected.

The maximum number of digits or decimal digits is 15 (14 for fixed
point and percent); the maximum number precision is 15 digits (9
for integers). The Suffix format shows a minimum of four signifi-
cant digits.

Currency
Prepends a dollar sign (‘$’) when displaying numbers.

Decimal digits
If set to 1 or more, numbers are padded with zeros to fill out the
specified number of digits after the decimal point.

Number of digits
For Exponent format, numbers are padded with zeros. For Suffix
format, fewer digits can be displayed.

Date formats
These formats show a number as a date, computed as the num-
ber of days since January 1, 1904 (34,699 is January 1, 1999).
The format used for the long and short formats can be set in the

12 T Tera or Trillion -9 n nano

15 Q Quad -12 p pico

-15 f femto

Power
of 10

Suffix Prefix Power
of 10

Suffix Prefix

Chapter Number Format dialog box

138 Analytica Users Guide

7
Regional Setting Properties dialog box from the Windows control
panel. If you select a format that includes the day of week, the
day of week will be suppressed when data is copy and pasted or
OLE linked to an external application (this allows applications
such as spreadsheets to parse the dates).

Thousands separators
When selected, inserts commas between every third digit.

Analytica Note: Number format affects how a definition is
parsed, and affects how coersion from a number to text is
performed. For example, if you set the Number format to "date",
then you can enter a definition such as 1/25/2005 or
25 Jan 2005. If the number format is not "date", then 1/25/2005
would be parsed as two successive divisions. If you have a
coersion from a number to string, as in the expression Pi & "",
the resulting string will be created according to the number format
for that node.

Using multiple formats in a single result table
When viewing a result, the number format setting for a Variable
applies to all values in the body of its result table. For most Vari-
ables, this is desirable since your Variables should contain only a
single type of information (e.g., only dollar amounts, or only per-
centages, but not both). However, occasionally you may want to
bring together multiple pieces of information into a single "report,"
with each column (or row) formatted differently.

A report with multiple number formats can be created as follows:

1. Create a separate Variable for each column (or row) of the
report. Set the number format for each of these Variables as
you wish the corresponding column in the report to be
formatted.

2. Create a node to represent the report. Define the node to be
a list. In each cell of the list, type the identifier of the Variable
containing the contents for that column or row of the report.

3. Display the result as a table.

When a Variable is defined as a list of identifiers, the result table
uses the number format for the source Variable to format the col-
umn or row corresponding to that Variable. If the number format is

Chapter Using Excel Graph with Analytica

Analytica User Guide 139

7
not set for the Variable corresponding to a column, the number
format for the result being viewed is then used.

Using Excel Graph with Analytica
You may view result graphs using either Analytica’s built-in
graphing tool, or Microsoft Excel’s graphing tool. When Excel
Graph is used, Excel is launched and remains active in the back-
ground, while the graph itself appears within the Analytica result
window. The use of Excel graph requires that Microsoft Excel 8
(or Microsoft Office 97), or later, be installed on your computer.
Microsoft Excel is not included with Analytica.

It is generally more convenient to use Analytica’s built-in graphing
tool to display most results, especially during model develop-
ment, since this avoids the overhead of launching Excel, uses
less space in your model files, and makes it easier to switch
between alternative result views. However, because Excel graph
does offer additional graph types and formatting control not avail-
able in Analytica, utilizing an Excel graph can be very useful for
creating highly specialized or presentation-quality graphs.

Switching a Result Graph to an Excel Graph
Starting with an Analytica result graph in view:

1. Double click on the graph.

2. When the Graph Setup box appears, select Excel Graph from
the Setup option pull-down menu.

3. Click on the Excel Chart icon and click the Apply button.

Excel is launched, and the graph is drawn within the Analytica
result window. To change graph settings, double click on the
graph to bring Excel to the foreground, then use the menu
options from Excel to select the graph type and formatting set-
tings as desired.

Chapter Using Excel Graph with Analytica

140 Analytica Users Guide

7
Important notes about Excel Graph

Formatting settings
With an Excel Graph, various changes to the state of a result win-
dow can cause formatting settings to return to their default values
or be lost. These modifications include:

• Certain changes in Variable’s result values.

• Switching the graph view (e.g., Probability Density Function
view to Sample view).

• Altering axes order.

Any of these events will cause you to lose modifications you may
have implemented to the series definitions (i.e., X Values, Y Val-
ues or Series Names) since OLE will update your graphing data,
thus overwriting your modifications.

There are other special cases when formatting settings can be
reset. Switching the graph view or axes order may reset your axis
labels. Also, if you change the graph view, the graph type is not
preserved.

In general, the reformatting of graph settings is appropriate and
should not be a significant issue. However, you may elect to link
your model results directly into an Excel spreadsheet and then
use the data.

Excel Graph as default will increase model file size
Using Excel Graph as the default is not recommended for
medium to large size models because the overhead associated
with Excel Graph will inflate the size of your model files (30KB per
graph). Thus, when employing Excel Graph for a particular node
you should choose the Apply button and not the Set default but-
ton from the Graph Setup dialog box.

In medium to large size models where you would like to have
many nodes displaying their results using Excel Graph, it’s wise
to place ‘copies’ of these nodes in a saved module to save room.
To exploit this strategy, do not make copies of the nodes using
the Copy and Paste operations. Instead, create a new node with
the same title and make its definition merely the identifier for the
node of which you are making a copy.

Chapter Using Excel Graph with Analytica

Analytica User Guide 141

7
Three-dimensional graphing

Excel Graph has the ability to display your model results as a
three-dimensional surface. In these plots the "z" coordinate is the
graph’s key. To create three-dimensional plots of your model
result when using Excel Graph, go to Excel’s Chart menu, select
Chart Type and choose the Surface option.

Keeping Excel open
You may want to avoid restarting Excel each time you graph Ana-
lytica model results with Excel Graph. When using Excel Graph
from Analytica, Analytica will first try to use an existing instance of
Excel, but if Excel is not running, Analytica will launch it. If Analyt-
ica launches Excel and only Analytica is using it, when the last
result window containing an Excel Graph is closed, Analytica will
close Excel.

To avoid restarting Excel repeatedly, launch Excel yourself before
evaluating any nodes using Excel Graph. Analytica will use this
instance of Excel, but will not close it.

Chapter Using Excel Graph with Analytica

142 Analytica Users Guide

7

Chapter 8

Creating and
Editing
Definitions

In this Chapter

This chapter shows you how to:

• Create definitions

• Edit definitions

• Use the Object Finder

• Check the validity of a Variable’s
value

Chapter Creating or editing a definition

Analytica User Guide 145

8

8: Creating and editing definitions
This chapter introduces the tools for creating and editing powerful
mathematical models by giving each Variable a formula that
defines how to compute its value in its definition. The definition
of a Variable can be a simple number, text, a probability distribu-
tion, or a more complicated expression. It can also be a list or
table of numbers or other expressions. Subsequent chapters
present more details about using mathematical expressions,
arrays, and probability distributions.

Creating or editing a definition
To create or edit the definition of a Variable, first be sure that the
Edit tool () is selected. Select the Variable and do any of the
following:

• Enter Ctrl-E.

• Click on () in the tool palette.

• Select Edit Definition from the Definition menu.

• Double-click on the Variable to open its Object window. Then
click in the definition field.

• Click on the Key icon () to open the Attribute panel of the
diagram. Select Definition from the Attribute popup menu.
Then click in the definition field.

If the inputs to the Variable were specified by drawing arrows in
the diagram, the definition initially looks like the illustration below.
The definition field is blank and a popup menu listing the inputs to
the Variable appears above the definition field. If the Variable has
no inputs, the Inputs popup menu does not appear.

If you are editing in the attribute pane and you want to insert the
identifier of a node in the same diagram window, you can click on
the node while holding down the ALT key. This will insert the
identifier of the node into the attribute field. It won't work if you
want to click on something that is in a different window because
the edit field looses focus before the mouse event reaches the
node.

Chapter Creating or editing a definition

146 Analytica Users Guide

8

To edit a definition that is a simple number, text, or other expres-
sion:

1. Select the definition.

2. Edit it by typing, by deleting, or by using the standard text
editing operators—that is, Copy (Ctrl-C), Cut (Ctrl-X), and
Paste (Ctrl-V).

See Chapter 10, “Using Expressions”, for the syntax of numbers,
operators, simple expressions, and mathematical functions.

You can change the definition to one of several commonly used
expressions with the Expression popup menu (see “The Expres-
sion popup menu” on page 150).

Special editing key combinations
A few special key combinations are quite useful when editing tex-
tual definitions. The arrow keys move one character or line at a
time, and Home and End move to the beginning and end of the
current line. Simultaneously depressing the Ctrl key with Left or
Right moves to the beginning or end of the next word or identifier.
If, in addition, the Alt key is depressed, the cursor is moved to the
matching parenthesis when you are adjacent to a parenthesis. If

Inputs popup menu

Attribute panel

Object window

Variable
title

Expression
popup menu

Cancel
button

Accept
button

Definition
field

Chapter Creating or editing a definition

Analytica User Guide 147

8
the Shift key is depressed during any of these cursor movements,
the spanned text will be selected to be available for copy/paste
operations, etc. A rapid method for selecting an identifier is to
double click on the identifier using the mouse.

Parenthesis matching
Analytica expressions can often contain many levels of nested
parentheses. The parenthesis matching keys make it easy to find
the corresponding parenthesis in an expression. Alt-Ctrl-Left and
Alt-Ctrl-Right moves from the outside of a parenthesis adjacent to
the cursor to the outside of the corresponding parenthesis. For
example, in the figure below, pressing Alt-Ctrl-Right when the cur-
sor is at point A moves the cursor to point B. Subsequently press-
ing Alt-Ctrl-Left moves the cursor back to A.

Comments in definitions
It is wise to generously document your models. However, descrip-
tions of Variables and algorithms are usually best placed in the
Description Attribute and/or user-defined attributes for a Vari-
able. However, comments intelligently embedded in a definition
can also be very useful for improving readability of long expres-
sions. Comments can also be used to disable portions of expres-
sions while debugging.

Comments can occur at any point in a expression, provided they
do not sever an identifier name. Comments begin and end with
curly braces (i.e., ‘{‘ and ‘}’), and may not be nested. During pars-
ing and evaluation, everything between curly braces is ignored.
Comments in the cells of an Edit Table are not preserved.

Identifiers
To refer to the value of another Variable, use its identifier. To
place a Variable's identifier at the insertion point in the definition,
do any of the following:

• If the Variable is an input, select it from the Inputs popup
menu.

c * (- (Ln(Uniform(1f,1)))^(1/k)

A B

Chapter Creating or editing a definition

148 Analytica Users Guide

8
• Type in the Variable's identifier. To see all nodes in the active

diagram labelled with their identifiers, select Show By
Identifier from the Object menu (Ctrl-Y).

• Select Paste Identifier from the Definition menu and use
the Find button or identifier menu items (see “Object Finder
dialog box” on page 152).

• If the definition is being edited from the Attribute pane, you
can insert the identifier of a variable in the same module
window by holding down the ALT key and clicking on the
node. The identifier of the clicked node will be inserted at the
caret position. This shortcut isn't available from the Object
Window or for nodes is different modules.

Functions
You can paste functions at the insertion point by doing either of
the following:

• Select Paste Identifier from the Definition menu to open the
Object Finder (see “Object Finder dialog box” on page 152).

• Select the function from its library in the Definition menu
(see “Pasting from a library in the Definition menu” on
page 155).

Automatic parentheses matching
As you write or edit a definition, each time you enter a closing
parens —parenthesis ")", square bracket "]", or comment bracket
"}"—Analytica will show as bold it and its corresponding opening
parens—"(", "[", or "{"—if there is one. This helps you see whether
you have the right number and types of parentheses in complex
expressions—without resorting to the dreaded parens counting.

Syntax check
After entering or editing a definition, press Alt-enter or click on the
accept button () to perform a syntax check of the revised defi-
nition and accept the changes.

Click on the cancel button () to cancel your changes.

The definition Warning icon () appears next to the definition if it
is not syntactically correct. Click on the icon to see a message
about what may be wrong.

Chapter How a valid definition may change the diagram

Analytica User Guide 149

8

A definition’s syntax check may reveal syntax errors (see “Syntax
error” on page 528). For example, if a definition contains text that
is not an identifier, the following dialog box appears.

How a valid definition may change the diagram
After you give a Variable a valid definition, the Influence Diagram
containing that Variable might change.

Cross-hatching disappears
If the "Show Undefined" preference is selected (see “Preferences
dialog box” on page 88), a node whose definition is missing or
syntactically incorrect displays with a cross-hatch pattern.

For example:

After the definition is checked to be syntactically correct, the Vari-
able’s node in the Influence Diagram is clear.

Definition
Warning icon

Cross-hatch pattern: the definition is
missing or is syntactically incorrect

Node is clear: the definition
is syntactically correct

Chapter The Expression popup menu

150 Analytica Users Guide

8
Arrow updating

After checking syntax, Analytica makes sure the arrows going
into this Variable (its inputs) properly reflect its definition.

• It draws an arrow from any other Variable mentioned in the
definition.

• It removes an arrow from any Variable that is not mentioned
in the definition.

To avoid removing influence arrows while editing a definition, do
not click on the check mark or press Alt-Enter to leave the defini-
tion. Instead:

• In the Object window, click on the close button.

• In the Attribute panel, select a different Attribute or select a
different Variable in the diagram.

The Expression popup menu
Click on expr to see the Expression popup menu. The Expres-
sion popup menu shows the type of the definition, which is an
empty expression in the following figure.

Use this popup menu to change the definition to one of several
common kinds of expressions. The entries in this menu depend
on the class of the node being defined.

Expression popup menu

Chapter The Expression popup menu

Analytica User Guide 151

8

Expression
Shows the definition as a mathematical expression, even if it was
defined using the other expression types in this popup menu. See
Chapter 10, “Using Expressions”.

List
Creates an ordered set of expressions or numbers. See “Creating
an index” on page 215.

List of labels
Creates an ordered set of text labels. See “Creating an index” on
page 215.

Sequence
Creates a list of numerical values. See "Sequence(Start,End,
Stepsize)" on page 223.

Table
Creates an array of numbers or expressions. See “11: Arrays and
indexes” on page 207.

Probability table
Creates an array defining probabilities (numbers or expressions)
across the domain of a discrete (chance) Variable. See “Probabil-
ity Tables” on page 304.

Current definition type

Chapter Object Finder dialog box

152 Analytica Users Guide

8
Distribution

Creates an uncertain definition by selecting a function from the
Distribution system library. See “Defining a Variable as a distribu-
tion” on page 287.

Choice
Creates a popup menu for choosing one or all elements from a
list. See “Creating a popup menu” on page 163.

Other
Opens the Object Finder dialog box, which is described in the
next section. Changes the definition to the function or Variable
that you select from the Object Finder.

Object Finder dialog box
Use the Object Finder dialog box to browse system functions,
your own library functions, and all of a model’s identifiers and
place any of these objects into a definition.

Open the Object Finder in either of the following ways:

• To insert the desired function or identifier at the insertion point
in the definition, select Paste Identifier from the Definition
menu.

• To replace the entire definition with the desired function or
identifier, select Other from the Expression popup menu.

Chapter Object Finder dialog box

Analytica User Guide 153

8

Use the Library popup menu to select a group of identifiers or a
library.

• For identifiers, scroll to select:

• For a library, the contents of the selected library are listed
below the popup menu, showing the parameters if they are
functions.

Library popup menu

Contents of selected library

Parameters to selected
function

Description of selected
function

Found Objects Displays identifiers of objects found with
the Find dialog. (See below.)

All Available Displays all library functions and
identifiers.

All Modules Displays identifiers in all modules.

Current Module Displays identifiers in the current
module.

Inputs Displays identifiers of the inputs to the
selected node.

Chapter Object Finder dialog box

154 Analytica Users Guide

8

Use the Find button to search on the identifiers or titles of all Vari-
ables, modules, and functions.

Matching objects are listed in the Found Objects library.

To use a function, identifier, or system expression in a definition,
select it. For a function, enter the required parameters in the
parameter fields.

Identifier menu
items

Chapter Pasting from a library in the Definition menu

Analytica User Guide 155

8

Click on OK to place the function, identifier, or expression in the
definition.

Pasting from a library in the Definition menu
Use the Definition menu to quickly paste a function or system
expression into a definition, when you do not need the Descrip-
tion of the function or expression.

While editing a definition:

1. Have the cursor at the point you want to insert a function or
expression.

2. From the Definition menu, select the library and then the
function or expression.

Chapter Checking the validity of a Variable’s values

156 Analytica Users Guide

8

3. The function or expression is pasted into the definition.

4. Replace all parameters with input identifiers or expressions.
Each parameter is enclosed in << >>. To replace it, select
both << >> and its contents, then type or use the Inputs button
or the Paste Identifier command to open the Object Finder
dialog box.

Checking the validity of a Variable’s values
You can create an automatic check on the validity of the value of
a Variable using its Check Attribute. For example, to check that
the value of Percent_damage is between 0 and 100, you give it a
check of:
Percent_damage>=0 AND Percent_damage<=100

When the Variable is evaluated, and if the Check Attribute fails
(evaluates to False), Analytica will give a warning and the oppor-
tunity to edit the definition.

There are two steps to using value checking:

1. Display the Check Attribute.

2. Define checks for Variables.

Chapter Checking the validity of a Variable’s values

Analytica User Guide 157

8
Displaying the Check Attribute

If you want to use checking, first set the Check Attribute to be dis-
played in the Object window and Attribute view, since it is hidden
by default.

To show the Check Attribute:

1. Select Attributes from the Object menu to open the
Attributes dialog box. See “Managing attributes” on page 400.

2. Scroll down the Attribute list and find Check.

3. Click on Check once to select it, and a second time to add a
check mark next to it. The check mark indicates that the
Attribute is displayed in the Object window and in the Attribute
popup menu.

4. Click on the OK button.

Now the Check Attribute appears in Object windows and in the
Attribute popup menu in the Attribute panel below the diagram.

Defining the check
You can set the Check Attribute for any Variable. First open the
Object window for the Variable, or show its Check Attribute in the
Attribute view. Enter an expression in the Check Attribute field to
constrain the value of a Variable. The expression should refer to
this Variable by identifier or Self, and must be a Boolean (that is,
evaluate to True or False). For example, to constrain the value for
the lifetime of a car (Lifetime) to be greater than 0 and less than
12, define the check as:

Check Attribute

Chapter Checking the validity of a Variable’s values

158 Analytica Users Guide

8

or

If the check expression refers to another Variable, a dependency
is created between the Variable being checked and the Variable
included in the check expression. If the definition does not
already refer to the other Variable, an arrow will be drawn
between the two Variables.

Triggering a check
Analytica performs the check the first time it evaluates the
checked Variable. Analytica evaluates a Variable the first time
you ask to see its result, or the result of another Variable that
depends on it. Analytica also performs the check on an input
node immediately after you edit the input value (see “Using input
nodes” on page 161).

If a check fails
If a check fails (the check evaluates to False), Analytica gives you
the option of editing the Variable's definition, cancelling, or con-
tinuing. If you continue, the check will not be performed again
unless you change the definition of the Variable or a Variable it
depends on.

If you call the Error() function within the check, the message
supplied as a parameter to Error() is displayed (rather than the
default message produced by Check), and the same options are
given.

Disabling value checking
You can disable all value checking by unchecking the Check
value bounds check box in the Preferences dialog box (see
page 88). This check box is checked by default.

Chapter 9

Creating
Models Used
by Others

In this Chapter

This chapter shows you how to create a
user interface for other users of your
model.

Chapter Using input nodes

Analytica User Guide 161

9

9: Creating models used by others
You can use input and output nodes to create a simple user inter-
face for other people who will use your Analytica model. Input
nodes allow the user to see and change the values of Variables
directly from Diagram windows. Similarly, with output nodes you
can display selected output numbers in a diagram and open
tables or graphs with a single click. Users of your model can then
easily view and modify input Variables, and view the results, with-
out navigating the details of the model, unless they wish to.

The diagram below contains input nodes on the left side and out-
put nodes on the right side. The details of how the model com-
putes the outputs from the inputs are available inside the "Details"
module, for anyone who is interested.

Using input nodes
An input node lets you, or your end user, see and easily change
the value of a Variable directly in the diagram, without opening an
Attribute view or Object window (see “Browsing with input and
output nodes” on page 26). In Browse mode you can change only
the values and definitions of input nodes.

An input node is an alias of a Variable that you want to treat as an
input to the model (see “Alias nodes” on page 84).

The type of definition of the original Variable determines the
appearance of the input node (see “The Expression popup menu”
on page 150). If you want your users to be able to change the

Chapter Using input nodes

162 Analytica Users Guide

9
type of definition, instruct them on how to open an Attribute view
or Object window and use the Expression popup menu.

Input field
A single number or text value (scalar) displays as an input field.
You can have Analytica check if the input value is acceptable by
using the check Attribute (see “Checking the validity of a Vari-
able’s values” on page 156); the check is performed on input of a
new value.

Input popup menu
A choice displays as an input popup menu. To create an input
menu for an input node, see “Creating a popup menu” on
page 163.

List
A list or list of labels displays as a List button (see “Creating an
index” on page 215).

Edit table
An Edit Table displays as an Edit Table button (see “Viewing an
array as an Edit table” on page 209).

Probability distribution
A probability distribution displays a button with the name of the
distribution (see “13: Expressing uncertainty” on page 283).

Creating an input node
To create an input node from a Variable:

1. Select the Variable.

2. Select Make Input Node from the Object menu. The input
node will appear in the same diagram next to the selected
node.

3. Move the input node to the location you want.

4. Adjust the size of the node.

To make several input nodes at once, select the Variables and
then choose Make Input Node.

Chapter Creating a popup menu

Analytica User Guide 163

9
Creating a popup menu

For the classes of nodes that may be used for parametric analy-
sis, such as decision and chance, the Expression popup menu
includes the Choice option. The Choice option provides a way to
offer the user a choice of selecting one or all values from a list.

Creating a menu from a list
If the original Variable is already defined as a list of numbers or
labels, create a popup menu to select from the list as follows:

1. Show the definition of the Variable as a list, either in the
Attribute view or the Object window.

2. Press the Expression popup menu and select the Choice
option. Press OK to "Replace current definition with a
Choice?"

3. The Object Finder dialog displays with parameter I=Self and
n=0. Press OK.

The definition field of the original Variable now displays as a
popup menu, and in browse mode, the input node displays as a
popup menu. The original definition (list of numbers or labels) is
now available as the domain of the Variable—the possible out-
comes. In the expression view, the popup menu displays as the
Choice() function (see page 256).

Analytica Note: To define Var1 as a popup menu of another
Variable Var2, that is defined as a list, select Choice from the
Expression popup menu, and set the first parameter to I=Var2 in
the Object Finder dialog (see "Choice(I,n,inclAll)" on
page 256).

Chapter Using output nodes

164 Analytica Users Guide

9

Analytica Note: To hide the "All" option on the popup, enter
inclAll=False as the third parameter in the Object Finder dialog.

Creating a new definition
If a Variable has no previous definition, when you select Choice
from the Expression popup menu, a domain (possible outcomes)
of List of labels is created, with one element in the list.

To change the domain to List of numbers, press the Domain
popup menu and select List of numbers.

Edit the list of values as you would edit a list of labels or list of
numbers (see “Editing a list” on page 221). When you press
Alt-Enter, the definition field becomes a popup menu of the
domain values.

Analytica Note: The values in the domain are evaluated
deterministically.

Using output nodes
An output node gives you, or your end user, rapid access to a
selected result in the model. You can use output nodes to focus
attention on particular outputs of interest.

An output node displays a result value in the view style—table or
graph, the indexes displayed, and the uncertainty view—last
selected for display and saved with the model. It also shows the

Chapter Resizing controls

Analytica User Guide 165

9
uncertainty view icon (see “Uncertainty view options” on
page 52).

If the result is a single value (mid value or mean), it displays
directly in the output field.

If the result is an array, the output node displays a Result button.
Click on the button to display the table or graph.

After you display the table or graph, you can use the result tool
palette to change the view.

If the value of an output has not yet been computed, the Calc but-
ton appears in the node. Click on the Calc button to compute and
display the value.

Creating an output node
To create an output node from a Variable:

1. In a diagram window, select the node of the Variable from
which you wish to create an output node.

2. Select Make Output Node from the Object menu. The output
node will appear in the diagram next to the selected node.

3. Move the output node to the location you want.

4. Adjust the size of the node.

The view style of the output result—table or graph—will be the
format you last set for it (see “7: Formatting graphs and tables” on
page 129).

Resizing controls

If you use a pull-down menu containing long text values, you may
wish to widen the pull-down control as necessary to accommo-
date your longest text value. Input and output nodes contain text
and graphics, in addition to the control itself. The node resizing
handles that appear as small black squares at the corners of the
node adjust the size of the bounding rectangle that holds all these

Drag these to resize node

Drag here to resize control

Chapter Changing display style

166 Analytica Users Guide

9
items, but does not change the width of the control itself. To
change the width of a control (a pull-down menu, textedit box, or
button), position the mouse over the left edge of the control,
depress the mouse button and drag the mouse to the left or right.

Changing display style
The title and units of an input or output node are obtained from
the original node. To edit them, edit the title and units of the origi-
nal node (see “Editing Attributes” on page 85). If you edit the title
or units of the original node, the input or output node's title or
units changes to match the original.

By default, an input or output node shows its original node's title
(label) in the original font, with no node outline or arrows. The
node takes its color from its original node when the node is cre-
ated. Later changes to the original node color do not change the
color of the input or output node.

To change the appearance of an input or output node alone, use
the Set Node Style... and Show Color Palette options from the
Diagram menu (see “Node Style dialog box” on page 123 and
“Changing background or node colors” on page 120). When you
use these options to change the appearance of an input or output
node, its original node does not change. Similarly, using these
options to change the appearance of an original node does not
affect its previously created input or output node.

Using form modules
It is often helpful to group input and output nodes into a single
diagram for easy access by model users. The form module
makes it easy for you to create input and output nodes in the form
by drawing arrows between the form and Variables.

To create a form:

1. Make sure you are in a diagram window with the Edit tool
selected.

2. Drag the module icon off the node palette and position it in the
diagram.

3. Type in a title for the module—for example, Inputs.

4. Open the Attribute view at the bottom of the diagram window.

Chapter Using form modules

Analytica User Guide 167

9
5. From the Attribute popup menu, select Class. A popup menu

of available classes displays.

6. Select Form from the popup menu of classes.

Creating input and output nodes in a form module
An input or output node is an alias to another Variable in the
model. Creating an input or output node is similar to creating an
alias (see “Alias nodes” on page 82). To create a set of input and/
or output nodes in the form module:

1. Adjust the diagram(s) on your screen so the form node and
the source Variables for the input or output nodes are all
visible (they can be in the same or different diagram windows).

2. In the tool palette, click on the arrow button ().

3. For input nodes, draw an arrow from the form node to each
Variable. Analytica creates an input node for each Variable
inside the form module.

4. For output nodes, select the Variables and draw arrows from
the Variables to the form node. Analytica creates an output
node for each selected Variable inside the form module.

5. When you have finished creating input and output nodes,
double-click on the form node to open its diagram window.

6. In the tool palette, click on the edit button ().

7. Rearrange and resize the input and output nodes for clarity. It
is usually clearest to put the input nodes down the left side and
the output nodes down the right side.

A form module is like any other module, except when you draw
arrows to or from the form module. So you can also create nodes
that are not inputs or outputs and modules inside a form. If you
have too many nodes to fit comfortably in a single diagram, you
can create additional modules (which need not be forms) to
enclose related groups of inputs and outputs.

Chapter Adding icons to nodes

168 Analytica Users Guide

9
Adding icons to nodes

You can add an icon to any node in a diagram. The Icon window
contains an enlarged space that you can use for creating or edit-
ing an icon.

Opening the Icon window
To add an icon:

1. Make sure that the Edit tool is selected.

2. Select the node that you wish to illustrate.

3. Choose Edit Icon from the Diagram menu to open the Icon
window.

The same node with an icon added.
Adjust the size of the node as necessary
to show the icon and title.

Chapter Graphics, frames, and text in a diagram

Analytica User Guide 169

9
Drawing or editing an icon

You can draw or edit the icon one pixel at a time using mouse
clicks, or you can draw lines by holding down the mouse button
as you drag the cursor.

• To make a dark pixel light or a light pixel dark, click on the
pixel.

• To set the node’s icon, click on the button.

• To restore the original icon in the window (or to clear the
window if there was no previous icon), click on the
button.

You can copy and paste an icon from one place in a model to
another using the standard Copy (Ctrl-C) and Paste (Ctrl-V)
commands.

Graphics, frames, and text in a diagram

Adding graphics
You can add a graphic image created in another application to
any node or to the diagram background. Both color bitmaps and
PICT graphics can be pasted in.

To paste in a graphic:

1. Copy (Ctrl-C) the graphic to the clipboard from within a
graphics application.

2. Make sure that the Edit tool is selected in Analytica.

3. Select the node or the diagram window where you want the
graphic to appear.

4. Paste (Ctrl-V) the graphic from the clipboard.

When you paste a graphic into the diagram window, a special
node of class picture is created. Variable, module, and function
nodes can be placed on top of picture nodes.

To remove a graphic, select it and press Delete, or choose Clear
from the Edit menu.

Chapter Models in XML file format

170 Analytica Users Guide

9
Adding a frame

You can create a rectangular frame for nodes in a diagram in
either of the following ways:

• Paste a graphic into the diagram window to create a picture
node, then delete the graphic. This leaves a blank picture
node. Use the Node Style dialog box (see “Node Style dialog
box” on page 123) to display the border of the node. Other
nodes can be placed on top of this node.

• Create a decision node and leave the title blank. Give it a
definition of 0 (or any number) to remove the cross-hatch
pattern. Use the Node Style dialog box (see “Node Style
dialog box” on page 123) to hide the label and fill color.
Create this frame first, then create the nodes to be framed
and place them in the frame. If you create a framing decision
node after you create the nodes to be framed, the nodes will
be "under" the framing decision node; they will be visible, but
you will not be able to select them.

Adding text
To add text to a diagram, drag a text node from the text button
() on the toolbar to the diagram and enter the desired text. This
creates a new node with a special class text. Use the handles to
resize the node, and use the Node Style Dialog box (see “Node
Style dialog box” on page 123) to change the font or to change
the background from transparent to filled.

Models in XML file format
By default, Analytica 3.1 saves new models Analytica saves mod-
els in its own slot-filler format. The XML format lets you use a
variety of applications that work with XML to read and edit the
model files.

The format for saving
models

Analytica 3.1 remembers which file format a model used and will
save models in the same format. Hence, models created in ear-
lier releases of Analytica for Windows or Macintosh will continue
to use the old format. You can override that format by (un)check-
ing Save in XML Format in the Save as... dialog selected from
the File menu.

Compatibility with
older releases

If you want to share models created in Analytica 3.1 with users
who are using earlier releases, such as the Macintosh edition,

Chapter Models in XML file format

Analytica User Guide 171

9
you should uncheck the Save in XML Format check box in the
Save as... dialog. You will also need to avoid using any of the
new syntax or functions introduced in Analytica 3.0 or 3.1 and
described in this Upgrade Guide.

Sample old file format Here is part of a sample model file in the old "slot filler" format:
{ From user Max Henrion, Model
Sample_old_file_format ~~
at Sep 1, 2003 3:56 PM}
Softwareversion 3.1.0

Model Sample_old_file_format
Title: Sample of old file format
Author: Max Henrion
Date: Sep 1, 2003 11:55 PM
Savedate: Sep 1, 2003 3:56 PM

Objective Net_income
Title: Net income
Units: $ millions
Definition: Revenues - Expenses
Nodelocation: 304,64,1

Variable Revenues
Title: Revenues
Units: $ millions
Definition: 700 * (1+ 0.10)^(Year - 2003)
Nodelocation: 176,32,1

Variable Expenses
Title: Expenses
Units: $ millions
Definition: Table(Year)(750,750,780,800,850)
Nodelocation: 176,96,1

Close Sample_old_file_format

Sample XML file
format

Here is part of the same model, saved in the XML format:
<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>
<ana user="Max" project="Sample_XML_file_format"
generated=" Sep 1, 2003 3:57 PM"

Chapter Models in XML file format

172 Analytica Users Guide

9
softwareversion="3.1.0" software="Analytica">

<model name="Sample_XML_file_format">
<title>Sample XML file format</title>
<author>Max Henrion</author>
<date> Sep 01, 2003 11:55 AM</date>
<saveauthor>Max Henrion</saveauthor>
<savedate>Wed, Sep 1, 2003 3:57 PM</savedate>
<fileinfo>0,Model Sample_XML_file_format,
2,2,0,1, C:\Documents\Upgrade guide\Netincome

example XML.ANA </fileinfo>
<objective name="Net_income">

<title>Net income</title>
<units>$ millions</units>
<definition>Revenues - Expenses</definition>
<nodelocation>304,64,1</nodelocation>
<nodesize>48,24</nodesize>
<valuestate>2,313,273,197,250,0,MIDM

</valuestate>
<numberformat>1,D,4,2,0,1</numberformat>
</objective>

<Variable name="Revenues">
<title>Revenues</title>
<units>$ millions</units>
<definition>700 * (1+ 0.10)^(Year - 2003)

</definition>
<nodelocation>176,32,1</nodelocation>
<nodesize>48,24</nodesize>

</Variable>
<Variable name="Expenses">

<title>Expenses</title>
<units>$ millions</units>

<definition>Table(Year)(750,750,780,800,850)
</definition>
<nodelocation>176,96,1</nodelocation>
<nodesize>48,24</nodesize>

</Variable>
</model>
</ana>

Chapter Hyperlinks in model documentation

Analytica User Guide 173

9
Hyperlinks in model documentation

Any Description, or other textual Attribute of a Variable or other
Object, can now contain a hyperlink to any Web page. This is
useful for linking to detailed explanations, data, or references for
a model, or even to related downloadable Analytica models. In
Browse mode, hyperlinks appear conventionally underlined in
blue. When you click on a hyperlink, your computer will show the
indicated web page in your default web browser.

To define or edit a hyperlink, enter Edit mode, and use a standard
HTML link syntax of the form

Click here

In Browse Mode

In Edit Mode

Chapter Hyperlinks in model documentation

174 Analytica Users Guide

9

Chapter 10

Using
Expressions

In this Chapter

This chapter tells you how to

• Write values, including numbers,
Booleans, and text values

• Write expressions using arithmetic,
logical, and comparison operations,
and functions

• Select common functions that
operate on numbers and text
values

Chapter Numbers

Analytica User Guide 177

10

10: Expressions
This chapter describes the building blocks for creating and editing
expressions to define Variables: numbers, operators and mathe-
matical functions.

Numbers
The following formats are all valid for entering numbers:

• The signed integer after the E is an exponent that denotes a
power of ten. For example:

5E4 = 5 x 104 = 50,000

4.3E-3 = 4.3 x 10-3 = 0.0043

• A character suffix denoting a power of ten is a convenient
way to express very large or small numbers. For example:

50K → 50,000

1.5m → 0.0015

The character suffixes are the same as used in the default
output number format (see the table on page 136).

Number Format Examples

Integers 2, 10, 1234

Decimals 32.5, .0002, 0.000012345

Suffix 250K, 10.5M, 10.5m, 22%

Exponential form 53E11, 1E20, 4.5632E-25

Power
of 10

Suffix Prefix Power
of 10

Suffix Prefix

3 K Kilo -2 % percent

6 M Mega or Million -3 m milli

9 B Billion -6 µ micro (mu)

9 G Giga -9 n nano

Chapter Numbers

178 Analytica Users Guide

10

Analytica Note: The character suffixes m (10-3) and M (106) are
distinct. This is the only situation in which the case of a letter
makes any difference for input to Analytica. For example, you can
use k and K interchangeably.

Range
Analytica can represent numbers between 10-308 and 9•10+307.

Numbers out of range
When a calculation results in a number whose absolute value is
less than the smallest number that can be represented, Analytica
rounds the number to 0 (zero) without warning. For example:

1/10^1000 → 0

INF (infinity)
When a calculation results in a number whose absolute value is
greater than the largest that can be represented, Analytica dis-
plays it as INF or -INF, for positive or negative infinity. For exam-
ple:

10^1000 → INF
-10^1000 → -INF
1/0 → INF

You can enter INF as a value in an expression. Analytica can per-
form some computations with INF, such as:

INF + 10 → INF
INF/0 → INF
10 - INF → -INF

Other computations with INF, such as difference and ratio, give
results that are ill-defined and return NAN (Not A Number):

INF - INF → NAN
INF/INF → NAN

12 T Tera or Trillion -12 p pico

15 Q Quad -15 f femto

Power
of 10

Suffix Prefix Power
of 10

Suffix Prefix

Chapter Text values

Analytica User Guide 179

10
A NAN may be detected in an expression using the IsNaN()
function. See page 200.

Precision
The maximum internal precision of numbers is 15 significant dig-
its.

Some calculations, especially those that involve small differences
between numbers, may result in less precision than the maxi-
mum.

Text values
You can specify a text value by enclosing text in single quotes, or
in double quotes, for example:

'A', "A25", ‘A longish text - with punct.’

A text value can contain any character, including comma, space,
and new line. To include a single quote(') or apostrophe, you can
type two single quotes in sequence, such as:

'Isn''t this easy?'

The resulting text will contain only one apostrophe character. Or
you can enclose the text value in double quotes:

"Don’t do that!"

Similarly, if you want to include double quotes, enclose the text in
single quotes:

‘Did you say "Yes"?’

You can enter a text value directly as the value of a Variable, or in
an expression, including as an element of a list (see “Creating an
index” on page 215 and “List vs. list of labels” on page 219) or
Edit Table (see “Creating an array with an Edit Table” on
page 225). Analytica displays text values in results without the
enclosing quotes.

Also see “Text functions” on page 194.

Chapter Boolean or logical values

180 Analytica Users Guide

10
Boolean or logical values

There are two Boolean or logical values—True and False. You
can specify a Boolean value in an expression as False or True,
or, equivalently, as the numbers, 0 or 1. For example:

False or True → True
1 And 0 → False

Analytica treats every nonzero number as True. For example:
2 And True → True

Analytica displays Boolean results as 0 or 1, by default. To dis-
play them as False or True, change the format of the definition or
result to Boolean (see “Number Format dialog box” on page 135).

Operators
An operator is a symbol, such as a plus sign (+), that represents
a computational operation or action such as addition or compari-
son. Analytica includes the following sets of standard operators.

Arithmetic operators
The arithmetic operators apply to numbers and produce num-
bers.

Operator Meaning Examples

+ plus 3+2 → 5

- minus 3- 2 → 1

* multiplied by 3*2 → 6

/, ÷ divided by 3/2 (=) → 1.5

^ to the power of 3^2 (= 32) → 9

^fraction root
(fractional exponent) 4^.5 (=) → 2

3
2

4
1
2

Chapter Operators

Analytica User Guide 181

10
Comparison operators

The comparison operators apply to numbers and text values and
produce Boolean values.

Alphabetic ordering of text values
The comparison operators, >, >=, >=, and <, compare the alpha-
betic ordering based on ASCII coding of two text values. For
example,

‘Analytica’ < ‘Excel’ Æ 1 (true)

Using the numerical (ASCII) representation of the characters,
means:

a. Digits precede (are smaller than) letters, so
‘9’ < ‘A’ ‡ 1 (True)

b. Uppercase letters precede lowercase letters. If you want
to alphabetize without regard to case, first use TextUp-
percase (or TextLowerCase) to convert all letters to the
same case.

‘Analytica’ > ‘excel’ Æ 0 (False)
TextUpperCase(‘Analytica’) <

Operator Meaning Examples
(1 = true, 0 = false)

< less than 2<2
'A'<'B'

→ 0
→ 1

<=, ≤ less than or equal to 2<=2
'ab'<='ab'

→ 1
→ 1

= equal to 100=101
'AB'='ab'

→ 0
→ 0

>=, ≥ greater than or equal to 100>=1
'ab'>='cd'

→ 1
→ 0

> greater than 1>2
'A'>'a'

→ 0
→ 1

<>, ≠ not equal to 1<>2
'A'<>'B'

→ 1
→ 1

Chapter Operators

182 Analytica Users Guide

10
TextUpperCase(‘excel’) Æ 1 (True)

c. Letters with accents, umlauts, cedillas, ligatures, and other
decoration come after undecorated letters, hence alpha-
betic ordering may be different from what you expect.

Sortindex(a, i) sorts text values in a using the same ordering
scheme. But, Rank(d) works only on numerical values, and
does not rank text values.

Logical operators
The logical operators apply to Boolean values and produce Bool-
ean values.

Scoping operator (::)
Later versions of Analytica introduced many functions that did not
exist in previous releases of Analytica. Some models created in
previous releases may contain Variables or user-defined func-
tions with the same name as new built-in functions. In this situa-
tion, an identifier name appearing in an expression may be
ambiguous.

For example, suppose a model written in Analytica 1.2 contains a
user-defined function named Irr. If a Variable in this model uses
the Irr function, the :: operator is prepended to, or omitted from,
the identifier name in order to disambiguate whether the definition
refers to the user-defined Irr function, or the built-in Irr func-
tion.

Prepending :: to the name of a built-in function causes the refer-
ence to always refer to the built-in function when there is an ambi-
guity. Otherwise, the identifier will refer to the user’s Variable or
function. With this convention, existing models are not changed
by the introduction of new built-in functions.

Operator Meaning Examples
(1 = true, 0 = false)

b1 AND b2 true if both b1 and b2 are true,
otherwise false

1 AND 20<2 → 0

b1 OR b2 true if b1 or b2 or both are true,
otherwise false

0 OR 1<2 → 1

NOT b true if b is false, otherwise
false

NOT (2<3) → 0

Chapter Conditional operators

Analytica User Guide 183

10
Example Suppose a model from an older release of Analytica contains the

user-defined function Irr(Values,I). Then

Operator binding precedence
A precedence hierarchy resolves potential ambiguity when evalu-
ating operators and expressions. The hierarchy of precedence for
operators, from most tightly bound to least tightly bound is:

functions, not
^
- (unary)
*, /
+, -
<, >, <=, >=, =, <>
and, or
If ... Then ... Else

Within each level of this hierarchy, the operators bind from left to
right (left associative).

Examples The following arithmetic expression:
1 / 2 * 3 - 3 ^ 2 + 4

is interpreted as:
((1 / 2) * 3) - (3 ^ 2) + 4

The following logical (Boolean) expression:
If a and b > c or d + e < f ^ g Then x Else y + z

is interpreted as:
If ((a and (b > c)) or ((d + e) < (f ^ g))) Then x
Else (y + z)

Conditional operators
The conditional operators are:

If B then U else V
Ifonly B then U else V
Ifall B then U else V.

Irr(Payments,Time) User’s Irr function

::Irr(Payments,Time) The built-in function

Chapter Conditional operators

184 Analytica Users Guide

10
All three conditional operators return elements of U and V
depending on the value of B. The three operators differ on
whether U and V are evaluated when B is constant, and on what
the final result is indexed by. The following table summarizes
what gets evaluated in each case:

What gets evaluated:

What the final result is indexed by (B in the table indicates that
the result is indexed by the dimensions of B, etc.):

If B Then U Else V
Returns U or V, or an array whose cells contain values of U or V,
depending on the value of B.

• If B has the value True (or any nonzero number), it returns
the value of U and does not evaluate V.

• If B has the value False (or 0), it returns the value of V and
does not evaluate U.

• If B is an array which contains at least one True (nonzero)
value and at least one False (0) value, it evaluates both U
and V. It returns an array indexed by the union of the indexes
of B, U, and V, containing elements from U or V according to
the corresponding elements of B.

• If B is an array containing only True (only non-zero numbers),
U is evaluated, V is not evaluated, and the result is indexed
by the indexes of B and U.

B contains
only True

B contains
only False

B contains
both True and
False

If B, U B, V B, U, V
Ifonly B, U B, V B, U, V
Ifall B, U, V B, U, V B, U, V

B contains
only True

B contains
only False

B contains
both True and
False

If B, U B, V B, U, V
Ifonly U V B, U, V
Ifall B, U, V B, U, V B, U, V

Chapter Conditional operators

Analytica User Guide 185

10
• If B is an array containing only False (only zeros), U is not

evaluated, V is evaluated, and the result is indexed by the
indexes of B and V.

Examples N:

If N > 0 Then 'Yes' Else 'No' →

N

If N = 2 Then 'Yes' Else 'No' →

N

If N < 0 Then 'Yes' Else 'No' → 'No'

Avoiding evaluation
You may want to avoid evaluation of U for elements of B that give
undefined results. For example:

Myarray:
In2

If Myarray > 0 Then Ln(Myarray) Else 0 gives a warning
message on evaluating Ln(-10). Ignoring the message gives

In2

To avoid evaluation of U for the elements that are false, evaluate
If...Then...Else on each element of Myarray using a
For...Do loop (see page 443) or Using..In..Do (see
page 443).

Using Temp := Myarray in In2 Do
If Temp > 0 Then Ln(Temp) Else 0

1 2 3

1 2 3
'Yes' 'Yes' 'Yes'

1 2 3
'No' 'Yes' 'No'

21 22 23
-10 0 10

21 22 23
0 0 2.303

Chapter Conditional operators

186 Analytica Users Guide

10
Ifonly B Then U Else V

Ifonly is similar to If, except that it does not include the dimen-
sions of B in the result if B is constant. Like If, the Else part is
optional.

• If B has the value True (or any nonzero number), it returns
the value of U and does not evaluate V.

• If B has the value False (or 0), it returns the value of V and
does not evaluate U.

• If B is an array which contains at least one True (nonzero)
value and at least one False (0) value, it evaluates both U
and V. It returns an array indexed by the union of the indexes
of B, U, and V, containing elements from U or V according to
the corresponding elements of B.

• If B is an array containing only True (only non-zero numbers),
U is evaluated, V is not evaluated, and U is returned. Unlike
If, The dimensions of B are not included in the result.

• If B is an array containing only False (only zeros), U is not
evaluated, V is evaluated, and V is returned. Unlike If, The
dimensions of B are not included in the result.

Analytica Note: Omitting else should only be used when the
statement is followed by a semi-colon with another expression
following, as in:

Var A := Min([X,Y]);
If A<0 Then A:=0;
Sqrt(A)

When to use The main difference between Ifonly and If is that Ifonly col-
lapses the array dimensions when B is constant. In general,
Ifonly can cause confusion when dimensions disappear simply
because numbers (in B) come out equal in a coincidental situa-
tion. However, if your intention is to reduce the dimensionality of
the result when B is constant, then use Ifonly.

In the world of array abstraction, one can consider an array that is
not indexed by I to be equivalent to an array that is constant
across I, with each slice along I being equal to the original array.
In this sense, If and Ifonly return equivalent results. If dimen-
sions are re-introduced later, the downstream results will be the
same in the two cases. However, since the dimensionality is
smaller for results of Ifonly, there can be a slight computational

Chapter Conditional operators

Analytica User Guide 187

10
advantage over If. Due to the use of sparse array representa-
tions inside Analytica’s engine, the difference in computational
advantage is usually very small.

Examples N:

Ifonly N > 0 Then 'Yes' Else 'No' → 'Yes'
Ifonly N = 'A' Then 'Yes' Else 'No' → 'No'

Ifonly N = 2 Then 'Yes' Else 'No' →

N

Ifall B Then U Else V
Ifall is similar to If, except that it always evaluates both U and
V, and returns a value whose dimensions are always the same—
the union of the indexes of B, U, and V. If, Ifonly, and Ifall
give the same result when B is an array whose values are par-
tially true. While the else clause is optional for If...then...
else, it is not optional for the Ifall...then...else.

When to use When B is an array, the number and identity of the dimensions of
the result of an If expression can vary according to the values in
B. Use Ifall instead of If to ensure that the dimensions of the
result are always the same.

Examples N:

Ifall N > 0 Then 'Yes' Else 'No' →

N

Ifall N = 2 Then 'Yes' Else 'No' →

N

Ifall N = 'A' Then 'Yes' Else 'No'→

1 2 3

1 2 3
'No' 'Yes' 'No'

1 2 3

1 2 3
'Yes' 'Yes' 'Yes'

1 2 3
'No' 'Yes' 'No'

Chapter Functions

188 Analytica Users Guide

10
N

Functions
Analytica provides a large number of built-in functions for per-
forming mathematical, array, statistical, textual, and financial
computations. There are also probability distribution functions for
uncertainty and sensitivity analysis. The Enterprise edition of
Analytica also includes functions for accessing external ODBC
data sources. Finally, you can write and use your own user-
defined functions.

Calls to Analytica functions have the form:
FunctionName(param1, param2, ...)

In other words, the function name followed by a comma-delimited
list of parameters. Parameters can themselves be expressions
built out of constants, Variable names, operators, and functions.
Here are some simple examples of expressions involving func-
tions.

Exp(1) → 2.718281828459
Sqrt(3^2 + 4^2) → 5
Round(2*Pi) → 6

Mod(X, 3) → 1 where X → 7

Pmt(8%, 30, -1000) → $88.83
N * Sum(w*w, J)
Normal(500,100)

Functions are described in the chapters that follow. The rest of
this chapter describes the basic (non-array) functions.

Example data
The examples in this chapter refer to the following Variables:

Car_type:

1 2 3
'No' 'No' 'No'

VW Honda BMW

Chapter Functions

Analytica User Guide 189

10
Years:

Mpg:

Time:

Cost: Mpg , Car_type

Car_prices: Car_type , Years

Cost_in_time: Mpg , Time , Car_type = VW

Cost_in_time: Mpg , Time , Car_type = Honda

Cost_in_time: Mpg , Time , Car_type = BMW

1985 1986 1987 1988

26 30 35

0 1 2 3 4

VW Honda BMW
26 2185 2810 3435
30 1705 2330 2955
35 1585 2210 2835

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

0 1 2 3 4
26 2185 2294 2409 2529 2656
30 2810 2951 3098 3253 3416
35 3435 3607 3787 3976 4175

0 1 2 3 4
26 2385 2314 2529 2649 2856
30 2910 3041 3238 3343 3526
35 3535 3847 3897 4166 4365

0 1 2 3 4
26 3185 3294 3409 3529 3656
30 3810 3951 4098 4253 4416
35 4435 4607 4787 4976 5175

Chapter Math functions

190 Analytica Users Guide

10
Math functions

These functions can be accessed under the Definition menu
Math command, or in the Object Finder dialog box, Math library.
Additional math functions that are highly specialized or less com-
mon are also available in the Advanced Math library described in
“Function List” on page 537.

Abs (X)
Returns the absolute value of X.

Abs(180) → 180
Abs(-210) → 210

Arctan (X)
Returns the arctangent of X in degrees.

Arctan(0) → 0
Arctan(1) → 45
Arctan(Tan(45)) → 45

See also Arctan2 in the Advanced Math functions on page 193.

Ceil(X)
Returns the smallest integer that is greater than or equal to X.

Ceil(3.1) → 4 Ceil(5) → 5
Ceil(-2.9999) → -2 Ceil(-7) → -7

Cos (X)
Returns the cosine of X, X assumed in degrees.

Cos(180) → -1
Cos(-210) → -0.866

Degrees(R)
Converts from radians to degrees.

Degrees(Pi/2) → 90
Degrees(-Pi) → -180

Chapter Math functions

Analytica User Guide 191

10
Exp (X)

Returns the exponential of X—that is, ex. X must not be greater
than 709.

Exp(5) → 148.4
Exp(-4) → 0.01832

Factorial (X)
Returns the factorial of X, which must be between 0 and 170.

Factorial(5) → 120
Factorial(0) → 1

If X is not an integer, X is rounded to the nearest integer before
taking the factorial.

Floor(X)
Returns the largest integer that is smaller than or equal to X.

Floor(2.999) → 2 Floor(3) → 3
Floor(-2.01) → -3 Floor(-5) → -5

Ln (X)
Returns the natural logarithm of X, which must be positive.

Ln(150) → 5.011
Ln(Exp(5)) → 5

Logten (X)
Returns the logarithm to the base 10 of X, which must be positive.

Logten(180) → 2.255
Logten(10 ^ 30) → 30

Mod(X, Y)
Returns the remainder (modulus) of X/Y.

Mod(7,3) → 1 Mod(12,4) → 0
Mod(-14,5) → -4

Chapter Advanced math functions

192 Analytica Users Guide

10
Radians(D)

Converts from degrees to radians.
Radians(-90) → -1.57079633
Radians(180) → 3.141592654

Round (X)
Returns the value of X rounded to the nearest integer.

Round(1.8) → 2 Round(-2.8) → -3
Round(1.499) → 1 Round(-2.499) → -2

Sin (X)
Returns the sine of X, X assumed in degrees.

Sin(30) → 0.5
Sin(-45) → -0.7071

Sqr (X)
Returns the square of X.

Sqr(5) → 25
Sqr(-4) → 16

Sqrt (X)
Returns the square root of X, which must be positive or zero.

Sqrt(25) → 5

Tan(X)
Returns the tangent of X, X assumed in degrees.

Tan(45) → 1

Advanced math functions
These functions can be accessed under the Definition menu
Advanced Math command, or in the Object Finder dialog box,
Advanced Math library. Functions in this section are generally for

Chapter Advanced math functions

Analytica User Guide 193

10
more advanced mathematical users than those found in “Math
functions” on page 190.

Arccos(X)
Returns the inverse cosine of X, where X is between 0 and 1. The
result is in degrees, between 0 and 180.

Arccos(1) → 0

Arccos(Cos(45)) → 45

Arcsin(X)
Returns the inverse sine of X, where X is between 0 and 1. the
result is in degrees, between -90 and 90.

Arcsin(1) → 90

Arcsin(Sin(45)) → 45

Arctan2(Y, X)
Returns the arctangent of Y/X without loosing information about
which quadrant the point is in. The result is the angle (in degrees)
between the X axis and the point (X,Y) in the two dimensional
plane, in the range (-180,180]. If Y=X=0, returns zero.

Arctan2(-1,1) → -45

ArcTan2(0,-1) → 180

Cosh(X)
The hyperbolic cosine of X, X assumed to be in degrees.

Lgamma(X)
Returns the Log Gamma function of X. Without numerical over-
flow, this function is exactly equivalent to ln(GammaFn(X)).
Because the gamma function grows so rapidly, it is often much
more convenient to use LGamma() to avoid numeric overflow.

Sinh(X)
The hyperbolic sine of X, X assumed in degrees.

Chapter Text functions

194 Analytica Users Guide

10
Tanh(X)

The hyperbolic tangent of X, X assumed in degrees.

Text functions
Analytica provides several functions for manipulating text values
(sometimes known as strings). These are available in the Text
library.

Some text functions had different names in Analytica 2.0. Please
use the new names listed here, even though the old names still
work for backward compatibility. See “Forward and backward
compatibility” on page 531 for details.

Asc(t)
Returns the ASCII code (a number between 0 and 255) of the first
character in text value t. This is occasionally useful, for example
to understand the alphabetic ordering of text values.

Chr(n)
Returns the character corresponding to the numerical ASCII code
n (a number between 0 and 255). Chr and Asc are inverses of
each other, for example:

Chr(65) Æ ‘A’, Asc(Chr(65)) Æ 65
Asc(‘A’) Æ 65, Chr(Asc(‘A’)) Æ ‘A’

Chr is useful for creating characters that cannot easily be typed,
such as tab, which is Chr(9) and carriage return (CR), which is
Chr(13). For example, if you read in a text file, x, you can use
SplitText(x, Chr(13)) to generate an array of lines from the
text.

FindinText(t1, t2, start)
Returns the position of the first occurrence of the text t1 within the
text t2, as the number of characters to the first character of t1. If
t1 does not occur in t2, it returns 0. For example,

Variable People := ‘Amy, Betty, Carla’

FindinText(‘Amy’, People) → 1

FindinText(‘Betty’, People) → 6

Chapter Text functions

Analytica User Guide 195

10
FindinText(‘Fred’, People) → 0

The optional third parameter, start, specifies the position to start
searching at, for example, if you want to find a second occur-
rence of t1 after you have found the first one.

Joining Text: a & b
The "&" operator joins (concatenates) two text values to form a
single text value, for example:

‘What is the’ + ‘ number’ + ‘?’

→ ‘What is the number?’

If one or both operands are numbers, it will first convert them to
text using the number format setting for the Variable whose defi-
nition contains this function call (or the default suffix format if
none is set), for example:

‘The number is ‘ & 10^8 → ‘The number is 100M’

This is also useful for converting (or "coercing") numbers to text.
(See page 199.)

Analytica Note: In Analytica 2.0, the ‘+’ operator also joins two
text values, and when applied to a number and a text value first
converts the number to text. Of course, it does not convert two
numbers to text—it simply sums them! ‘+’ still joins two text values
or a text and a number, but now it also issues a warning about this
usage, to encourage you to use ‘&’ instead.

JoinText(a, i, sep, finalsep)
Returns the elements of array a joined together into a single text
value over index i. If elements of a are numeric, they are first con-
verted to text using the number format settings for the Variable
whose definition contains this function call. For example,

I : [‘A’, ‘B’, ‘C’]

JoinText(I, I) → ‘ABC’
A: Array(I, [‘VW’, ‘Honda’, ‘BMW’])

JoinText(A, I) → ‘VWHondaBMW’

If the optional parameter sep is specified, it is inserted as a sepa-
rator between successive elements, for example:

JoinText(A, I, ‘, ‘) → ‘VW, Honda, BMW’

Chapter Text functions

196 Analytica Users Guide

10
The optional parameter finalsep, if present, specifies a different
separator between the second-to-last and last elements of a.

JoinText(A, I, ‘, ‘, ‘, and ‘) → ‘VW, Honda, and
BMW’

Analytica Note: As an undocumented feature in Analytica 2.0,
Sum(a, i) also converts all numbers to text and joins all the text
elements over index i into a text value—but only if at least one
element of a is a text value. Sum still behaves this way in Release
3.1, but it first issues a warning. We encourage you to use
JoinText, not Sum to join text values.

SelectText(t, m, n)
Returns text containing the mth through the nth character of text t
(where the first character is m=1). If n is omitted it returns charac-
ters from the mth through the end of t.

SelectText(‘One or two’, 1, 3) → ‘One’

SelectText(‘One or two’, 8) → ‘two’

SplitText(t, sep)

Returns a list of text values formed by splitting the elements text
value t at each occurrence of separator sep. For example,

SplitText(‘VW, Honda, BMW’, ‘, ‘) → [‘VW’,
‘Honda’, ‘BMW’]

SplitText is the inverse of JoinText, if you use the same separa-
tors, for example:

Var x:=SplitText(‘Humpty Dumpty sat on a wall.’, ‘
‘)

→ [‘Humpty’, ‘Dumpty’, ‘sat’, ‘on’, ‘a’, ‘wall.’]

JoinText(x, ‘ ‘) → ‘Humpty Dumpty sat on a wall.’

Analytica Note: With SplitText(), t must be a single text value,
not an array. Otherwise, it might generate an array of arrays of
different length. See page 452 on what to do if you want apply it to
an array.

Chapter Text functions

Analytica User Guide 197

10
TextLength(t)

Returns the number of characters in text t.
TextLength(‘Supercalifragilisticexpialidocious’)
→ 34

TextLowerCase(t)
Returns the text t with all letters as lowercase. For example,

TextLowerCase(‘What does XML mean?’)

→ ‘what does xml mean?’

TextReplace(t, t1, t2, all)
If all is omitted or false, it returns text t with the first occurrence of
text t1 replaced by t2. If all is true, it returns text t with all occur-
rences of text t1 replaced by t2.

TextReplace(‘StringReplace, StringLength’,
‘String’, ‘Text’)

→ ‘TextReplace, StringLength’
TextReplace(‘StringReplace, StringLength’,
‘String’, ‘Text’, True)

→ ‘TextReplace, TextLength’

TextSentenceCase(t)
Returns the text t with the first character (if a letter) as uppercase,
and any other letters as lowercase. For example,

TextSentenceCase(SplitText(‘mary ann FRED
Maylene’, ‘ ‘))

→ [‘Mary’, ‘Ann’, ‘Fred’, ‘Maylene’]

TextUpperCase(t)
Returns the text t with all letters as uppercase. For example,

TextUpperCase(‘What does XML mean?’)

→ ‘WHAT DOES XML MEAN?’

Chapter Text functions

198 Analytica Users Guide

10
ReadTextFile(filename)

Reads a file filename and returns its contents as a text value. If
filename contains no directory path, it will try to read from the
current folder, usually the folder containing the current model file.
If it doesn’t find the file, it will open a Windows Browser dialog box
to prompt the user. For example,

Function LinesFromFile(filename : Atomic Textual)
Definition:

VAR r := SplitText(ReadTextFile(filename),
Chr(10));

Index lines :=1..Size(r);
Array(lines, r)

This function reads in the file and splits the text up at the end of
each line, with the carriage-return = Chr(10) character. It then
defines a local index lines, to be used as the index of the array of
lines that it returns.

WriteTextFile(filename, text: TextType; append, warn:
Boolean optional; sep: TextType optional)

Writes text to the file filename. The filename is relative to the

current data directory (see “New current directory mangement”
on page 15). It returns the full pathname of the file if it is success-
ful in writing or appending to it. By default, the append flag is
False and warn flag is True. If the file doesn't already exist, it cre-
ates the file in the current data directory — and if the file does
exist, it asks if you want to replace it. If append is True (1), and
the file already exists, it appends the text to the end of the file. If
warn is False (0), it will not issue a warning before overwriting an
existing file when append is False, or when creating a new file
when append is True.

If text is an array, it writes each element to the file, inserting sepa-
rator sep between elements, if provided. If text has more than one
dimension, you can control the sequence in which they are writ-
ten by using function JoinText() to join the text over the index
you want innermost.

You can write or append to multiple files when filename is an
array of file names. If text has the same index(es), it will write the
corresponding slice of text to each file — following proper array
abstraction.

Chapter Text functions

Analytica User Guide 199

10
Converting a number to text

If you apply the ‘&’ operator or JoinText to numbers, they convert
the numbers to text values, using the number format specified for
the Variable or Function in whose definition they appear. You can
use this effect to convert ("coerce") numbers into text values, for
example:

123456789 & ‘’ → ‘123.5M’

123456789 & ‘’ → ‘$123,456,789.00’

‘The date is: ‘ & 38345

→ ‘The date is: Thu, Dec 25, 2008‘

Analytica Note: The actual result depends on Number Format
setting for the Variable or function in whose definition the
expression appears. The first example assumes the default Suffix
format. The second assumes Fixed Point format, with currency
and thousands separators checked, and 2 decimal digits. The
third assumes the Abbreviated Date format. Use the Number
Format dialog on the Result menu to set the formats.

Converting text to a number
You can use the Evaluate(t) function to convert a text representa-
tion of a number into an actual number, for example:

Evaluate(’12350’) → 12.35K

Evaluate() can convert any number format that Analytica can
usually handle in an expression—and no others. Thus, it can han-
dle decimals, exponent format, dates, true or false, a ‘$’ at the
start of a number (which it ignores), and letter suffixes, like ‘K’ and
‘M’. (See page 465 for more on Evaluate().)

An alternative method, for converting text to a number is to use
the Coerce Numeric qualifier on a user-defined function. For
example, you could define a user-defined function such as:

ParseNum(X : Coerce Numeric) := X

Alphabetic ordering of text values
The comparison operators, >, >=, >=, and <, compare the alpha-
betic ordering (based on ASCII coding) of two text values. For
example,

’Analytica’ < ’Excel’ → 1 (true)

Chapter Datatype functions

200 Analytica Users Guide

10
Using the numerical (ASCII) representation of the characters,
means:

a. Digits precede (are smaller than) letters, so
’9’ < ’A’ → 1 (True)

b. Uppercase letters precede lowercase letters. If you want
to alphabetize without regard to case, first use
TextUpperCase() (or TextLowerCase()) to convert all
letters to the same case.

’Analytica’ > ’excel’ → 0 (False)
TextUpperCase(’Analytica’)

< TextUpperCase(’excel’) → 1 (True)

c. Letters with accents, umlauts, cedillas, ligatures and other
decoration come after undecorated letters, hence alpha-
betic ordering may be different from what you expect.

Sortindex(a, i) sorts text values in a using the same ordering
scheme. But, Rank(d) works only on numerical values, and does
not rank text values.

Datatype functions
Non-array values in Analytica may be numbers, text, or the spe-
cial value undefined. The functions in this section, found on the
Special menu, can be used to determine the value type.

Isnan(X)
Returns True if X is numeric but not a number nor infinity (i.e., if X
is NaN).

0/0 → NAN

IsNaN(0/0) → True IsNaN(5) → False

IsNaN(Inf) → False IsNaN(‘Hello’) → False

Isnumber(X)
Returns True if X is numeric, including INF or NAN

IsNumber(0) → True IsNumber(0/0) → True

IsNumber(Inf) → True IsNumber(’hi’) → False

IsNumber(5) → True IsNumber(’5’) → False
IsNumber(NAN) → True

Chapter Null, Undefined, NAN, and INF

Analytica User Guide 201

10
Istext(X)

Returns True if X is a text value.
IsText(7) → False IsText(’hello’) → True

IsText(’7’) → True

Isundef(X)
Returns True if X is either of the special values undefined or
Null. Equivalently, returns False if X is a number or a text value.

The value Undefined displays as a blank in a result table and
generally indicates that a value is unavailable or hasn't been
computed. For backward compatibility with releases of Analytica
prior to release 3.1, this can also be used to detect Null.

The special value undefined cannot be directly entered in an
expression. However, it may result from the evaluation of certain
Analytica expressions. For example, the Subindex() function
returns Null if the given value is not found.

Isundef(’hello’) → False Isundef(5) → False

Isundef(0/0) → False Isundef(1/0) → False

Isundef(Subindex(Time*2,1000,Time)) → True

Note: In the last example, Time*2 does not contain the value
1000, so Subindex returns Null.

Null, Undefined, NAN, and INF
Analytica may return the following system constants:

Undefined means that a value has never been defined or is
uncomputed.

Null means that there is no such item.

NAN means the result is numeric, but not a real number or
infinity; e.g., Sqrt(-1) or 0/0

Inf means infinity or a real number larger than can be
represented, e.g., 1/0

-Inf rmeans negative infinity or a number smaller than can be
represented, e.g., -1/0

Functions such as Slice, Subscript, Subindex, or MDTable may
return Null—for example, when trying to Slice out the nth ele-

Chapter Null, Undefined, NAN, and INF

202 Analytica Users Guide

10
ment of an array whose index has less than n elements, for
example:

Index I := 1..5

Slice(I^2, I, 6) → Null

Undefined may result from trying to access the value of an
attribute that hasn't been defined (e.g., using Attribute OF Vari-
able), or from attempting to use the value of an optional parame-
ter in a user-defined function that hasn't been provided by the
caller.

You can test for Null using the standard = or <> operators.

Analytica releases prior to 3.1 used Undefined for both Unde-
fined and Null, as defined above.

Warnings
Warnings may occur during evaluation, for example when trying
to take the square root of a negative number or divide by zero, for
example:

VARIABLE X := Sequence(-2, 2)

VARIABLE Y := Sqrt(X) →

This Warning dialog gives you the option to ignore this and future
warnings. If you select Ignore Warnings, Y yields:

Y → [NAN, NAN, 0, 1, 1.414]

The NAN (Not A Number) values may be propagated further into
a model.

Analytica 3.1 displays warning conditions detected while evaluat-
ing an expression only if the resulting value assigned to a Vari-
able contains an explicit error. In the following example, the errant
NAN does not appear in the result, so it does not display a warn-
ing:

Chapter Null, Undefined, NAN, and INF

Analytica User Guide 203

10
Variable Z := IF X<0 THEN 0 ELSE Sqrt(X)

Z → [0, 0, 0, 1, 1.414]

Because (X>0) evaluates to an array containing both True (1) and
False (0) values, the expression will evaluate Sqrt(X), and gen-
erate NAN as for Y above. But, the conditional means that resulting
value for Z contains no NANs, and so Analytica generates no
warning when Z is evaluated.

You can also make use of the return value, even if it might be
errant, as in the following example:

VAR x:=sqrt(y);
IF IsNaN(x) THEN 0 ELSE x

The commonly-encountered conditions of "subscript or slice
value out of range" are now warnings (they used to be errors)
with the return value of Null, for example:

Index I := 1..5

Slice(I^2, I, 6) → Null

Chapter Null, Undefined, NAN, and INF

204 Analytica Users Guide

10

Chapter 11

Arrays and
Indexes

In this Chapter

This chapter shows you how to handle
arrays and tables.

Chapter Introduction to arrays

Analytica User Guide 207

11

11: Arrays and indexes
The value of a Variable may be atomic—a single number, text,
reference, or Boolean—or it may be an array—a collection of val-
ues, viewable as a table with one or more dimensions. The ease
and flexibility with which you can create, operate with, and display
multi-dimensional arrays is the source of much of the power of
Analytica for creating and managing substantial models. An
array’s dimensions are identified using index Variables. You can
extend a dimension by adding elements to its index, or add a
dimension to an array Variable, and the change in dimensions will
automatically carry through the rest of the model.

There are some subtleties to the effective use of arrays. Your
prior experience with spreadsheets or programming languages
may mislead you about how best to use arrays in Analytica. So, if
you plan to use arrays in your models, we suggest that you first
read the following section, “Introduction to arrays” on page 207
and “Operations on arrays” on page 211. The remainder of this
chapter provides the details on how to create index Variables,
how to use Edit tables to create array values, and how the arith-
metic, comparison, logical, and conditional operators work with
arrays. “Advanced Array Functions” on page 235, describes the
special functions that create and operate on arrays.

Analytica Note: Many of the examples in this chapter use the
same example data used in Chapter 10, “Using Expressions”, see
page 188.

Introduction to arrays

What is an array?
An array is a collection of values that you can view as a table or
graph. An array has one or more dimensions, which may appear
as the row headers or column headers of a table. For example,
the value of Variable Fuel price per gallon is a one-dimensional
array with two values, $1.50 for the small car (which uses regular
gasoline) and $1.70 for the large car (which uses premium gaso-
line):

Chapter Introduction to arrays

208 Analytica Users Guide

11

Maintenance cost per year is defined as a two-dimensional array,
which varies by Car type and by Year:

The small car is cheap to maintain initially, but it gets more expen-
sive than the large car after 3 years as its components start to
wear out and need replacing.

Analytica Note: You can swap the rows (Car type) and columns
(Year) by using the row or column popup menus (see “Index
selection area” on page 47).

Intelligent Arrays™ refers to the full set of features in Analytica for
handling array abstraction. See “Intelligent Arrays™” on
page 237 for more information.

What is an index?
Each dimension of an array is identified by an index Variable. The
index Variable holds the possible values, either a list of numbers
or a list of labels. In the examples above, Car type is a list of
labels, "small car" and "large car". Year is a list of numbers.

Chapter Introduction to arrays

Analytica User Guide 209

11
To create an index, see “Creating an index” on page 215.

Before creating an array, it is usually best to create the indexes
for the array’s dimensions. An index may be used in multiple
arrays. When building a model that will use several multidimen-
sional arrays, a key task is to define the indexes.

Index Variables in a diagram
Below is a diagram of a Car cost model, which includes the Vari-
ables described above. The two index Variables are shown as
parallelogram nodes on the diagram.

Fuel price per gallon is the destination of an arrow from Car type
because it is defined as an array indexed by Car type. Similarly,
Maintenance cost per year has arrows from Car type and from
Year, because it is indexed by both.

Analytica Note: By default, Analytica does not show arrows to
and from index Variables. You can display these arrows, as in this
example, by selecting the option in the Diagram Style dialog from
the Diagram menu (see “Diagram Style dialog box” on page 121).

Viewing an array as an Edit table
An Edit table is a window that appears similar to a Result table.
Unlike a Result table, you can select or change the indexes of the
array and enter or edit the value of each element. If you select a

index Variables

Chapter Introduction to arrays

210 Analytica Users Guide

11
Variable defined as an Edit table and click on the edit definition
button (), you will see its Edit table.

Example (continued
from above)

Miles per gallon:

To create or edit an array with an Edit table, see “Creating an
array with an Edit Table” on page 225.

Two sources of array value
When you evaluate a Variable and its Result window shows an
array value, there are two possible sources. A Variable will have
an array value if:

• it is defined as an array using an Edit table, or

• it is defined as an expression calculated from one or more
other array-valued Variables.

Array abstraction
Analytica performs operations on arrays without your needing to
explicitly identify or iterate over the dimensions of each array.
When you use Variables in expressions, you only need to refer
explicitly to dimensions that are relevant to the operations being
performed. If the actual values involve dimensions other than
those that appear in your expressions, Analytica will automati-
cally abstract over those dimensions with no extra effort on your
part.

Because array abstraction automatically takes care of most itera-
tion over arrays, Analytica expressions seldom contain explicit
looping constructs. Individual expressions involving multi-dimen-
sional arrays can be very simple, while in other languages the
same operations would require multiple nested loops over the
non-relevant dimensions.

Chapter Operations on arrays

Analytica User Guide 211

11
Designing a model often requires you to make hard trade-offs
between computational complexity, which dimensions to include,
and the degree of detail. Spreadsheets and other programming
languages force you to make these decisions early before you
have implemented your algorithms and obtained the information
that is relevant for making these trade-offs. The automatic man-
agement of dimensionality provided by array abstraction makes it
easy for you make these trade-offs late in the model building pro-
cess.

Operations on arrays
Arithmetic operations and simple functions generalize straightfor-
wardly when they are applied to arrays, according to the dimen-
sions of the arrays. This section gives some simple examples.

Operation on a scalar and an array
An operation applied to a scalar and an array results in an array
of the same shape, applying the scalar operation to each element
in the array.

Example (continued) Miles_per_year: 10K (a scalar)

Gallons per year: Miles_per_year / Miles_per_gallon

The result of an operation (division in this case) combining a sca-
lar and an array is a result array with the same index(es) as the
original array:

Operation on two arrays with the same indexes
An arithmetic operator applied to two arrays with the same
indexes creates another array with the same indexes. Analytica
applies the operator to pairs of corresponding elements.

Example (continued) Fuel cost per year:

Chapter Operations on arrays

212 Analytica Users Guide

11
Fuel_price_per_gall * Gallons_per_year

Both Fuel price per gallon and Gallons per year are arrays with
the same index, Car type. The result is an array also indexed by
Car type, containing the value obtained by multiplying the corre-
sponding elements of each array:

Operation on a one- and two-dimensional array
An arithmetic operator applied to a one-dimensional array and a
two-dimensional array, that have one index in common, creates
another two-dimensional array with the same two indexes.

Example (continued) Op_cost_per_year:
Fuel_cost_per_year + Maintenance_per_year

Operating cost per year is the sum of a one dimensional Variable
indexed by Car type and a two-dimensional Variable indexed by
Car type and Year. The result is a two-dimensional array indexed
by both indexes:

Each Car type (row) in the result uses the fuel cost and mainte-
nance cost for the corresponding Car type. Each Year (column)
uses the same annual fuel cost, which does not change by year,
and the corresponding maintenance cost, which does change by
year.

Changing the above table to a graph, using the graph button
(), shows:

Chapter Operations on arrays

Analytica User Guide 213

11

The graph shows how the operating costs of the small car are
less than the costs of the large car in the first 3 years and grow to
be larger in the 5th year, crossing over just after the 4th year.

Summing over an index Variable
The Sum() function sums an array over one index, giving a result
without that index.

Example (continued) Total operating cost: Sum(Op_cost_per_year,Year)

This operation sums Operating cost per year over the Year
dimension, producing a result indexed only by the Car type
dimension:

Analytica Note: The expression does not need to mention any
other possible indexes, such as Car type.

Because the Sum() function eliminates one index of an array, it is
called an array-reducing function. Analytica includes several

Chapter Operations on arrays

214 Analytica Users Guide

11
array-reducing functions (see “Array-reducing functions” on
page 247).

Operation on arrays with different dimensions
An arithmetic operator applied to two one-dimensional arrays with
different indexes creates a two-dimensional array with both
indexes.

Example (continued) Miles per year is redefined as a list (see “Creating a list” on
page 216):

Miles_per_year: [5000, 10K, 15K]

A list is a one-dimensional array that is indexed by itself. Lists are
eligible to be used as indexes of other arrays.

The definitions of Miles_per_gallon, an array indexed by Car
type, and Gallons per year, a ratio, remain unchanged.

Gallons per year: Miles_per_year / Miles_per_gallon

The result of Gallons per year is now an array indexed by both
Miles per year and Car type (compare to the definitions in the
section “Operation on a scalar and an array” on page 211):

Each value in the table is computed from the Miles per year for
the column divided by the Miles per gallon for each Car type
(row). For example, 5000 miles per year divided by the large car’s
25 miles per gallon gives 200 gallons per year.

The list value for Miles per year propagates through the model as
a new dimension to all its dependent Variables. Recomputing the
result for Operating cost per year now gives a three-dimensional
table with an added index of Miles per year:

Chapter Creating an index

Analytica User Guide 215

11

The results for the other Car type can be displayed by clicking on
the diagonal arrow ():

General rule for operations on arrays
We can summarize and generalize the behavior of an operation
on two arrays with the following rule: An operation on two arrays
yields an array whose indexes are the union of the indexes of the
two arrays. In this way, Analytica combines arrays without requir-
ing explicit iteration over each index. We call this feature of gen-
eralized operations for multidimensional values Intelligent
Arrays™.

Creating an index
Analytica includes a specific class of Variable node—the index
Variable—to identify dimensions of arrays. Other Variables, such
as decision nodes, are often also used to identify dimensions of
arrays. Actually, any Variable defined as a list (one-dimensional
array) can serve as an index to an array. For clarity in your model

Chapter Creating an index

216 Analytica Users Guide

11
diagram, use the index Variable whenever possible. (The terms
index and index Variable are used interchangeably here.)

Create an index Variable in the following way:

1. Select the Edit tool () and have the Diagram window
active.

2. Drag the parallelogram shape () from the node palette to
the diagram.

3. Give the new index a descriptive title.

4. Define the index as a list, list of labels, or sequence (see
below).

Creating a list
To define a Variable as a list, first select the Variable and open
one of the following:

• The Variable’s Object window.

• The Attribute panel of the diagram (see “Displaying the
Attribute” on page 35).

• In the Attribute panel, select Definition from the Attribute
popup menu (see “The Attribute popup menu” on page 35) as
the Attribute to display.

To create a list:

1. Press the Expression popup menu above the definition field
and select List (for numbers) or List of Labels (for text).

(If the Variable already has a definition, Analytica confirms
that you wish to replace it. Click on OK to replace the
definition with a one-element list.)

A one-element list is displayed in the definition field.

Chapter Creating an index

Analytica User Guide 217

11

2. Select the element by clicking on it.

3. Type in a number or expression (for List) or text (for List of
Labels).

4. Press Enter and type in the next value.

5. Repeat step 4 until you have entered all the values you want.

Autofilling a list
Analytica gives the first cell of a list the default value 1 or the
value of the Variable’s previous definition. When you press Enter,
Analytica gives the second cell the value of the first cell plus 1.

After you have entered at least two values, Analytica gives each
new cell a value that is incremented by the difference between
the last two values.

Autofilling a list of labels
Analytica gives the first cell of a list of labels the default text value
item 1. Analytica gives each subsequent cell receives a value
the same as the previous cell.

List icon for the Expression
popup menu

New one-element list

Values entered into a list

Chapter Creating an index

218 Analytica Users Guide

11
Creating a list with the Sequence option

For the classes of nodes that are often defined as lists, such as
index and decision Variables, the Expression popup menu
includes the Sequence option.

The Sequence option provides a quick way to define a list of
equally spaced numbers.

When you select Sequence, the Object Finder opens, showing
the Sequence() function (see page 223).

After entering the Start, End, and Stepsize values, click OK; the
definition field shows the Sequence button with its parameters.

Analytica Note: To edit the Sequence, click on the Sequence
button.

Chapter Creating an index

Analytica User Guide 219

11
List vs. list of labels

You can display a list or list of labels in two ways: "List View" or
"Expression View". The "List View" displays by default; the
Expression popup menu shows the list or list of labels icon.

List view

The "Expression View" displays when you select in the
Expression popup menu.

Expression view
[1,2,3,4,5]

List (of numbers)
In a list of numbers (usually called simply a list), each value is a
number or an expression that evaluates to a number. For exam-
ple, the sequence of five integers above is a list.

List of labels
In a list of labels, every value is text. For example, the set of
states below is a list of labels; in the expression view, each label
is contained in single quotation marks.

List view

Expression view
['Alabama', 'Alaska', 'Arizona','Arkansas']

Chapter Creating an index

220 Analytica Users Guide

11
To include a single quote (apostrophe) as part of the text in a
label in expression view, insert two adjacent single quotes, e.g.

[‘can’’t’,’won’’t’,’didn’’t’]

Mixing numbers and text
A list can include a mix of cells containing text and numbers. In
both views the text is contained in single quotation marks. For
example:

List view

Expression view
[1, 'Alabama', 2, 'Alaska']

If you attempt to mix numbers and text in a list of labels, all the
values will be treated as text. For example:

List view

Expression view
['1', 'Alabama', '2', 'Alaska']

Analytica Note: A list cell can contain any valid expression,
including one that refers to other Variables or one that evaluates
to an array.

Chapter Editing a list

Analytica User Guide 221

11
Editing a list

You can edit a list by changing, adding or deleting cells (list
items).

Inserting cells
To add a cell at the end of the list, select the last cell and press
Enter or the down arrow key.

To insert a cell anywhere other than at the end of the list, select a
cell and choose Insert Rows (Ctrl-I) from the Edit menu. The
value in the selected cell is duplicated in the new cell.

To insert several contiguous cells in the middle of the list, select
the number of cells you want to insert and choose Insert Rows
(Ctrl-I) from the Edit menu. The value of the last selected cell is
duplicated in the new cells.

Deleting cells
To delete one or more cells, select them and do one of the follow-
ing:

• Choose Delete Rows (Ctrl-K) from the Edit menu.

• Press Delete.

Analytica Note: If you add or delete a cell in a list that is an index
of an Edit Table, the corresponding elements of the table are also
added or removed (see “Editing a table” on page 228).

Navigating a list
Use the up and down arrow keys to move the cursor up and down
the list.

Functions that create indexes
Use the List option in the Expression popup menu to define a
Variable as a list of numbers or text values (labels) (see “Creating
a list” on page 216). You can also create a list within a Variable
definition using the constructs and functions described below.

Chapter Functions that create indexes

222 Analytica Users Guide

11
[u1, u2, u3, … um]

The list of expressions, separated by commas and surrounded by
brackets, creates a list, whose values are u1, u2, u3, … um.

Using square brackets to specify a list directly as an expression is
equivalent to using the List or List of Labels options in the
Expression popup menu, as described in “Creating a list” on
page 216, according to the type of values.

Examples [8000, 12K, 15K]
['VW', 'Honda', 'BMW']

CopyIndex(i)
CopyIndex makes a copy of the values of index I, to be assigned
to a new Index Variable (global or local). For example, suppose
you want to create a matrix of distances between a set of origins
and destinations, where the destinations are the same set of cit-
ies as the origins:

Index Origins
Definition:[‘London’, ‘New York’, ‘Tokyo’,

‘Paris’, ‘Delhi’, ‘Lagos’]
Index Destinations
Definition: CopyIndex(Origins)

Variable Flight_times := Table(Origins,
Destinations)

If Destinations was the same Origins, rather than a copy, the
resulting table would have only one dimension. By defining Des-
tinations with CopyIndex, it becomes an independent dimen-
sion.

m .. n
Returns a sequence from m to n by increments of 1 when n >= m
or from m to n by -1 if n < m. It is simply a convenient shorthand
for Sequence(m,n). For example,

2003..2006 → [2003, 2004, 2005, 2006]

Analytica Note: The parameters n and m must be scalars, that is
single numbers. Otherwise, it would result in a non-rectangular
array. See “Functions needing scalars and array abstraction” on

Chapter Functions that create indexes

Analytica User Guide 223

11
page 452 on how to use this construct in a way that supports array
abstraction.

Sequence (Start, End, Stepsize)
Creates a list of numbers increasing or decreasing from Start to
End by increments (or decrements) of Stepsize. Stepsize is
optional and must be a positive number; if it is omitted, Analytica
uses increments of 1. Start, End, and Stepsize must be determin-
istic scalar numbers, not arrays.

Using this function is equivalent to using the Sequence option in
the Expression popup menu, as described in “Creating a list with
the Sequence option” on page 218.

The expression m .. n using the operator ".." is a version of
Sequence(m, n, 1), that is it generates a list of sequential num-
bers from m to n.

Library Array

Examples If End is greater than Start, the sequence is increasing:
Sequence(1,5) →

Expression view: [1,2,3,4,5]

If Start is greater than End, the sequence is decreasing:
Sequence(5,1) → [5,4,3,2,1]

If Start and End are not integers, and if Stepsize is not specified,
Analytica rounds them first:

Sequence(1.2,4.8) → [1,2,3,4,5]

If Stepsize is specified, Analytica can create non-integer values
from Start to End with the Stepsize:

Sequence(0.5,2.5,0.5) → [0.5,1,1.5,2,2.5]

Sortindex (D, I)
D is an array indexed by I. SortIndex(D,I) returns the elements of
I, rearranged to indicate the ordering of the values in D (from

List view:

Chapter Functions that create indexes

224 Analytica Users Guide

11
smallest to largest value). The result is indexed by I. If D is
indexed by dimensions other than I, each "column" is individually
sorted, with the resulting sort order being indexed by the extra
dimensions. To obtain the sorted array D, use (see page 258):

D[I=Sortindex(D,I)]

When D is a one-dimensional array, the second parameter is
optional. When the second parameter is omitted, the result is an
unindexed list. The one-parameter form should be used only
when it is necessary to obtain an unindexed result, such as when
the result is being assigned to an index Variable. The one-param-
eter form cannot array abstract if a new dimension is added to D.

Library Array

Examples Maint_costs:
Car_type

SortIndex (Maint_costs,Car_type) →
SortIndex: Car_type

SortIndex (Maint_costs) →
SortIndex

Define Index_new as an index node:

Index_new: Sortindex(Maint_costs)

Subscript(Maint_costs, Car_type, Index_new) →

Note: Example Variables are defined on page 188.

Subset (D)
Returns a list containing all the elements of D’s index for which
D’s values are true (that is, non-zero). D must be a one-dimen-
sional array.

VW Honda BMW
1950 1800 2210

VW Honda BMW
Honda VW BMW

Honda VW BMW

Honda VW BMW
1800 1950 2210

Chapter Creating an array with an Edit Table

Analytica User Guide 225

11
When to use: Use Subset() to create a new index that is a subset of an exist-

ing index.

Library Array

Example Subset(Years < 1987) → [1985, 1986]

Note: Example Variables are defined on page 188.

Unique(A,I)
Returns a maximal subset of I such that each indicated slice of A
along I is unique.

When to use: Use Unique() to remove duplicate slices from an array, or to
identify a single member of each equivalence class.

Library Array

Example
DataSet: PersonNum , Field

Unique(DataSet,PersonNum) → [1,2,3]

Unique(DataSet[Field=’Company’],PersonNum) → [1,3]

Creating an array with an Edit Table
To define a Variable as an array (table), first select the Variable
and open one of the following:

• The Variable’s Object window.

• The Attribute panel of the Diagram window (see “Displaying
the Attribute” on page 35).

In the Attribute panel, select Definition from the Attribute
popup menu (see “The Attribute popup menu” on page 35) as
the Attribute to display.

LastNam
e

FirstNam
e Company

1 Smith Bob Acme
2 Jones John Acme
3 Johnson Bob Floorworks
4 Smith Bob Acme

Chapter Creating an array with an Edit Table

226 Analytica Users Guide

11
To create a table:

1. Press the Expression popup menu above the definition field
and select Table.

If the Variable already has a definition, you are asked to
confirm that you wish to replace it.

2. The Indexes dialog box displays for selecting the table’s
indexes (dimensions).

Description of selected
Variable

Show all Variables

Selected Variable Move button

Indexes for the table

Values of the selected
Variable

Chapter Creating an array with an Edit Table

Analytica User Guide 227

11
3. Select a Variable from the Indexes list and click on the move

button (), or double-click on the Variable, to select it as an
index of the table. Repeat for each index you want.

4. Click on OK to create the table and open the Edit Table
window for editing the table’s values (see “Editing a table” on
page 228).

Indexes dialog box
The Indexes dialog box contains (see figure above):

Creating a new index
You can create an index Variable in the course of creating a table,
in the following way:

1. Select new index from the Variables list in the Indexes dialog
box.

2. Enter a title for the index.

3. Click on the Create button.

Preview A list of the values of the selected index
Variable. If the selected Variable is not a
list, it says "Can’t use as index."

All Variables
checkbox

If checked, the Indexes list includes all
Variables in the model. If not checked, it
lists only Variables of the class Index and
Decision, plus the Variable being defined
(Self) and Time. If you select this Variable
(Self) as an index, the Variable itself holds
the alternative index values.

Selected indexes A list of all indexes already selected for this
Variable.

New index Select to create a new index.

Select new
index

Enter index title

Chapter Editing a table

228 Analytica Users Guide

11
4. To make the new index an index of the table, click on the

button.

Enter the values of the Index in the Edit Table window (see the
following section).

Removing an index
To remove an index from a table:

1. Select the index from the Selected Indexes list.

2. Click on the button.

Removing an index will leave the first table (slice) along that
index as the value of the array.

System index Variables Run and Time
Analytica includes two system index Variables: Run and Time.
You can generally treat these index Variables like any other index
Variable.

Run is the index for the array of sample values for probabilistic
simulation. You can examine the array with the Sample uncer-
tainty mode (see “Sample” on page 56) or the Sample() function
(see page 340).

Time is the index for dynamic simulation. It is the only index per-
mitted for cyclically dependent modeling (see “Modeling Changes
over Time” on page 359).

Editing a table
To open the Edit Table window, click on the Edit Table button in
either:

• The Object window (see “The Object window” on page 32)

• The Attribute panel of the diagram (see “Displaying the
Attribute” on page 35)

In the Attribute panel, select Definition from the Attribute
popup menu (see “The Attribute popup menu” on page 35).

Chapter Editing a table

Analytica User Guide 229

11
The Edit Table window

The Edit Table window appears similar to the Result window
Table view (see “Viewing a result as a table” on page 49). The dif-
ference is that you can add indexes and edit (change) the values
in cells in an Edit Table window.

Selecting cells

Select a single cell
Click on the cell once.

Select multiple cells
Drag the mouse from one cell to another to select a
rectangular region.

Editing a cell
Enter an expression into a cell in the same manner as you would
in a definition field. Press Enter to accept the value and to select
the next cell.

Analytica Note: Edit tables are not designed for defining complex
expressions in each cell. Rather than define a cell as a complex
expression, create a new Variable, and define it as the complex
expression. Then enter the new Variable’s identifier in the Edit
Table cell.

Adding and deleting cells
To add cells by adding rows or columns to a table:

Index button

Cancel button
Accept button

Chapter Editing a table

230 Analytica Users Guide

11
1. Select the row (or column) before which you wish to insert a

new one.

2. Choose Insert Rows (or Insert Columns) from the Edit
menu.

The added cells contain zeros.

To delete cells by deleting rows (or columns) in a table:

1. Select the row (or column) you wish to delete.

2. Choose Delete Rows (or Delete Columns) from the Edit
menu.

You can only add or delete an element of an index in this way if
the index was defined as a list or list of labels. You cannot modify
an index defined as a Sequence() or other expression from an
Edit Table.

Analytica Note: When you change an index in this way, you will
also affect any other arrays using this index.

Copying and pasting cells
You can copy a cell or a range (two-dimensional rectangular
region) of cells from a table.

To copy a cell or region:

1. Select the cell or region.

2. Choose Copy from the Edit menu (Ctrl-C).

3. Paste the item(s) into another cell or region by selecting Paste
from the Edit menu (Ctrl-V). The region you paste into must
either be a single cell at the top left corner of the destination
region, or it must have the same size as the copied region.

Adding or removing indexes
Click on the Index button () to add more indexes (increasing
the number of dimensions) or to remove indexes (decreasing the
number of dimensions). The Indexes dialog box appears (see
“Indexes dialog box” on page 227).

Any new index of size n copies the current table with its current
values n times along the new dimension.

Chapter Calculating with arrays

Analytica User Guide 231

11
Saving the table

Click on the Accept button () to perform a syntax check and
store changes you have made.

Click on the Cancel button () to discard changes made since
opening the window, or since the last time you clicked on the
Accept button.

If you close an Edit Table window without clicking on the Accept
or Cancel buttons, the changes are accepted.

Calculating with arrays

Conventions for array examples
Most of the examples in this and the next chapter show Variables
defined as tables (arrays) or evaluating to arrays. Indexes and
arrays in these examples are represented as follows:

• An index or list and its values

IndexName:

• An expression that evaluates to a scalar or an array

expression → result

• A one-dimensional array

Index_a

• A two-dimensional array

Index_b , Index_a

• A three-dimensional array

value1 value2 valueN

a b c
value value value

a b c
x value value value
y value value value
z value value value

Chapter Calculating with arrays

232 Analytica Users Guide

11
Index_a , Index_b , Index_c displayed value

Scalar functions
Any function that takes a scalar parameter (e.g., see “Math func-
tions” on page 190) can be applied to an array, resulting in an
array of the same shape. Each element of the resulting array is
calculated by applying the function to the corresponding element
of the input array.

This example takes the square root of every value in a one-
dimensional array.

Sqrt([1, 2, 3, 4, 5]) →

Arithmetic operations
An arithmetic operator (+, -, *, /, ^) applied to two arrays results in
an array indexed by every index Variable in the two input arrays.
Several examples illustrate this:

• An arithmetic operator applied to a scalar and an array
results in an array of the same shape, applying the scalar
operation to each element in the array:

X:

10 * X ^ 2 →
X

• An arithmetic operator applied to two arrays that are both
indexed by the same Variable creates another array indexed
by the same Variable with the operator applied to pairs of
corresponding elements:

a b c
x value value value
y value value value
z value value value

´

1 2 3 4 5
1.000000 1.414214 1.732051 2.000000 2.236068

2 3 4

2 3 4
40 90 160

Chapter Calculating with arrays

Analytica User Guide 233

11
X + Sqr(X) →

X

• An arithmetic operator applied to two arrays with different
index Variables (or with no index Variables) creates an array
indexed by every index Variable in the two arrays, with the
operator applied to all pairs of elements:

Inflation:

Price:

Inflation * Price →
Price , Inflation

Comparison and logical operations
The comparison operators (>, >=, =, <=, < and so on) and the log-
ical operators (And and Or) combine array values in the same
way as the arithmetic operators (see “Operators” on page 180 for
the full list of operators). The only difference from the arithmetic
operators is that both comparison and logical operators return
arrays of Boolean values, and the logical operators treat their
operands as Boolean. Each cell contains either 1 (True) or 0
(False) (see “Boolean or logical values” on page 180).

For example:

Vw_price:

Honda_price:

2 3 4
6 12 20

1.05 1.10 1.15

5K 10K 15K

1.05 1.10 1.15
5000 5250 5500 5750
10K 10.5K 11K 11.5K
15K 15.75K 16.5K 17.25K

8250 10K 15K

12.5K 15K 20K

Chapter Calculating with arrays

234 Analytica Users Guide

11
Honda_price > Vw_price →
Vw_price , Honda_price

Honda_price = Vw_price →
Vw_price , Honda_price

Honda_price > VW_price OR Honda_price = Vw_price →
Vw_price , Honda_price

12.5K 15K 20K
8250 1 1 1
10K 1 1 1
15K 0 0 1

12.5K 15K 20K
8250 0 0 0
10K 0 0 0
15K 0 1 0

12.5K 15K 20K
8250 1 1 1
10K 1 1 1
15K 0 1 1

Chapter 12

Advanced
Array
Functions

In this Chapter

This chapter explains the nature and
benefits of Intelligent Arrays™, and
describes a variety of more advanced
array functions that enable you to make
the best use of them, including func-
tions for reducing, transforming, select-
ing, flattening, interpolating arrays;
matrix functions and financial functions.

Functions for uncertainty and sensitivity
analysis are covered in later chapters.

Chapter Overview

Analytica User Guide 237

12

12: Function reference
Analytica provides a large collection of built-in functions for per-
forming common mathematical, financial, statistical, and array
computations.

Overview
This chapter describes Analytica’s advanced built-in functions for
dealing with Arrays. It is organized by the type of function:

• Functions that create arrays (“Functions that create arrays”
on page 242).

• Functions that reduce an array to another array with one
fewer dimension (“Array-reducing functions” on page 247).

• Functions that return an array with the same number of
dimensions as the input array (“Transforming functions” on
page 251).

• Functions that select part or a slice of an array (“Selecting,
slicing, and subscripting arrays” on page 255).

• Functions that interpolate values between array elements
(“Interpolation functions” on page 262).

• Other array functions (“Other array functions” on page 265).

• Matrix functions for two-dimensional arrays (“Matrix
functions” on page 267).

• Functions commonly used for financial computations
(“Financial functions” on page 272).

Intelligent Arrays™
Intelligent Arrays™ are one of the most useful and powerful fea-
tures of Analytica, yet their full implications are easy to miss. Con-
sider this definition in Analytica:

Variable Profit := Revenues - Expenses

It works equally well if Profits, Revenues, and Expenses are
each scalars (single numbers), or arrays of one or more dimen-
sions. If Revenues and Expenses are both are indexed by Year, it

Chapter Intelligent Arrays™

238 Analytica Users Guide

12
computes the Profit for each Year, using the corresponding
Revenues and Expenses for that Year, as in this example:

The figure below shows an Influence Diagram above and corre-
sponding array values below.

The definition of Profit remains the same, no matter what the
dimensions of Revenues and Profits. If Revenues is a scalar (a
single number), Profit treats it as if it is the same each Year.

Or if Revenues are specified for three different Scenarios—Low,
Medium, and High—it computes the corresponding Profit for
each Scenario, whether or not Expenses vary by Scenario.

Chapter Intelligent Arrays™

Analytica User Guide 239

12

Now Revenues is indexed by Scenario as well as Year:

The value of flexibility
This flexibility is very convenient for the modeller. Changing
dimensions is much more complicated in a spreadsheet or stan-
dard programming language. In a spreadsheet, you would have
to explicitly create each of the three Variables as a table with the
required number of dimensions. And you would have to craft
carefully the formula with the requisite relative cell references,
and copy it into each cell of Profit. In a programming language,
such as Fortran, C++, Java, or Visual Basic, you would have to
put the formula inside loops to iterate over the dimensions. A sim-
ple one-dimensional case might look something like this:

Chapter Intelligent Arrays™

240 Analytica Users Guide

12
Dim Profit[2000..2010], Revenues[2000..2010],
Expenses[2000..2010]
For Years := 2000 To 2010 DO

Profit[Years]:=Revenues[Years]-
Expenses[Years]

If you decide to add a dimension, such as Scenario to Revenues
and Profit, you would need to redimension both Variables, add
another For loop over Scenario, and add a second subscript to
Profit and Revenues,nearly doubling the complexity of the pro-
gram.

To do the same thing in a spreadsheet would require adding two
extra rows to the tables of Revenues and Profit, copying the
name Scenario and its three values, Low, Medium, and High as
row headers into both tables, rewriting the base cell formula in
Profit, and finally stretching the cell formula across the columns
and then down the two new rows. Theeffort to create the two-
dimensional model is more than double the effort to create origi-
nal one-dimensional model, which is itself more than double the
scalar model.

Now consider extending the time horizon from 2007 to 2010, a
common need in business models. In Analytica, you simply edit
the definition of Year, changing the 2007 to 2010. The arrays for
all three Variables extend automatically over the three extra
years. The input Edit tables for Revenues and Expenses are filled
out with zeroes for these new years. You just need to open up
those tables and fill in the numbers you want. In a spreadsheet,
you would need to extend each table by hand, including copying
the Year column headers 2008, 2009, 2010 for each table, and
stretching the formulas for Revenue over nine new cells.

Array abstraction and Intelligent Arrays
All this work to expand the tables and the formulas for Revenue is
distracting and quite unnecessary—the relationship between
Profit, Revenues and Expenses should be entirely separate
from whatever dimensions they happen to have. The principle of
abstracting the representation of the relationships between the
Variables from the dimensions of those Variables is sometimes
known as array abstraction. Few computer languages offer sup-
port for array abstraction. Analytica offers a unique and extensive
approach to array abstraction, which is the basis of its Intelligent
Arrays™. Once you have mastered the basics of Intelligent
Arrays, you may find it hard to imagine going back to a modeling

Chapter Intelligent Arrays™

Analytica User Guide 241

12
environment (such as a spreadsheet or standard programming
language) without array abstraction.

Choosing the right level of detail
Intelligent Arrays provides a flexibility that greatly simplifies the
process of developing a model. When starting a model, it is rarely
obvious how large and how detailed to make each dimension.
Should time be modeled as years, quarters, or months? Should
the time horizon be 5 years, 10 years, or 20 years? Is it neces-
sary to treat each geographic region separately, and if so, by con-
tinent, nation, or state (province)? How you answer these
questions has a large effect not only the accuracy of the model,
but also on the quantity of data you will need, the effort to build
and verify the model, and the computer resources (time and
memory) needed to calculate them.

Ideally, you specify the essential relationships between the Vari-
ables first, and decide their dimensions later. You may want to try
different levels of detail, starting out with few and simple dimen-
sions, then refining the model by expanding or adding dimen-
sions. You should be able to experiment with the level of detail
and computational effort until you get a good balance between
effort and precision. With spreadsheets and conventional lan-
guages, this kind of experimentation requires so much rebuilding
and testing at each stage, that it is usually completely impractical.
The result is that models are often too simple or too compli-
cated—or, often, both, with too much detail in areas that do not
much matter and not enough detail in areas that do. This kind of
stepwise refinement is much easier with Intelligent Arrays,
encouraging you to create models with a good balance of accu-
racy and effort.

Errors, testing, and reliability
Array abstraction also promotes reliability by reducing errors and
making any errors easier to detect. In a spreadsheet, there are
several easy ways to make errors when copying cell references,
resulting in frequent bugs that are hard to detect. For example,
mistakes in absolute versus relative cell references, or acciden-
tally stretching a sum over only part rather than all of a row or col-
umn. In programming languages, it is also easy to make errors in
handling dimensions, such as confusing rows and columns in the
sequence of subscripts. With Analytica, the relationships are
much simpler: There is a single expression defining each Vari-

Chapter Functions that create arrays

242 Analytica Users Guide

12
able, rather than one for each cell in the result. Expressions are
uncluttered by looping constructs. You define a Sum over an
identified Index, no matter what other dimensions an array may
have. This simplicity makes expressions easier to write in the
beginning and easier to review for correctness later. Furthermore,
provided the formulas support array abstraction, there is no need
to modify formulas as you extend or add dimensions—in those
Variables, or elsewhere in the model. You can have justifiable
confidence that the model remains correct as you extend or add
dimensions.

Intelligent Arrays enable several other important capabilities of
Analytica. One key feature is support for representing and propa-
gating uncertainty. An uncertain Variable is represented as a ran-
dom sample of values from its underlying probability distribution,
over a dimension indexed by Run. The Run index has values
from 1 to the sample size. Each expression containing one or
more uncertain Variables automatically computes its result over
all the random samples, generating a result indexed by Run (as
well as any other dimensions). Array abstraction means that this
works, without you (the modeler) having to worry about this extra
dimension. Similarly, in parametric analysis, you can set one (or
more) input Variables (parameters) each to a number of alterna-
tive values to explore the effects of this variation. These values
create an array indexed by the input parameters, which is auto-
matically propagated through the model to generate a corre-
sponding table of values for each output, indexed by the
alternative values of its parametric inputs.

Exceptions to array abstraction
While the vast majority of Analytica functions and constructs fully
support Intelligent Arrays™ -- that is they automatically general-
ize from single (scalar) values to multidimensional arrays -- there
are a few that do not without special care. See “Ensuring array
abstraction” on page 451 for details.

Functions that create arrays
Use the Table option in the Expression popup menu to define a
Variable as an array (see “Creating an array with an Edit Table”
on page 225).

Chapter Functions that create arrays

Analytica User Guide 243

12
For more flexibility and control, you can define a Variable as an
array by entering the Array() or Table() function as an expres-
sion.

An array viewed as an expression appears in the Table() func-
tion syntax:

Array(I1, I2, … In, A)
Assigns a set of indexes, I1, I2, … In, as the indexes of the array
A, with I1 as the index of the outermost dimension (changing
least rapidly), I2 as the second outermost, and so on. A must
have at least n dimensions. The elements of A are listed in
square brackets as the last parameter, or A is a previously
defined array.

An array
viewed as a
table

Table

An array
viewed as an
expressionExpression

Chapter Functions that create arrays

244 Analytica Users Guide

12
Use Array() to specify an array directly as an expression.
Array() is similar to Table() (see page 245); in addition, it lets
you define an array with repeated values (see Example 3), and
change indexes of a previously defined array (see Example 4).

Library Array

Example 1 Definition viewed as an expression:
Array(Car_type, [32, 34, 18])

Definition viewed as a table:

Car_type

Note: Example Variables are defined on page 188.

Example 2 If an array has multiple dimensions, then the elements are listed
in nested brackets, following the structure of the array as an array
of arrays (of arrays..., and so on, according to the number of
dimensions).

Definition viewed as an expression:
Array(Car_type, Years, [[8K, 9K, 9.5K, 10K],
[12K, 13K, 14K, 14.5K], [18K, 20K, 21K, 22K]])

Definition viewed as a table:

Car_type , Years

The size of each array in square brackets must match the size of
the corresponding index. In this case, there is an array of three
elements (for the three car types), and each element is an array
of four elements (for the four years). An error message displays if
these sizes don’t match. See also Size() on page 266.

Note: Example Variables are defined on page 188.

Example 3 If an element is a scalar where an array is expected, Array()
expands it to create an array with the scalar value repeated
across a dimension.

Definition viewed as an expression:

VW Honda BMW
32 34 18

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

Chapter Functions that create arrays

Analytica User Guide 245

12
Array(Car_type, Years, [[8K, 9K, 9.5K, 10K], 13K,
[18K, 20K, 21K, 22K]])

Definition viewed as a table:

Car_type , Years

Note: Example Variables are defined on page 188.

Example 4 Use Array() to change an index of a previously defined array.

Car_model:

Table_a: Table(Car_type) (32, 34, 18)

Table_b: Array(Car_model, Table_a) →
Car_model

Note: Example Variables are defined on page 188.

Table (I1, I2, … In) (u1, u2, u3, … um)
Creates an n-dimensional array of m elements, indexed by the
indexes I1, I2, … In. In the set of indexes, I1 is the index of the
outermost dimension, varying the least rapidly.

The second set of parameters, u1, u2 … um, specifies the values
in the array. The number of values, m, must equal the product of
the sizes of all of the dimensions.

Each u is an expression that evaluates to a number, text value or
probability distribution. It can also evaluate to an array, causing
the dimensions of the entire table to increase. u cannot be a lit-
eral list.

Both sets of parameters are enclosed in parentheses; the sepa-
rating commas are optional except if the table values are nega-
tive.

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 13K 13K 13K 13K
BMW 18K 20K 21K 22K

Jetta Accord 320

Jetta Accord 320
32 34 18

Chapter Functions that create arrays

246 Analytica Users Guide

12
Use Table() to specify an array directly as an expression.
Table() is similar to Array() (see page 243); Table() requires
m numeric or text values.

A definition created as a table from the Expressions popup menu
uses Table() in expression view.

Library Array

Example 1 Definition viewed as an expression:
Table(Car_type) (32, 34, 18)

Definition viewed as a table:

Car_type

Note: Example Variables are defined on page 188.

Example 2 Definition viewed as an expression:
Table(Car_type, Years)
(8K, 9K, 9.5K, 10K, 12K, 13K, 14K, 14.5K, 18K, 20K,
21K, 22K)

Definition viewed as a table:

Car_type , Years

Note: Example Variables are defined on page 188.

Example 3 A table created with blank (zero) cells appears in expression view
without the second set of parameters.

Definition viewed as a table:

Car_type , Years

Definition viewed as an expression:

VW Honda BMW
32 34 18

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

1985 1986 1987 1988
VW 0 0 0 0
Honda 0 0 0 0
BMW 0 0 0 0

Chapter Array-reducing functions

Analytica User Guide 247

12
Table(Car_type, Years)

Note: Example Variables are defined on page 188.

Array-reducing functions
An array-reducing function operates across a dimension of an
array and returns a result that has one dimension less than the
number of dimensions of its input array. When applied to an array
of n dimensions, a reducing function produces an array that con-
tains n-1 dimensions.

The function Sum(X, I) illustrates some properties of reducing
functions.

Examples Sum(Car_prices, Car_type) →

Years

Sum(Car_prices, Years) →
Car_type

Sum(Sum(Car_prices, Years), Car_type) → 171K

The second parameter, I, specifying the dimension over which to
sum, is optional. But if the array, X, has more than one dimen-
sion, Analytica may not sum over the dimension you expect. For
this reason, it is safer always to specify the dimension index
explicitly in Sum() or any other array-reducing function.

If the index Variable, I, is not a dimension of the array, X,
Sum(X, I) returns X unreduced. In this way, Analytica will evalu-
ate the model properly even if the number of dimensions
changes.

Note: Example Variables are defined on page 188.

Area (R, I, X1, X2)
Returns the area (sum of trapezoids) under array R across index
I between X1 and X2. I must contain increasing numbers. X1 and

1985 1986 1987 1988
38K 42K 44.5K 46.5K

VW Honda BMW
36.5K 53.5K 81K

Chapter Array-reducing functions

248 Analytica Users Guide

12
X2 are optional; if they are not specified, the area is calculated
across all of I.

If X1 or X2 fall outside the range of values in I, the first value (for
X1) or last value (for X2) are used. Area() computes the total
integral across I, returning a value with one less dimension than
R. Compare Area() to Integrate() (see page 253).

Library Array

Example Area(Cost_in_time, Time, 0, 5000) →
Car_type , Mpg

Note: Example Variables are defined on page 188.

Argmax (R, I)
Returns the corresponding value in index I for which R is the
maximum. If more than one value equals the maximum, returns
the index of the last occurrence.

Library Special

Example Argmax(Car_prices, Car_type) →
Years

To obtain the corresponding value in index I for which A is the
minimum, use Argmax(-A,I).

Argmax(-Car_prices, Car_type) →

Note: Example Variables are defined on page 188.

Average (X, I)
Returns the mean value of all of the elements of array X, aver-
aged over index I.

26 30 35
VW 9653 12.42K 15.18K
Honda 10.11K 12.84K 15.86K
BMW 13.65K 16.42K 19.18K

1985 1986 1987 1988
BMW BMW BMW BMW

1985 1986 1987 1988
VW VW VW VW

Chapter Array-reducing functions

Analytica User Guide 249

12
Library Array

Examples Average(Mpg) → 30.33

Average(Car_prices, Car_type)→
Years

Note: Example Variables are defined on page 188.

JoinText(A, I, separator,finalSeparator)
Returns the elements of A (as text) concatenated along I and
separated by separator. If the optional finalSeparator parameter
is provided, it is used as the final separator. If any elements are
numeric, they are converted to text values using the number for-
mat settings for the current node.

A: I

JoinText(A,I,’, ’) → ’VW, Honda, BMW’

JoinText(A,I,’, ’,’ and ’) → ’VW, Honda and BMW’

Max (X, I)
Returns the highest valued element of X along index I.

Library Array

Examples Max(Years) → 1988

Max(Car_prices, Years) →
Car_type

To obtain the maximum of two numbers, first turn them into an
array:

Max([10,5]) → 10

Note: Example Variables are defined on page 188.

1985 1986 1987 1988
12.67K 14K 14.83K 15.5K

1 2 3
VW Honda BMW

VW Honda BMW
10K 14.5K 22K

Chapter Array-reducing functions

250 Analytica Users Guide

12
Min (X, I)

Returns the lowest valued element of X along index I.

Library Array

Examples Min(Years) → 1985

Min(Car_prices, Years) →
Car_type

To obtain the minimum of two numbers, first turn them into an
array:

Min([10, 5]) → 5

Note: Example Variables are defined on page 188.

Product (X, I)

Returns the product of all of the elements of X, along the dimen-
sion indexed by I.

Library Array

Examples Product(Mpg) → 27.3K

Product(Cost, Mpg) →
Car_type

Note: Example Variables are defined on page 188.

Subindex (A, U, I)
Returns the value of I corresponding to value U in array A. If more
than one value corresponds, returns the index value of the last
occurrence. For the values that do not correspond, returns
undefined (shows as blank, see also IsUndef(..) on page 201).

Argmax() uses Subindex(A, Max(A, I), I) to return the index
value corresponding to the maximum value in A. See Argmax()
on page 248.

Library Special

VW Honda BMW
8000 12K 18K

VW Honda BMW
5.905G 14.47G 28.78G

Chapter Transforming functions

Analytica User Guide 251

12
Examples Subindex(Car_prices, 12K, Car_type) →

Years

Subindex(Car_prices, 12K, Years) →
Car_type

If U is an array of values, an array of index values is returned.

Subindex(Car_prices, [12K, 21K], Car_type) →
Subindex , Years

Note: Example Variables are defined on page 188.

Sum (X, I)
Returns the sum of array X over the dimension indexed by Vari-
able I.

Library Array

Examples Sum(Mpg) → 91

Sum(Car_prices, Years) →
Car_type

Note: Example Variables are defined on page 188.

Transforming functions
A transforming function operates across a dimension of an
array and returns a result that has the same dimensions as its
input array.

The function Cumulate(X,I) illustrates some properties of trans-
forming functions.

1985 1986 1987 1988
Honda

VW Honda BMW
1985

1985 1986 1987 1988
12K Honda
21K BMW

VW Honda BMW
36.5K 53.5K 81K

Chapter Transforming functions

252 Analytica Users Guide

12
Example Cumulate(Car_prices,Years) →

Car_type , Years

The second parameter, I, specifying the dimension over which to
cumulate, is optional. But if the array, X, has more than one
dimension, Analytica may not cumulate over the dimension you
expect. For this reason, it is safer always to specify the dimension
index explicitly in any transforming function.

Note: Example Variables are defined on page 188.

Cumproduct (X, I)
Returns an array with each element being the product of all of the
elements of X along dimension I up to, and including, the corre-
sponding element of X.

Library Array

Example Cumproduct(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

Note: Example Variables are defined on page 188.

Cumulate (X, I)
Returns an array with each element being the sum of all of the
elements of X along dimension I up to, and including, the corre-
sponding element of X.

If X is not indexed by I, Cumulate(X,I) operates as if X were
indexed by I, but constant across I. Using this, a convenient trick
for numbering the elements of an index is to use Cumulate(1,I).

Library Array

1985 1986 1987 1988
VW 8000 17K 26.5K 36.5K
Honda 12K 25K 39K 53.5K
BMW 18K 38K 59K 81K

0 1 2 3 4
26 2185 5.012M 12.07G 30.54T 81.11Q
30 2810 8.292M 25.69G 83.57T 285.5Q
35 3435 12.39M 46.92G 186.6T 778.9Q

´

Chapter Transforming functions

Analytica User Guide 253

12
Example Cumulate(Cost_in_time, Time) →

Mpg , Time , Car_type = VW

Cumulate(1,Car_type) →
Years

Note: Example Variables are defined on page 188.

Integrate (R, I)
Returns the result of applying the trapezoidal rule of integration of
array R over index I. Integrate() computes the cumulative inte-
gral across I, returning a value with the same number of dimen-
sions as R. Compare Integrate() to Area() (see page 247).

An alternative syntax is Integrate(R1, R2, I), which returns
the integral of array R1 over array R2. If R2 has one dimension,
its index must also be an index of R1 and I is optional. If R2 has
more than one dimension, then I is required and must be an index
of both R1 and R2.

Library Array

Example Integrate(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

Note: Example Variables are defined on page 188.

Normalize (R, I)
Returns an array that is normalized array R, so the area across
index I is 1.

0 1 2 3 4
26 2185 4479 6888 9417 12.07K
30 2810 5761 8859 12.11K 15.53K
35 3435 7042 10.83K 14.8K 18.98K

VW Honda BMW
1 2 3

´

0 1 2 3 4
26 0 2240 4591 7060 9653
30 0 2881 5905 9081 12.42K
35 0 3521 7218 11.1K 15.18K

´

Chapter Transforming functions

254 Analytica Users Guide

12
Normalize() does not force the values along index I to sum to 1;
to make the values sum to 1, divide R by Sum(R, I).

An alternative syntax is Normalize(R1, R2, I), which returns
the normalized array of array R1 over array R2. If R2 has one
dimension, its index must also be an index of R1 and I need not
be stated. If R2 has more than one dimension, then I is required
and must be an index of R1 and R2.

Library Array

Example Normalize(Cost_in_Time, Time) →
Mpg , Time , Car_type = VW

Note: Example Variables are defined on page 188.

Rank (X, I)
Returns an array of the rank values of X across index I. The low-
est value in X has a rank value of 1, the next-lowest has a rank
value of 2, and so on. I is optional if X is one-dimensional. If I is
omitted when X is more than one-dimensional, the innermost
dimension is ranked.

If two values are equal, they receive the same rank and the next
higher value receives a rank 2 higher.

Library Array

Examples Rank(Mpg) →
Mpg

Rank(Car_prices, Car_type) →
Car_type , Years

0 1 2 3 4
26 0.2264 0.2377 0.2496 0.2620 0.2752
30 0.2263 0.2377 0.2495 0.2620 0.2752
35 0.2264 0.2377 0.2496 0.2620 0.2751

´

26 30 35
1 2 3

1985 1986 1987 1988
VW 1 1 1 1
Honda 2 2 2 2
BMW 3 3 3 3

Chapter Selecting, slicing, and subscripting arrays

Analytica User Guide 255

12
Note: Example Variables are defined on page 188.

Uncumulate (X, I, firstElement)
Uncumulate(X,I) returns an array whose first element (along I) is
the first element of X, and each other element is the difference
between the corresponding element of X and the previous ele-
ment of X. Uncumulate(X,I,firstElement) returns an array with the
first element along I equal to firstElement, and each other ele-
ment equal to the difference between the corresponding element
of X and the previous element of X.

Uncumulate(X,I) is the inverse of Cumulate(X,I). Uncumu-
late(X,I,0) is similar to a discrete differential operator.

Library Array

Example Uncumulate(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

Uncumulate(Cost_in_time, Time,0) →
Mpg , Time , Car_type = VW

Note: Example Variables are defined on page 188.

Selecting, slicing, and subscripting arrays
Analytica includes several functions that are useful for selecting
an element or slice of an array. A slice may be a single cell —a
number, Boolean or text value — or a subarray, with one less
dimension than the array from which it was sliced.

Unlike most computer languages, with Analytica you identify the
dimension you want to subscript or slice over by naming the
index—so you don’t need to remember which index refers to
rows, to columns, or higher dimensions. Rows and columns are

0 1 2 3 4
26 2185 109 115 120 127
30 2810 141 147 155 163
35 3435 172 180 189 199

0 1 2 3 4
26 0 109 115 120 127
30 0 141 147 155 163
35 0 172 180 189 199

´
´

Chapter Selecting, slicing, and subscripting arrays

256 Analytica Users Guide

12
not intrinsic to the array representation — they are they are just a
matter of how you choose to display the array in a table.

With Choice(), you can select an element from a list.

With Slice(), you can select the nth element or "plane" of an
array. With x[I=U] and Subscript(), you can select the element
or "plane" of an array whose index matches a given value.

All these functions return a result that has one dimension less
than the number of dimensions of its input array.

Choice (I, n, inclAll)
Appears as a popup menu in the definition field, allowing selec-
tion of the nth item from I (see “Creating a popup menu” on
page 163). Choice() must appear at the topmost level of a defini-
tion. It cannot be used inside another expression. The optional
inclAll parameter controls whether the "All" option (n=0) appears
on nucleoli popup (inclAll defaults to True).

Library Array

Examples Choice(Years, 2) → 1986

If n=0, all values of I are returned:

Choice(Years, 0) →
Years

Note: Example Variables are defined on page 188.

Slice (U, I, N)
Returns the element or cross-section of array U, for which index I
has position N. I must be an index of U, and N must be an integer
or array of integers between 1 and the length of I.

If N is an integer, the result of Slice() is an array indexed by all
indexes of U except I. If N is an array, the result of Slice() is
also indexed by the indexes of N.

If U is a scalar, Slice(U,I,N) returns U.

1985 1986 1987 1988

Chapter Selecting, slicing, and subscripting arrays

Analytica User Guide 257

12
Slice (U, N)

If Slice has only two parameters, and U has a single dimension,
it returns the Nth element of U. For example:
Index Quarters := ‘Q’ & 1..4

Slice(Quarters, 2) → ‘Q2’

This method is the only way to extract an element from an unin-
dexed array, for example:

Slice(2000..2003, 4) → 2003

It also works to get the nth slice of a multidimensional array over
an unindexed dimension, for example:

Slice(Quarters & ‘ ‘ & 2000..2003, 4) → Array(Quar-
ters, [‘Q1 2003’, ‘Q2 2003’, ‘Q3 2003’, ‘Q4 2003’])

Analytica Note: If a is a scalar, or if a is an array with two or more
indexed dimensions and no unindexed dimensions, Slice(a, n)
simply returns a.

Library Array

Examples Here, Analytica returns the values in Cost corresponding to the
first element in Car_type, that is, the values of VW:

Slice(Cost, Car_type, 1) →
Mpg

Here, N is an array of positions:

Slice(Cost, Car_type, [1, 2]) →
Mpg

Note: Example Variables are defined on page 188.

Subscript (U1, I, U2)
Returns the element or slice of array U1, for which index I has
value U2. I must be an index of U1, and U2 must be value(s) of I.

26 30 35
2185 1705 1585

26 30 35
1 2185 1705 1585
2 2810 2330 2210

Chapter Selecting, slicing, and subscripting arrays

258 Analytica Users Guide

12
If U2 is a single value, the result of Subscript() is an array
indexed by all indexes of U1 except I. If U2 is an array, the result
of Subscript() is also indexed by the indexes of U2.

If U1 is a single value, Subscript(U1,I,U2) returns U1.

Subscript(U1,I,U2) is equivalent to x[I = U] when x is a Vari-
able identifier that evaluates to U1. Subscript() allows U1 to be
an arbitrary expression.

Library Array

Examples To see the values in Cost corresponding to Mpg = 26:

Subscript(Cost, Mpg, 26) →
Car_type

Here U2 is an array of values:

Subscript(Cost, Car_type, [‘VW’, ‘Honda’]) →
Car_type , Mpg

Example of an arbitrary expression as the first parameter:

Subscript(Cost/12, Mpg, 26) →
Car_type

Note: Example Variables are defined on page 188.

x[I = U]
Returns a specific element or slice of an array, where x is the
identifier of an array Variable, I is an index Variable, and U is one
or more elements of index I that corresponds to the desired array
element. x[I = U] is equivalent to Subscript(U1,I,U2) when x
is a Variable identifier that evaluates to U1.

Subscript(x, i, vj) and x[i=u] just two ways to do the same
thing. The only difference is that with Subscript(x, I, v), x

VW Honda BMW
2185 2810 3435

26 30 35
VW 2185 1705 1585
Honda 2810 2330 2210

VW Honda BMW
182.1 234.2 286.2

Chapter Array flattening functions

Analytica User Guide 259

12
can be any expression, while for x[i=u], x must be the identifier
of a variable.

Library Special

Examples Car_prices[Car_type = ‘VW’] →
Years

Car_prices[Car_type = [‘VW’, ‘Honda’]] →
Years

You can specify more than one index when each index is given a
single value.

Car_prices[Car_type = ‘Honda’, Years = 1986] → 13K

Note: Example Variables are defined on page 188.

x [Time-n]
x[Time-n] returns the value of Variable x for the time period that
is n time periods prior to the current time period. This function is
only valid for Variables defined using the Dynamic() function.
See “Dynamic (initial1, initial2..., initialn, Expr)” on page 362

Array flattening functions
The MDArrayToTable() function "flattens" a multi-dimensional
array into a two-dimensional table. The MDTable() function does
the inverse, creating a multi-dimensional array from a table of val-
ues. Viewing tabular results in a multi-dimensional form via
MDTable() often provides informative new perspective on exist-
ing data.

Many external application programs, including spreadsheets and
relational databases, are limited to two-dimensional tables. Thus,
when transferring multi-dimensional data between these applica-
tions and Analytica, it may be necessary to convert multi-dimen-
sional data into two-dimensional tables before transferring.

1985 1986 1987 1988
8000 9000 9500 10K

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K

Chapter Array flattening functions

260 Analytica Users Guide

12
MDArrayToTable(A, I, L)

Transforms a multi-dimensional array, A, into a two-dimensional
array (i.e., a table) indexed by I and L. The result contains one
row along I for each element of A. L must contain a list of names
of the indexes of A, followed by one final element. All elements of
L must be text values. The column corresponding to the final ele-
ment of L contains the cell value. If L does not contain all the
indexes of A, array abstraction will create a set of tables indexed
by the dimensions not listed in L.

Before using MDArrayToTable(), you must define the index I
with the appropriate number of elements. The number of ele-
ments in I may be either size(A), or the number of non-zero ele-
ments of A (in which case the resulting table will contain only the
nonzero elements), otherwise an error results.

If the number of elements in I is equal to the number of non-
zero elements of A, MDArrayToTable() acts like the inverse of
MDTable() on a table that contains a row for only the nonzero
elements of the array.

Library Array

Example Rows := sequence(1,size(Cost_in_time))

Cols := [‘Mpg’,’Time’,’Car_type’,’Cost’]

MDArrayToTable(Cost_in_time,Rows,Cols) →
Rows , Cols

Note: Example Variables are defined on page 188.

Mpg Time Car_type Cost
1 26 0 VW 2185
2 26 0 Honda 2385
3 26 0 BMW 3185
4 26 1 VW 2294
5 26 1 Honda 2314
6 26 1 BMW 3294
7 26 2 VW 2409
. . .
45 35 4 BMW 5175

Chapter Array flattening functions

Analytica User Guide 261

12
MDTable(T,Rows,Cols,Vars,conglomFn,missingval)

Returns a multi-dimensional array from a two-dimensional table
of values. T is a two-dimensional array (i.e., a table) indexed by
Rows and Cols. Each row of T specifies the coordinates of a cell
in a multi-dimensional array, along with the value for that cell.

The dimensions of the final result are given by the optional
parameter Vars. Vars must be a list of index identifiers or index
names. The length of Cols must be one greater than the length of
Vars.

If Vars is omitted, the dimensions of the final result are specified
by the first n-1 elements of Cols (n=size(Cols)). In this case, the
elements of Cols must be index identifiers or index names.

The first n-1 columns of T specify the coordinates of a cell in the
result. The final column of T specifies the value for the indicated
cell.

Before using MDTable, you must define all of the indexes for the
result. Each index must include all values that occur in the corre-
sponding column of T or an error will result. The Unique() func-
tion is useful for defining the necessary indexes.

It is possible that two or more rows of T specify identical coordi-
nates. In this case, a conglomeration function is used combine
the values for the given cell. The conglomFn parameter is a text
value specifying which conglomeration function is to be used.
Possible values are: "sum" (default), "min", "max", "average", or
"product".

It is also possible that no row in T corresponds to a particular cell.
In this case, the cell value is set to missingval, or if the missingval
parameter is omitted, the cell value is set to undefined. Undefined
values can be detected using the IsUndef() function.

Library Array

Example Suppose T, Rows, and Cols are defined as indicated by the fol-
lowing table:

Chapter Interpolation functions

262 Analytica Users Guide

12
Rows , Cols

MDTable(T,Rows,Cols,[Car_type,Mpg],

average’,’n/a’) →

Car_type , Mpg

Notice that in the example, Rows 6 and 7 both specified values
for Car_type=BMW, Mpg=35. The ‘average’ conglomeration func-
tion was used to combine these.

Interpolation functions
Analytica includes three functions that interpolate across arrays.
The graph below is a simple comparison of the three.

Car_type Mpg X
1 VW 26 2185
2 VW 30 1705
3 Honda 26 2330
4 Honda 35 2210
5 BMW 30 2955
6 BMW 35 2800
7 BMW 35 2870

26 30 35
VW 2185 1705 n/a
Hond
a 2330 n/a 2210

BMW n/a 2955 2835

Cubicinterp*

♦

*

∆

♦

D

R

X

Stepinterp

Linearinterp

∆

Chapter Interpolation functions

Analytica User Guide 263

12
The first two examples use the following Variables:

Index_a:

Index_b:

Array_a:
Index_a , Index_b

Cubicinterp (D, R, X, I)
Returns the natural cubic spline interpolated values of R along D,
interpolating for values of X. D and R must both be indexed by I,
and D must be increasing along I.

For each value of X, Cubicinterp() finds the nearest values
from D, and using a natural cubic spline between the correspond-
ing values of R, computes the interpolated value. If X is less than
the minimum value in D, it returns the first value in R; if X is
greater than the maximum value in D, it returns the last value for
R.

Library Special

Example Cubicinterp(Index_b, Array_a, 1.5, Index_b) →
Index_a

Linearinterp (D, R, X, I)
Returns linearly interpolated values of X, given R representing an
arbitrary piecewise linear function. D and R must both be indexed
by I, and D must be increasing along I. R is an array of the corre-
sponding output values for the function (not necessarily increas-
ing and may be more than one dimension). X may be probabilistic
and/or an array.

a b c

1 2 3

1 2 3
a 7 -3 1
b -4 -1 6
c 5 0 -2

a b c
0.6875 -2.875 2.219

Chapter Interpolation functions

264 Analytica Users Guide

12
For each value of X, Linearinterp() finds the nearest two val-
ues from D and interpolates linearly between the corresponding
values from R. If X is less than the minimum value in D, it returns
the first value in R. If X is greater than the maximum value in D, it
returns the last value in R.

Library Special

Example Linearinterp(Index_b, Array_a, 1.5, Index_b) →
Index_a

Stepinterp (D, A, X, I)
Returns the element or slice of array A for which D has the small-
est value that is greater than or equal to X. D and A must both be
indexed by I, and D must be increasing along index I. If X is
greater than all values of D, returns the element for which D has
the largest value.

If X is a single value, the result of Stepinterp() is an array
indexed by all indexes of A except D's index. If X is an array, the
result of Stepinterp() is also indexed by the indexes of X.

Stepinterp() is similar to Subscript() (see page 257); how-
ever, Subscript() selects based on the index value being equal
to X, while Stepinterp() selects based on the array value being
greater than or equal to X.

Stepinterp() can be used to perform table lookup.

Library Special

Examples To see the values in Cost corresponding to Mpg >= 33:

Stepinterp(MPG, Cost, 33, MPG) →
Car_type

Here X is an array of values:

Stepinterp(MPG, Cost, [28,33], MPG) →

a b c
2 -2.5 2.5

VW Honda BMW
1585 2210 2835

VW Honda BMW
28 1705 2330 2955
33 1585 2210 2935

Chapter Other array functions

Analytica User Guide 265

12
Note: Example Variables are defined on page 188.

Other array functions

Concat (A1, A2, I, J, K)
Appends array A2 to array A1. I and J are indexes of A1 and A2,
respectively. K is the index of the resulting dimension, and usually
consists of the list created by concatenating I and J.

A1 and A2 must have the same number of dimensions. If they are
one-dimensional, the parameters I, J, and K are optional. If they
are not specified, the resulting array is unindexed.

If A1 and A2 are multidimensional, they must have the same non-
concatenated indexes.

Library Array

Examples In addition to the Variables on page 188, these examples use the
following:

More_years:

All_years:

More_prices: Car_type , More_years

Concat(Years, More_years) →
Concat

Sequence2: Sequence(1,7)

1989 1990 1991

1985 1986 1987 1988 1989 1990 1991

1989 1990 1991
VW 11K 12K 12.5K
Honda 15K 15.5K 16.5K
BMW 23.5K 25K 27K

1985 1986 1987 1988 1989 1990 1991

Chapter Other array functions

266 Analytica Users Guide

12
Concat(Years, More_years, Years, More_years,
Sequence2) →
Sequence2

Concat(Car_prices, More_prices, Years, More_years,
All_years) →
All_years , Car_type

IndexNames(A)
Returns a list of the names of the indexes of the array A.

Library Array

Example IndexNames(Car_prices) → [‘Car_type’,’Years’]

Note: Example Variables are defined on page 188.

Size (U)
Returns the number of array elements of U.

Library Array

Examples Size(Years) → 4

Size(Car_prices) → 12

Size(10) → 1

Note: Example Variables are defined on page 188.

1 2 3 4 5 6 7
1985 1986 1987 1988 1989 1990 1991

VW Honda BMW
1985 8000 12K 18K
1986 9000 13K 20K
1987 9500 14K 21K
1988 10K 14.5K 22K
1989 11K 15K 23.5K
1990 12K 15.5K 25K
1991 12.5K 16.5K 27K

Chapter Matrix functions

Analytica User Guide 267

12
Matrix functions

Matrix functions perform matrix operations. In Analytica, a matrix
is defined as a two-dimensional array of numbers with indexes of
equal length.

Decompose (C, I, J)
Returns the Cholesky decomposition (square root) matrix of
matrix C along dimensions I and J. Matrix C must be symmetric
and positive-definite. (Positive-definite means that v * C * v > 0,
for all vectors v.)

Cholesky decomposition computes a lower diagonal matrix L
such that L * L' = C, where L' is the transpose of L.

Library Matrix

Example Matrix

l , m

Decompose(MatrixS,l,m) →
l , m

Determinant (C, I, J)
Returns the determinant of matrix C along dimensions I and J.

Library Matrix

1 2 3 4 5
1 6 2 6 3 1
2 2 4 3 1 3
3 6 3 9 3 4
4 3 1 3 8 4
5 1 3 4 4 7

1 2 3 4 5
1 2.4495 0 0 0 0
2 0.8165 1.8257 0 0 0
3 2.4495 0.5477 1.6432 0 0
4 1.2247 0 0 2.5495 0
5 0.4082 1.4606 1.3389 1.3728 1.0113

Chapter Matrix functions

268 Analytica Users Guide

12
Example MatrixA:

j , i

Determinant(MatrixA, i, j) → 89

EigenDecomp(A : Numeric [I,J] ; I, J : IndexType)
Computes the Eigenvalues and Eigenvectors of a square, sym-
metric matrix A indexed by I and J. EigenDecomp() returns a
result indexed by J and .item (where .item is a temporary
index with two elements: ['value','vector']). Each column of
the result contains one Eigenvalue/Eigenvector pair. The Eigen-
value is a number, the Eigenvector is a reference to a rows-
indexed Eigenvector. If result is the result of evaluating EigenDe-
comp(), then the Eigenvalues are given by
result[.item='value'], and the Eigenvectors are given by
#result[.item='vector'].
Each Eigenvector is indexed by I.

Given a square matrix A, a non-zero number (λ) is called an
Eigenvalue of A, and a non-zero vector x the corresponding
Eigenvector of A when

A x = λ x

An NxN matrix will have N (not-necessarily unique) Eigenvalue-
Eigenvector pairs. When A is a symmetric matrix, the Eigenvalues
and Eigenvectors are real-valued. Eigen-analysis is widely used
in Engineering and statistics.

Analytica Note: The matrix A must be square and symmetric.
Mathematically, Eigen decompositions do exist for square non-
symmetric matrices, but the algorithm used here is limited only to
symmetric matrices, since symmetric decompositions are
guaranteed to be real-valued, while, in general, Eigen
decompositions may be complex.

Library Matrix

1 2 3
a 4 1 2
b 2 5 3
c 3 2 7

Chapter Matrix functions

Analytica User Guide 269

12
Example Convariance Matrix

stock1 , stock2

EigenDecomp(Covariance, Stock1, Stock2) →
.item , stock2

Invert (C, I, J)
Returns the inversion of matrix C along dimensions I and J.

Library Matrix

Example Set number format to fixed point, 3 decimal digits.

Invert(MatrixA, i, j) →
j , i

MatrixMultiply(A : Numeric all[aRow,aCol] ; aRow, aCol : IndexType ;
B : Numeric all[bRow,bCol] ; bRow, bCol : IndexType)

Performs a matrix multiplication on matrix A, having indexes
aRow and aCol, and matrix B, having indexes bRow and
bCol. The result is indexed by aRow and bCol. A and B must
have the specified two indexes, and may also have other

INTC MOT AMD
INTC 30.47 13.26 18.9
MOT 13.26 16.58 14.67
AMD 18.9 14.67 17.11

INTC MOT AMD
value 1.025 9.232 53.9
vector <<ref1>> <<ref2>> <<ref3>>

<<ref1>>
stock1

<<ref1>>
stock1

<<ref1>>
stock1

INTC 0.2845 INTC 0.6548 INTC -0.7002
MOT 0.518 MOT -0.7196 MOT -0.4625
AMD -0.8067 AMD -0.2312 AMD -0.5439

1 2 3
a 0.326 -0.034 -0.079
b -0.056 0.247 -0.090
c -0.124 -0.056 0.202

Chapter Matrix functions

270 Analytica Users Guide

12
indexes. aCol and bRow must have the same length or it flags
an error. If aRow and bCol are the same index, it returns only
the diagonal of the result.

Library Matrix

Example Matrices
A x B

index1 , index2 index2 , index3

MatrixMultiply(A,index1,index2,B,index2, index3) →

index1 , index3

When the inner index is shared by A and B, the expression
Sum(A*B,index2) is equivalent to their dot product (see “Dot
product of two matrices” on page 272).

The way to multiply a matrix by its transpose is:
MatrixMultiply(A, I, J, Transpose(A,I,J), I, J)

It does not work to use MatrixMultiple(A,I,J,A,J,I) because
the result would have to be doubly indexed by I.

SingularValueDecomp(A, I, J, J2)
SingularValueDecomp (Singular Value Decomposition) is often
used with sets of equations or matrices that are singular or ill-con-
ditioned (that is, very close to singular). It factors a matrix A,
indexed by I and J, with Size(I)>=Size(J), into three matrices, U,
W, and V, such that

A = U . W . V’ (1)

where U and V are orthogonal matrices and W is a diagonal
matrix. U is dimensioned by I and J, W by J and J2, and V by J
and J2. In Analytica notation:

Variable A :=
Sum(Sum(U*W,J) * Transpose(V,J,J2), J2)

1 2 a b c
1 1 2 1 3 0 1
2 1 0 2 0 1 1

1 2 3
1 3 2 3
2 3 0 1

Chapter Matrix functions

Analytica User Guide 271

12
The index J2 must be the same size as J and is used to index the
resulting W and V arrays.

SingularValueDecomp returns an array of three elements
indexed by a special system index named SvdIndex with each
element, U, W, and V, being a reference to the corresponding
array. Use the ‘#’ (dereference) operator to obtain the matrix
value from each reference, as in:

Index J2
Definition: CopyIndex(J)

Variable SvdResult
Definition: SingularValueDecomp(A, I, J, J2)

Variable U
Definition: #SvdResult[SvdIndex='U']

Variable W
Definition: #SvdResult[SvdIndex='W']

Variable V
Definition: #SvdResult[SvdIndex='V']

Analytica Note: Like most other matrix functions,
SingularValueDecomp requires its main parameter to be square,
and will not work if indexes i and j are not the same size.

Transpose (C, I, J)
Returns the transpose of matrix C along dimensions I and J.

Library Matrix

Example Transpose(MatrixA, i, j) →
j , i

1 2 3
a 4 2 3
b 1 5 2
c 2 3 7

Chapter Financial functions

272 Analytica Users Guide

12
Dot product of two matrices

The dot product (i.e., matrix multiplication) of MatrixA and MatrixB
is equal to
Sum(MatrixA * MatrixB, i)

Example MatrixA is defined as above.

MatrixB:
k , i

Sum(MatrixA * MatrixB, i) →
k , j

Financial functions
These functions can be accessed under the Definition menu
Financial command, or in the Object Finder dialog box, Finan-
cial library.

Where possible, the function names and parameters match those
found in Microsoft Excel.

Parameters
The same parameters occur in many of the financial functions.
These parameters are described here. Dollar amounts for both
parameters and return values of functions are always expressed
as the amount you receive. If you make a payment, the amount is
negative. If you receive a payment, the amount is positive.

Rate: The interest rate per period. For example, if periods are
months, the rate should be adjusted to the monthly rate, not the

1 2 3
l 3 2 1
m 2 5 3
n 4 1 2

a b c
l 16 19 20
m 19 38 37
n 21 19 28

Chapter Financial functions

Analytica User Guide 273

12
annual rate (e.g., 8%/12, or 1.08^(1/12)-1 with monthly
compounding).

Nper: Number of periods in the lifetime of an annuity.

Per: The period (between 1 and Nper) being computed.

Pv: The present value of the annuity. For example, for a loan this
is the loan amount (positive if you receive the loan, negative if
you are the lender).

Fv: The future value of the annuity. This is the remaining value
of the annuity after the final payment. In the case of a loan, for
example, this is the balloon payment at the end (positive if you
are the lender, negative if you pay the balloon amount). This
parameter is usually optional with a default value of zero.

Pmt: The total payment per period (interest + principal). If you
receive payments, this is positive. If you make payments, this is
negative.

Type: Indicates whether payments are due at the beginning or
end of each period.

True: Payments are due at the beginning of each period, with
the first payment due immediately.

False: (default) Payments are due at the end of each period.

Cumipmt(Rate, Nper, Pv, StartPeriod, EndPeriod, Type)
Returns the cumulative interest paid on an annuity between, and
including, StartPeriod (shown as sp in equation below) and
EndPeriod (shown as ep in equation below). The annuity is
assumed to have a constant interest rate and periodic payments.
This is equal to

IPmt Rate n Nper Pv 0 Type,,,,,()

n sp=

ep

∑

Chapter Financial functions

274 Analytica Users Guide

12
Example Interest payments during the first year on a $100,000 loan at 8%

is:
CumIPmt(8%/12,360,100K,1,12) → -7,969.81

The result is negative since these are payments.

Cumprinc(Rate, Nper, Pv, Start_period, End_Period, Type)
Returns the cumulative principal paid on an annuity between, and
including, StartPeriod (shown as sp in equation below) and
EndPeriod (shown as ep in equation below). The annuity is
assumed to have a constant interest rate and periodic payments.
The result is equal to

Example The total principal paid during the first year on a $100,000 loan at
8% is:

CumPrinc(8%/12,360,100K,1,12) → -835.36

The result is negative since these are payments.

Fv(Rate, Nper, Pmt, Pv, Type)
Returns the future value of an annuity investment with constant
periodic payments and fixed interest rate. The result is positive if
you receive money at the end of the annuity’s lifetime, and nega-
tive if you must make a payment at the end of the annuity’s life-
time.

Examples You invest $1000 in an annuity that pays 6% annual interest,
compounded monthly (0.5% per month), that pays out $50 at the
end of each month for 12 months, and then refunds whatever is
left after 12 months. The amount refunded is:

Fv(0.5%, 12, 50, -1000) → $444.90

You borrow $50,000 at a fixed annual rate of 12% (1% per
month). You make monthly payments of $550 for 15 years, and

PPmt Rate n Nper Pv 0 Type,,,,,()

n sp=

ep

∑

Chapter Financial functions

Analytica User Guide 275

12
then pay off the remaining balance in a single balloon payment.
That final balloon payment is (the negative is because it is a pay-
ment for you):

-Fv(1%, 15*12, -550, 50000) → $25,020.99

You open a fixed-rate bank account that pays 0.5% per month in
interest. At the beginning of each month (including when you
open the account) you deposit $100. The amount in the account
at the end of the each of the first three years is:

Fv(0.5%,[12,24,36],-100,0,True) →
[$1239.72, $2555.91, $3953.28]

Ipmt(Rate, per, Nper, Pv, Fv, Type)
Returns the interest portion of a payment on an annuity, assum-
ing constant period payments and fixed interest rate.

Example The interest you pay in the 24th month on a 30-year fixed $100K
loan at 8%/12 monthly interest is (the result of IPmt is negative
since this is a payment for you):

-IPmt(8%/12, 24, 12*30, 100K) → $655.59

Irr(Values, I, Guess)

Returns the Internal Rate of Return of a series of periodic pay-
ments (negative values) and inflows (positive values). The IRR is
the discount rate at which the Net Present Value (NPV) of the
flows is zero. The array Values must be indexed by I.

If the cash flow never changes sign, IRR() will have no solution
and returns NaN (not a number). If a cash flow changes sign more
than once, Irr() may have multiple solutions, and will return the
first solution found. The implementation uses an iterative gradi-
ent-descent search to locate a solution. The optional argument,
Guess, can be provided as a starting value for the search (default
is 10%). When there are multiple solutions, the one closest to
Guess will usually be returned. If no solution is found within 30
iterations, Irr() returns NaN.

To compute the IRR for a non-periodic cash flow, use XIRR().

Example Earnings: Time

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M

Chapter Financial functions

276 Analytica Users Guide

12
Irr(Earnings,Time) → 17.15%

Nper(Rate, Pmt, Pv, Fv, Type)
Returns the number of periods of an annuity with constant peri-
odic payments and fixed interest rate.

Example You invest $10,000 in an annuity that pays 8% annually. Each
year you withdraw $1,000. Your annuity will last for

NPer(8%,1000,-10K) → 20.91 (years)

Npv(DiscountRate, Values, I)
Returns the net-present value of a cash flow with equally spaced
periods. The Values parameter contains a series of periodic pay-
ments (negative values) and inflows (positive values), indexed by
I. Future values are discounted by DiscountRate per period. The
NPV is given by

Analytica Note: The first value is discounted as if it is one step in
the future. To compute the NPV for a non-periodic cash flow, use
Xnpv().

Example Earnings: Time

At a discount rate of 5%, the net present value of the this cash
flow is:

Npv(5%, Earnings, Time) → $865,947.76

Pmt(Rate, Nper, Pv, Fv, Type)
Returns the total payment per period (interest + principal) for an
annuity with constant periodic payments and fixed interest rate.

Example You obtain a 30-year fixed mortgage at 8%/12 per month for
$100K. Your monthly payment will be (note that the result of Pmt
is negative since this is a payment for you):

Values I j=[]

1 DiscountRate+()j
--

j 1=

n

∑

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M

Chapter Financial functions

Analytica User Guide 277

12
-Pmt(8%/12, 30*12, 100K) → $733.76

Ppmt(Rate, Per, NPer, Pv, Fv, Type)
Returns the principal portion of a payment on an annuity with con-
stant period payments and fixed interest rate.

Example You have a 30-year fixed $100K loan at a rate of 8%/12 monthly.
On your 24th payment, the amount of your payment that goes
towards principal is (note that the result of PPmt() is negative
since this is a payment for you):

-PPmt(8%/12, 24, 12*30, 100K) → $78.18

Pv(Rate, Nper, Pmt, Fv, Type)
Returns the present value of an annuity. The annuity is assumed
to have constant periodic payments to you of Pmt per period for
Nper periods, with a return of Rate per period.

Example To receive $100 per month from an annuity that returns 6%/12
per month for the next 10 years, you would need to invest (note
that the result from Pv() is negative since you are paying to make
the investment):

-Pv(6%/12, 10*12, 100) → $9,007.35

Rate(NPer, Pmt, Pv, Fv, Type, Guess)
Returns the interest rate (per period) for an annuity. The value
returned is the interest rate that results in equal payments of Pmt
per period over the NPer periods of the annuity.

In general, Rate() may have zero or multiple solutions. The
implementation uses an interactive search algorithm. The
optional Guess may be provided as a starting point for the search,
which will usually result in the solution closest to Guess being
returned. If no solution is found in 30 iterations, Rate() returns
NaN.

Example You obtain a 30-year mortgage at a supposed 7% annual per-
centage rate for $100K. To do so, you pay $2,000 up front in
"points", and another $1,500 in fees. Assuming you hold the loan
for its full term, the effective interest rate of your loan (for you) is

Rate(30,Pmt(7%,30,100K),100K-3500) → 7.36%

Chapter Financial functions

278 Analytica Users Guide

12
Xirr(Values, Dates, I, Guess)

Returns the annual Internal Rate of Return (IRR) for a series of
payments (negative values) and inflows (positive values) that
occur at non-periodic intervals. Both Values and Dates must be
indexed by I. The Values array constrains the cash flow
amounts, the Dates array contains the date of each payment or
inflow, where each date is Analytica’s expressed as the number
of days since Jan 1, 1904. The rate is based on a 365 day year.

If the cash flow never changes sign, there is no solution and
Xirr() returns NaN. If the cash flow changes sign more than
once, Xirr() may have multiple solutions, but will return only the
first solution found. The optional parameter, Guess, may be pro-
vided as a starting point for the iterative search, and Xirr() will
generally find the solution closest to Guess. If not provided, Guess
defaults to 10%. If no solution is found within 30 iterations,
Xirr() returns NaN.

To compute the IRR for a series of period payments, use Irr().

Example EarningAmt: J

EarningDate: J

XIrr(EarningAmt,EarningDate,J) → 9.31%

Analytica Note: EarningDate can be entered by selecting
Number Format from the Result menu while editing the table for
EarningDate. From the Number Format Dialog, select a date
format, then enter the dates.

Xnpv(Rate, Values, Dates, I)
Returns the Net Present Value (NPV) of a non-periodic cash flow
with a constant discount rate. Rate is the annual discount rate for
a 365 day year. Both Values, the cash-flow amounts, and Dates,
the date of each payment (negative value) or inflow (positive
value), must be indexed by I.

1 2 3 4
-400K -200K 100K 600K

1 2 3 4
July 5,

1999
Dec 1,

1999
Jan 21,

2000
Aug 10,

2001

Chapter Financial functions

Analytica User Guide 279

12
See also Npv().

Example Using the cash flow shown in the example for XIrr() above, the
net present value at a 5% discount rate is:

XNpv(5%,EarningAmt,EarningDate,J) → $42,838.71

Chapter Financial functions

280 Analytica Users Guide

12

Chapter 13

Expressing
Uncertainty

In this Chapter

This chapter shows you how to:

• Choose a distribution

• Define a Variable as a distribution

• Use Analytica’s built-in probability
distributions

Chapter Choosing an appropriate distribution

Analytica User Guide 283

13

13: Expressing uncertainty
Analytica makes it easy to model and analyze uncertainties even
if you have minimal background in probability and statistics. The
graphs below review several key concepts from probability and
statistics that will help you understand the probabilistic modeling
facilities in Analytica. This chapter assumes that you have
encountered most of these concepts before, but possibly in the
distant past. If you need more information, see the Glossary or
refer to an introductory text on probability and statistics.

Choosing an appropriate distribution
With Analytica you can express uncertainty about any Variable by
using a probability distribution. You may base the distribution on
available relevant data, on the judgment of a knowledgeable indi-
vidual, or on some combination of data and judgment.

Mode Median

Mean

Lower
Tail

P
ro

ba
bi

lit
y

D
en

si
ty

Lower
Bound

1.0

25%ile 50%ile 75%ile Upper
Bound

.5

.75

0.0

.25

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Upper
Tail

Uncertain quantity X

Chapter Choosing an appropriate distribution

284 Analytica Users Guide

13
Answer the following questions about the uncertain quantity to
select the most appropriate kind of distribution:

• Is it discrete or continuous?

• If continuous, is it bounded?

• Does it have one mode or more than one?

• Is it symmetric or skewed?

• Should you use a standard or a custom distribution?

We will discuss how to answer each of these in turn.

Is the quantity discrete or continuous?
When trying to express uncertainty about a quantity, the first tech-
nical question is whether the quantity is discrete or continuous.

A discrete quantity has a finite number of possible values—for
example, the gender of a person or the country of a person’s
birth. Logical or Boolean Variables are a type of discrete Vari-
able with only two values, true or false, sometimes coded as yes
or no, present or absent, or 1 or 0—for example, whether a per-
son was born before January 1, 1950, or whether a person has
ever resided in California.

A continuous quantity can be represented by a real number, and
has infinitely many possible values between any two values in its
domain. Examples are the quantity of an air pollutant released
during a given period of time, the distance in miles of a residence
from a source of air pollution, and the volume of air breathed by a
specified individual during one year.

For a large discrete quantity, such as the number of humans
residing within 50 miles of Disneyland on December 25, 1980, it
is often convenient to treat it as continuous. Even though you
know that the number of live people must be an integer, you may
want to represent uncertainty about the number with a continuous
probability distribution.

Conversely, it is often convenient to treat continuous quantities as
discrete by partitioning the set of possible values into a small
finite set of partitions. For example, instead of modeling human
age by a continuous quantity between 0 and 120, it is often con-
venient to partition people into infants (age < 2 years), children (3
to 12), teenagers (13 to 19), young adults (20 to 40), middle-aged
(41 to 65), and seniors (over 65 years). This process is termed

Chapter Choosing an appropriate distribution

Analytica User Guide 285

13
discretizing. It is often convenient to discretize continuous quan-
tities before assessing probability distributions.

Does the quantity have bounds?
If the quantity is continuous, it is useful to know if it is bounded
before choosing a distribution—that is, does it have a minimum
and/or maximum value?

Some continuous quantities have exact lower bounds. For exam-
ple, a river flow cannot be less than zero (assuming the river can-
not reverse direction). Some quantities also have exact upper
bounds. For example, the percentage of a population that is
exposed to an air pollutant cannot be greater than 100%.

Most real world quantities have de facto bounds—that is, you can
comfortably assert that there is zero probability that the quantity
would be smaller than some lower bound, or larger than some
upper bound, even though there is no precise way to determine
the bound. For example, you can be sure that no human could
weigh more than 5000 pounds; you might be less sure whether
500 pounds is an absolute upper bound.

Many standard continuous probability distributions, such as the
normal distribution, are unbounded. In other words, there is some
probability that a normally distributed quantity is below any finite
value, no matter how small, and above any finite value, no matter
how large.

Nevertheless, the probability density drops off quite rapidly for
extreme values, with near exponential decay, in fact, for the nor-
mal distribution. Accordingly, people often use such unbounded
distributions to represent real world quantities that actually have
finite bounds. For example, the normal distribution generally pro-
vides a good fit for the distribution of heights in a human popula-
tion, even though you may be certain that no person's height is
less than zero or greater than 12 feet.

How many modes does it have?
The mode of a distribution is its most probable value. The mode
of an uncertain quantity is the value at the highest peak of the
density function, or, equivalently, at the steepest slope on the
cumulative probability distribution.

Chapter Choosing an appropriate distribution

286 Analytica Users Guide

13
Important questions to ask about a distribution are how many
modes it has, and approximately where it, or they, are? Most dis-
tributions have a single mode, but some have several and are
known as multimodal distributions.

If a quantity has two or more modes, you can usually view it as a
combination of two or more populations. For example, the distri-
bution of ages in a daycare center at leaving time might include
one mode at age 3 for the children and another mode at age 27
for the parents and caretakers. There is obviously a population of
children and a population of parents. It is generally easier to
decompose a multimodal quantity into its separate components
and assess them separately than to assess a multimodal distribu-
tion. You can then assess a unimodal (single mode) probability
distribution for each component, and combine them to get the
aggregate distribution. This approach is often more convenient,
because it lets you assess single-mode distributions, which are
easier to understand and evaluate than multimodal distributions.

Is the quantity symmetric or skewed?
A symmetrical distribution is symmetrical about its mean. A
skewed distribution is asymmetric. A positively skewed distribu-
tion has a thicker upper tail than lower tail; and vice versa, for a
negatively skewed distribution.

Probability distributions in environmental risk analysis are often
positively skewed. Quantities such as source terms, transfer fac-
tors, and dose-response factors, are typically bounded below by
zero. There is more uncertainty about how large they might be
than about how small they might be.

A standard or custom distribution?
The next question is whether to use a standard parametric distri-
bution—for example, normal, lognormal, or beta—or a custom
distribution, where the assessor specifies points on the cumula-
tive probability or density function.

Considering the physical processes that generate the uncertainty
in the quantity may suggest that a particular standard distribution
is appropriate. More often, however, there is no obvious standard
distribution to apply.

It is generally much faster to assess a standard distribution than a
full custom distribution, because standard distributions have

mode

modes

Symmetric

Positive Skew Negative Skew

Chapter Defining a Variable as a distribution

Analytica User Guide 287

13
fewer parameters, typically from two to four. You should usually
start by assigning a simple standard distribution to each uncertain
quantity using a quick judgment based on a brief perusal of the lit-
erature or telephone conversation with a knowledgeable person.
You should assess a custom distribution only for those few uncer-
tain inputs that turn out to be critical to the results. Therefore, it is
important to be able to select an appropriate standard distribution
quickly for each quantity.

Defining a Variable as a distribution
To define a Variable as an Analytica probability distribution, first
select the Variable and open either the Variable’s Object window
or the Attribute panel of the diagram (see “The Attribute panel” on
page 34) with Definition selected from the Attribute popup menu
(see “The Attribute popup menu” on page 35).

To define the distribution:

1. Click on the Expression popup menu above the definition field
and select Distribution.

The Object Finder opens, showing the Distribution library.

Chapter Defining a Variable as a distribution

288 Analytica Users Guide

13

2. Select the distribution you wish to use.

3. Enter the values for the parameters. You can use an
expression or refer to other Variables by name in the
parameter fields.

4. Click on OK to accept the distribution.

If the parameters of the distribution are single numbers, a button
appears with the name of the distribution, indicating that the Vari-
able is defined as a distribution. To edit the parameters, click on
this button.

If the parameters of the distribution are complex expressions, the
distribution displays as an expression. For example,

Normal((Price/Mpy) * Mpg, Mpg/10)

Library popup menu: Distribution
library is selected

Parameters to the
distribution

Example probability density,
indicating parameters

Button with the name of the
distribution

Parameters of the distribution

Chapter Including a distribution in a definition

Analytica User Guide 289

13
Entering a distribution as an expression

Alternatively, you can directly enter a distribution as an expres-
sion:

1. Set the cursor in the definition field and type in the distribution
name and parameters, e.g.
Normal(.105,0.015)

2. Press Alt-enter or click on the button.

You can also paste a distribution from the Distribution library in
the Definition menu (see “Pasting from a library in the Definition
menu” on page 155).

You can edit a distribution as an expression, whether it was
entered as a distribution from the Distribution library or as an
expression, by selecting expr from the Expression popup menu.

Including a distribution in a definition
You can enter a distribution anywhere in a definition, including in
a cell of an Edit Table. Thus, you can have arrays of distributions.

To enter a distribution:

1. Set the insertion point where you wish to enter the distribution
in the definition field or Edit Table cell.

2. Enter the distribution in any of the following ways:

• Type in the name of the distribution.

• Paste it from the from the Distribution Library under the
Definition menu.

• Select Paste Identifier from the Definition menu to
paste it from the Object Finder.

Chapter Probabilistic calculation

290 Analytica Users Guide

13
3. Type in missing parameters, or replace parameters enclosed

as <<x>>.

Probabilistic calculation
Analytica performs probabilistic evaluation of probability distribu-
tions through simulation—by computing a random sample of val-
ues from the actual probability distribution for each uncertain
quantity. The result of evaluating a distribution is represented
internally as an array of the sample values, indexed by Run. Run
is an index Variable that identifies each sample iteration by an
integer from 1 to Samplesize.

You can display a probabilistic value using a variety of uncertainty
view options—the mean, statistics, probability bands, probability
density (or mass function), and cumulative distribution function
(see “Uncertainty view options” on page 52). All these views are
derived or estimated from the underlying sample array, which you
can inspect using the last uncertainty view, Sample.

Example A: Normal(10,2) →

Iteration (Run)

Analytica Note: The values in a sample are generated at random
from the distribution; if you try this example and display the result
as a table, you may see values different from those shown here.
To reproduce this example, reset the random number seed to 99
and use the default sampling method and random number method
(see “Uncertainty Setup dialog box” on page 291).

For each sample run, a random value is generated from each
probability distribution in the model. Output Variables of uncertain
Variables are calculated by calculating a value for each value of
Run.

Example B: Normal(5,1) →

Iteration (Run)

C: A + B →

1 2 3 4 5 6
10.74 13.2 9.092 11.44 9.519 13.03

1 2 3 4 5 6
5.09 4.94 4.65 6.60 5.24 6.96

Chapter Uncertainty Setup dialog box

Analytica User Guide 291

13
Iteration (Run)

Notice that each sample value of C is equal to the sum of the cor-
responding values of A and B.

To control the probabilistic simulation, as well as views of proba-
bilistic results, use the Uncertainty Setup dialog box (see “Uncer-
tainty Setup dialog box” on page 291).

Analytica Note: If you try to apply an array reducing function (see
“Array-reducing functions” on page 247) to a probability
distribution across Run, Analytica returns the distribution's Mid
value.

Example:
X: Beta(2,3)
Mid(X) → 0.3857 and Max(X,Run) → 0.3857
To evaluate the input parameters probabilistically and reduce
across Run, use Sample() (see page 340).

Example:
Max(Sample(X),Run) → 0.8892

Uncertainty Setup dialog box
Use the Uncertainty Setup dialog box to inspect and change the
sample size, sampling method, statistics, probability bands, and
samples per plot point for probability distributions. All settings are
saved with your model.

To open the Uncertainty Setup dialog box, select Uncertainty
Options... from the Result menu or Ctrl-U. To set values for a
specific Variable, select the Variable before opening the dialog
box.

The five options for viewing and changing information in the
Uncertainty Setup dialog box can be accessed using the Analysis
option popup menu.

1 2 3 4 5 6
15.83 18.13 13.75 18.04 14.76 19.99

Chapter Uncertainty Setup dialog box

292 Analytica Users Guide

13
Uncertainty Sample

To change the sample size or sampling method for the model,
select the Uncertainty Sample option from the Analysis
options popup menu.

The default dialog box shows only a field for sample size. To view
and change the sampling method, random number method, or
random seed, press the More Options button.

Sample size
This number specifies how many runs or iterations Analytica per-
forms to estimate probability distributions. Larger sample sizes
take more time and memory to compute, and produce smoother
distributions and more precise statistics. See “Selecting the sam-
ple size” on page 499 for guidelines on selecting a sample size.

Press here to see
additional uncertainty

sample parameters.

Chapter Uncertainty Setup dialog box

Analytica User Guide 293

13
The sample size must be between 2 and 32,000. You can access
this number in expressions in your models as the system Variable
Samplesize.

Sampling method
The sampling method is used to determine how to generate a
random sample of the specified sample size, m, for each uncer-
tain quantity, X. Analytica provides three options:

Simple Monte Carlo
The simplest sampling method is known as Monte Carlo, named
after the randomness prevalent in games of chance, such as at
the famous casino in Monte Carlo. In this method, each of the m
sample points for each uncertainty quantity, X, is generated at
random from X with probability proportional to the probability den-
sity (or probability mass for discrete quantities) for X. Analytica
uses the inverse cumulative method; it generates m uniform ran-
dom values, ui for i=1,2,...m, between 0 and 1, using the specified
random number method (see below). It then uses the inverse of
the cumulative probability distribution to generate the corre-
sponding values of X,

Xi where P() = ui for i=1,2,...m.

With the simple Monte Carlo method, each value of every random
Variable X in the model, including those computed from other ran-
dom quantities, is a sample of m independent random values
from the true probability distribution for X. You can therefore use
standard statistical methods to estimate the accuracy of statistics,
such as the estimated mean or fractiles of the distribution, as for
example described in “Selecting the sample size” on page 499

Median Latin hypercube (the default method)
With median Latin hypercube sampling, Analytica divides each
uncertain quantity X into m equiprobable intervals, where m is the
sample size. The sample points are the medians of the m inter-
vals, that is, the fractiles

Xi where P() = (i-0.5)/m, for i=1,2,...m.

These points are then randomly shuffled so that they are no
longer in ascending order, to avoid nonrandom correlations
among different quantities.

x Xi≤

x Xi≤

Chapter Uncertainty Setup dialog box

294 Analytica Users Guide

13
 Random Latin hypercube

The random Latin hypercube method is similar to the median
Latin hypercube method, except that instead of using the median
of each of the m equiprobable intervals, Analytica samples at ran-
dom from each interval. With random Latin hypercube sampling,
each sample is a true random sample from the distribution. How-
ever, the samples are not totally independent.

Choosing a sampling method
The advantage of Latin hypercube methods is that they provide
more even distributions of samples for each distribution than sim-
ple Monte Carlo sampling. Median Latin hypercube is still more
evenly distributed than random Latin hypercube. If you display
the PDF of a Variable that is defined as a single continuous distri-
bution, or is dependent on a single continuous uncertain Variable,
using median Latin hypercube sampling, the distribution will usu-
ally look fairly smooth even with a small sample size (such as 20),
whereas the result using simple Monte Carlo will look quite noisy.

If the Variable depends on two or more uncertain quantities, the
relative noise-reduction of Latin hypercube methods is reduced. If
the result depends on many uncertain quantities, the perfor-
mance of the Latin hypercube methods may not be discernibly
better than simple Monte Carlo. Since the median Latin hyper-
cube method is sometimes much better, and almost never worse
than the others, Analytica uses it as the default method.

Very rarely, median Latin hypercube can produce incorrect
results, specifically when the model has a periodic function with a
period similar to the size of the equiprobable intervals. For exam-
ple, with

X: Uniform(1, Samplesize)

Y: Sin(2*Pi*X)

median Latin hypercube method will give very poor results. In
such cases, you should use random Latin hypercube or simple
Monte Carlo. If your model has no periodic function of this kind,
you do not need to worry about the reliability of median Latin
hypercube sampling.

Chapter Uncertainty Setup dialog box

Analytica User Guide 295

13
Random number method

The random number method is used to determine how random
numbers are generated for the probability distributions. Analytica
provides three different methods for calculating a series of pseu-
dorandom numbers.

Minimal Standard (the default method)

The Minimal Standard random number generator is an implemen-
tation of Park and Miller’s Minimal Standard (based on a multipli-
cative congruential method) with a Bays-Durham shuffle. It gives
satisfactory results for less than 100,000,000 samples.

L’Ecuyer
The L’Ecuyer random number generator is an implementation of
L’Ecuyer’s algorithm, based on a multiplicative congruential
method, which gives a series of random numbers with a much
longer period (sequence of numbers that repeat). Thus, it pro-
vides good random numbers even with more than 100,000,000
samples. It is slightly slower than the Minimal Standard generator.

Knuth
Knuth’s algorithm is based on a subtractive method rather than a
multiplicative congruential method. It is slightly faster than the
Minimal Standard generator.

Random seed
This value must be a number between 0 and 100,000,000 (108).
The series of random numbers starts from this seed value when:

• A model is opened

• The value in this field is changed

• The Reset once box is checked, and the Uncertainty Setup
dialog box is closed by clicking on the Accept or Set Default
button.

Reset once
Check the Reset once box to produce the exact same series of
random numbers.

Chapter Uncertainty Setup dialog box

296 Analytica Users Guide

13
Statistics option

To change the statistics reported when you select Statistics as
the uncertainty view for a result, select the Statistics option from
the Analysis option popup menu.

Probability Bands option
To change the probability bands displayed when you select Prob-
ability Bands as the uncertainty view for a result, select the
Probability Bands option from the Analysis option popup
menu.

Chapter Uncertainty Setup dialog box

Analytica User Guide 297

13
Probability density and cumulative probability options

To change how probability density or the cumulative probability
values are drawn or to change their resolution, select the respec-
tive option from the Analysis option popup menu.

Analytica estimates the probability density function and cumula-
tive distribution function, like other uncertainty views, from the
underlying array of sample values for each uncertain quantity. As
with any simulation-based method, each estimated distribution
will have some noise and variability from one evaluation to the
next.

Samples per plot point
This number controls the average number of sample values used
to estimate each point on the probability density function (PDF) or
cumulative distribution function (CDF) curves.

For a small number of samples per plot point (less than or equal
to 10), more points are each estimated from fewer sample values
and so are more susceptible to random noise. If the quantity is
defined by a single probability distribution, and if you use median
Latin hypercube method (the default), this noise will be slight and
the curve will look smooth. In other cases, the noise may have a
large effect, and using a larger number of samples per plot point
will produce a smoother curve. There is a trade-off; with larger

Chapter Uncertainty Setup dialog box

298 Analytica Users Guide

13
numbers the smoothing may miss details of the shape of the
curve. PDFs may be much more susceptible to random noise
than CDFs, so you may wish to use larger numbers for PDFs
than CDFs. Ultimately, to reduce the noise, use a larger sample
size (for details on selecting the sample size, see Appendix A, “”).

Equal probability steps
With this option, Analytica uses the sample to estimate a set of
m+! fractiles (quantiles), Xp, at equal probability intervals, where
p=0, q, 2q, ... 1, and q = 1/m. The cumulative probability is plotted
at each of the points Xp, increasing in equal steps along the verti-
cal axis. Points are plotted closer together along the horizontal
axis in the regions where the density is the greatest. In the proba-
bility density graph view, the areas under the density function
between successive fractiles are equal because they each repre-
sent the same probability, q. The density between two successive
fractiles is plotted at the mid point (on the horizontal axis) of the
two fractiles.

Equal X axis steps
With this option, Analytica estimates cumulative probability using
equally spaced points along the X axis. In the probability density
graph view, it shows a histogram where the height of each hori-
zontal is estimated as the fraction of the sample values that fall
within that X interval.

Chapter 14

Probability
Distributions

In this Chapter

This chapter shows you how to:

• Use Analytica’s built-in continuous
probability distributions

• Use Analytica’s discrete probability
table functions

• Use Analytica’s discrete probability
distributions

Chapter Built-in probability distributions

Analytica User Guide 301

14

14: Probability distributions
This chapter describes how to use probability distributions in
Analytica, both discrete and continuous probability distributions.
For either type of probability distribution, Analytica allows you to
use either a well-defined parametric distribution (such as a Nor-
mal or Uniform distribution) or to create a custom distribution.

Built-in probability distributions
Analytica has the following built-in probability functions in the dis-
tribution library. The continuous functions are described starting
at “Parametric Continuous distributions” on page 313 and the dis-
crete functions are described starting at “Parametic discrete dis-
tributions” on page 302.

Parametric
Discrete

Bernoulli() page 302 Custom
Discrete

Probtable() page 307

Binomial() page 303 Determtable() page 312

Geometric() page 304 Chancedist() page 312

Hypergeometric() page 304

Poisson() page 304 Custom
Continuous

Cumdist() page 323

Fractiles() page 324

Parametric
Continuous

Beta() page 313 Probdist() page 325

Certain() page 315 Truncate() page 326

Chisquared() page 315

Exponential() page 316 Multivariate Binormal() page 327

Gamma() page 316 Correlate_Dists()
page 328Logistic() page 317

Lognormal() page 318 Correlate_With()
page 328Normal() page 319

StudentT() page 320 Dirichlet() page 328

Triangular() page 321 Gaussian() page 328

Uniform() page 322 Multinomial() page 328

Weibull() page 322 SampleCovariance()
page 329

Chapter Parametic discrete distributions

302 Analytica Users Guide

14
Parametic discrete distributions

To define a Variable as a discrete probability distribution other
than probability table and view its Probability Mass Function, you
must first set its domain type and then assign the range of possi-
ble outcomes to its domain.

Analytica Note: When sample points are numeric, it can be
ambiguous as to whether a Variable is discrete or continuous. For
example, Poisson(15) will produce integer-numeric samples. If
you define a domain, that tells Analytica that it is to be treated as
discrete. Otherwise, Analytica guesses. If it guesses wrong (and
graphs a probability density, rather than a probability mass), you
can change this by changing the graph type to a solid bar graph
(for discrete), or to a histogram (for continuous).

To set a discrete domain type and assign domain values:

1. Select the Variable and open the Attribute panel of the
Diagram window (see “The Attribute panel” on page 34).

2. Select the Domain Attribute from the popup menu.

3. The domain type popup menu shows the default of
Continuous. Select either List of numbers or List of Labels.

4. Analytica displays a list containing one element. Enter the
domain values like any list (see “Creating a list” on page 216).

Analytica Note: The domain must include all the values that
appear in the sample of the discrete probability distribution. If it
does not, then the total Probability Mass Function will be less than
1.

Bernoulli (P)
Creates a discrete probability distribution with probability P of
result 1 and probability (1 - P) of result 0. P is a probability value

Chapter Parametic discrete distributions

Analytica User Guide 303

14
or array of probabilities, each between 0 and 1. The Bernoulli dis-
tribution is defined as:

If Uniform(0, 1) < P Then 1 Else 0

If P is greater than 1, the distribution is made up of all 1’s. If P is
less than 0, the distribution is made up of all 0’s.

Library Distribution

Example The domain, List of numbers, is [0, 1].

Bernoulli_ex: Bernoulli (0.3) →

Binomial(n, p)
Consider an event—such as a coin coming down heads—that
can be true or false in each trial—or each toss—with probability
p—it has a Bernoulli distribution. A binomial distribution describes
the number of times an event is true—e.g., the coin is heads —in
n independent trials—or tosses—where the event occurs with
probability p on each trial.

The relationship between the Bernoulli and binomial distributions
means that an alternative, if less efficient, way to define a Bino-
mial distribution function would be:

Function Binomial2(n, p)
Parameters: (n: Atomic; p)
Definition: Index i := 1..n;

Sum(FOR J := I DO Bernoulli(p), i)

The parameter n is qualified as Atomic to ensure that the
sequence 1..n is a valid one-dimensional index value. It allows
Binomial2 to array abstract if its parameters n or p are arrays.
See page 452 for details.

Chapter Custom Discrete probabilities

304 Analytica Users Guide

14
Geometric(p)

The geometric distribution describes the number of independent
Bernoulli trials until the first successful outcome occurs—for
example, the number of coin tosses until the first heads. The
parameter p is the probability of success on any given trial.

Hypergeometric(s, m, n)
The hypergeometric distribution describes the number of times
an event occurs in a fixed number of trials without replacement—
e.g., the number of red balls in a sample of s balls drawn without
replacement from an urn containing n balls of which m are red.
Thus, the parameters are:

s: The sample size—e.g., the number of balls drawn from an
urn without replacement. Cannot be larger than n.

m: The total number of successful events in the population—
e.g, the number of red balls in the urn.

n: The population size—e.g., the total number of balls in the
urn, red and non-red.

Poisson(m)
A Poisson process generates random independent events with a
uniform distribution over time and a mean of m events per unit
time. Poisson(m) generates the distribution of the actual number
of events that occur in one unit of time. You might use the Pois-
son distribution to model the number of sales per month of a low-
volume product, or the number of airplane crashes per year.

Custom Discrete probabilities

Probability Tables
To describe a Variable as a discrete uncertainty, Analytica pro-
vides a special kind of Edit Table called a probability table. (See
also “11: Arrays and indexes” on page 207.)

Creating a probability table
To define a Variable as a discrete probability distribution in a
probability table:

Chapter Custom Discrete probabilities

Analytica User Guide 305

14
1. Determine the Variable’s domain—the list of possible

outcomes.

2. Select the Variable and open one of the following:

The Variable’s Object window.

The Attribute panel of the Diagram window (see “The
Attribute panel” on page 34).

In the Attribute panel, select Definition from the Attribute
popup menu (see “The Attribute popup menu” on page 35) as
the Attribute to display.

3. Click on the Expression popup menu above the definition field
and select Probability Table.

If the Variable already has a definition, a dialog box confirms
that you wish to replace it.

Analytica Note: If the definition of a Variable is already a
probability table, a ProbTable button appears in the definition.
Click on it to see the Edit Table window (see “Viewing an array as
an Edit table” on page 209).

4. The Indexes dialog box opens to confirm your choices for the
indexes of the table. Only Variables with a domain of List of
numbers or List of labels are shown by default. The Variable
being defined is already listed as a selected index (with Self in
parentheses). Add or remove any other discrete inputs (or
other Index Variables).

Chapter Custom Discrete probabilities

306 Analytica Users Guide

14

Analytica Note: Self is required as an index of a probability table.
It refers to this Variable’s domain values.

5. Click on the OK button. An Edit Table window appears.

6. Enter the possible outcomes (the domain) in the first column.
If the outcomes are numeric, they must be in increasing order.

7. Enter the probability of each possible outcome in the second
column. (The probabilities should sum to 1.)

Example If P is a Variable whose value is a probability (between 0 and 1)
and the possible weather outcomes are sunny and rainy, then the
following is a probability table for weather:

Editing the domain
The domain Attribute has values (the possible outcomes) and a
type. In a probability table, you can edit the values directly in the
first column of the Edit Table window, as an index of the table.
Each entry must be a number or label (text); it cannot be an
expression.

Domain

Chapter Custom Discrete probabilities

Analytica User Guide 307

14
You can also edit the domain values in the Object window and
Attribute panel.

Changing the domain type
The domain popup menu shows the domain type. For a probabil-
ity table, the domain type is either a list of numbers or a list of
labels and is set by your entry in the first row’s cell in the Edit
Table.

To change the domain type, press on the popup menu and select
the desired type.

Expression view of probability table
When you select the expression view of a definition that was cre-
ated as a probability table, it has the following appearance. You
cannot create a probability table as an expression.

Probtable (I1, I2, … In) (p1, p2, p3, … pm)
Describes an n-dimensional conditional probability table, indexed
by the indexes I1, I2, … In. One index must be Self.

p1, p2, p3, … pm are the probabilities in the array.

Example The Weather probability table on page 306, when viewed as an
expression, looks like this:

Probtable (Self)(P, (1-P))

The domain values do not appear in the expression view.

Domain values

Domain type

Chapter Custom Discrete probabilities

308 Analytica Users Guide

14
Using labels in a probability table

A discrete probability distribution can describe the probability that
a Variable falls into a category. For example:

In a probability table, Analytica assumes that label outcomes are
ordered, with the first value being the minimum and the last value
being the maximum. In the first example above, this ordering has
meaning; in the second example above, it does not. This ordering
is used to compute the following statistics. Use these statistics
with caution, since they are a function of the order sequence of
the qualitative outcomes.

Also use caution applying the logical operators (>,<,=) to a label
valued distribution. The logical operators use the ASCII sort
sequence, not the ordering of label outcomes.

Statistics available for label valued distributions

Frequency (use Frequency(X,X))

Mid Value (Median)

Min

Max

Probability bands

Sample

Statistics not available for label valued distributions

Correlation

Kurtosis

Getfract

Mean

Rankcorrel

Skewness

Standard deviation

Variance

Chapter Custom Discrete probabilities

Analytica User Guide 309

14
Adding dimensions to a probability table

You may wish to add dimensions to a probability table. For exam-
ple, in the Weather probability table (see page 306), you may
wish to distinguish between daylight and evening, with different
probabilities for rainy weather in daylight and evening. So you
would add a dimension with two values: daylight and evening.

You can add indexes or decision Variables defined as lists, similar
to adding indexes to an Edit Table, as follows:

1. Open the Edit Table window by clicking on the ProbTable
button.

2. Click on the Indexes () button to open the Indexes dialog
box.

3. Click in the All Variables check box above the left hand list.

4. Move the desired Variables to add them as indexes.

5. Click on the OK button to accept the changes.

Creating a conditional dependency
After you have defined several probability tables, you may want
to make some probabilities in a probability table conditional on
the outcomes of other Variables. This is called a conditional
dependency.

To create a conditional dependency in a probability table:

1. Open the Edit Table window by clicking on the ProbTable
button.

2. Click on the Indexes () button. Other Variables that are
defined as probability tables appear in the list of domains.

3. Move the Variables you wish to be conditionally dependent, to
add them as indexes.

4. Click on the OK button to accept the changes.

The resulting table is indexed by both the domain of your Variable
and the domains of the conditionally dependent Variables.

Analytica Note: You must have already specified the Variables
as probability tables, before adding them with the Indexes dialog
box.

Chapter Custom Discrete probabilities

310 Analytica Users Guide

14
Deterministic conditional tables

Sometimes a Variable’s value is deterministic (not uncertain) and
conditionally dependent on the outcomes of discrete uncertain
Variables. The Determtable() function defines this dependency.

The Determtable() function appears similar to an Edit Table or a
probability table. Each cell contains non-probabilistic (determinis-
tic) values. At least one index is a probability table (a discrete
probabilistic Variable). Other indexes are typically decision Vari-
ables defined as lists. The Determtable() function returns an
array that is reduced across its probabilistic index(es). The evalu-
ation result shows the value considering the uncertain distribution
of each probabilistic index.

Creating a determtable
To define a Variable as a determtable:

1. Determine the Variable’s domain—the list of possible
outcomes.

2. Press the Expression popup menu above the definition field
and select Other.

Analytica opens the Object Finder dialog box (see “Object
Finder dialog box” on page 152).

3. Select Array from the Library popup menu and select
Determtable from the function list.

Chapter Custom Discrete probabilities

Analytica User Guide 311

14

4. Click on the Indexes button to specify discrete probability
Variables as inputs. The Indexes dialog box appears.

5. Click on OK to accept the indexes and open an Edit Table
window.

6. Enter the outcomes corresponding to each outcome of your
discrete inputs.

Expression view of a determtable
When you select the expression view of a definition that was cre-
ated as a determtable, it has the following appearance. You can-
not initially create a determtable as an expression.

Chapter Custom Discrete probabilities

312 Analytica Users Guide

14
Determtable(I1, I2, … In) (r1, r2, r3, … rm)

Describes an n-dimensional conditional deterministic table,
indexed by the indexes I1, I2, … In. The last index, In, is the
innermost index, varying the most rapidly. r1, r2, … rm are the
outcomes in the array. Determtable returns an array that is
reduced across its indexes that are probability tables.

Example In “Creating a probability table” on page 304, Weather is defined
as a probability table. If P, the probability of "sunny", is 0.4, then
the probability of "rainy" is 0.6. Party location is a decision Vari-
able with values ['outdoors', 'porch','indoors']. Value to
Me is a determtable, containing utility values (or "payoffs") for
each combination of Party location and Weather:

Evaluating Value to Me gives the value of each party location,
considering the uncertain distribution of Weather. The mean
value of Value to Me is the expected utility.

Chancedist (P, A, I)
Creates a discrete probability distribution. A is an array of out-
comes, and P is the corresponding array of probabilities. A and P
must both be indexed by I.

The values of A must be unique; if A is numeric the values must
be increasing.

Chapter Parametric Continuous distributions

Analytica User Guide 313

14
When to use Use Chancedist() instead of the probability table when:

• The array of outcomes A is multidimensional, or

• The outcomes and probabilities arrays are defined as other
Variables; the Variables can be used in other parts of your
model.

Library Distribution

Example Index_b:

Array_q:
Index_b

The domain, List of labels, is ['Red','White','Blue'].
Chancedist(Array_q,Index_b,Index_b) →

Parametric Continuous distributions

Analytica Note: To reproduce the continuous distribution graphs
in this chapter, use a sample size of 1000.

Beta (X, Y, lower, upper)
Creates a distribution of numbers between 0 and 1 with
representing the mean, if the optional parameters lower and

Red White Blue

Red White Blue
0.3 0.2 0.5

X
X Y+()

Chapter Parametric Continuous distributions

314 Analytica Users Guide

14
upper are omitted. For bounds other than 0 and 1, specify the
optional lower and upper bounds to offset and expand the distri-
bution.

X and Y must be positive.

When to use Use a beta distribution if the uncertain quantity is bounded by 0
and 1 (or 100%), is continuous, and has a single mode. This dis-
tribution is particularly useful for modeling an opinion about the
fraction of a population that has some characteristic. For exam-
ple, if you have observed n members of the population, of which r
display the characteristic c, you can represent the uncertainty
about the true fraction with c using a beta distribution with param-
eters X = r and Y = n - r.

If the uncertain quantity has lower and upper bounds other than 0
and 1, include the lower and upper bounds parameters to obtain
a transformed beta distribution. The transformed beta is a very
flexible distribution for representing a wide variety of bounded
quantities.

Library Distribution

Examples Beta (5, 10) →

Chapter Parametric Continuous distributions

Analytica User Guide 315

14
Beta (5, 10, 2, 4) →

Certain (U)
Returns the value of U.

Library Distribution

When to use Use Certain() when an input node is defined as a distribution
(see “Using input nodes” on page 161), and, in browse mode, you
want to replace the distribution with a non-probabilistic value.

Example Index_a:

Array_p:
Index_a

Certain (Array_p) →

ChiSquared (d)
The ChiSquared distribution with d degrees of freedom describes
the distribution of a Chi-Squared metric defined as

1 2 3

1 2 3
0.3 0.4 0.3

1 2 3
0.3 0.4 0.3

Chi2 yi
2

i 1=
n

∑=

Chapter Parametric Continuous distributions

316 Analytica Users Guide

14
where each yi is independently sampled from a standard normal
distribution and d = n -1 . The distribution is defined over non-
negative values.

The Chi-squared distribution is commonly used for analyses of
second moments, such as analyses of variance and contingency
table analyses. It can also be used to generate the F distribution.
Suppose

Variable V := ChiSquared(k)
Variable W := ChiSquared(m)
Variable S := (V/k)*(W/m)

S is distributed as an F distribution with k and m degrees of free-
dom. The F distribution is useful for the analysis of ratios of vari-
ance, such as a one-factor between-subjects analysis of
variance.

Exponential(r)
Describes the distribution of times between successive indepen-
dent events in a Poisson process with an average rate of r events
per unit time. The rate r is the reciprocal of the mean of the Pois-
son distribution—the average number of events per unit time. Its
standard deviation is also 1/r.

A model with exponentially distributed times between events is
said to be Markov, implying that knowledge about when the next
event occurs does not depend on the system's history or how
much time has elapsed since the previous event. More general
distributions such as the gamma or Weibull do not exhibit this
property.

Gamma(A, B)
Creates a gamma distribution with shape parameter A and scale
parameter B. The scale parameter, B, is optional and defaults to
B=1. The gamma distribution is bounded below by zero (all sam-
ple points are positive) and is unbounded from above. It has a
theoretical mean of and a theoretical variance of .
When , the distribution is unimodal with the mode at

. An exponential distribution results when . As
, the gamma distribution approaches a normal distribution

in shape.

The gamma distribution encodes the time required for A events to
occur in a Poisson process with mean arrival time of B.

A B⋅ A B2⋅
A 1>

A 1–() B⋅ A 1=
A ∞→

Chapter Parametric Continuous distributions

Analytica User Guide 317

14

Analytica Note: Some textbooks use Rate=1/B, instead of B, as
the scale parameter.

When to use Use the gamma distribution with A>1 if you have a sharp lower
bound of zero but no sharp upper bound, a single mode, and a
positive skew. The Lognormal distribution is also an option in this
case. Gamma() is especially appropriate when encoding arrival
times for sets of events. A gamma distribution with a large value
for A is also useful when you wish to use a bell-shaped curve for
a positive-only quantity.

Library Distribution

Examples Gamma distributions with mean=1:

Logistic (m, s)
The logistic distribution describes a distribution with a cumulative
density given by

Gamma(1,1)

Gamma(2,1/2)

Gamma(3,1/3)

Gamma(4,1/4)

Gamma(1/2,2)

F x() 1

1 e
x m–()–
s

+

---------------------------=

Chapter Parametric Continuous distributions

318 Analytica Users Guide

14
The distribution is symmetric and unimodal with tails that are
heavier than the normal distribution. It has a mean and mode of
m, variance of s2π2/3 and kurtosis of 6/5 and no skew. The scale
parameter, s, is optional and defaults to 1.

The logistic distribution is particularly convenient for determining
dependent probabilities using linear regression techniques,
where the probability of a binomial event depends monotonically
on a continuous Variable x. For example, in a toxicology assay, x
may be the dosage of a toxin, and p(x) the probability of death for
an animal exposed to that dosage. Using p(x) = F(x), the logit of
p, given by

Logit(p(x)) = Ln(p(x) / (1-p(x))) = x/s - m/s

has a simple linear form. This linear form lends itself to linear
regression techniques for estimating the distribution—for exam-
ple, from clinical trial data.

Example Logistic(10, 10)

Lognormal (median, gsdev)
Creates a lognormal distribution with median of median and geo-
metric standard deviation of gsdev. The geometric standard devi-
ation must be 1 or greater. The range [median/gsdev,
median × gsdev] encloses about 68% of the probability. Gsdev is
sometimes also known as the uncertainty factor or error fac-
tor.) Median and gsdev must be positive.

Chapter Parametric Continuous distributions

Analytica User Guide 319

14
The log of a lognormal quantity has a normal distribution with
mean of Ln(median) and standard deviation of Ln(gsdev).

When to use Use the lognormal distribution if you have a sharp lower bound of
zero but no sharp upper bound, a single mode, and a positive
skew. The gamma distribution is also an option in this case. This
distribution is particularly appropriate if you believe that the
uncertain quantity is the product (or ratio) of a large number of
independent random Variables.

Library Distribution

Examples Lognormal(5, 2) →

The case of gsdev=1 gives a delta function (spike) at median.
Lognormal(5, 1) →

Normal (mean, stddev)
Creates a normal or Gaussian probability distribution with mean
and standard deviation stddev. The standard deviation must be 0

Chapter Parametric Continuous distributions

320 Analytica Users Guide

14
or greater. The range [mean-stddev, mean+stddev] encloses
about 68% of the probability.

When to use Use a normal distribution if the uncertain quantity is unimodal and
symmetric and the upper and lower bounds are unknown, possi-
bly very large or very small (unbounded). This distribution is par-
ticularly appropriate if you believe that the uncertain quantity is
the sum or average of a large number of independent, random
quantities.

Library Distribution

Example Normal(30, 5) →

StudentT(d)
The Student T describes the distribution of the deviation of a
sample mean from the true mean when the samples are gener-
ated by a normally distributed process centered on the true
mean. The T statistic is:

T = (m - x)/(s Sqrt(n))

where x is the sample mean, m is the actual mean, s is the sam-
ple standard deviation, and n is the sample size. T is distributed
according to Students-T with d = n-1 degrees of freedom.

The StudentT distribution is often used to test the statistical
hypothesis that a sample mean is significantly different from zero.
If x1..xn measurements are taken to test the hypothesis m>0,

GetFract(StudentT(n-1),0.95)

is the acceptance threshold for the T statistic. If T is greater than
this fractile, we can reject the null hypothesis (that m<=0) at 95%
confidence. When using GetFract for hypothesis testing, be sure

Chapter Parametric Continuous distributions

Analytica User Guide 321

14
to use a large sample size, since the precision of this computation
improves with sample size.

The Student T can also be useful for modeling the power of hypo-
thetical experiments as a function of the sample size n, without
having to model the outcomes of individual trials.

Samples from the Student T distribution are generated using the
Monte Carlo sampling method only, regardless of the Uncertainty
Settings. Latin Hypercube methods for sample generation are not
available.

Example StudentT(8)

Triangular (min, mode, max)
Creates a triangular distribution, with minimum min, mode mode,
and maximum max. Min must be not be greater than mode, and
mode must not be greater than max.

When to use Use the triangular distribution when you have the bounds and the
mode, but have little other information about the uncertain quan-
tity.

Library Distribution

Chapter Parametric Continuous distributions

322 Analytica Users Guide

14
Example Triangular(2, 7, 10) →

Uniform (min, max)
Creates a uniform distribution between values min and max.

When to use If you know nothing about the uncertain quantity other than its
bounds, a uniform distribution between the bounds is appealing.
However, situations in which this is truly appropriate are rare.
Usually one end, or the middle, of the range is more likely than
the rest; that is, the quantity has a mode. In such cases, a beta or
triangular distribution is a better choice.

Library Distribution

Example Uniform(5, 10) →

Weibull(n, s)
The Weibull distribution has a cumulative density given by

for t >= 0.

Chapter Custom continuous distributions

Analytica User Guide 323

14

It is similar in shape to the gamma distribution, but tends to be
less skewed and tail-heavy.

The Weibull distribution is often used to represent failure time in
reliability models. In such models, may represent the propor-
tion of devices that experience a failure within the first x time units
of operation, the number of insurance policy holders that file a
claim within x days.

Example Weibull(10, 4) →

Custom continuous distributions

Cumdist (P, R, I)
Specifies a continuous probability distribution by an array of
cumulative probabilities, P, for an array of corresponding outcome
values, R, for the quantity. Either R must be an index of P, or P
and R must have an index in common. If P or R have more than

f x() 1 e

t
s
--⎝ ⎠

⎛ ⎞–
n

–=

f x()

Chapter Custom continuous distributions

324 Analytica Users Guide

14
one index, you must specify the relevant index for linking P and R
as a third parameter, I.

Cumdist() uses linear interpolation of the cumulative distribution
between the specified points, which implies a piecewise uniform
distribution.

The values of P must be non-decreasing. P’s first value must be
0, and its last value must be 1. The values of R must be increas-
ing.

Library Distribution

Example Array_b:
Index_a

Array_x:
Index_a

CumDist(Array_b, Array_x) →

Fractiles (L)
Specifies a continuous probability distribution by an array of
evenly spaced fractiles, L. L must be a one-dimensional array of
non-decreasing numbers. If L contains n+1 numbers, then Li is
the i/n fractile—that is, for an uncertain quantity, x,
P(x ≤ Li) = i/n. Fractiles() uses linear interpolation on the
cumulative distribution between the specified fractiles, which
implies a piecewise uniform distribution.

1 2 3
0 0.6 1.0

1 2 3
10 20 30

Chapter Custom continuous distributions

Analytica User Guide 325

14
If any value in L is probabilistic, its mid value is used to obtain the
fractile.

Library Distribution

Example The following definition describes a distribution over the range 0
to 120 (0 and 100% fractiles), with its median at 45 (50% fractile),
and quartiles at 30 and 60 (25% and 75% fractiles):

Fractiles([0, 30, 45, 60, 120]) →

Probdist (P, R, I)
Specifies a continuous probability distribution as an array of prob-
ability density values, P, for an array of corresponding outcome
values, R, for the quantity. Probdist() performs a linear interpo-
lation between the points on the density function. The values of P
must be nonnegative. They will be normalized so that the total
probability enclosed is 1.0. The values of R must be increasing.

The values of P should start and end at 0. If the first (or last) value
of P is not zero, Analytica assumes zero at 2R1 - R2 (or 2Rn - Rn-
1).

Either R must be an index of P, or P and R must have an index in
common. If P or R have more than one index, you must specify
the relevant index for linking P and R as a third parameter, I.

Library Distribution

Example Array_p:
Index_a

Array_r:

1 2 3 4 5 6
0 0.4 0.2 0.5 0.2 0

Chapter Custom continuous distributions

326 Analytica Users Guide

14
Index_a

Probdist(Array_p, Array_r) →

Truncate (Dist, X)
Truncates a probabilistic value Dist at and below deterministic
value X. If Dist is not a distribution, Truncate returns Dist.

Truncate does not discard sample values; it generates a new
complete sample for the quantity with the same probability distri-
bution as Dist above X, and 0 below X.

Since Truncate() resamples from the truncated distribution, the
result will be nearly independent of Dist. Hence, importance and
other measures that depend on correlations with Dist or with
probabilistic Variables on which Dist depends will be near zero,
which may be misleading.

Library Distribution

1 2 3 4 5 6
10 15 20 25 30 35

Chapter Multivariate distributions

Analytica User Guide 327

14
Examples Mpg: Normal(28, 5)

Truncate(Mpg, 21) →

To truncate a distribution at or above a specified value, use:
-Truncate(-Dist, -X)
-Truncate(-Mpg, -32) →

Multivariate distributions
Analytica 3.1 comes with a Multivariate Distributions library con-
taining functions for handling multivariate distribtions. To add this
library to your model see “Adding library to a model” on page 405.
The Multivariate Distributions library contains the following func-
tions.

Binormal(Mean_Vector, SDev_Vector, I, CorrelationCoef)
Binormal returns a two-dimensional normal (or bivariate Gauss-
ian) distribution with the indicated means (speciffied by a vector

Chapter Multivariate distributions

328 Analytica Users Guide

14
of means) and separate standard deviations (also specified by a
vector, the standard deviations must be positive) and the speci-
fied correlation coefficient. The index I, must have exactly two
elements, and the standard deviations must be indexed by I.

Correlate_Dists(Distributions, RankCorrelations, I, J)
Correlate_Dists reorders the samples in Distributions so that
they match the desired rank correlations between distributions as
closely as possible. Rank correlations must be positive and the
valus on the diagonal must all be 1.

Correlate_With(Sample, ReferenceSample, RankCorrelation)
Correlate_Withs reorders the samples of Samples so that the
result is correlated with ReferenceSample with a rank correlation
as close to RankCorrelation as possible. I.e., to generate a log-
Normal distribution that is highly correlated with Sample1, use
Correlate_With(LogNormal(2,3), Sample1, 0.8)

Dirichlet(alpha, N)
Dirichlet returns a Dirichlet distribution with I parameters alphai
(all greater than 0). Each sample of a Dirichlet distribution pro-
duces a random vector whose elements sum to 1. The Dirichlet
distribution is the multidimensional generalization of the beta dis-
tribution. Dirichlet distributions are commonly used to represent
second order probability information.

Gaussian(MeanVector, CovarianceMatrix, I, J)
Gaussian returns a multivariate Gaussian distribution based on
the vector of mean values and the two-dimensional covariance
matrix specified. The covariance matrix must be symmetric and
positive-definite. The MeanVector must be indexed by I, and the
covariance matrix must be indexed by I and J. I and J must have
the same length.

Multinomial(N, theta, I)
Multinomial returns the multinomial distribution. N represents
the number of possible outcomes, theta is a vector, indexed by I,
representing the probability of each outcome. All the values of

Chapter Advanced Probability Functions

Analytica User Guide 329

14
theta should, therefore, sum to 1. If theta does not sum to 1, it is
normalized.

This is a generalization of the binomial distribution to N possible
outcomes. For example, the distribution of outcomes for rolling a
fair die is given by Multinomial(6, theta,I), where theta =
(0.16667, 0.16667, 0.16667, 0.16667, 0.16667, 0.16667,) and
I = (1, 2, 3, 4, 5, 6).

SampleCovariance(X, I, J, R)
SampleCovariance returns a covariance matrix based on Sam-
pled data X, indexed by I and R. I is the dimensionality of X, and
R corresponds to the samples. The covariance matrix is indexed
by I and J. J must be the same length as I.

Analytica Note: The mean is simply Average(X,R) and so does
nto warrant a separate function.

Advanced Probability Functions
The following functions are not themselves probability distribu-
tions, but they are useful for various probabilistic analyses,
including building other probability distributions. They are avail-
able from the Advanced math function option in the Definition
menu.

BetaFn(A, B)
The Beta function, defined as:

BetaI(X, A, B)
The incomplete beta function, defined as:

BetaFn A B,() xA 1– 1 x–()B 1– xd
0

1

∫=

BetaI X A B, ,() 1
Beta A B,()
--------------------------- xA 1– 1 x–()B 1– xd

0

X

∫=

Chapter Advanced Probability Functions

330 Analytica Users Guide

14
The incomplete beta function is equal to the cumulative probabil-
ity of the beta distribution at X. It is useful in a number of mathe-
matical and statistical applications.

The cumulative binomial distribution, defined as the probability
that an event with probability p occurs k or more times in n trials,
is given by:

The Student’s distribution with n degrees of freedom, used to test
whether two observed distributions have the same mean, is
readily available from the beta distribution as:

The F-distribution, used to test whether two observed samples
with and degrees of freedom have the same variance, is
readily obtained from BetaI as:

Combinations(k, n)
"n choose k". The number of unique ways that k items can be
chosen from a set of n elements (without replacement and ignor-
ing the order).

Combinations(2,4) → 6

They are: {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

Permutations(k, n)
The number of possible permutations of k items taken from a
bucket of n items.

Permutations(2,4) → 12

They are: {1,2}, {1,3}, {1,4}, {2,1}, {2,3}, {2,4}, {3,1}, {3,2},
{3,4}, {4,1}, {4,2}, {4,3}

Pr BetaI p k n k– 1+, ,()=

Student x n() 1 BetaI n n x2+()⁄ n 2⁄ 1 2⁄, ,()–=

n1 n2

F x n1 n2, ,() BetaI n2 n1x n2+()⁄()=

Chapter Advanced Probability Functions

Analytica User Guide 331

14
CumNormal(X, mean, stddev)

Returns the cumulative probability

for a normal distribution with a given mean and standard devia-
tion. Mean and stddev are optional and default to Mean = 0, std-
dev = 1.

CumNormal(1) - CumNormal(-1) → .683

i.e., 68.3% of the area under a normal distribution is contained
within one standard deviation of the mean.

CumNormalInv(P, mean, stddev)
The inverse cumulative probability function for a normal distribu-
tion. Returns the value X where

Mean and stddev are optional and default to Mean = 0, stddev =
1.

Erf(X)
The error function, defined as:

ErfInv(Y)
The inverse error function. Returns the value X such that
Erf(X)=Y.

ErfInv(Erf(2)) → 2

GammaFn(X)
Returns the gamma function of X, defined as

p Pr x X≤[]=

P Pr x X≤[]=

Erf x() 2
π

------- e t
2– td

0

x

∫=

Γ X() tx 1– e t– td
0

∞

∫=

Chapter Advanced Probability Functions

332 Analytica Users Guide

14
The gamma function grows very quickly. For example, when n is
an integer, GammaFn(n+1) = n!. For this reason, it is often prefer-
able to use the LGamma function.

GammaI(X, A, B)
Returns the incomplete gamma function, defined as:

A is the shape parameter, B is an optional scale factor (default
B=1). Some textbooks use as the scale factor. The
incomplete gamma function is defined for .

The incomplete gamma function returns the cumulative area from
zero to X under the gamma distribution.

The incomplete gamma function is useful in a number of mathe-
matical and statistical contexts.

The cumulative Poisson distribution function, which encodes the
probability that the number of Poisson random events (x) occur-
ring will be less than k (where k is an integer) where the expected
mean number is A, is given by (recall that parameter B is
optional):

GammaIInv(Y, A, B)
The inverse of the incomplete gamma function. Returns the value
X such that GammaI(X,A,B)=Y. B is optional and defaults to 1.

GammaI X A B, ,() 1
Γ A()
------------ e t– tA 1– td

0

x B⁄

∫=

λ 1 A⁄=
X 0≥

P x k<() GammaI k A,()=

Chapter 15

Sensitivity and
Uncertainty
Analysis

In this Chapter

This chapter shows you how to:

• Analyze the uncertainty of Variables

• Analyze relationships between
uncertain Variables

• Analyze the sensitivity of outputs to
changes in inputs

Chapter Statistical functions

Analytica User Guide 335

15

15: Uncertainty and sensitivity
This chapter describes Analytica's tools for analyzing the uncer-
tainty of Variables, relationships between uncertain Variables,
and sensitivity of outputs to changes in inputs. It covers the statis-
tical functions, sensitivity analysis functions, scatter graphs, and
importance analysis.

Statistical functions
This section describes Analytica's built-in statistical functions, for
use in Variable definitions. Many of these functions are used in
the Result window Uncertainty View options (see “Uncertainty
view options” on page 52). These functions can assist with analy-
sis of probabilistic Variables.

Analytica Note: All statistical functions produce estimates from
the underlying random sample for each probabilistic quantity.
These estimates are not exact, but will vary from one evaluation to
the next due to the variability inherent in random sampling. Hence,
your results may not exactly match the results shown in the
examples here. For greater precision, use a larger sample size
(see “Selecting the sample size” on page 499 on how to select a
sample size).

The calculation formulas use the following notation:

Analytica Note: These statistical functions will not calculate
statistics for an array of data unless it is a sample indexed by Run.
To obtain statistics on an array of data with another index, see the
Data Statistics library in the Libraries folder.

The examples in this section use the following Variables:

xi the ith sample value of probabilistic Variable X

the mean of probabilistic Variable X (see Mean())

s standard deviation (see Sdeviation())

m sample size (see Appendix A, “”).

x

Chapter Statistical functions

336 Analytica Users Guide

15
Alt_ fuel_ price: Normal(1.25, 0.1)
Fuel_price: Normal(1.19, 0.1)
Skfuel_price: Beta(4,2,1,1.5)

Correlation (X, Y)
Returns an estimate of the correlation between the probabilistic
expressions X and Y, where -1 means perfectly negatively corre-
lated, 0 means no correlation, and 1 means perfectly positively
correlated.

Correlation(X,Y), a measure of probabilistic dependency
between uncertain Variables, is sometimes known as the Pear-
son product moment coefficient of correlation, r. It measures the
strength of the linear relationship between X and Y, using the for-
mula:

Library Statistical

Example With Samplesize set to 100 and number format set to two deci-
mal digits:

Correlation(Alt_fuel_price + Fuel_price,
Fuel_price) → 0.71

Correlation of two independent, uncorrelated distributions
approaches 0 as the sample size approaches infinity.

Example With Samplesize = 20:
Correlation(Normal(1.19,0.1), Normal(1.19,0.1))
→ -.28

With Samplesize = 1000:
Correlation(Normal(1.19,0.1),Normal(1.19,0.1))
→ 0.03

xi x–() yi y–()

i
∑

xi x–()
2

i
∑ yi y–()

2

i
∑×

--

Chapter Statistical functions

Analytica User Guide 337

15
Frequency (X, I)

If X is a discrete uncertain Variable, returns an array indexed by I,
giving the frequency, or number of occurrences of discrete values
I. I must contain unique values; if numeric, the values must be
increasing.

If X is a continuous uncertain Variable and I is an index of num-
bers in increasing order, it returns an array indexed by I, with the
count of values in the sample X that are equal to or less than
each value of I and greater than the previous value of I.

If X is non-probabilistic, Frequency() returns Samplesize for
each value of I equal to X.

Since Frequency() is computed by counting occurrences in the
probabilistic sample, it is a function of Samplesize (see “Uncer-
tainty Setup dialog box” on page 291). If you want the relative fre-
quency rather than the count of each value, divide the result by
Samplesize.

Library Statistical

Example (Continuous) Index_a: [1.2,1.25]

Frequency(Fuel_price, Index_a) →
Index_a

Example (Discrete) Bern_out: [0,1]

(Possible outcomes of the Bernoulli Distribution)

With Samplesize = 100:
Frequency(Bernoulli (0.3), Bern_out) →
Bern_out

With Samplesize = 25:
Frequency(Bernoulli (0.3), Bern_out) →
Bern_out

(Compare the Bernoulli example on page 303.)

1.2 1.25
54 19

0 1
70 30

0 1
18 7

Chapter Statistical functions

338 Analytica Users Guide

15
Getfract (X, P)

Returns an estimate of the Pth fractile (also known as quantile or
percentile) of X. This is the value of X such that X has a probabil-
ity P of being less than that value. If X is non-probabilistic, all frac-
tiles are equal to X.

The value of P must be a number or array of numbers between 0
and 1, inclusive.

Library Statistical

Examples Getfract(X,0.5)returns an estimate of the median of X.
Getfract(Fuel_price, 0.5) → 1.19

The following returns a table containing estimates of the 10%ile
and 90%ile values, that is, an 80% confidence interval.

Fract: [0.1,0.9]

Getfract(Fuel_price, Fract) →
Fract

Kurtosis (X)
Returns an estimate of the kurtosis of X. X must be probabilistic.

Kurtosis is a measure of the peakedness of a distribution. A distri-
bution with long thin tails has a positive kurtosis. A distribution
with short tails and high shoulders, such as the uniform distribu-
tion, has a negative kurtosis. A normal distribution has zero kurto-
sis.

Kurtosis(X) uses the formula:

Library Statistical

0.10 0.90
1.06 1.32

1
m---

xi x–
σ

4

i 1=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–

Chapter Statistical functions

Analytica User Guide 339

15
Example Kurtosis(Skfuel_prices) → -0.48

Mean (X)
Returns an estimate of the mean of X if X is probabilistic. Other-
wise, returns X.

Mean(X) uses the formula:

Library Statistical

Examples Mean(Fuel_price) → 1.19
Mean(Skfuel_price) → 1.33

Mid (X)
Returns the mid value of X. Mid(X) forces deterministic evalua-
tion in contexts where X would otherwise be evaluated probabilis-
tically.

The mid value is calculated by substituting the median for most
full probability distributions in the definition of a Variable or
expression, and using the mid value of any inputs. The mid value
of a Variable or expression is not necessarily equal to its true
median, but is usually close to it.

Library Statistical

Example Mid(Fuel_price) → 1.19

Probability(B)
Returns an estimate of the probability or array of probabilities that
the Boolean value B is true.

Library Statistical

Example Probability(Fuel_price < 1.19) → 0.5

1
m
---- xi
i 1=

m

∑ x=

Chapter Statistical functions

340 Analytica Users Guide

15
Probbands (X)

Returns an estimate of probability or "confidence" bands for X if X
is probabilistic. Otherwise returns X for every band. The probabil-
ities are specified in the Uncertainty Setup dialog box, Probability
Bands option (see “Uncertainty Setup dialog box” on page 291).

Library Statistical

Example Probbands(Fuel_price) →
Probability

Rankcorrel (X, Y)
Returns an estimate of the rank-order correlation coefficient
between the distributions X and Y. X and Y must be probabilistic.

Rankcorrel(X,Y), a measure of the dependence between X
andY, is sometimes known as Spearman’s rank correlation coeffi-
cient, rs.

Rank-order correlation is measured by computing the ranks of
the probability samples, and then computing their correlation. By
using the rank order of the samples, the measure of correlation is
not affected by skewed distributions or extreme values, and is,
therefore, more robust than simple correlation. Rank-order corre-
lation is used for importance analysis (see “Importance analysis”
on page 343).

Library Statistical

Example With Samplesize = 100:
Rankcorrel(Fuel_price, Alt_fuel_price) → .02

Sample (X)
Evaluates X probabilistically and returns a sample of values from
the distribution of X in an array indexed by the system Variable
Run. If X is not probabilistic, returns X. The system Variable Sam-
plesize specifies the size of this sample. You can set Samplesize
in the Uncertainty dialog box (see “Uncertainty Setup dialog box”
on page 291).

Library Statistical

0.05 0.25 0.5 0.75 0.95
1.025 1.123 1.19 1.257 1.355

Chapter Statistical functions

Analytica User Guide 341

15
When to use Use when you want to force probabilistic evaluation, or look at

raw sample values.

Example Here are the first six values of a sample:

Sample(Fuel_price) →
Iteration(Run)

Sdeviation (X)
Returns an estimate of the standard deviation of X from its sam-
ple if X is probabilistic. If X is non-probabilistic, returns 0.

Sdeviation(X) uses the formula:

Library Statistical

Example Sdeviation(Fuel_price) → 0.10

Skewness (X)
Returns an estimate of the skewness of X. X must be probabilis-
tic.

Skewness is a measure of the asymmetry of the distribution. A
positively skewed distribution has a thicker upper tail than lower
tail, while a negatively skewed distribution has a thicker lower tail
than upper tail. A normal distribution has a skewness of zero.

Skewness(X) uses the formula:

1 2 3 4 5 6
1.191 1.32 1.19 1.164 1.191 0.962

1
m 1–
------------- xi x–()

2

i 1=

m

∑ σ=

Chapter Statistical functions

342 Analytica Users Guide

15

Library Statistical

Example Skewness(Skfuel_price) → -0.45

Statistics (X)
Returns an array of statistics of X. Select the statistics in the
Uncertainty Setup dialog box, Statistics option (see “Uncertainty
Setup dialog box” on page 291).

Library Statistical

Example Statistics(Fuel_price) →
Statistics

Variance (X)
Returns an estimate of the variance of X if X is probabilistic. If X is
non-probabilistic, returns 0.

Variance(X) uses the formula:

Library Statistical

1
m

xi x–
σ-------------

3

i 1=

m

∑

Min Median Mean Max Std. Dev.
0.93 1.19 1.19 1.45 0.10

1
m 1–
------------- xi x–()

2

i 1=

m

∑ σ
2=

Chapter Importance analysis

Analytica User Guide 343

15
Example Variance(Fuel_price) → 0.01

Importance analysis
In most complex models, many of the input Variables are uncer-
tain. It is often useful to understand how much each uncertain
input contributes to the uncertainty in the output. Typically, a few
uncertain inputs are responsible for the lion's share of the uncer-
tainty in the output, while the rest have little impact.

The importance analysis features in Analytica can help you
quickly learn which inputs contribute the most uncertainty to the
output. You can then concentrate on getting better estimates or
building a more detailed model for the one or two most important
inputs without spending considerable time investigating issues
that turn out not to matter very much.

Importance analysis defined
Importance is the absolute rank-order correlation between the
sample of output values and the sample for each uncertain input.
It is a robust measure of the uncertain contribution because it is
insensitive to extreme values and skewed distributions. Unlike
commonly used deterministic measures of sensitivity, it averages
over the entire joint probability distribution. Therefore, it works
well even for models where the sensitivity to one input depends
strongly on the value of another.

Creating an importance Variable
To create an importance analysis Variable:

1. Be sure you are in Edit mode. Select an output Variable’s
node (usually your model’s objective node, but it can be any
Variable that has uncertain inputs).

2. Select Make Importance from the Object menu.

Analytica creates two new Variables, an index Variable and a
general Variable. If Output Variable is the title of the node you
selected, the index Variable is titled Output Variable Inputs, and
the general Variable is titled Output Variable Importance.

Note: The importance analysis variables do not automatically
update when new chance variables are added.

Chapter Importance analysis

344 Analytica Users Guide

15
Example Donuts_per_year: Normal(150,50)

Donut_price: Normal(0.4,0.04)

Annual_donut_expense: Donuts_per_year * Donut_price

Since the two inputs are multiplied, we would expect the input
with the greater relative uncertainty, Donuts_per_year, to contrib-
ute more uncertainty to Annual_donut_expense.

After you select Annual_donut_expense and then Make Impor-
tance from the Object menu, the diagram contains two new Vari-
ables.

Annual_donut_expense Inputs is a one-dimensional Edit Table of
the chance Variables. Its index contains the titles of the chance
nodes, and its values are the identifiers of those nodes.

Annual donut expense Inputs evaluates to a set of probability dis-
tributions, one for each chance Variable.

Annual donut expense Importance is defined as
Abs(Rankcorrel(Annual_donut_expense_inputs,
Annual_donut_expense))

Chapter Importance analysis

Analytica User Guide 345

15
The Rankcorrel() function computes the rank-order correlation
of each input to the output, and then the Abs() function computes
the absolute value, yielding a positive relative importance.

As expected, Donuts_per_year contributes considerably more
uncertainty to Annual_donut_expense than Donut_price.

Analytica Note: Importance, like every other statistical measure,
is estimated from the random sample. The estimates may vary
slightly from one sample to another due to random noise. For a
sample size of 100, an importance of 0.1 may not be significantly
different from zero. But an importance of 0.5 is significantly
different from zero. The main goal is to discover those uncertain
inputs, typically only two to five, that are the primary contributors
to the uncertainty in the output. For greater precision, use a larger
sample size.

Editing importance Variables
If you create an importance analysis Variable for a model, and
subsequently refine the model by redefining or adding uncertain
inputs, you may want to change the set of input Variables used
for the importance analysis. Or, you may want to remove Vari-
ables that you already know don’t contribute significantly to the
uncertainty in the result. Do one of the following:

Chapter Sensitivity analysis functions

346 Analytica Users Guide

15
• Select Output Variable and then Make Importance from the

Object menu. The Output Variable Inputs node will be
updated.

• Open Output Variable Inputs’ Edit Table and edit the list of
input Variables.

Sensitivity analysis functions
Sensitivity analysis enables you to examine the effect of a
change in the value of an input Variable on the values of its output
Variables.

Examples
The examples in this section refer to the following Variables:
Gasprice: Normal(1.3, .3)

(cost of gasoline per gallon within market fluctuations)

Mpy: 12K

(the average number of miles driven per year)

Mpg: Normal(28, 5)

(fuel consumption averaged over driving conditions)

Fuelcost: Gasprice * Mpy / Mpg

(annual cost of fuel)

Probability density of Fuelcost:

Chapter Sensitivity analysis functions

Analytica User Guide 347

15
Dydx (Y, X)

Returns the derivative of expression Y with respect to Variable X,
evaluated at mid values. This function returns the ratio of the
change in Y to a small change in X that affects Y. The "small
change" is , or 1.0E-6 if X = 0.

Library Special

Examples Because Fuelcost depends on Mpg, a small change in Mpg
seems to have a modest negative effect on Fuelcost:

Dydx(Fuelcost, Mpg) → -19.7

The reverse is not true, because Mpg is not dependent on Fuel-
cost. That is, Fuelcost does not cause any change in Mpg:

Dydx(Mpg, Fuelcost) → 0

In this model of Fuelcost, a small change in Gasprice has by far
the largest effect of all its inputs:

Dydx(Fuelcost, Gasprice) → 428.6

Dydx(Fuelcost, Mpy) → 0.04643

Analytica Note: When you evaluate DyDx in determ (Mid) mode,
the Mid value for X is varied and the Mid value of Y is evaluated.
In Prob-mode, the sample of X is varied and the sample for Y is
computed in prob-mode. Therefore, when Y is a statistical
function of X, care must be taken to ensure that the evaluation
modes for X and Y correspond. So, for example,

 Y := DyDx(Kurtosis(Normal(0,X)), X)

would not produce the expected result. In this case, when evalu-
ating Y in determ mode, Kurtosis evaluates its parameter, and
thus X, in prob mode, resulting in a mis-match in computation
modes. To get the desired result, you should explicitly use the
Mid value of X:

 Y := DyDx(Kurtosis(Normal(0,Mid(X))), X)

Elasticity (Y, X)
Returns the percent change in Variable Y caused by a 1 percent
change in a dependent Variable X.

Elasticity() is related to Dydx() in the following manner:
Elasticity(Y,X) = Dydx(Y,X)*(X/Y)

X 10000⁄

Chapter Sensitivity analysis functions

348 Analytica Users Guide

15
Library Special

Examples Elasticity(Fuelcost, Mpg) → -0.9901

Elasticity(Fuelcost, Gasprice) → 1

A 1% change in Variables Mpg and Gasprice cause about the
same degree of change in Fuelcost, although in opposite direc-
tions.

Mpg is inversely proportional to the value of Fuelcost, while
Gasprice is proportional to it.

Analytica Note: When you evaluate Elasticity in determ (Mid)
mode, the Mid value for X is varied and the Mid value of Y is
evaluated. In Prob-mode, the sample of X is varied and the
sample for Y is computed in prob-mode. Therefore, when Y is a
statistical function of X, care must be taken to ensure that the
evaluation modes for X and Y correspond.

Regression(Y, B, I, K)
Generalized linear regression. Finds the best-fit (least squared
error) curve to a set of data points. Regression finds the parame-
ters in an equation of the form:

The data points are contained in Y (the dependent Variable) and B
(the independent Variables), both of which must be indexed by I.
B is the basis set and is indexed by I and K. The function returns
the set of parameters indexed by K.

With the generalized form of linear regression, it is possible to
have several independent Variables, and your basis set may
even contain non-linear transformations of your independent Vari-
ables. Regression() may be used to find the best-fit planes or
hyperplanes, best-fit polynomials, and more complicated func-
tions.

ak

y akBk x()
k
∑=

ak

Chapter Sensitivity analysis functions

Analytica User Guide 349

15
Regression uses a state-of-the-art algorithm based on singular-
value decomposition that is numerically stable, even if the basis
set contains redundant terms.

Example 1 Suppose a set of (x,y) points are contained in X and Y, both
indexed by I, and we wish to find the parameters m and b of the
best-fit line . We first define an index K as a list of
labels:

K: [’m’,’b’]

Next, define B as a table indexed by K:

B: K

Regression(Y,B,I,K) returns the coefficients m and b as an
array indexed by K.

Example 2 We wish to fit the following polynomial to (x,y) data:

Define K to be the list:
B: [X^5,X^4,X^3,X^2,X,1]

Regression(Y,B,I,B) returns the best-fit coefficients of the
polynomial indexed by B.

Whatif (Ident, Tempval, X)
Returns the value of expression Ident when Variable Tempval is
set to the value of expression X. Tempval must be a Variable.
The original definition of Tempval is restored after evaluation of
the Whatif() expression, allowing you to explore the effect of a
change in Tempval without permanently changing it.

Library Special

Example Fuelcost → 557.1

Whatif(Fuelcost, Mpy, 14K) → 650

WhatIfAll(Ident, varlist, X)
Returns the mid value of Ident when the each of Variables in
varList is assigned the value in X one at a time, with the remain-

m b
X 1

y mx b+=

y a5x5 a4x4 a3x3 a2x2 a1x a0+ + + + +=

Chapter Sensitivity analysis functions

350 Analytica Users Guide

15
ing Variables remaining at their nominal values. The result is
indexed by varList. By having X indexed by varList, a different
value can be assigned to each Variable.

WhatIfAll is useful for performing ceteris paribus style sensitivity
analysis, in which only on Variable is varied at a time. Tornado
diagrams are one such example. Tornado-style analyses are use-
ful since they do not require inputs to be uncertain.

Library Special

Example 1 Suppose Z is a function of A, B, and C, and we wish to examine
the effect on Z when each input is varied, one at a time, by 10%
from its nominal value. Define:

L := [90%,110%]
V := [A,B,C]
MyTornado := WhatIfAll(Z, V, L*V)

Example 2: Tornado
style diagrams

A Tornado diagram is a common tool used to depict the sensitivity
of a result to changes in selected variables. The fundamental
analysis behind a tornado diagram consists of varying only one
input variable at a time, keeping all other variables at their nomi-
nal values. Typically, a "low" and a "high" value are selected for
each input, and the output variable is computed while only one
variable varies at a time. The result is then displayed as a special
type of bar graph, with bars for each input variable displaying the
variation from the nominal value. It is standard practice to plot the
bars horizontally, sorted so that the widest bar is placed at the
top. When drawn in this fashion, the diagram takes on the
appearance of a tornado, hence its name. The figure below
shows a typical tornado diagram.

Chapter Sensitivity analysis functions

Analytica User Guide 351

15

Analytica contains very flexible facilities for performing Tornado-
style analysis, with immense flexibility to implement custom varia-
tions on the basic analysis. Creating a tornado-style diagram in
Analytica consists of two fundamental steps:

1. Performing the tornado analysis (obtaining the results when
varying each variable separately).

2. Graphing the result (which involves setting up the graph
settings appropriately).

Analytica's built-in graphing tool can produce only vertical bar
graphs, allowing only rotated tornado diagrams to be created.
The convential (non-rotated) tornado diagram can be obtained
using Excel Graph from within Analytica.

Performing a Tornado Analysis
To perform a tornado analysis, you must:

Chapter Sensitivity analysis functions

352 Analytica Users Guide

15
1. Identify which output variable to perform the analysis on.

2. Select the input variables are to be varied.

3. Decide what the low and high values are to be for each input
variable.

Note: The input variables do not need to be chance variables. In
fact, tornado analysis is often applied to models with no
chance variables.

There are several options for selecting low and high values,
including:

• Selecting the same absolute low and high levels for every
input. This usually only makes sense if inputs are very
homogeneous with identical nominal values.

• Selecting absolute low and high values separately for each
input variable.

• Varying all inputs by the same relative amount, e.g., low=90%
of nominal, high=110% of nominal.

• Varying all inputs between two given fractiles. This only
makes sense if your inputs are uncertain variables. Example:
Low=10% fractile, High=90% fractile, nominal=50% fractile.

Implementing a tornado analysis
For this example, assume we vary all inputs by the same amount

1. Create an index variable containing a list of input variable
identifiers. Suppose this is called Vars.

2. Create a variable, L, and define it as a self-indexed table. (To
do this, select Table from the Expression pulldown, and select
self as an index.) From the edit table, set the self-index labels
to read low and high. Set the value corresponding to low to
90%, and set the value corresponding to high to 110%.

Chapter Sensitivity analysis functions

Analytica User Guide 353

15

3. Create a node, Tornado_Analysis. Assume that the output
variable is X. Define Tornado as:

WhatIfAll(X, Vars, L * Vars)

4. Create a node, Sorted_Tornado_Inputs, defined as:
sortIndex(abs(Tornado_Analysis[L='high'] -
Tornado_Analysis[L='low']))

5. Create a node, Sorted_Tornado, defined as:
Tornado_Analysis[Vars=Sorted_Tornado_Inputs]

Steps 4 & 5 are not necessary if you do not require your bars to
be displayed from largest to smallest. If you do include steps 4 &
5, Sorted_Tornado will contain the results of the Tornado analy-
sis, otherwise the result is Tornado_Analysis.

It is possible in Analytica to use array abstraction to produce a set
of Tornado diagrams, with each Tornado itself indexed by an
additional dimension. Additional dimensions are already included
if your output variable is itself an array result, in which case you
will have a tornado diagram for each element in the output value's
array value. This flexibility is unique to Analytica; however, you
should note that having multiple tornados in a single result com-
plicates the problem of sorting the bars, since the sort order will,
in general, be different for the different bars. If you have extra
indexes in your tornado analysis, you will need to either skip
steps 4 & 5 above, and display non-sorted Tornados, or select a
single sort order based on whatever criteria fits your needs, real-
izing that not all tornados will display in sorted order. To display a
tornado using Excel Graph, your output variable must be a scalar.

The WhatIfAll function typically provides the easiest method for
implementing a tornado analysis in Analytica. Note that the third

Chapter Sensitivity analysis functions

354 Analytica Users Guide

15
parameter to WhatIfAll controls the method by which inputs are
varied for the analysis. For example:

• For the case where you select the same absolute low and
high levels for every input, L would be set to the absolute low
and high values, and the third parameter to WhatIfAll would
be simply L.

• For the case where you select absolute low and high values
separately for each input variable, you would index L by
Vars, fill in L's table appropriately, then set the third
parameter to be just L.

• And for the case where you vary all inputs between two given
fractiles, you would set L to the desired fractiles, and use as
the third parameter the expression: getFract(X,L).

Graphing a Tornado using Analytica's built-in graphing tool
Once you have performed the Tornado analysis, you can easily
graph the results as a rotated tornado diagram. To obtain the
desired appearance, a few graph settings must be selected. The
steps are:

1. Select Show Result for the Tornado_Analysis or
Sorted_Tornado variable. Press the Graph button if
necessary.

2. Pivot the index order (if necessary) so that Vars is on the X-
axis and L is the Key.

3. Select Graph Setup... and then Graph Style.

4. Set the Line Style to the filled bar setting. Set Overlap=100%,
Origin=X. (Where X is your output variable of interest). Press
Apply.

Graphing a Tornado using the Excel Graph tool
Since Excel Graph can produce horizontal bar graphs (a graph
type not available from Analytica's built-in graphing tool), you can
use Excel Graph to produce "non-rotated" tornados. The steps
are:

1. Select Show Result for the Tornado_Analysis or
Sorted_Tornado variable. Press the Graph button if
necessary.

2. Pivot the index order (if necessary) so that Vars is on the X-
axis and L is the Key.

Chapter X-Y results

Analytica User Guide 355

15
3. Select Graph Setup... and then Excel Graph. Click on Excel

Chart and press OK.

4. Double click on the graph. Excel is brought to the foreground.
From the Chart menu, select Chart Type. Click on the
horizontal bar graph chart type and select the first sub-type
(appears in the icon as side-by-side bars).

5. While still in Excel, depress the right mouse button while the
cursor is over a bar. Select Format Data Series.... In the
dialog, select Options. Set Overlap=100%. Press OK.

6. In Analytica, note the result value of X (it must be a scalar).

7. In Excel, click on and select the X-axis, then select Format X-
Axis... from the right mouse button menu. Select the Scale
tab, and enter the value of X into the box labeled "Category (X)
axis Crosses at". Press OK.

8. The graph is now set up. Return to Analytica.

X-Y results
When evaluating a Variable, you can specify another Variable to
view it against, for Mid, Mean, Statistics, Probability Bands, and
Sample.

To graph one Variable against another:

1. Open a Result window for the y- (vertical axis) Variable.

2. Click on the XY button located in the top right corner of the
window to open the Object Finder dialog box.

3. In the Object Finder, select the x- (horizontal axis) Variable

The two Variables in an XY window must share at least one
index, and all indexes of X must also be indexes of Y. The popup
menu in the index selection area becomes Common Index—
only indexes of both X and Y may be selected.

Example Degrees: Sequence(0,360,10)

Sine: Sin(Degrees)

XY button

Chapter X-Y results

356 Analytica Users Guide

15
Cosine: Cos(Degrees) →

Click on the XY button. In the Object Finder dialog under Current
Module select the Variable Sine to display:

Click on the Table View button to display:

Chapter Scatter plots

Analytica User Guide 357

15

To return to the graph or table of Cosine vs. Degrees, click in the
XY check box.

Scatter plots
A scatter plot, graphing the samples of two probabilistic Variables
against each other, can provide insight into their probabilistic rela-
tionship.

To generate a scatter plot for two Variables, X and Y:

1. Open a Result window for Y.

2. Click on the XY button located in the top right corner of the
window to open the Object Finder dialog box.

3. In the Object Finder, select the X Variable.

4. In the Uncertainty View popup menu (at the top left of the
Result window), select the Sample view.

If the Variables are independent, the scatter plot points will fall
randomly on the graph. If the Variables are totally dependent, the
scatter plot points will fall along a single line. The strength of the
relationship is indicated by the degree to which the points are

Chapter Scatter plots

358 Analytica Users Guide

15
close to a line. If the line is straight, the relationship is linear; if the
line is curved, the relationship is nonlinear.

You can superimpose several scatter plots of Y in an array of
uncertain quantities depending on X. The different quantities will
be represented by differently colored dots or symbols.

Example X: Uniform(1,2)

Y: Normal(10,3)

The resulting scatter plot, of two independent Variables, is:

Chapter 16

Modeling
Changes over
Time

In this Chapter

This chapter shows you how to use the
system function Dynamic and the sys-
tem Variable Time.

Chapter The Time index

Analytica User Guide 361

16

16: Modeling changes over time
A dynamic Variable is a quantity that changes over time—for
example, the effect of inflation on car prices over a ten-year
period. The system function Dynamic() and system Variable
Time enable you to model changes over time.

Analytica Note: Read Chapter 11, “Arrays and Indexes,” before
using these features.

The term dynamic is used in this chapter to refer to the
Dynamic() function.

The Time index
Dynamic simulation time periods are specified in the system Vari-
able Time. To perform dynamic simulation, you must provide a
definition for Time.

To edit the definition of Time, select Edit Time from the Defini-
tion menu to open the Object window for Time.

Time is defined by default as a list of three numbers 0, 1, and 2.
You may want to define Time as a list of years, as in the following
example:

Time becomes the index for the array that results from the
Dynamic() function.

Chapter Using the Dynamic function

362 Analytica Users Guide

16

Analytica Note: A model can have only one definition Time—that
is, one set of time periods for Dynamic() functions. Any number of
Variables in the model can be defined using Dynamic().

Using the Dynamic function

Dynamic (initial1, initial2..., initialn, Expr)
Performs dynamic simulation, calculating the value of its defined
Variable at each element of Time. The result of Dynamic() is an
array, indexed by Time.

Initial1, ...initialn are the values of the Variable for the first n time
periods. Expr is an expression giving the value of the Variable for
each subsequent time period. Expr can refer to the Variable in
earlier time periods, that is, contain its own identifier in its defini-
tion. If Variable Var is defined using Dynamic(), Expr can be a
function of Var[Time-k] or Self[Time-k], where k is an expres-
sion that evaluates to an integer between 1 and t, and t is the time
step at which Expr is being evaluated.

Analytica Note: Square brackets ([]) are necessary around
Time-t.

The Dynamic() function must appear at the topmost level of a
definition. It cannot be used inside another expression.

When a dynamic Variable refers to itself, it appears in its own list
of inputs and outputs, with a symbol for cyclic depen-
dency: .

Library Special

When to use Use Dynamic() for defining Variables that are cyclically depen-
dent. This is the only function in Analytica that permits reference
to the same Variable, or other dynamic Variables, at earlier time
periods.

Example Dynamic() can be used to calculate the effect of inflation on the
price of gasoline in the years 1990 to 1994.

If the initial value is $1.20 per gallon and the rate of inflation is 5%
per year, then Gasprice can be defined as:

Dynamic(1.2, Gasprice[Time-1] * 1.05) or Dynamic(1.2,
Self[Time-1] * 1.05).

Chapter Using the Dynamic function

Analytica User Guide 363

16

Clicking on the Result button and viewing the mid value as a table
displays the following results:

For 1990, Analytica uses the initial value of Gasprice (1.2). For
each subsequent year, Analytica multiplies the value of Gasprice
at [Time-1] by 1.05 (the 5 percent inflation rate).

x [Time-k]
Given a Variable x and brackets enclosing Time minus an integer
k, returns the value for x, k time periods back from the current
time period. This function is only valid for Variables defined using
the Dynamic() function.

Library Special

Chapter More about the Time index

364 Analytica Users Guide

16
More about the Time index

Reference to earlier time
Time-k in the expression var[Time-k] refers to the position of
the elements in the Time index, not values of Time.

For example, if Time equals [1990,1994,1998,2002,2006],
then the value of Gasprice[Time-3] in year 2006 would refer to
the price of gasoline in 1994, not 2003. When you refer to the
Time Variable directly, not as an index, the expression refers to
the values of Time. For example, the expression (Time-3) in
2006 is 2003.

The offset, k, may be an expression, and may even be indexed
by Time. When k is indexed by Time, then the offset varies at dif-
ferent points in Time. However, Slice(k,Time,t) must be between
1 and t-1. It must be positive since the expression is not allowed
to depend on values in the future (that have not yet been com-
puted). It must be less than t-1 since the expression cannot
depend on values "before the beginning of time."

Defining time
There are three ways to define the Time index, each of which has
different advantages:

• Sequence (the preferred method)

• List (numeric)

• List of labels (text)

Time as a sequence
Using the Sequence() function is the easiest way to define Time
with equal intervals (see “List vs. list of labels” on page 219 and
“Creating an array with an Edit Table” on page 225). The numeric
values for Time can be used in other expressions.

Example

Chapter More about the Time index

Analytica User Guide 365

16
Time as a list (numeric)

When Time is defined as a numeric list, it will usually consist of
increasing numbers. The intervals between entries can be
unequal, and the values for Time can be used in other expres-
sions.

Example Time:

When you use time periods that differ by a value other than 1,
typing (Time-1) won’t provide the value of the previous time
period. You can use the syntax x[Time-1] if you want to utilize a
Variable indexed by Time, but if you want to perform an operation
that depends on the difference in time between the current time
period and the last one, you must first create a node that uncu-
mulates the Time index:

YearsPassed: Uncumulate(Time)

Now you can include this node in a dynamic expression that
depends on the time between time periods. The following defini-
tion is equivalent to the one on page 362 but allows for changes
in time period increments:

Gasprice: Dynamic(1.2, Gasprice[Time - 1] *
1.05 ^ YearsPassed) →

Chapter More about the Time index

366 Analytica Users Guide

16

Time as a list of labels (text)
When Time is defined as a list of labels, Time values cannot be
used in other expressions as numbers.

The resulting graph of any Dynamic() function, with the x–axis
set to Time, will show the labels at equal x–axis intervals.

Example Time:

Gasprice: Dynamic(1.2, Gasprice[Time-1] * 1.05) →

Chapter Initial values for Dynamic

Analytica User Guide 367

16

Using Time in a model
You can use Time like any index Variable; you can change only
its title and definition. To include the Time node on a diagram:

1. Open the Object window for Time by selecting Edit Time from
the Definition menu.

2. Select Make Alias from the Object menu (see “Alias nodes”
on page 84).

When the Time node displays on a diagram, arrows from Time to
all dynamic Variables display by default.

Initial values for Dynamic
A dynamic definition of var usually includes the expression
Self[Time-k] or var[Time-k], where k is the number of time
periods to subtract from the current Time value. You must supply
at least 1 initial value.

As an example, when k in [Time-k] is greater than 1, suppose
your car insurance policy depends on the premium you paid two
years ago. To calculate your payments in 1992, you must refer to
the amount paid in 1990. A dynamic Variable representing such a
rate for insurance needs two initial values for Time, such as:

Chapter Using arrays in Dynamic

368 Analytica Users Guide

16
Insurance:
Dynamic(600, 700, Insurance[Time - 2] * 1.05) →

Using arrays in Dynamic
The initial value of a dynamic Variable—that is, the first parameter
to the Dynamic() function—can be a number, Variable identifier,
or other expression that evaluates to a single number, list, or
array. Analytica evaluates a dynamic Variable starting from each
initial value, in each time period, so the result is a correctly
dimensioned array.

Example Expanding the example (see “Using the Dynamic function” on
page 362), suppose the inflation rate of gasoline is uncertain.
Instead of providing a single numerical value, you could define
the inflation rate as a list:

Using the new Inflation Variable in the definition for Gasprice, the
results show three different rates of increases in gasoline prices
from 1990 to 1994:

Gasprice:
Dynamic(1.2,Gasprice[Time - 1] * (1 + Inflation)) →

Chapter Dependencies with Dynamic

Analytica User Guide 369

16

Dependencies with Dynamic
All Variables with dynamic inputs are evaluated dynamically—that
is, their results are arrays indexed by Time.

Example A series of dynamic definitions produce equations for distance,
velocity, and acceleration:

Acceleration: -9.8

Dt: 0.5

Time: Sequence(0, 6, Dt)

Velocity:
Dynamic(0, Self[Time-1] + Acceleration * Dt/2)

Distance:
Dynamic(100, Self[Time-1] + Velocity * Dt) →

Dynamic dependency arrows
If a Variable is dynamically dependent on another Variable, a gray
arrow is drawn between the Variables.

Chapter Dependencies with Dynamic

370 Analytica Users Guide

16
To show or hide dynamic dependency arrows:

1. Select Set Diagram Style... from the Diagram menu to open
the Diagram Style dialog box (see “Diagram Style dialog box”
on page 121).

2. Click in the Dynamic checkbox to show dynamic arrows (or
uncheck it to hide the arrows).

3. Click OK to accept the change.

Expressions inside dynamic loops
A dynamic loop is a sequence of Variables beginning and ending
at the same Variable, with each consecutive Variable dependent
on the previous one. At least one Variable in a dynamic loop is
defined using the dynamic function.

When the definition of a Variable in a dynamic loop is evaluated,
the definition is repeatedly evaluated in the context of Time=t (as
t increments through the values of Time). The value for any iden-
tifer that appears in an expression is implicitly sliced at Time=t
(unless it is explicitly offset in Time). As an example, suppose A is
indexed by Time, and X is defined as:

dynamic(0, self[Time-1] + Max(A,Time))

During evaluation, A would be a scalar at any given time point
since it is implicitly sliced across Time. When A is not indexed by
Time, Max(A,Time) simply returns A, so that the above expres-
sion is equivalent to

dynamic(0, self[Time-1] + A)

To add the greatest value of A along Time in this expression, you
must introduce an extra Variable to hold the maximum value,
defined simply as Max(A,Time), and ensure that the two Vari-
ables do not occur in the same dynamic loop.

If you attempt to operate over the Time dimension from within a
dynamic loop, Analytica issues the warning: "Encountered appli-
cation of an array function over the Time index from within a
dynamic loop. The semantics of this operation may be different
than you expect."

Chapter Uncertainty and Dynamic

Analytica User Guide 371

16
Uncertainty and Dynamic

Uncertain Variables propagate uncertainty samples during
dynamic simulation. If an uncertain Variable is used in a dynamic
simulation, its uncertainty sample is calculated only once, in the
initial time period.

Example The following definitions model population changes over time:

Population: Normal(30, 2)

Birthrate: Normal(1.2, .3)

Time: Sequence(1, 10, 1)

Pop_by_year: Dynamic(Population, Self[Time-1] +
Birthrate)

The uncertainty samples for Population and Birthrate are each
calculated once, at the initial time period. The same samples are
then used for each subsequent time period.

Resampling
If you want to create a new uncertainty sample for each time
period (that is, resample for each time period), place the distribu-
tion in the last parameter of the Dynamic() function. For example,
replace Birthrate with its definition in Pop_by_year:

Chapter Uncertainty and Dynamic

372 Analytica Users Guide

16
Pop_by_year: Dynamic(Population, Self[Time - 1] +
Normal(1.2, .3))

An alternative way to create a new uncertainty sample for each
time period is to make Birthrate a dynamic Variable.

Birthrate: Dynamic(Normal(1.2, .3), Normal(1.2, .3))

Pop_by_year: Dynamic(Population, Self[Time-1] +
Birthrate)

Chapter 17

Importing,
Exporting, &
OLE Linking
Data

In this Chapter

This chapter shows you how to
exchange data between Analytica and
other applications.

OLE linking makes it possible to link
data to and from external applications.
With OLE linking, changes to inputs or
results are automatically and instanta-
neously propagated between applica-
tions.

Chapter Copying and pasting

Analytica User Guide 375

17

17: Importing, exporting, & OLE linking
data

This chapter describes how to exchange data between Analytica
and other applications. The primary methods are:

• Using the standard Copy and Paste commands

• Using OLE Linking

• Using the Import and Export commands

Copying and pasting
You can use the standard Copy and Paste commands with any
modifiable Attribute of a Variable, module, or function.

Pasting data from a spreadsheet
To paste tabular data from a spreadsheet into an Analytica table:

1. Select a group of cells in a spreadsheet.

2. Select Copy from that program's Edit menu, to copy the data
to the clipboard.

3. Bring the Analytica model to the front and open the Edit Table
window you want to paste the data into.

4. Select a top-left cell or the same number of cells that you
originally copied.

5. Select Paste from the Edit menu (Ctrl-V).

Analytica Note: When copying a row of data from a spreadsheet
into a one-dimensional table, transpose the data first so that you
are copying it as a column of cells, not a row of cells.

Pasting data from another program
To paste data from a program other than a spreadsheet:

• Use tab characters to separate items, and return characters
to separate lines.

Chapter Copying and pasting

376 Analytica Users Guide

17
• Use numbers in floating point or exponential format. You can

use the suffixes that Analytica recognizes (including K, M,
and m; see page 177 for a comprehensive list). Dollar signs
($) and commas (thousands separators) are not permitted.

Copying a diagram
To copy an Influence Diagram, including the objects represented
by the nodes:

1. Select the group of nodes you wish to copy.

2. Select Copy from the Edit menu (Ctrl-C). The objects that the
nodes represent, as well as a picture of the selected nodes
with all of the relevant arrows between the selected nodes, are
copied to the clipboard.

To copy an entire Influence Diagram window, select Copy Dia-
gram from the Edit menu. The entire Influence Diagram is copied
as a Picture representation without copying the objects that the
nodes represent.

Copying an Edit Table or Result Table
To copy data from an Edit Table or Result Table:

1. Open the window containing the table.

2. Select cells and choose Copy from the Edit menu (Ctrl-C).

To copy all the elements of a table in addition to the index ele-
ments, select Copy Table from the Edit menu. The entire multidi-
mensional array is copied as a graphic and as a list of two-
dimensional tables in a special text format (see “Edit Table data
import/export format” on page 388).

Copying a Result Graph
To copy or export a Result Graph:

1. Open the Result window containing the graph.

2. Select Copy from the Edit (Ctrl-C) menu to copy a PICT
representation of the graph.

Chapter Using OLE to link results to other applications

Analytica User Guide 377

17
Using OLE to link results to other applications

OLE (Object Linking and Embedding) is a widely used Microsoft
technology that enables objects in two applications to be hot-
linked, so that changes to the Object in one application cause the
same changes in the other application. For example, by linking an
array in Analytica to a table in a Microsoft Excel spreadsheet, any
change to the array in Analytica model will automatically be
reflected in the spreadsheet.

By using OLE linking, results from Analytica models can be linked
into OLE compliant applications like Word and Excel. Linking data
can save a great deal of work because it saves you from perform-
ing repeated copy and paste operations between Analytica and
other applications whenever your model results change. Without
OLE, if you copied Result tables from Analytica, pasted them into
a Word document, and later you tweak your model results, you
would need to re-copy and re-paste all those Result tables. How-
ever, if you link those tables using OLE, all the data in the Word
document will update either automatically, or if you prefer, when
you explicitly decide to update the data.

You may link any of the Result table views, i.e., Mid, Mean, Statis-
tics, Probability Density, Cumulative Probability and Sample table
views. You may link any two-dimensional slice of a multi-dimen-
sional table with the regular Copy command. For Result tables
with more than two dimensions, you may decide to link the entire
table as a series of two-dimensional tables using the Copy table
option from the Edit menu. You may also link a rectangular region
of cells that are a subset of a a two-dimensional table. However,
you cannot link non-table data such as the information that is con-
tained in the Object window or Attribute panel.

Linking procedure
Steps for linking result data from your Analytica model to an
external OLE-compliant application are as follows. For concrete-
ness, we’ll assume here that the other application is Microsoft
Excel.

1. In the Analytica Result window, select the cells you want to
link and choose Copy from the Edit menu.

2. From Excel, select the cells where you would like the
Analytica data linked.

Chapter Using OLE to link results to other applications

378 Analytica Users Guide

17
3. From Excel, choose Paste Special… from the Edit menu.

4. The Paste Special dialog box will appear.

5. In this box, choose the option Paste Link, select Text from the
As list, and click the OK button.

You’re done. Any changes to the source Result table will be prop-
agated to the linked data in Excel. The procedure for linking Ana-
lytica model results to other OLE-compliant applications will be
similar to the above steps.

Analytica Note: The external application must support OLE-
linking of tab-delimited textual data. Applications that do not
support this format will not display "Text" as an option in Step 5
above, or will disable the Paste Special... menu item in Step 3.

Detailed example of linking Analytica results

This example will itemize detailed steps for linking an Analytica
Result table into an Excel spreadsheet. Suppose you would like
to link the model results displayed above into an Excel spread-
sheet. You can start by linking the column and row headers. Go to
the node titled Cashflow Category and evaluate its result. Notice
the result of node Cashflow Category is displayed as a column of
cells, but you would like to have them linked into Excel as a row.
Unfortunately you may not link this data as a row with a single
Copy/Paste Special operation since Excel will not let you trans-
pose the linked data from a column to a row. However, you can
easily work around this limitation. Link the values into an unused
portion of your spreadsheet or to a blank sheet using the linking
procedure described in the previous section. In the cells where

Chapter Using OLE to link results to other applications

Analytica User Guide 379

17
you actually would like the labels to appear as a row, simply refer-
ence the linked cells. In other words, define the cells that will
comprise the column headers for the linked table you are creating
using the names of the corresponding linked cells.

Now it's time to link the values of Time as the row headers in your
linked table. Time is an Analytica system Variable and one of the
elementary ways to copy its values for linking is to create a node
called Time and give it the definition time. Evaluate this node and
then link the values displayed in the Result table using the linking
procedure described in the previous section.

Linking the body of the table is just a straightforward application
of the linking procedure. The number format of the cells will be
preserved in fixed point format, but you may want to use Excel
formatting to get the dollar sign and thousand separator dis-
played. Excel may switch to the exponential number format or
display '########' if your columns are not wide enough.

The body of the table and its indexes (the row and column head-
ers) are linked. For instance, if your Analytica model results
change and you decide also to change the value of 'cost' to
'expense', these changes will be reflected in you're linked table in
Excel (see the figure below).

Chapter Using OLE to link results to other applications

380 Analytica Users Guide

17
Important notes about linking to Analytica results

Changing file locations
When moving linked files from one drive partition to another on
the same machine or between two different computers, keep the
relative paths the same. The simplest way to do this is to keep the
linked model files and the other application files to which they are
linked in the same folder.

Automatic vs. manual updating
OLE links are set for automatic updating by default, but you may
change this setting to manual. We recommend this if the data is
linked from an Analytica model with a lengthy re-computation
time or to an application with a lengthy re-computation time.

To change a link’s setting to manual in Word:

1. On Word’s Edit menu, select Links….

2. In the Links box that appears select the link(s) you’re
interested in adjusting.

3. Click on the radio button labeled manual and click the OK
button.

In other OLE-compliant applications the steps for switching from
automatic to manual updating should be very similar to the ones
listed above.

You may also decide to set all your OLE links to be updated man-
ually using a preference setting in Analytica. From the Edit menu,
select Preferences…, then in the Preferences dialog box,
uncheck the check box located on the bottom right labeled Auto
recompute outgoing OLE links.

Using Indexes
Array-valued results that are to be linked should not have local
indexes (created using the Index..Do construct). All indexes
should correspond to index nodes in your diagram.

Number formatting
When linking data into OLE compliant applications, the number
format will be the same as Analytica’s format at the time of link

Chapter Linking data from other applications into Analytica

Analytica User Guide 381

17
creation. However, if the linked Analytica data uses the default
Suffix number format, the linking will convert the format to Expo-
nential, which is more universally recognizable in other applica-
tions. In programs that have their own number formatting settings
such as Excel, the number format will likely be adjusted accord-
ing to the settings for the cells you are pasting into. However you
must still be careful about losing significant digits (see next para-
graph).

Precision is another important issue in number formatting. Before
linking from Analytica, you should first adjust the number format
so that it displays all the significant digits you would like to have in
the other OLE-savvy application to which you are linking.

Refreshing links when Analytica model is not running
If you refresh the links between an Analytica model and another
OLE-savvy application when the Analytica model is not running,
the following events will occur:

1. A new instance of Analytica is launched

2. It automatically loads the Analytica model

3. It evaluates the Variables upon which the links are dependent,

4. It reactivates the links, and

5. It updates the linked data.

There are two ways to refresh the links this way. The first case
occurs when a file with links is opened while the model file to
which it is linked is closed, and you answer ‘Yes’ to the dialog box
prompting you to update the linked data. The other way is if you
are working with a file containing links to a model that is not run-
ning and you explicitly update the links. To explicitly update the
links in Excel, you would select Links… from the Edit menu.
Then in the Links dialog box, select the links you would like to
refresh and click the Update button.

Linking data from other applications into
Analytica

Using OLE linking, you may incorporate data originating in OLE-
compliant applications as the input for nodes in your Analytica
model. You accomplish this by linking the external data to Edit

Chapter Linking data from other applications into Analytica

382 Analytica Users Guide

17
tables in Analytica. Once again, this removes the need to perform
numerous copy and paste operations each time the source data
in the other application changes.

When linking data into Analytica, you may link data into any Edit
table with less than three dimensions. When linking data in Edit
tables you must link all the contents of the table; linking a subset
of an Edit table is not supported. You may not link data from other
applications to anywhere else than an Edit table in Analytica
including the diagram windows, Object windows, and the
Attribute panel.

Linking procedure
Steps for creating a linked Edit table in Analytica with data from
an Excel spreadsheet:

1. In Excel, select the cells you want to link to Analytica and
choose Copy from the Edit menu.

2. In Analytica, make the Edit table where you want the Excel
data linked the front most window.

3. From the Edit menu or the right mouse button pop-up menu,
choose Paste Special… and the Paste Special dialog box will
appear.

4. In this box, choose the option Paste Link, select Text from the
As list, and click the OK button.

The process for linking data from Word or other OLE compliant
applications will be analogous to the steps just outlined.

Example of linking a table into Analytica
This section will itemize detailed steps for linking a table from
Excel into Analytica by creating a node with a ‘Linked Table’ defi-
nition. Specifically, suppose you desire to link the Excel table dis-
played in the following figure into Analytica.

Chapter Linking data from other applications into Analytica

Analytica User Guide 383

17

Start by creating two indexes in Analytica to store the row and
column headers. Title the first index Items and the second Status.
Select the node Items and then click the Show definition button
on the toolbar (this is the button with the pencil icon) or right
mouse menu. In the Attribute panel or Object window that
appears, click on the expr popup menu and choose List of
labels. Press the down arrow or Return key three times. This will
give you three cells—item 1, item 2 and item 3. In Excel, copy the
three cells used as the row headers (i.e., 'Red Widgets', 'Blue
Widgets' and 'Green Widgets'); return to Analytica and do a regu-
lar paste into the three cells of the definition for the index node
'Items'.

Now you need to copy the values of the column headers (i.e., 'In
Stock' and 'Ordered') into the definition for the index node Status.
Since Analytica enforces strict dimension checking (i.e., you can-
not paste a 3 x 1 array of cells into a 1 x 3 array of cells), you are
required to first convert the row into a column. You can accom-
plish this easily by copying the row, moving to an unused portion
of the spreadsheet or onto a blank sheet, and choosing Paste
special... from Excel's Edit menu. The Paste Special dialog box
will appear and you need only select the Transpose check box
on the bottom right. Click the OK button and you have converted
the column header cells from a row into a column. Now copy this
column, go back to Analytica, select the Status node, and click
the Show definition toolbar button. Select the first cell 'item 1'
and choose Paste from the Analytica's Edit menu.

Since you've finished creating the indexes, you're ready to start
on the node that will contain the linked table. Create a Variable
node in Analytica and title it Inventory. With this node selected,
click the Show definition button on the toolbar. In the Attribute
panel or Object window that appears, click on the expr popup
menu and choose Table. The Indexes dialog appears. In this dia-
log, select Items and click the button. This will move Items to

Chapter Linking data from other applications into Analytica

384 Analytica Users Guide

17
the Selected Indexes section. You also want to select Status and
then click the button to make it a selected index as well. Click
the OK button and an Edit table will appear as follows.

Go to Excel and select the numerical values displayed in the table
and choose Copy from the Edit menu. Return to Analytica (while
in Edit mode), click anywhere in the Edit table grid and choose
Paste Special… from either the Edit menu or the right mouse
menu. Now choose Paste special… from the Edit menu and the
Paste Special dialog box comes into view. You want the settings
in the box to be Paste Link and Text which are the default set-
tings (see below). Click OK.

The caption for the table changes from 'Edit Table' to 'Linked
Table' and you're done. If you arrange the applications windows
so that you can see the source table in Excel and the Linked table
in Analytica (see Figure 6), you can readily demonstrate that the
link is activated. Change the value for 'Green Widget's Ordered'

Chapter Linking data from other applications into Analytica

Analytica User Guide 385

17
from 2 to say 17. The corresponding value in Analytica's Linked
table will change accordingly.

Analytica Note: the data within the table is linked and will be
updated automatically when altered, but the row and column
headers are not linked and any changes to their values will have
to be propagated using the standard cut and paste operations.
Perform this by copying to the indexes used by the table, not to the
table itself.

Important notes about linking into Analytica Edit
Tables

Changing file locations
When moving linked files on the same machine or between two
different computers, keep the relative paths the same so that the
files can locate each other. The simplest way to do this is to keep
the linked model file(s) and the other application file(s) to which it
is linked in the same folder.

Automatic vs. manual updating
OLE links are set for ‘automatic’ updating by default, but you may
change this setting to ‘manual’. This may be desirable if the
linked data is used in a model with a lengthy computation time. To
change a link’s setting to ‘manual’ updating:

Chapter Importing and exporting

386 Analytica Users Guide

17
1. On Analytica’s Edit menu, select OLE Links….

2. In the Edit Analytica Links box that appears select the link(s).

3. Click on the radio button labeled manual and click the OK
button.

Terminating links
You may want to terminate a link to a source file for a number of
reason including if you do not have the source file or if you would
like to edit the values in a Linked table. To break a link, bring up
the Edit Analytica Links dialog, by choosing OLE Links… from
the Edit menu. Select the link you would like to terminate and
click the Break Link button.

Activating the other application
If you have linked data from an external application into Analytica,
after loading Analytica you can make the other application visible
using the Open Source button on the OLE Links... dialog,
accessed through the Edit menu. If you implement a portion of
your model in Analytica and a portion in an external application,
with OLE links in both directions, you can make both applications
simultaneously visible on the screen by loading the Analytica
model first, then pressing the Open Source button to open the
external application.

Importing and exporting

Importing a definition
To import a definition from a text file into expression format:

1. Select the definition field of the Variable in either the Object
window or Attribute panel definition view.

If the Variable is defined as a List, List of Labels, or Edit
Table, select the cell(s) in which to import.

2. Select Import... from the File menu. A dialog box prompts you
for the file name from which to import.

Chapter Importing and exporting

Analytica User Guide 387

17

Importing into an Edit Table
To import data from a tab-delimited text file into an Edit Table:

1. Open the window containing the table.

2. Select cells and choose Import… from the File menu.

A dialog box prompts you for the file name from which to
import.

To import all the elements of a multidimensional table including
the index elements, a special text format is required (see “Edit
Table data import/export format” on page 388). This is also the
format in which an Edit Table or Result Table is exported. The
indexes of the table must have been previously created as nodes.

Exporting
To export a Variable’s definition or result table to a text file, first be
certain that the text file is closed.

1. Select the Variable to be exported from and open either the
Object window, definition in the Attribute panel or Result
window.

2. Select the definition field, list cell(s), or table cell(s) for
exporting.

3. Select Export from the File menu. A dialog box prompts you
for the file name to export to.

Chapter Printing to a file

388 Analytica Users Guide

17
Printing to a file

Another way of exporting any Diagram window, Object window, or
Result window to a file is to print to a file:

1. Select Print from the File menu.

2. Select Print to File and press Enter or click OK.

3. Enter the name of the file and the format for the file in the
dialog box that appears.

Edit Table data import/export format
Multidimensional data being imported or copied into an Edit Table
must be in a text file with the special format described in this sec-
tion. This is also the format in which an Edit Table or result table
is exported.

• TextTable is a keyword.

• Attribute is the name of the Attribute into which the data is
to be pasted (usually Definition).

• Variable identifier is the identifier of the Variable node
into which the data is to be pasted.

• Index identifier is the identifier of the index for this Variable.
This node must already exist in the model.

Chapter Edit Table data import/export format

Analytica User Guide 389

17
• Each index value and array value pair must be separated by

tab characters.

One-dimensional array
The format for a one-dimensional array is:
TextTable <Attribute> <Variable identifier>
<line break>

<tab><Index identifier><line break>

<Index value><tab><Array value><line break>

Example

Two-dimensional array
The format for a two-dimensional array is:
TextTable <Attribute> <Variable identifier>
<line break>

<Index1 identifier>< tab><Index1 values separated by
tabs><line break>

<Index2 identifier><line break>

<Index2 value1><tab><Array values separated by
tabs><line break>

<Index2 value2><tab><Array values separated by
tabs><line break>

<Index2 valueN><tab><Array values separated by
tabs><line break>

Keyword Attribute Variable identifier

TextTable Definition House_cost_inputs
House_inputs

PropTax 3400
Tax rate 0.44
Maintenance 4000
Interest 0.105
Appreciation 0.08

Index Identifier

Index values Array values

Chapter Edit Table data import/export format

390 Analytica Users Guide

17
Example

Three-dimensional array
The format for a three-dimensional array is:
TextTable <Attribute> <Variable identifier> <line
break>

<Index1 identifier><tab><Index1 Value1><line break>

<Index2 identifier><tab><Index2 values separated by
tabs><line break>

<Index3 identifier><line break>

<Index3 value1><tab><Array values separated by
tabs><line break>

<Index3 value2><tab><Array values separated by
tabs><line break>

<Index3 valueN><tab><Array values separated by
tabs><line break>

<Index1 identifier><tab><Index1 Value2><line break>

<Index2 identifier><tab><Index2 values separated by
tabs><line break>

<Index3 identifier><line break>

<Index3 value1><tab><Array values separated by
tabs><line break>

<Index3 value2><tab><Array values separated by
tabs><line break>

<Index3 valueN><tab><Array values separated by
tabs><line break>

TextTable Definition Mortgage
Down payment 20000 45000 60000
Buying price
200000 180000 155000 140000
400000 380000 355000 340000
600000 580000 555000 540000

Keyword Attribute Variable identifier

Index1

Index1 valuesArray values

Index2

Index2 values

Chapter Edit Table data import/export format

Analytica User Guide 391

17
and so on for each value of Index1.

Example

Number format
Numerical data can be imported in any format recognized by
Analytica (see “Number Format dialog box” on page 135).

Numerical data will be exported in the format set for the table,
with these exceptions:

• Suffix format numbers will be exported in scientific
exponential format.

• Fixed decimal point numbers of more than 9 digits will be
exported in scientific exponential format.

• If a date format begins with the day of the week, e.g.,
"Saturday, January 1, 2000", the weekday is suppressed:
"January 1, 2000".

TextTable Definition Net_diff
Buying price 200000
Years owned 5 10 15
Down payment
20000 10112 12160 13525
45000 10093 12158 13540
60000 10073 12157 13555
Buying price 400000
Years owned 5 10 15
Down payment
20000 10180. 14201. 16867.
45000 10160. 14199. 16882.
65000 10141. 14198. 16897.
Buying price 60000
Years owned 5 10 15
Down payment
20000 10248 16242 20209
45000 10228 16241 20224
60000 10208 16239 20239

Keyword Attribute Variable identifier

Index1

Index2
Index1 Value1

Index3

Index3 values

Index2 values

Index1 Index1 Value2

Array values

Index1 Index1 Value3

Chapter Edit Table data import/export format

392 Analytica Users Guide

17

Chapter 18

Working with
Large Models

Chapter

394 Analytica Users Guide

18

In this Chapter

This chapter shows you how to:

• Navigate large models

• Combine existing models into an
integrated model

Chapter Show module hierarchy preference

396 Analytica Users Guide

18

18: Working with large models
Large models, which include many Variables organized into multi-
ple modules at several levels of hierarchy, can be challenging to
find your way around. The first part of this chapter describes how
to navigate larger models, using the hierarchy preference, the
Outline window, and Variable input and output attributes. The
second part of this chapter describes how to combine existing
models into an integrated model.

Show module hierarchy preference
Often a large model has many layers of hierarchy. You can see
the hierarchy depth of each module at the top of its Diagram win-
dow by setting a preference. Select Preferences... from the Edit
menu to display the Preferences dialog box.

If you check the Show module hierarchy box, the top of the
active Diagram window displays one or more module node
shapes to indicate its hierarchy depth.

Show module
hierarchy

option

Indicates that this module has a parent in the model

Chapter The Outline window

Analytica User Guide 397

18
The Outline window

The Outline window displays a listing of the nodes inside a
model. It can also show the module hierarchy as an indented list
of modules. It provides an easy way to orient yourself in a large
model and to navigate within it.

Opening the Outline window
To open the Outline window, click on the Outline button in the
tool palette ().

The Outline window highlights the entry for the selected module
or Variable.

Opening details from an outline
To display a module’s Diagram window, double-click on its entry
in the outline.

To display a Variable’s Object window, double-click on its entry in
the outline.

Check to display only
modules

Attribute popup menu

Attribute panel

List of Variables,
modules, and functions

Selected Object is
highlighted

Chapter The Outline window

398 Analytica Users Guide

18
Expanding and contracting the outline

By default, the outline lists all nodes in the model. Check the
Modules Only box to list only the modules (exclude Variables
and functions).

In the outline, each module entry has a triangle icon (or) to
let you display or hide the module’s contents.

Indicates that the module’s contents are not shown in the
Outline window. Click on this icon to display the module’s
contents.

Indicates that the module’s contents are shown as an
indented list. Click on this icon to hide the module’s contents.

Viewing and editing attributes
The Attribute panel at the bottom of the Outline window works just
like the Attribute panel available at the bottom of a Diagram win-
dow (see “Displaying the Attribute” on page 35).

To view the attributes of a listed node:

1. Select the node by clicking on it.

2. Choose the Attribute to examine from the Attribute popup
menu (see “The Attribute popup menu” on page 35).

If you edit attributes in this panel, the changes are propagated to
any other Attribute panels and Object windows.

Viewing values
To see the Outline window with mid values, select Show With
Values from the Object menu. Each Variable whose mid value
has been evaluated and is a scalar will display in the window (see
“Showing mid values” on page 36).

Click here to see
modules only

Chapter Finding Variables

Analytica User Guide 399

18

Finding Variables
To locate a Variable in its diagram, by identifier or by title, use the
Find dialog box.

Find dialog box
To display the Find dialog box:

1. Select Find... (Ctrl-F) from the Object menu.

2. Choose the Attribute to search by: Identifier or Title.

3. In the text field, enter the identifier or title for the Analytica
Object for which you want to search. You can enter an
incomplete identifier or title, such as "down" for "Down
payment."

4. Click on the Find button to initiate the search.

Chapter Managing attributes

400 Analytica Users Guide

18
The Diagram window containing the Object found is displayed,
with the node of the Object selected.

If the name you type does not match completely any existing
identifier or title (depending on which Attribute you are search-
ing), the first identifier or title that is a partial match will be dis-
played.

To find the next Object that is a partial match to the last identifier
or title that you entered, select Find Next (Ctrl-G) from the
Object menu.

To find an Object whose identifier matches the selected text in an
Attribute field (such as a definition field), select Find Selection
(Ctrl-H) from the Object menu.

Managing attributes
Every node in an Analytica model is described by a collection of
attributes. For some models, you may want to control the display
of attributes or create new attributes. Some attributes apply to all
classes (Variable, module, and function). Others apply to specific
classes, as listed in the following table.

Attribute Function Module Variable

Author *

Check ÷ ÷

Class * * *

Created *

Definition * *

Description * * *

Domain ÷

File Info *

Help ÷ ÷ ÷

Identifier * * *

Inputs ÷ ÷

Last Saved *

Outputs ÷ ÷

Chapter Managing attributes

Analytica User Guide 401

18

Key:

For descriptions of the attributes, see Appendix C, “Glossary.”

Attributes dialog box
Use the Attributes dialog box to control the display of optional
attributes in the Object window and Attribute panel and to define
new attributes.

To open the Attributes dialog box, select Attributes... from the
Object menu.

Class popup menu
Use this menu to select the Attribute list for Variables,
modules, or functions.

Parameters *

Probvalue ÷

Title * * *

Units * *

Value ÷

User-created (up to 5) ÷ ÷ ÷

Attribute Function Module Variable

plain = modifiable by user * = always displayed

italic = set by Analytica √ = optionally displayed

Class popup menu

Asterisk indicates an
Attribute that is always

displayed in Object window
Check mark indicates optional

Attribute is displayed

Attribute list

Create new Attribute

Chapter Managing attributes

402 Analytica Users Guide

18
Attribute list

This list shows attributes for the selected class. Attributes
with an asterisk (*) are always displayed in the Object window
and Attribute panel. Attributes with a check mark (√) are
optionally displayed.

Displaying optional attributes
To display an optional Attribute in the Object window and Attribute
panel, click on it once to select it, then click on it again to show a
check mark.

To hide an optional Attribute, click on it once to select it, then click
on it again to remove the check mark.

Creating new attributes
You can create up to five additional attributes. For example, you
could use a Reference Attribute to include the bibliographic refer-
ence for a module or Variable.

To create a new Attribute in the Attributes dialog box:

1. Select new Attribute from the Attribute list to show the new
Attribute Title field and the Create button.

2. Enter the title for the new Attribute in the Title field. The title
can contain a maximum of 14 characters; 10 characters are
the maximum recommended for visibility with all screen fonts.

3. Click on the Create button to define the new Attribute.

A newly created Attribute is displayed for modules, Variables, and
functions. To control whether or not it is displayed for modules,
Variables, or functions, select the Class popup menu in the
Attributes dialog box, and turn the check mark on or off.

Renaming an Attribute
To rename a created Attribute:

1. Select it in the Attribute list. The Title field and the Rename
button appear.

2. Edit the name of the Attribute in the Title field.

3. Click on the Rename button.

Chapter Invalid Variables

Analytica User Guide 403

18
Referring to the value of an Attribute

Analytica includes the following function for referring to the value
of an Attribute in a Variable’s definition:

Attrib Of x
Returns the value of Attribute attrib of Object x, where x may be
a Variable, function, or module. For most attributes, including
Identifier, Title, Description, Units, Definition, and user-
defined attributes the result is a text value. For Value and Prob-
value, the result is the value of the Variable (deterministic or
probabilistic, respectively). For Inputs, Outputs, and Contains
(an Attribute of a Module), the result is a vector of Variables.

You cannot refer to an Attribute of a Variable by naming the Vari-
able in the definition of that Variable. Instead, refer to it as Self,
for example:

Variable Boiling_point
Units: F
Definition: If (Units of Self) = ‘C’

THEN 100 ELSE 212

Boiling_point → 212

Library Special

Example Units of Time → 'Years'

Analytica Note: Changes to attributes other than Definition do
not automatically cause recomputation of the Variables whose
definitions refer to those attributes. So, if you change Units of
Boiling_point to C, the value of Boiling_point will not change
until Boiling_point is recomputed for some other reason.

Invalid Variables
To locate all Variables in a model with syntactically incorrect or
missing definitions, select Show Invalid Variables from the Defi-
nition Menu.

Chapter Using filed modules and libraries

404 Analytica Users Guide

18

Double-click on a Variable to open its Object window. From the
Object window, you can edit the definition, or click on the Parent
Diagram button () to see the Variable in its diagram.

Using filed modules and libraries
Modules and libraries can be components of a model. If you are
building several similar models, or if you are building a large
model composed of similar components, you can create modules
and libraries for reuse. (See Chapter 19, “Building Functions and
Libraries” for details about libraries.)

To use a module or library in more than one model, create a filed
module or filed library.

Creating a filed module or library
To create a filed module or library:

1. Create a module by dragging the module icon from the node
palette onto the diagram, and give it a title.

2. Create functions and/or Variables in the module, or create
them elsewhere and move them into the module.

3. Change the class of the module to Module () or Library

() (see “Changing the class of a node” on page 86).

4. The Save As dialog box appears. Give the filed module or
library a name and save it.

5. If you want the original model to load the new filed module or
library the next time it is opened, save the model using the
Save command.

Chapter Using filed modules and libraries

Analytica User Guide 405

18
Locking a filed module or library

To prevent a filed module or library from being modified, lock it:

1. Close the filed module or library, or close Analytica.

2. In Windows Explorer, select the filed module or library.

3. Select Properties from the File menu.

4. Check the Read-only check box.

5. Close the Properties window.

Adding a module to a model
To add a filed module to the active model, use the Add Module
dialog box (see “Adding a module or library” on page 406). You
can either embed a copy of the module or link to the original of
the filed module.

Adding library to a model
To add a filed library to the active model, use the Add Module dia-
log box (see “Adding a module or library” on page 406). You can
either embed a copy of the library or link to the original of the filed
library.

Check this option to
lock a library or module
file

Chapter Adding a module or library

406 Analytica Users Guide

18
When you select Add Library from the File menu, the Open File
dialog box always opens up to fixed directory, regardless of the
current directory settings or previous changes of directories. The
directory is determined by a registry setting: …/Lumina Decision
Systems/Analytica/3.0/AddLibraryDir, which is set by the
Analytica installer to INSTALLDIR/Libraries.

Removing a module or library from a model
To remove a filed module or library from a model, first select it.
Then, select Cut or Clear from the Edit menu. An embedded
copy will be deleted; a linked original will still exist as a separate
file.

Warning: Any definitions that use a function in a deleted library
or that have an input from a deleted module or library
will have the deleted Object removed and will be
changed to FunctionOf(remaining Variables).

Saving changes
After you have linked to a filed module or library, the Save com-
mand saves every filed module and library that has changed, as
well as the model containing them, in their corresponding files.

The Save As and Save A Copy In commands save only the
active (top most window’s) model, filed module or filed library.

Adding a module or library
Use the Add Module dialog box to add a filed module or library to
the active model.

If you are adding a module, you open the Add Module dialog box
by selecting Add Module from the File menu (Ctrl-L). If you are
adding a library, you open the Add Module dialog box by selecting
Add Library from the File menu.

The standard Open Model dialog box appears. Select the desired
module in that dialog box. The following dialog box then appears:

Chapter Adding a module or library

Analytica User Guide 407

18

Analytica Note: Be sure that the selected model or module was
saved with a class of filed module or filed library. If it was saved
with a class of model, when it is linked to the root model, its
preferences and uncertainty settings will overwrite the
preferences and uncertainty settings of the root model.

An added module or library may be either embedded or linked.
You can optionally overwrite any nodes with the same identifiers.

Embed a copy
Embeds a copy of the selected module or library in the active
model, making it a part of, and saving it with, the model. Any
changes to the copy will not affect the original filed module or
library.

Link to original
Creates a link to the selected module or library, which can be
separately opened and saved. If you make changes to a linked
module or library from one model, the changes are saved in the
original’s file and any other models linked to the original will be
affected by the changes.

A linked module or linked library has a bold arrow pointing into it
on the diagram.

Chapter Combining models into an integrated model

408 Analytica Users Guide

18

Merge contents (overwrite)
Select this check box to overwrite existing objects in the active
model with objects with the same identifiers from the added mod-
ule or library. This is useful if the file being added contains
updates from a previous version.

If you do not select this check box, and an Object in the file being
added has the same identifier as one in the active model, Analyt-
ica will point that out and ask if you want to rename the Variable.
If you click Yes, it will rename the Variable in the existing model,
and update all definitions in the existing model to use the
changed identifier. It will leave unchanged the identifier of the
Variable in the module it is adding (which may contain defini-
tions referencing that identifier that it has yet to read.) Hence, all
the definitions in the existing model and added module will con-
tinue to reference the correct (original) Variables.

Combining models into an integrated model
Large models introduce a unique set of modeling issues. Model-
ers may want to work on different parts of a model simulta-
neously, or at remote locations. During construction, a large
model may be more tractable when broken into modular pieces
(modules), but all modules should use a common set of indexes
and functions. Analytica provides the functionality required to
support large-scale, distributed modeling efforts.

This section describes how to best use Analytica for large model-
ing projects and contains suggestions for planning a large model
where responsibility for each module is assigned to different peo-
ple (or teams).

Define public Variables
The first step to creating an integrated model is to define public
Variables for use by all modules and agree on module linkages.

Bold arrow indicates that this is a
linked module

Chapter Combining models into an integrated model

Analytica User Guide 409

18
Every integrated model will have Variables that are used by two
or more projects (for example, geographical, organizational, or
other indexes, modeling parameters, and universal constants).
These public Variables should be defined in a separate module,
and distributed to all project teams. Each team uses Add Module
(see “Adding a module or library” on page 406) to add the public
Variables module to its model at the outset of modeling. Using a
common module for public Variables avoids duplication of Vari-
ables and facilitates the modules’ integration.

Source control over the public Variables module must be estab-
lished at the outset so that all teams are always working with the
same public Variables module. Modelers should not add, delete,
or change Variables in the public Variables module unless they
inform the source controller, who can then distribute a new ver-
sion to all modelers.

If multiple teams will be working on separate projects, it is essen-
tial that the teams agree upon inputs and outputs. Modelers must
specify the input Variables, units, and dimensions that they are
expecting as well as the output Variables, units, and dimensions
that they will be providing. The indexes of these inputs and out-
puts should be contained in the public Variables module.

Create a modular model
By keeping large pieces of a model in separate, or filed modules,
modelers can work on different parts of a model simultaneously.
You can break an existing model into modules, or combine mod-
ules into an integrated model. In both cases, the result is a top-
level model, into which the modules are added.

To save pieces of a large model as a set of filed modules, see
“Using filed modules and libraries” on page 404.

To combine existing models into a new, integrated model:

1. Create or open the model that will be the top level of the
hierarchy. This is the model to which all sub-models will be
added.

2. Using Add Module (see “Adding a module or library” on
page 406), add in the sub-models. Be sure to check the Merge
option in the Add Module dialog box. Add the modules in the
following sequence:

• Any public Variable modules

Chapter Combining models into an integrated model

410 Analytica Users Guide

18
• All remaining modules in order of back to front; that is:

• first, the module(s) whose outputs are not used by
any other module, and

• last, the module(s) which take no inputs from any
other module.

3. Save the entire integrated model, using the Save command.

The two alternative methods of controlling each module’s input
and output nodes so the modules can be easily integrated, are:

• Identical identifiers

• Redundant nodes

Identical identifiers
Assign the input nodes in each module the exact same identifiers
as the output nodes in other modules that will be feeding into
them. When you add the modules beginning with the last mod-
ules first (that is, those at the end of model flow diagram), the
input nodes will be overwritten by the output nodes, thus linking
the modules and avoiding duplication.

With identical identifiers, the individual modules cannot be evalu-
ated alone because they are missing their input data. They can
be evaluated only as part of the integrated model.

Redundant nodes
Place the output node identifiers in the definition fields of their
respective input nodes. Due to the node redundancy, this method
requires more memory than using identical identifiers, and it is
therefore less desirable when large tables of data are passed
between modules. However, since no nodes are overwritten and
lost upon integration, this method preserves the modules’ struc-
tural integrity, with both input and output nodes visible in each
module’s diagram.

With redundant nodes, each module can be opened and evalu-
ated alone, using stand alone shells.

Stand alone shells
With redundant nodes, you can create a top-level model that con-
tains one or more modules and the public Variables module plus

Chapter Combining models into an integrated model

Analytica User Guide 411

18
dummy inputs and outputs. Such a top-level model is called a
stand alone shell because it allows you to open and evaluate a
single module "standing alone" from the rest of the integrated
model. Stand alone shells are useful when modelers want to
examine or refine a particular module without the overhead of
opening and running the entire model.

To create a stand alone shell for module Mod1, which is a filed
module:

1. Open the integrated model and evaluate all nodes that feed
inputs to Mod1.

2. Use the Export command (see “Importing and exporting” on
page 386) to save the value of each feeding node in a
separate file. Make a note of:

• the identifier of each node and the indexes by which its
results are dimensioned,

• the identifiers of Mod1’s output nodes, if you want to
include their dummies in the stand alone shell.

3. Close the integrated model.

4. Create a new model, to be the stand alone shell.

5. Use Add Module to add the public Variables module.

6. For each input node, create a node containing an Edit Table,
using the identifier and dimensions of the feeding nodes you
noted from the integrated model.

7. Use the Import command (see “Importing and exporting” on
page 386) to load the appropriate data into each node's Edit
Table.

8. Use Add Module to add Mod1 into the stand alone shell.

9. To include output nodes at the top level of the hierarchy,
create nodes there and define them as the identifiers of
Mod1’s outputs.

10. Save the shell.

The shell now has all the components necessary to open and
evaluate Mod1, without loading the entire model. As long as mod-
elers do not make changes to the dimensions or identifiers of
module inputs and outputs, they can modify a module while using
the stand alone shell, and the resulting module will be usable
within the integrated model.

Chapter Managing windows

412 Analytica Users Guide

18
Cautions in combining models

Identifiers
Every Object in a model must have a unique identifier. The identi-
fiers of filed libraries and filed modules that you add to a model,
as well as their Variables and functions, cannot duplicate identifi-
ers in the root model. See “Merge contents (overwrite)” on
page 408.

Created attributes
When you combine models with created attributes, the maximum
number of defined attributes is five (see “Managing attributes” on
page 400).

Location of linked modules and libraries
If the model will eventually be distributed to other computers, all
modules and libraries should be on the same drive as the root
model prior to being added to the root model. When the model is
distributed, distribute it with all linked modules and libraries.

Managing windows
An Analytica model can potentially display thousands of Diagram,
Object, and Result windows. To prevent your screen from becom-
ing cluttered, Analytica limits the number of windows of each type
that can be open at once. The default limits are:

• The top-level Diagram window and not more than one
Diagram window for each lower level in the hierarchy

• One Object window

• Two Result windows

The oldest window of the same type is deleted whenever you dis-
play a new window that would otherwise exceed these limits.

Overriding the limits on the number of windows
To display more windows of the same type, override the default
limits in one of the following ways:

Chapter Optimization and speed-up

Analytica User Guide 413

18
• Open a second Object window, or open a Diagram window

without closing an existing Diagram window at the same
level, by pressing the Control key (Ctrl) while you click or
double-click to open the new window.

• Use the Preferences dialog box (see “Preferences dialog
box” on page 88) to change the limits. Select Preferences...
from the Edit menu.

.

In the "Windows of each Kind" area, select Any number
instead of One only.

To display more Result windows and keep the limit on
Diagram and Object windows, enter the maximum number of
Result windows.

Optimization and speed-up
Numerous optimizations in the Analytica 3.1 engine result in a
substantial increase in speed over Analytica 2.0. We have found
a factor of between 1.5 and 4 reduction in the time to evaluate a
model, depending on the functions and dimensionality of the
model.

One example improvement is in Subscript. For example, the
evaluation of A[I=J], or equivalently Subscript(A,I,J), is now
approximately linear in the size of J, rather than proportional to
the product of the sizes of I and J, as it used to be.

Rectangularization of intermediate results
In the most general case, intelligent array abstraction requires an
extra internal, but somewhat costly, step during evaluation to
make sure all intermediate arrays are fully rectangular. Skipping
this step seldom has an impact on the final result, but can speed
things up dramatically for certain models, especially those using
dynamic simulation extensively. Unfortunately, in the very rare
cases where it does make a difference, skipping the step can
lead in incorrect results. By default, Analytica 3.1 uses the safe

Click here to allow an unlimited
number of windows on the

screen at once

Enter the maximum number
of Result windows

Chapter Optimization and speed-up

414 Analytica Users Guide

18
but slower setting, for the system Variable, Rectangularize_inter,
that controls this. You can clear this setting in the Preferences
window for faster execution. See “Safe Intermediates” on
page 92.

Chapter 19

Building
Functions and
Libraries

Chapter

416 Analytica Users Guide

19

In this Chapter

This chapter shows you how to:

• Create your own functions

• Create your own function libraries

Chapter Example function

418 Analytica Users Guide

19

19: Building functions and libraries
You can create your own functions to perform calculations you
use frequently. A function has one or more parameters; its defini-
tion is an expression that uses these parameters. You can spec-
ify that the function check the type or dimensions of its
parameters, and control their evaluation by using various param-
eter qualifiers.

A Library is a a collection of functions grouped in a library file to
extend Analytica’s built-in functions for use for particular types of
application. more than one model. Analytica is distributed with an
initial set of libraries, available in the Libraries folder inside the
Analytica folder on your hard disk. If you add a Library to a model,
it will appear with its functions in the Definition menu, and these
functions will appear almost the same as the built-in functions.

You may want to look at these libraries to see if they provide func-
tions useful for your applications. You may also look at library
functions as a starting point or inspiration for writing your own
functions.

Analytica experts may create their own function libraries for par-
ticular domains. Other Analytica users can benefit from these
libraries.

Example function
The following function, Capm(), computes the expected return for
a stock under the capital asset pricing model.

Chapter Using a function

Analytica User Guide 419

19

Parameters The three parameters, Rf, Rm, and Beta, are qualified to be
numeric.

Definition The definition is a simple expression using Rf, Rm, and Beta.

Sample usage You use the Capm() function in a definition in the same way you
would use Analytica’s built-in functions. For example, if the risk
free rate is 5%, the expected market return is 8%, and StockBeta
is defined as the beta value for a given stock, we can find the
expected return according to the capital asset pricing model as:

Stock_return: Capm(5%,8%,StockBeta)

This definition functions equally well when StockBeta is an array
of beta values. In this case, the result will be an array of expected
returns.

Using a function

Position-based calling syntax
Analytica uses the standard position-based syntax for using, or
calling, a function. You simply list the actual parameters after the
function name, within parentheses, and separated by commas, in
the same sequence in which they are defined. For example,

Capm(5%,8%,StockBeta)

evaluates function Capm(Rf, Rm, Beta) with Rf set to 5%, Rm
set to 8%, and Beta set to Stockbeta.

Chapter Creating a function

420 Analytica Users Guide

19
Name-based calling syntax

Analytica also supports a much more flexible name-based calling
syntax, using the names of the parameters:

Capm(beta: StockBeta, rf: 5%, rm: 8%)

In this case, we name each parameter, and put its actual value
after a colon ":" after the parameter name. The name-value pairs
are separated by commas ",". The parameters can be specified in
any order, provided all the required parameters are mentioned.
This method is much easier to read when the function has many
parameters. It is especially useful when there are many param-
etes and some are optional. See page 428 for how to qualify
parameters as optional.

You can mix positional and named parameters, as in:
Fu1(1, 2, D:4, C:3)

But, you may not list a positional parameter after a named param-
eter:

Fu1(1, D:4, 2, 3)

will display an error message.

This name-based calling syntax is analogous to Analytica’s
name-based subscripting for arrays to obtain selected elements
of an array. In each case, you do not need to remember the par-
ticular sequence of parameters or indexes to understand how the
model works.

Analytica Note: Name-based calling syntax works for all user-
defined functions. It also works for some of the built-in functions,
including the Financial library, Text functions, Optimizer functions,
EigenDecomp, and MatrixMultiply. We recommend that you do
not use it for other built-in functions.

Creating a function
To define a function:

1. Make sure the Edit tool is selected and you can see the node
palette (see page 73).

2. Drag the Function node icon from the node palette into the
Diagram area.

Chapter Attributes of a function

Analytica User Guide 421

19
3. Title the node, and double-click on it to open its Object

window.

4. Enter the new function’s attributes (described in the next
section).

Attributes of a function
Like other objects, a Function is defined by a set of attributes.
Many of these attributes are the same as the attributes of Vari-
ables, including identifier, title, units, description, and definition,
inputs, and outputs. It possesses one unique Attribute, Parame-
ters, which specifies the parameters available to the function.

Identifier If you are creating a library of functions, make a descriptive iden-
tifier. This identifier appears in the function list for the library
under the Definition menu, and is used to call the function. Ana-
lytica makes all characters except the first one lower case.

Title If you are creating a library of functions, limit the title to 22 char-
acters. This title appears in the Object Finder dialog box to the
right of the function.

Units If desired, use the units field to document the units of the func-
tion’s result. The units are not used in any calculation.

Parameters The parameters to be passed to the function must be enclosed in
parentheses, separated by commas. For example: (x,y,z)

The parameters may have type qualifiers (see the next section).

If you are creating a library of functions, use descriptive abbrevia-
tions for the parameters and give them a logical sequence. The
parameters will appear in the Object Finder dialog box and they
will be pasted when the function is pasted from its library in the
Definition menu.

Analytica Note: You can define up to 32 parameters and local
variables in a Function.

Description The Description should first document what the function returns,
and explain each of its parameters. If the Definition is not immedi-
ately obvious, the second part of the Description should explain
how it works. The Description text for a function in a Library will
also appears in a scrolling box in the bottom half of the Object
Finder dialog.

Chapter Parameter qualifiers

422 Analytica Users Guide

19
Definition The definition of a function is an expression or compound list of

expressions. It should use all of its parameters. When you select
the definition field of a function in Edit mode, it shows the Inputs
pull-down menu that lists the parameters as well as any other
Variables or functions that have been specified as inputs to the
function. You can specify the inputs to a function in the same way
as for a Variable—by drawing arrows from each input node into
the function node.

Parameter qualifiers
Parameter qualifiers are keywords you may use in Parameters to
specify for each parameter how, or whether, it should be evalu-
ated when the function is used (called), and whether it should
have a particular type of value, such as number, text value, or
other. Other qualifiers specify whether a parameter should be an
array, and if so, which indexes it expects.You can also specify
whether a parameter is optional. By using qualifiers properly, you
can help make functions easier to use, more flexible, and more
reliable.

For example, consider this Parameters Attribute:
(A: Numeric ArrayType[I,J]; I, J: IndexType; C; D:
Optional Atomic TextType)

It defines five parameters, A, I, J, C, and D. A should be an array
of numbers, indexed by parameters I and J. I and J, being sep-
arated by commas "," rather than semicolons ";" are subject to the
same qualifier, IndexType. C has no qualifiers, and so can be of
any type, or dimensions. The semicolon ";" between C and D
means that the qualifiers following D do not apply to C. D has three
qualifiers, specifying that it is Optional, Atomic, and a text value.
See below for details.

Evaluation mode qualifiers
Evaluation modes control how or whether, Analytica evaluates
each parameter when a function is used (called). The Evaluation
Mode Qualifiers are:

Context Evaluates the parameter deterministically or
probabilistically according to the current
context. For example, consider

Chapter Parameter qualifiers

Analytica User Guide 423

19
Function Fn1(x)
Parameters: (x: Context)

Mean(Fn1(x))

Mean() is a statistical function that always
evaluates its parameter probabilistically.
Hence, the evaluation context for x is
probabilistic, and so Fn1 will evaluate x
probabilistically.

Context is the default evaluation mode used
when no evaluation mode qualifier is
mentioned. So, strictly, Context is redundant,
and you can omit it. But, it is sometimes useful
to specify it explicitly to make clear that the
function should be able to handle the
parameter whether it is deterministic or
probabilistic.

Synonym: Expr

DetermType Evaluates the parameter determinstically, or
in Mid mode, using the Mid (usually median)
of any explicit probability distribution.

Synonyms: Determ, Mid, DetermMode,
MidMode

ProbType Evaluates the parameter probabilistically, i.e.,
in Prob mode, if it can. If you declare the
dimension of the parameter, include the
dimension Run in the declaration if you want
the variable to hold the full sample, or omit
Run from the list if you want the variable to
hold individual samples. E.g.:

(A : ProbType[In1, Run])

Synonyms: Probabilistic, Prob, Uncertain

Sample Evaluates the parameter probabilistically, i.e.,
in Prob mode, if it can. If you declare the
dimension of the parameter, include the
dimension Run in the declaration if you want
the variable to hold the full sample, or omit
Run from the list if you want the variable to
hold individual samples. E.g.:

Chapter Parameter qualifiers

424 Analytica Users Guide

19
(A : Sample[In1, Run])

Synonym: Samp

IndexType The parameter must be an Index Variable, or
a Dot-operator expression, such as A.I. You
can then use the parameter as a local index
within the function definition. This is useful if
you want to use the index in a function that
requires an index, for example Sum(X, I)
within the function.

Synonym: Index

VarType The parameter must be a Variable, or the
identifier of some other Object. You can then
treat the parameter name as equivalent to the
Variable, or other Object name, within the
function definition. This is useful if you want to
use the Variable in one of the few expressions
or built-in functions that require a Variable as
a parameter, for example, WhatIf, DyDx, and
Elasticity.

Synonyms: Variable, Var, VariableType

Array qualifiers
An Array Qualifier can specify that a parameter is an array with
specified index(es) or no indexes, in the case of Scalar.

Scalar The parameter expects a single number, not
an array. Means the same as Numeric Atomic.

Synonyms: Scalars, ScalarType

Atomic If the actual parameter is an array, the
function is called separately on each atomic
element of the array. The results of all the
calls to the function are reassembled into an
array with the same indexes as the original
parameter, which is returned as the overall
result.

You might be tempted to use Atomic to qualify
parameters of every function, just in case.
Functions with Atomic parameters may take

Chapter Parameter qualifiers

Analytica User Guide 425

19
longer to execute because they have to do all
that disassembly of the array-valued
parameters, multiple evaluations, and
reassembly of the results. So, avoid using it in
time-consuming functions except when really
necessary.

ArrayType Dimensionality declaration, when present,
forces Analytica to perform horizontal array
abstraction over the parameters when
additional dimensions are present. For
example, if Fu1 has the parameter
declaration:

(A: ArrayType[Time])

and if A, when evaluated, contains
dimensions other than Time, Analytica will
loop over the other dimensions, ensuring that
within the function A contains no dimension
other than Time.

A dimensionality declaration usually the
following the form:

ArrayType [In1, In2, ...]

Zero or more indexes can be specified
between the square brackets. A zero- index
declaration means that the value will be
atomic when the function body is evaluated,
and in this case the synonymous keyword
Atomic may be used (synonyms Atom,
AtomicType, AtomType). ArrayType also has
the synonyms Array and Arr and is itself
optional (e.g., one could write Numeric[In1]
rather than Numeric ArrayType[In1].

Each index identifier listed inside the brackets
may be either a global index Variable or
another parameter explicitly qualified as an
IndexType. For example the Parameters
Attribute:

(A: ArrayType[Time, J]; J: IndexType)

Chapter Parameter qualifiers

426 Analytica Users Guide

19
specifies that parameter A must be an array
indexed by Time (a built-in Index Variable) and
by the index Variable passed to parameter J.

In the absence of an Array Qualifier, Analytica will accept an
array-valued parameter for the function, and passes it into the
function Definition for evaluation with all its dimensions (indexes).
This kind of vertical array abstraction is usually more efficient for
those functions that can handle array-valued parameters.

All Forces the parameter to have or be expanded
to have all the Indexes listed. For example, in

X: ArrayType All [I, J]

the All qualifier forces the value of X to be an
array indexed by the specified Index
Variables, I and J. If X is a single number, not
an array, All forces Analytica to convert it into
an array with indexes, I and J, repeating the
value of X in each element. Without All
Analytica would simply pass the scalar value
X into the function definition.

Type checking qualifiers
Type Checking Qualifiers make Analytica check whether the
value of a parameter (each element of an array-valued parame-
ter) has the expected type—such as, numerical, text, or refer-
ence. If any values do not have the expected type, Analytica
gives an evaluation error at the time it tries to use (call) the func-
tion. The Type Checking Qualifiers are:

Numeric A number, including +INF, -INF, or NaN

Synonyms: Number, Numbers, NumberType,
NumericType, Num, Real

Positive A number greater than zero, or INF.

TextType A text value

Synonyms: Text, Textual, TexType, String,
Strings

ReferenceType A reference to a value, created with the \
operator.

Chapter Parameter qualifiers

Analytica User Guide 427

19
Synonyms: Ref, RefType, Reference

Coerce If you accompany a Type checking qualifier by
the Coerce qualifier, it will try to convert, or
coerce, the value of the parameter to the
specified type. For example:

A : Coerce TextType ArrayType[I]

will try to convert the value of A to an array of
text values. It will give an error message if any
of the coercions are unsuccessful.

If the conversion cannot occur, an error is issued. The following
coercions are allowed:

Other coercions, including Undef or Null to Number or Positive
will result in an error that the coercion is not possible.

Ordering qualifiers
The ordering qualifiers, Ascending or Descending, check
that the parameter value consists of numbers in the specified
order. Ordering also works for text values. Ascending means
alphabetical order, and Descending means the reverse.

Ordering is not strict: That is, it allows successive elements to be
the same. For example, [1,2,3,3,4] and [‘Anne’, ‘Bob’, ‘Bob’, ‘Car-
men’] are both considered ascending.

If the value of the parameter does not have the specified order-
ing, or it is a scalar (not array) value, Analytica will issue an eval-
uation error when trying to evaluate the function call.

Undef to text (blank)

Null to text ("Null")

Number to text (uses number format for caller)

Text to Positive (date vs. number based on number format)

Text to Number (date vs. number based on number format)

Undef to Reference (\Undefined)

Null to Reference (\Null)

Number to Reference (\X)

Text to Reference (\Text)

Chapter Parameter qualifiers

428 Analytica Users Guide

19
If the parameter has more than one dimension (other than Run),
you should specify the index of the dimension over which to
check the order, thus:

A : Ascending ArrayType[I]

Optional parameters
Any parameter may be optional if declared as optional by includ-
ing the keyword Optional, or its synonym Opt, within the decla-
ration. Optional parameters may appear anywhere within the
declaration—they are not limited to the final parameters. So, for
example, one could declare the parameters for Fu1 as

(A: Optional; B; C: Optional; D; E: Optional)

To call Fu1, you could use any of these examples:
Fu1(1,2,3,4,5)
Fu1(1,2,,4)
Fu1(,2,,4)
Fu1(,2,3,4,5)

Or you could use named-based calling syntax:
Fu1(B:2, D:4)

which is clearer and simpler.

When middle parameter are omitted, an empty space between
commas must be included when the function is called. If all
parameters following the last parameter provided are optional,
placeholder commas are not necessary.

When a parameter is omitted, the value will have a special inter-
nal value such as undef (or a different internal value if a VarType
is omitted). You can detect this inside the function definition using
function IsNotSpecified. For example, the first line of the body
of the function might read:

If IsNotSpecified(A) then A := 0;

Take care with omitted VarType and IndexType parameters.
Some built-in functions may crash if passed an unspecified Index-
Type or varType parameter.

If a function with an omitted parameter value passes it as a
parameter to a second function whose parameter is not optional,
it displays a warning message. For example:

Fu1(A : optional) := Fu2(A)
Fu2(B) := B

Chapter Libraries

Analytica User Guide 429

19
Va1 := Fu1()

will display the message
Error: Parameter B is not optional in function
Fu2.

Libraries
When you place functions and Variables in a library, the library
becomes available as an extension to the system libraries. Its
functions and Variables also become available. Up to eight user
libraries can be used in a model.

There are two types of user libraries (see also “Changing the
class of a node” on page 86):

• A library () is a module within the current model.

• A filed library () is saved in a separate file, and can be
shared among several models.

Creating a library
To create a library of functions and/or Variables:

1. Create a module by dragging the module icon from the node
palette onto the diagram, and give it a title.

2. Change the class of the module to library or filed library (see
“Changing the class of a node” on page 86).

3. Create functions and/or Variables in the new library or create
them elsewhere in the model and then move them into the
library.

Functions and Variables in the top level of the library can be
accessed from the Definition menu or Object Finder. Use mod-
ules within the library to hold functions and Variables (such as
test cases) that will not be accessible to models using the library.

Adding a filed library to a model
Add a filed library to a model using the Add Module dialog box
(see “Adding a module or library” on page 406).

Chapter Libraries

430 Analytica Users Guide

19
Using a library

When defining a Variable, you can use a function or Variable from
a library in any of the following ways:

• Type it in.

• Select Paste Identifier from the Definition menu to open the
Object Finder.

• Select Other from the Expression popup menu to open the
Object Finder.

• Paste from the library under the Definition menu.

Example Compare the way the Capm() function is displayed in the Object
window (page 429) to the way it is displayed in the Object Finder:

A user Library

Chapter Libraries

Analytica User Guide 431

19

Chapter Libraries

432 Analytica Users Guide

19

Chapter 20

Procedural
Programming

In this Chapter

This chapter shows you how to use the
procedural features of the Analytica
modeling language.

Chapter An example of procedural programming

Analytica User Guide 435

20

20: Procedural programming
A procedural program is sequence of instructions to a com-
puter. Each instruction tells the computer what to do, or in what
sequence to execute the instructions. Most Analytica models are
non-procedural—that is, they consist of an unsequenced set of
definitions of Variables. Each definition is a simple expressions
that contain functions, operators, constants, and other Variables,
but no procedural constructs controlling sequence of execution.
In this way Analytica is like standard spreadsheet application, in
which each cell contains a simple formula with no procedural con-
structs. Analytica determines the sequence in which to evaluate
Variables based on the dependencies among them, somewhat in
the same way spreadsheets determine the sequence to evaluate
their cells. Non-procedural languages free you from having to
think about it. Non-procedural models or programs are easier to
write and understand because you can understand each defini-
tion (or formula) without worrying about the sequence of execu-
tion. Procedural programs, such as most programs in Fortran,
Visual Basic, or C++, are much harder to write and understand.

However, procedural languages enable you to write more power-
ful functions that are hard or impossible without their procedural
constructs. For this reason, Analytica 3.0 introduced a set of such
constructs, providing it a general procedural programming lan-
guage for those who want it. Together, these constructs provide
much greater power and flexibility for creating definitions, and
especially, for defining new functions in Analytica.

These constructs may only be used within the definition of a Vari-
able or function to control the flow of execution within that Vari-
able or function. They cannot affect other Variables or functions
directly, and do not affect the flow of execution in other Variables
or functions. Thus, the availability of these constructs does not
affect the simple nonprocedural relationship among Variables and
functions.

An example of procedural programming
The following function, Factors, computes the prime factors of an
integer x. It illustrates many of the key constructs of procedural
programming.

Chapter An example of procedural programming

436 Analytica Users Guide

20

See below for an explanation of each of these constructs, and
cross-reference to where they are.

Numbers identify
features below:

Function Factors(x)
Definition:

1. VAR result := [1];

2. VAR n := 2;

3. WHILE n <= x DO

4. BEGIN

2. VAR r := Floor(x/n);
IF r*n = x THEN

5. (result := Concat(result, [n]);

6. x := r)
ELSE n := n + 1

4, 7. END; /* End While loop */

7, 8. result /* End Definition */

This definition illustrates these new features:

1. Var x := e construct defines a local Variable x, and sets an
initial value e. See page 439 for more.

Chapter An example of procedural programming

Analytica User Guide 437

20
2. You can group several expressions (statements) into a

definition by separating them with ’;’s (semicolons).
Expressions can be on the same line or successive lines. See
page 439.

3. While Test Do Body construct tests condition Test, and, if true,
evaluates Body, and repeats until condition Test is False. See
page 446.

4. Begin e1 ; e2; … End groups several expressions separated
by ’;’s—in this case as the body of a While loop. See
page 439.

5. (e1 ; e2; …) is another way to group expressions—in this
case, as the action to be taken in the Then case. See
page 439.

6. x := e lets you assign the value of an expression e to a local
Variable x or, as in the first case, to a parameter of a function.
See page 440.

7. A comment is enclosed between /* and */ as an alternative to
{ and }.

8. A group of expressions returns the value of the last
expression—here the function Factors returns the value of
result—whether the group is delimited by Begin and End, by
’(’ and ’)’, or, as here, by nothing.

Chapter Summary of programming constructs

438 Analytica Users Guide

20
Summary of programming constructs

Construct Meaning For more
see:

e1 ; e2; … ei Semicolons join a group of expressions to be evaluated in
sequence.

page 439

Begin e1 ; e2; … ei
End

A group of expressions to be evaluated in sequence. page 439

(e1 ; e2; … ei) Another way to group expressions. page 439

m .. n Alternative for Sequence(m, n). page 452

Var x := e Define local Variable x and assign initial value e. page 439

Index i := e Define local index i and assign initial value e. page 450

x := e Assigns value from evaluating e to local Variable x. Returns
value e.

page 440

While Test Do
Body

While Test is True, evaluate Body and repeat. Returns last
value of Body.

page 446

/* comments */ Brackets enclose comments in definitions, alternative to curly
braces { and }.

page 437

"text" Double quotes enclose text values, as an alternative to single
quotes, ’ and ’.

page 179

For x[] := a DO e Assigns to local Variable x, successive scalar values from array
a and repeats evaluation expression e for each value. Returns
an array of values of e with the same indexes as a.

page 457

For x[i, j…] := a DO
e

Same, but each successive value assigned to x is indexed by
the indices, [i, j …].

page 457

\ e Creates a reference to the value of expression e. page 458

\ [i, j …] e Creates an array indexed by any indexes of e other than i, j …
of references to subarrays of e each indexed by i, j ….

page 462

r Returns the value referred to by reference r. page 458

Chapter Programming constructs

Analytica User Guide 439

20
Programming constructs

Begin-End, (), and ’;’ for grouping expressions
As illustrated above, you can group several expressions (state-
ments) as the definition of a Variable or Function simply by sepa-
rating them by ’;’s (semicolons). To group several expressions as
a condition or action of If a Then b Else c or While a Do b, or,
indeed, anywhere a single expression is valid, you should
enclose the expressions between Begin and End, or between
’(’and ’).

The overall value of the group of statements is the value from
evaluating the last expression. For example,

(VAR x := 10; x := x/2; x - 2) → 3

Analytica will also tolerate a ’;’ after the last expression in a
group. It still returns the value of the last expression. For exam-
ple,

(VAR x := 10; x := x/2; x/2;) → 2.5

The statements can be grouped on one line, or over several lines.
In fact, Analytica does not care where new-lines, spaces, or tabs
occur within an expression or sequence of expressions—as long
as they are not within a number or identifier.

Var v := e : Defining a local Variable
This construct creates a local Variable v and initializes it with the
value from evaluating expression e. You can then use v in subse-
quent expressions in within this context—that is, in following
expressions in this group, or nested within expressions in this
group. You cannot refer to a local Variable outside its context—for
example, in the definition of another Variable or function.

Analytica Note: You can define up to 31 local variables in the
Definition of a Variable.

If v has the same identifier (name) as a global Variable, any sub-
sequent mention of v in this context refers to the just-defined
local Variable, not the global.

Examples Instead of defining a Variable as:
Sum(Array_a*Array_b,N)/

Chapter Programming constructs

440 Analytica Users Guide

20
(1+Sum(Array_a*Array_b,N))

define it as:
VAR t := Sum(Array_a*Array*b, N);

t/(1+t)

To compute a correlation between Xdata and Ydata, instead of:
Sum((Xdata-Sum(Xdata,Data_index)/Nopts)*(Ydata-

Sum(Ydata,Data_index)/Nopts),Data_index)/
Sqrt(Sum((Xdata-Sum(Xdata,Data_index)/
Nopts)^2, Data_index) * Sum((Ydata -
Sum(Ydata,Data_index)/Nopts)^2,Data_index))

define the correlation as:
VAR mx := Sum(Xdata, Data_index)/Nopts;
VAR my := Sum(Ydata, Data_index)/Nopts;
VAR dx := Xdata - mx;
VAR dy := Ydata - my;
Sum(dx*dy,Data_index)
 /Sqrt(Sum(dx^2,Data_index)*

 Sum(dy^2,Data_index))

The latter expression is faster to execute and easier to read.

The correlation expression in this example is an alternative to
Analytica’s built-in Correlation() function (see “Correlation (X,
Y)” on page 336) when data is dimensioned by an index other
than the system index Run.

Analytica Note: The Var construct replaces the Using x Do e
construct available prior to release 3.0. We encourage you to use
the Var construct instead. Analytica 3.1 still supports the Using x
Do e for upward compatibility.

Assigning to a local Variable: v := e
The ’:=’ (assignment operator) sets the local Variable v to the
value of expression e. The assignment expression also returns
the value of e, although it is usually the effect of the assignment
that is of interest.

The equal sign, ’=’, does not do assignment. It tests for equality
between two values.

Within the definition of a function, you can also assign a new
value to any of its parameters. Such changes to a parameter will

Chapter Programming constructs

Analytica User Guide 441

20
not affect any global Variables used as actual parameters in the
call to the function.

Analytica Note: You can assign only to local Variables previously
defined using Var or Index constructs in the current context—
that is, at the current or higher level in this Definition. You cannot
make assignments to a global Variable—that is, a Variable
created as a diagram node. This constraint prevents unexpected
side effects: In Analytica, you can tell how any global Variable is
to be computed simply by looking at its definition, without having
to worry about any possible side effects from the evaluation of
another Variable or function elsewhere in the model.

There is one exception to this restriction that you can assign only
to local Variables: Assignment to non-local Variables only is
allowed in a button script, or in a user-defined function that is
called directly or indirectly from a button script. See “Assignment
to a non-local Variable,” below.

Assignment to a non-local Variable
In an expression, the operator ":=" performs assignment. For
example:

A := sum(c*sin(x) + d*cos(x), I)

assigns the result of evaluating the expression on the right-hand-
side of ":=" to A. In a Variable node (or objective, chance, deci-
sion, etc.), this is only allowed if A is a local Variable. However,
you can assign to Object nodes from a button script. The above
expression, when evaluated, would change the definition of the
node A.

Assignment to non-local Variables is only allowed in a button
script, or in a user-defined function that is called directly or indi-
rectly from a button script.

This feature has many uses. For example, it can be used to copy
a result table into an Edit Table. For example, (A:=B) will copy
the result of B into an Edit Table in A's definition, assuming B is
array-valued.

If you have a portion of your model that takes a very long time to
compute, and a second half that uses those results, but you don't
wish to wait for the first part to evaluate every time you load the
model, then you can create a button script to copy the result from
the first part into a separate node, breaking the dependency.

Chapter Programming constructs

442 Analytica Users Guide

20
An example is the case where a time-consuming data analysis or
machine learning algorithm analyzes data to create a learned
parameter set, and a second portion of the model uses those
learned parameters to classify new instances. Use of the assign-
ment operator allows the learning algorithm to be separated from
the performance element, even though both may be encoded in
the same model.

For information on writing button scripts, consult the Analytica
Scripting Guide, distributed with ADE. For simple scripts, it is not
necessary to know much about the details of button scripts to
make use of buttons and this assignment feature, as long as you
understand a few points.

• A button is created from Analytica Enterprise by dragging a
button Object from the toolbar onto a diagram. The
functionality of the button is encoded in the button’s script
Attribute.

• The script Attribute contains commands written in
Typescript. Typescript is a different language from the
expression syntax used in other Object definitions. Typescript
allows one statement per line; a multi-line statement must
contain a tilde (~) as the last character of each line of the
statement, except for the final line of the statement.

An easy way to make use of buttons in most applications is to
specify a user-defined function with the desired functionality
(including assignments) and place a call to the user-defined
function in the script Attribute. A call to a function is valid in
Typescript. If the button script contains only simple
assignments, then it may be convenient to place these in
button script directly.

• The ":=" operator can be used directly in Typescript, but has
a slightly different functionality than it has elsewhere: In
Typescript the right-hand side is not evaluated. So set the
script Attribute to:
Va1 := 1 + 2

when the button is pressed, the definition of Va1 will become
the expression "1+2". However, if you surround the entire
thing by parens, as in:
(Va1 := 1+2)

Then the script will be treated as an expression, rather than
Typescript, the right-hand side will be evaluated, and the
definition of Va1 will be the number 3. As a general rule, if you

Chapter Iteration loops and recursion

Analytica User Guide 443

20
wish to use expressions in Typescript, you should always
surround the entire expression with parentheses. See the
Analytica Scripting Guide, distributed with ADE for further
details. You can download the Analytica Scripting Guide from
the Analytica Download Center:
http://www.lumina.com/ana/support/download.htm

Iteration loops and recursion
The two functions in this section can be used to control special-
ized evaluation of arrays.

For Temp:= I Do Expr

For each successive value of index I, assigns that value to Vari-
able Temp, and evaluates expression Expr. Expr may refer to I
and/or Temp. Temp is a local or temporary Variable that can be
referred to only within the expression Expr.

The result of the For control function is an array indexed by I con-
taining the results of evaluating Expr. I must be an index Variable,
or be defined as a list or Sequence().

If you make appropriate use of the intelligent array features
described earlier in this and preceding chapters, you will rarely
need to use For structure (unlike in conventional computer lan-
guages, which require extensive use of For loops and related
control structures for handling arrays). For is sometimes useful in
these specialized cases:

• To avoid the attempted evaluation of out-of-range values by
nesting an If-Then-Else inside a For.

• To apply an Analytica function that requires a scalar or one-
or two-dimensional array input to a higher-dimensioned array.

• To reduce the memory needed for calculations with very large
arrays by reducing the memory requirement for intermediate
results.

Library Special

Examples Avoiding out-of-range errors: Consider the following expres-
sion:

If X<0 Then 0 Else Sqrt(X)

Chapter Iteration loops and recursion

444 Analytica Users Guide

20
The If-Then-Else is included in this expression to avoid the
warning "Square root of a negative number." However, if X is an
array of values, this expression may not avoid the warning since
Sqrt(X) is evaluated before If-Then-Else selects which ele-
ments of Sqrt(X) to include. To avoid the warning (assuming X is
indexed by I) the expression can be rewritten as

For j:=I do
If X[I=j]<0 then 0 else Sqrt(X[I=j])

or as (see next section):
Using y:=X in I do

If y<0 Then 0 else Sqrt(y)

Situations like this can often occur during slicing operations. For
example, to shift X one position to the right along I, the following
expression would encounter an error:

if I<2 then X[I=1] else X[I=I-1]

The error occurs when X[I=I-1] is evaluated since the value
corresponding to I-1=0 is out-of-range. The avoid the error, the
expression can be rewritten as:

For j:=I do
If j<2 then X[I=1] else X[I=j-1]

Out-of-range errors can also be avoided without using For by
placing the conditional inside an argument. For example, the two
examples above can be written without For as follows:

Sqrt(if X<0 then 0 else X)
X[I=(if I<2 then 1 else I-1)]

Dimensionality reduction: For can be used to apply a function
that requires a scalar, one- or two- dimensional input to a multi-
dimensional result. This usage is rare in Analytica since array
abstraction normally does this automatically; however, the need
occasionally arises in some circumstances.

Suppose you have an array A indexed by I, and you wish to apply
a function f(x) to each element of A along I. In a conventional pro-
gramming language, this would require a loop over the elements
of A; however, in almost all cases, Analytica’s array abstraction
does this automatically—the expression is simply: f(A), the
result remains indexed by I. However, there are a few cases
where Analytica does not automatically array abstract, or it is
possible to write a user-defined function that does not automati-
cally array abstract (e.g., by declaring a parameter to be of type
Scalar, see page 422). For example, Analytica does not array

Chapter Iteration loops and recursion

Analytica User Guide 445

20
abstract over functions such as Sequence, Split, Subset, or
Unique, since these return unindexed lists of varying lengths that
are unknown until the function evaluates. Suppose we have the
following Variables defined (note: A is an array of text values):

A: Index_1

Index_2:

We wish to split the text values in A and obtain a two dimensional
array of letters indexed by Index_1 and Index_2. Since Split
does not array abstract, we must do each row separately and re-
index by Index_2 before the result rows are recombined into a
single array. This is accomplished by the following loop.

for Row:=Index_1 do
Array(Index_2,Split(A[Index_1=Row],’,’))

resulting in

Index_1 , Index_2

Reducing Memory Requirements: In some cases, it is possible to
reduce the amount of memory required for intermediate results
during the evaluation of expressions involving large arrays. For
example, consider the following expression:

MatrixA: A two dimensional array indexed by M and N.
MatrixB: A two dimensional array indexed by N and P.

Average(MatrixA * MatrixB, N)

During the calculation, Analytica needs memory to compute
MatrixA * MatrixB, an array indexed by M, N, and P. If these
indexes have sizes 100, 200, and 300 respectively, then
MatrixA * MatrixB contains 6,000,000 numbers, requiring over 60
megabytes of memory at 10 bytes per number.

1 A,B,C
2 D,E,F
3 G,H,I

1 2 3

1 2 3
1 A B C
2 D E F
3 G H I

Chapter Iteration loops and recursion

446 Analytica Users Guide

20
To reduce the memory required, use the following expression
instead

For L:=M Do Average(MatrixA[M=L]*MatrixB,N)

Each element MatrixA[M=L]*MatrixB has dimensions N and P,
needing only 200x300x10= 600 kilobytes of memory at a time.

Analytica Note: For the special case of a dot product (see “Dot
product of two matrices” on page 272), where an expression has
the form Sum(A*B,I), Analytica performs a similar transformation
internally.

While (Test) Do Body

While evaluates Body repeatedly as long as Test <> 0. For While
… to terminate, Body must produce a side-effect on a local Vari-
able that is used by Test, causing Test eventually to equal 0. If
Test never becomes False the While will continue to loop indefi-
nitely. If you suspect that may be happening, type Ctrl-. (Control-
period) to interrupt execution.

Test must evaluate to an atomic (non-array) value; therefore, it is
a good idea to force any local Variable used in Test to be atomic
valued. While is one of the few constructs in Analytica that does
not generalize completely to handle arrays. But, there are ways to
ensure that Variables and functions using While support Intelli-
gent Arrays and probabilistic evaluation. See page 454 for
details.

While returns the final value found in the last iteration of Body or
Null if no iterations occur. For example:

(Var x := 1; While x < 10 Do x := x+1) → 10
(Var x := 1; While x > 10 Do x := x+1) → Null

Using While often follows the following pattern:
Var x[]:= ...;
While (FunctionOf(x)) Do (

...
x := expr;
...

);
returnValue

Chapter Iteration loops and recursion

Analytica User Guide 447

20
Iterate(x1, xi, bstop, maxIter, warn)

Suppose the definition of Variable X contains a call to Iterate:
Iterate initializes X to the value of x1. While stopping condition
bstop is False (zero), it evaluates expression xi, and assigns the
result to X. Given the optional parameter maxIter, it will stop after
maxIter iterations and, if warn is True, issues a warning—unless
it has already been stopped by bstop becoming True. If bstop is
an array, it only stops when all elements of bstop are true.

Iterate is designed for convergence algorithms where an expres-
sion must be recomputed an unknown number of iterations. Iter-
ate (like Dynamic) must be the main expression in a definition—
it cannot be nested within another expression. But it may, and
usually will, contain nested expressions as some of its parame-
ters. Iterate (again like Dynamic and unlike other functions) may,
and usually will, mention the Variable X that it defines within the
expressions for x1 and bstop. These expressions may also refer
to Variables that depend on X.

If you use Iterate in more than one node in your model, you
should be careful that the two functions don't interact adversely.
In general, two nodes containing Iterate should never be mutual
ancestors of each other. Doing so makes the nesting order
ambiguous and can result in inconsistent computations. Like-
wise, care must be taken to avoid similar ambiguities when using
interacting Iterate and Dynamic loops.

Analytica Note: It is usually possible to write convergence
algorithms more cleanly using While. One difference is that While
requires its stopping condition Test to be a scalar, where Iterate
allows an array-valued stopping condition bstop. Nevertheless, it
is usually better to use While because you want it to do an
appropriate number of iterations for each element of bstop, rather
than continue until all its elements are True. But, with While
you will need to use one of the tricks described on and after
page 454 to ensure the expression fully supports array
abstraction.

Recursion
A recursive function is a function that calls itself within its defini-
tion. This is often a convenient way to define a function, and
sometimes the only way. As an example, consider this definition
of factorial:

Chapter Iteration loops and recursion

448 Analytica Users Guide

20
Function Factorial2(n : positive atomic)
Definition: IF n > 1 THEN N*Factorial2(n-1)ELSE 1

Thus, if its parameter, n, is greater than 1, Factorial2 calls itself if
with the actual parameter (n-1). Otherwise, it simply returns 1.
Like any normal recursive function, it has a termination condition
under which the recursion stops.

Analytica Note: Although the Factorial function is provided as a
fully-abstractable built-in function in Analytica, we use it
repeatedly as a simple example to demonstrate key ideas.

By default, Analytica will not allow a definition of a function to
refer to itself like this. It will complain about cyclic dependency. To
enable recursion, you must first display the Recursive Attribute
for Functions:

1. Select the Attributes… dialog from the Object menu.

2. Select Functions from the Class menu in the Attributes
dialog.

3. Scroll down the list of attributes and click Recursive twice, to
show √ which indicates that Functions will display the
Recursive Attribute.

4. Check OK to close Attributes dialog.

Then for each Function for which you wish to enable recursion:

5. Open the Object Window for the function by double-clicking
on its node (or select the node and click the Object button)

Chapter Iteration loops and recursion

Analytica User Guide 449

20
6. Type 1 into its Recursive field.

The Object Window for the complete function should look like
this:

As another example, consider this recursive function to compute
a list of the prime factors of an integer, x, equal to or greater than
y:

Function Factors(x, y : positive atomic)
Definition:

Var n := Floor(x/y);
IF n<y THEN [x]
ELSE IF x = n*y THEN Concat([x], Factors(n, y))
ELSE Factors(x, y+1)

Factors(60, 2) -> [2, 2, 3, 5]

Essentially, Factors says: compute n as x divided by y, rounded
down. If y is greater than n, then x is the last factor, so return x as
a list. If x is an exact factor of y, then concatenate x with any fac-
tors of n, equal or greater than n. Otherwise, try y+1 as a factor.

Chapter Local indexes

450 Analytica Users Guide

20

Analytica Note: Function calls are limited to a stack depth of 256
nested invocations

Local indexes
The construct, Index i := seqExpr defines an index local to the
definition in which it is used. The expression seqExpr may be a
sequence, literal list, or other expression that generates an unin-
dexed array, as used to define a global index. For example:

Variable PowersOf2
Definition: Index J := 0..5; 2^J

The new Variable PowersOf2 is an array of powers of two,
indexed by the local index J, with values from 0 to 5:

PowersOf2 →

Dot operator: a . i
The dot operator in a . i lets you access a local index i via an
array a that it dimensions. If a local index identifies a dimension of
an array that becomes the value of a global Variable, it may per-
sist long after evaluation of the expression—unlike other local
Variables which disappear after the expression is evaluated.

Even though local index J has no global identifier, you can access
it via its parent Variable with the dot operator, ’.’, for example:

PowersOf2.J → [0,1,2,3,4,5]

Chapter Ensuring array abstraction

Analytica User Guide 451

20
When using the subscript operation on a Variable with a local
index, you need to include the ’.’ operator, but do not need to
repeat the name of the Variable:

PowersOf2[.J=5] → 32

Any other Variables depending on PowersOf2 may inherit J as a
local index—for example:

Variable P2
Definition: PowersOf2/2

P2[.J=5] → 16

Example using a local index
In this example, MatSqr is a user-defined function that returns
the square of a matrix—i.e., A x A', where A' is the transpose of
A. The result is a square matrix. Rather than require a third index
as a parameter, MatSqr creates the local index, I2, as a copy of
index i.

Function MatSqr(a: ArrayType; i,j: IndexType)
Definition:

Index I2:=CopyIndex(i);
Sum(a*a[i=I2], j)

The local Variable, I2, in MatSqr is not within lexical scope in the
definition of Z, so we must use the dot operator ’.’ to access this
dimension. We underline the dot operator for clarity:

Variable Z
Definition:

Var XX := MatSqr(X, Rows, Cols);
Sum(XX * Y[I=XX.I2], XX.I2)

Ensuring array abstraction
The vast majority of constructs in Analytica (operators, functions,
and control constructs) fully support Intelligent Arrays—that is,
they can handle operands or parameters with any number of
indexes, and generate a result with the appropriate dimensions.
So, most models automatically obtain the benefits of arrays
abstraction described in the previous section with no special
care.

Chapter Ensuring array abstraction

452 Analytica Users Guide

20
There are, however, a few constructs that do not inherently
enable Intelligent Arrays—or support array abstraction. They fall
into these main types:

• Functions whose parameters must be scalar (not arrays),
including Sequence, m..n, SplitText. See page 452.

• Functions whose parameter must be a vector (just one
index), such as CopyIndex, SortIndex, Subset, Unique,
and Concat (with two parameters).

• The While loop, which expects its termination condition to be
a scalar. See page 454 .

• If b Then c Else d, when condition b is an array, and c or d
may give an evaluation error. See page 455.

• Functions with optional index parameters that are omitted,
such as Sum(x), Product, Max, Min, Average, Argmax,
SubIndex, ChanceDist, CumDist, and ProbDist. See
page 456.

When using these constructs, you must take special care if you
want to ensure that your model is fully array-abstractable. Analyt-
ica 3.0 and 3.1 provides a number of new features to make that
much easier than before. Below we explain how to use them in
each of these four cases.

Functions needing scalars and array abstraction
Consider this example:

Variable N
Definition: 1..3
Variable B
Definition: 1..N
B → Evaluation error:One or both parameters to

Sequence(m, n) or m .. n are not scalars.

The expression 1..N, or equivalently, Sequence(1, N), will not
evaluate if N is a vector. Otherwise, it would try to create a non-
rectangular array containing lists with 1, 2, and 3 elements. Ana-
lytica does not permit such nonrectangular arrays, and so does
not permit the parameters of Sequence to be arrays.

Similarly, a list cannot contain elements of different dimensions:
[1, 2, N] → Evaluation error:

Chapter Ensuring array abstraction

Analytica User Guide 453

20
In fact, most of the functions and expressions that can generate
the definition of an index require scalar (or in some cases, vector)
parameters, and so are not fully array abstractable. These
include Sequence, Subset, SplitText, SortIndex (if the second
parameter is omitted), Concat, CopyIndex, and Unique.

Why would you want array abstraction using such a function?
Consider this approach to writing a function to compute a facto-
rial:

Function Factorial1
Parameters: (n)
Definition: Product(1..n)

This function will work if n is scalar, but not if it is an array,
because 1..n requires scalar operands. However, this edition,
with a For loop, will work fine:

Function Factorial2
Parameters: (n)
Definition: For m[]:=n DO Product(1..m)

The For loop with empty square brackets [] next to the loop Vari-
able, means that successive scalar elements of n are assigned to
m, and the body Product(1..m) is evaluated for each one.
Because m is guaranteed scalar, this works fine. The results of
each value of each evaluation of Product(1..m) reassembled to
create an array with the same dimensions as n.

Atomic parameters and array abstraction
This can allow you to assume a particular dimensionality within
your function definition.The Atomic parameter qualifier is often
the easiest approach to ensure array abstraction with a function
that contains a construct that needs scalar parameters. By quali-
fying a parameter as Atomic, you are telling Analytica that the
function definition requires that parameter to be scalar, for exam-
ple:

Function Factorial3
Parameters: (n: Atomic)
Definition: Product(1..n)

Chapter Ensuring array abstraction

454 Analytica Users Guide

20

The parameter qualifier Atomic does not require the actual
parameter to be scalar. Rather it decomposes n into scalar ele-
ments, and applies the definition of Factorial1(n) to each one.
Then, like the For loop, it reassembles the results, returning an
array with the same indexes as n. It works fine even if several
parameters are qualified as Atomic. You can also declare the
dimensionality of array-valued parameters to ensure that only
those dimensions appear while the body is being evaluated (see
“Array qualifiers” on page 424). Doing so ensures your function
will array abstract when new dimensions are added to your
model, or when the function is evaluated in probabilistic mode.

While and array abstraction
The While b Do e construct requires its termination condition b to
evaluate to a scalar—that is, a single True (1) or False (0). Oth-
erwise, it would be ambiguous about whether it should continue.
If you want a function definition using a While loop to array
abstract, you can use the parameter qualifier Atomic as just
described to manage Sequence and other functions that require
their parameters to be scalars. In this example, the Atomic quali-
fier assures that n and hence the While termination condition
(a < n) is a scalar during each evaluation of Factorial1:

Function Factorial1
Parameters: (n: Atomic)
Definition:

VAR fact := 1;
VAR a := 1;
WHILE (a < n)
DO (a := a + 1; fact := fact * a)

Chapter Ensuring array abstraction

Analytica User Guide 455

20
If b Then c Else d and array abstraction

Consider this example:
Variable X =: -2..2
Sqrt(X) → [NAN, NAN, 0, 1, 1.414]

The square root of negative numbers -2 and -1 returns NAN (not
a number) after issuing a warning. Now consider the definition of
A:

Variable Y := (IF X>0 THEN Sqrt(X) ELSE 0)
Y → [0, 0, 0, 1 1.414]

When the condition of an IF construct is an array of truth values,
as in this case, Analytica evaluates both THEN and ELSE parts,
although it returns the expected elements of each part. So, it
ends up evaluating Sqrt(X) even for negative values of X. The
conditional expression defining Y will end up evaluating Sqrt(X)
for every element of X, even those that are negative.

In this case, the final result contains no NANs, and so it gener-
ates no error message. In other words, there is no longer a prob-
lem. However, the warning will be delayed until after it has
finished evaluating the expression.

A similar problem remains with functions that require particular
types of parameter. Consider this array:

Variable Z := [1000, ’10,000’, ’100,000’]

This kind of array containing true numbers, e.g., 1000, and num-
bers with commas turned into text values, often arise when copy-
ing arrays of numbers from spreadsheets. The following function
would seem helpful to remove the commas and convert the text
values into numbers:

Function RemoveCommas(t)
Parameters: (t)
Definition: Evaluate(TextReplace(t, ’,’, ’’))

RemoveCommas(Z) →
Evaluation Error: The parameter of Pluginfunction
TextReplace must be a text while evaluating
function RemoveCommas.

Unfortunately, TextReplace require its parameter to be a text
value. What if we test if t is Text and only apply TextReplace
when it is?

Function RemoveCommas(t)

Chapter Ensuring array abstraction

456 Analytica Users Guide

20
Parameters: (t)
Definition: IF IsText(t)

THEN Evaluate(TextReplace(t, ’,’, ’’)) ELSE t

RemoveCommas(Z) → (same error message)

This still doesn’t work because the IF construct still applies
ReplaceText to all elements of t. Now, let’s add the parameter
qualifier Atomic to t:

Function RemoveCommas(t)
Parameters: (t: Atomic)
Definition: IF IsText(t)

THEN Evaluate(TextReplace(t, ’,’, ’’)) ELSE t
RemoveCommas(Z) →

This works fine because the Atomic qualifier means that
RemoveCommas breaks its parameter t down into atomic (scalar)
elements before evaluating the function. During each evaluation
of RemoveCommas, t and hence IsText(t), is scalar, either True
or False. When False, the IF construct evaluates the ELSE part
but not the THEN part, and so calls TextReplace when t is truly
a text value. After calling TextReplace separately for each ele-
ment, it reassembles the results into the array shown above with
the same index as Z.

Omitted index parameters and array abstraction
A few functions have index parameters that are optional. For
example, with Sum(x, i), you can omit index i, and call it as
Sum(x). In that case, Sum will choose which index to sum over.
But, if x has more than one index, it is hard to predict which index
it will sum over. If you create the model when x has one index, its

Chapter Ensuring array abstraction

Analytica User Guide 457

20
behavior is predictable. But, if you then expand the dimensions of
the model, so that x has additional indexes, its behavior is hard to
predict—so, the model is not array abstractable.

There is a simple way to avoid this problem and maintain reliable
array abstraction: When using functions with optional index
parameters, never omit the index! Almost always, you know
what you want to sum over, so mention it explicitly. If you add
dimensions later, you’ll be glad you did.

Other functions that have optional index parameters, and so to
which this rule also applies, include, Product, Max, Min, Aver-
age, Argmax, SubIndex, ChanceDist, CumDist, and ProbDist.

Analytica Note: When the optional index parameter is omitted,
and the parameter has more than one dimension, these functions
choose the outer index, by default. Usually, the outer index is the
index created most recently when the model was built. But, this is
often not obvious. We designed Intelligent Arrays specifically to
shield you from having to worry about this detail of the internal
representation.

Selecting indexes for iterating with For and Var
To provide detailed control over array abstraction, the For loop
can specify exactly which indexes to use in the iterator x. The old
edition of For still works. It requires that the expression a
assigned to iterator x generate an index—that is, it must be a
defined Index Variable, Sequence(m, n), or m..n. The new forms
of For are more flexible. They work for any array (or even scalar)
value a. The loop iterates by assigning to x successive subarrays
of a, dimensioned by the indexes listed in square brackets. If the
square brackets are empty, as in the second line of the table, the
successive values of iterator x are scalar. In the other cases, the
indexes mentioned specify the dimensions of x to be used in
each evaluation of e. In all cases, the final result of executing the
For loop is a value with the same dimensions as a.

Chapter References and data structures

458 Analytica Users Guide

20

The same approach also works using Var to define local Vari-
ables. By putting square brackets listing indexes after the new
Variable, you can specify the exact dimensions of the Variable.
These indexes should be a subset (none, one, some, or all) of the
indexes of the assigned value a. Any subsequent expressions in
the context are automatically repeated as each subarray is
assigned to the local Variable. In this way, a local Variable can act
as an implicit iterator, like the For loop.

Var Temp[I1,I2,...] := X;

References and data structures
A reference is an indirect link to a value, a scalar or an array. A
Variable can contain a single reference to a value, or it can con-
tain an array of references. Variables and arrays can themselves
contain references, nested to any depth. This lets you create
complex data structures, such as linked lists, trees, and non-rect-
angular structures. Use of references is provided by two opera-
tors:

\e is the reference operation. It creates a reference to the
value of expression e.

#e is the dereference operation. It obtains the value

For x := a DO e Assigns to local Variable x, successive
scalar values from index expression a and
repeats evaluation expression e for each
value. Returns an array of values of e
indexed by a.

For x[] := a DO e Assigns to local Variable x, successive
scalar values from array a and repeats
evaluation expression e for each value.
Returns an array of values of e with the
same indexes as a.

For x[i] := a DO e Same, but assigns to local Variable x,
successive subarrays indexed by i from
array a and iterates evaluation of
expression e for each index value of a
other than i.

For x[i, j …] := a DO e Same, but each successive value
assigned to x is indexed by the indices, [i,
j …].

Chapter References and data structures

Analytica User Guide 459

20
referred to by e. If e is not a reference, it issues a warning
and returns Null.

An example:
Variable M
Definition: 100

Variable Ref_to_M
Definition: \ M

The result of Ref_to_M looks like this:

You can double-click on the cell containing «ref» to view the value
referenced, in this case:

You can also create an array of references. Suppose
Index K
Definition: 1..5

Variable Ksquare
Definition: K^2

Ksquare →

Chapter References and data structures

460 Analytica Users Guide

20

Variable Ref_to_Ksquare
Definition: \ Ksquare

Ref_to_Ksquare →

If you click on the «ref» cell, it opens:

Chapter References and data structures

Analytica User Guide 461

20

You can also create an array of references from an array, for
example:

Variable Ref_Ksquare_array
Definition: \ [] Ksquare
Ksquare →

The empty square brackets ’[]’ specify that the values referred to
have no indexes, i.e., they are scalars. You can now click on any
of these cells to see what it refers to. Clicking on the third cell, for
example, gives:

Chapter References and data structures

462 Analytica Users Guide

20

Managing indexes of referenced subarrays: \ [i, j,...] e
More generally, you can list in the square brackets any indexes of
e that you want to be indexes of each subarray referenced by the
result. The other indexes of e (if any) will be used as indexes for
the referencing array. Thus, in the example above, since there
were no indexes in square brackets, the index K was used as an
index of the reference array. If instead we write:

\ [K] Ksquare →

It creates a similar result to \ Ksquare, since K is the only index
of Ksquare.

To summarize:

Chapter References and data structures

Analytica User Guide 463

20

In general, it is better to include the square brackets after the ref-
erence operator, and avoid the unadorned reference operator, as
in the first row of the table. Being explicit about which indexes to
include will generally lead to expressions that array abstract as
intended.

IsReference(X)
Is a test to see whether its parameter x is a reference. It returns
True (1) if x is a reference, False (0) otherwise.

Using references for linked lists: Example functions
Linked lists are a common way for programmers to represent an
ordered set of items. They are more efficient than arrays when
you want often to add or remove items, thereby changing the
length of the list (which is more time consuming for arrays). In
Analytica, we can represent a linked list as a elements with two
elements, the item—that is, a reference to the value of the item—
and a link—that is, a reference, to the next item:

Index Linked_list
Definition: [’Item’, ’Link’]

Function LL_Put(x, LL)
Description: Puts item x onto linked list LL.
Definition: \Array(Linked_List,[\x,LL])

Function LL_Get_Item(LL)
Description: Gets the value of the first

item from linked list LL.

\ e Creates a reference to the value of expression e,
whether it is a scalar or an array.

\ [] e Creates an array indexed by all indexes of e
containing references to all scalar values from e.

\ [i] e Creates an array indexed by any indexes of e other
than i of references to subarrays of e each indexed
by i.

\ [i, j …] e Creates an array indexed by any indexes of e other
than i, j … of references to subarrays of e each
indexed by i, j ….

Chapter Miscellaneous functions

464 Analytica Users Guide

20
Definition: # Subscript(#LL, Linked_list, ’Item’)

Function LL_length(LL)
Parameters: (LL: Atomic)
Description: Returns the number of items in

linked list LL
Definition: VAR len := 0;

WHILE (IsReference(LL)) BEGIN
LL := subscript(#LL, Linked_List, "Next");
len := len + 1

END;
len

Function LL_from_array(a, i)
Parameters: (a; i: IndexType)
Description: Creates a linked list from the

elements of array a over index i
Definition:

VAR LL := NULL;
Index iRev := Size(i) .. 1;
FOR j := iRev

DO LL := LL_Push(LL, Slice(a, i, j));
LL

See Linked List lib.ANA for these and other functions for work-
ing with linked lists. .

Miscellaneous functions
These functions include a variety of tools especially useful for
advanced applications, including several (Error, MsgBox) useful
for building interactive applications. For example, you can write
wizards to automate certain modeling tasks, asking the user for
options and input values.

Error(message)
Displays an evaluation error, with the specified message, for
example:

Variable Xyz :=
Error('There seems to be some kind of problem’)

Xyz →

Chapter Miscellaneous functions

Analytica User Guide 465

20

Evaluate(t)
Evaluate expects a text value t, and evaluates it as though it
were an expression in a definition. It returns the value resulting
from evaluating the expression. For example:

Evaluate(’10M /10’) → 1M

If t contains any syntax errors, Evaluate will return Null; it will not
flag a syntax error.

One use for Evaluate is to convert (coerce) a text representation
of a number into the number itself, for example:

Evaluate(’100M’) → 100M

Like most other functions, it returns the deterministic (Mid) or
probabilistic value, according to the context in which it is called.

Evaluate is powerful, and useful for a variety of purposes, but, it
has some subtle aspects. Consider:

Variable A := 99
Variable B := (VAR A := 0; Evaluate(’A + 1’))

B → 100

The Variable A in the evaluated text ’A + 1’ refers to the global A,
not the local A defined in B. More generally:

• Evaluate(t) creates its own context for parsing t (at
evaluation time), which is quite separate from the context of
the expression in which the Evaluate(t) appears—e.g., the
definition of B above.

• So, text t cannot refer to local Variables, indexes, or function
parameters defined in the context in which the Evaluate(t)
function appears.

Chapter Miscellaneous functions

466 Analytica Users Guide

20
• If the text value of t refers to any global Variables—e.g., A in

the definition of B above—these will not appear as Inputs of B,
nor will any changes to A cause automatic re-evaluation of B.

• Text t may itself define local Variables and indexes, and refer
to them, but these will not be available outside t.

• When Evaluate references another variable, Analytica will
not be able to track the dependency. For example:
 B := A+1
 C := Evaluate('A+1')

When A changes, Analytica will automatically ensure that B is
updated, but it has no way of knowing C should also be
recomputed.

Text t may itself be an expression that creates a text value to be
evaluated by Evaluate. This text expression appears in the defi-
nition of V and is not subject to the above limitations, so, for
example:

Variable V :=(Var x:= ’10’; Evaluate(x & x))

V → 1010

FunctionOf(e)
FunctionOf() indicates that the definition in which it appears can-
not be evaluated. Suppose a variable has a valid definition, such
as

Variable X := A + B

If you then delete one of its inputs, say A, Analytica will substitute
the following in the Definition of X:

FunctionOf(expr + B)

It retains the part of the definition that is still valid, in case you
want to fix it.

IgnoreWarnings(expr)
Some warnings can be suppressed by embedding an expression
inside an IgnoreWarnings(expr) function. IgnoreWarn-
ings(expr) will evaluate expr and return the result. However, if
a warning occurs while evaluating expr, the warning will not be
displayed to the user, even if the Show Result Warnings prefer-
ence is checked. (Not all warnings can be suppressed in this
way).

Chapter Miscellaneous functions

Analytica User Guide 467

20
Evaluates its parameter expr, and returns its value, while sup-
pressing most warnings that might otherwise be displayed during
the evaluation. It is useful when you want to evaluate an expres-
sion that generates warnings, such as divide by zero, that you
know are not important in that context, but you do not want to
uncheck the option Show Result Warnings, because you do
want to see warnings that may appear in other parts of the model.
For more on that option, see “Preferences dialog box” on
page 88. For more on warnings, see “Warning” on page 527.

MsgBox(message, buttons, title)
MsgBox displays a standard popup model dialog box with the
user-supplied message, buttons (see numerical codes below),
and title. Analytica pauses until the user presses a button on the
message box. It returns a number, depending on which button the
user presses (see below).

The optional buttons parameter is a number that controls which
buttons to display, as follows:

0 = OK only

1 = OK and Cancel (the default if buttons is omitted)

2 = Abort, Retry and Ignore

3 = Yes, No and Cancel

4 = Yes and No

5 = Retry and Cancel

To display an icon, add one of the following numbers to the but-
tons parameter:

16 = Critical (white X on red circle)

32 = Question

48 = Exclamation

64 = Information

MsgBox returns a number depending on which button the user
presses:

1 = OK

2 = Cancel (stops any further evaluation)

3 = Abort

Chapter Miscellaneous functions

468 Analytica Users Guide

20
4 = Retry

5 = Ignore

6 = Yes

7 = No

Here are some examples:
Msgbox('OK, I''m done now.',0+64,'Information') →

Msgbox('Uh uh! Looks like trouble!',5+16,
'Disaster') →

Msgbox('Do you really mean that?', 3+32, 'Critical
question') →

Msgbox('This could be a real problem!', 2+48,
'Critical question') →

Chapter Miscellaneous functions

Analytica User Guide 469

20

Today()
The today() function returns the current date as the number of
days that have elapsed since Jan 1, 1904.

Analytica Note: When you evaluate this function, your result
probably will be cached, and the cached result will eventually
become out-of-date when the date changes.

Chapter Miscellaneous functions

470 Analytica Users Guide

20

Chapter 21

Analytica
Enterprise

In this Chapter

This chapter describes those features
available only in the Enterprise edition
of Analytica:

• Accessing external databases
using ODBC and SQL.

• Creating browse-only models and
other methods to protect or hide
sensitive information when
distributing your models to others.

• Huge Arrays, using indexes with
more than 30,000 elements

• Profiling models to see CPU time
and memory used by each
Variable.

Note: You must use Analytica
Enterprise to create or set these
features, including database
access with ODBC and
information hiding. However, you
can run a model created in
Analytica Enterprise with
Analytica 2.0 or the Analytica
Browser, and the model will be
able to access databases and
hide the information as specified
in the original model.

Chapter Accessing external databases

Analytica User Guide 473

21

21: Analytica Enterprise
The Enterprise edition of Analytica extends the functionality of the
Professional edition with features useful for developing and using
models within a large enterprise or organization. Key areas of
functionality offered by the Enterprise edition are:

• Database access. A collection of database functions make it
possible to read and write data between external ODBC
databases and your Analytica models.

• Protecting Intellectual Property. When you distribute your
models to end-users, you can hide selected Variable
definitions from the end-user, and/or prevent end-users from
editing your model.

Accessing external databases
Analytica Enterprise provides several functions for querying
external databases using ODBC. ODBC (Open Database Con-
nectivity) is a widely used standard for connecting to relational
databases, on either local or remote computers, and issuing que-
ries in SQL (Standard Query Language).

Analytica Note: You can define and create database accesses
only with Analytica Enterprise. However, you may use Analytica
2.0 or the Analytica Browser to run a model created with Analytica
Enterprise, and to execute the database access features.

Overview of ODBC in Analytica
The Standard Query Language (SQL) is a widely used language
designed especially for the relational database model. In a rela-
tional database, data is organized in two-dimensional tables,
where the columns of a table serve as fields or labels, and the
rows correspond to records, entries, or instances. Common data-
base terminology uses the terms columns and rows for these
roles. In Analytica, it is more natural to refer to these as labels
and records. For instance, an address book table might have the
columns or labels: LastName, FirstName, Address, City, State,
Zip, Phone, Fax, E-mail, and each individual would occupy one
row or record in that table.

Chapter Accessing external databases

474 Analytica Users Guide

21
Regardless of the underlying organization of data in a data
source, the result of an SQL query is always a two-dimensional
table, called a Result Table. Here the rows are the records match-
ing whatever criteria is specified by the query, and the columns
are the fields that are requested.

Analytica Enterprise provides functions that take as a parameter
an SQL query, formulated with standard SQL syntax as an Ana-
lytica text value. When evaluated, these functions return the
result of the query as a two-dimensional table in Analytica. A two-
dimensional table in Analytica requires two indexes: the rows are
indexed by a record index, and the columns are indexed by a
label index. So, the basic structure of an Analytica model for
retrieving a result table is:

(The dotted lines explicitly show what the Result Table is indexed
by). Each of the three nodes in the above figure could require the
information from the Result Table. For example, the definition of
the Record Index would require knowing how many records
(rows) are in the result table; the Label Index may need to read
the names of the columns (although, often these will be known in
advance); and of course, the Result Table needs to read the
table. Thus, special functions in the Database library are used to
define each of the above three Variables. These functions work in
concert to perform the query only once (when the Record Index is
evaluated), and share the result table between the nodes.

For the address database example above, we can obtain the
record index as Individuals, the label index as Address_fields,
and the resulting table as Address_table, as follows:

Individuals:=DBQuery(Data_source,’SELECT*FROM
Addresses’)
Address_fields:=DBLabels(Individuals)
Address_table:=DBTable(Individuals,
Address_fields)

In the above example, the Record Index is defined using
DBQuery(), the Label Index is defined using DBLabels(), and the

Record
Index

Column
Index

Result Table

Record
Index

Label
Index

Result
Table

Chapter Accessing external databases

Analytica User Guide 475

21
Result Table is defined using DBTable(). Each function is
described below.

To specify a data source query, two basic pieces of information
must always be known: The data source identifier, and the SQL
query text. These two items are the arguments to the DBQuery()
function, and are discussed in the following two subsections

Identifying the data source
A data source is described by a text value, which may contain the
Domain Service Name (DSN) of the data source, login names
and passwords, etc. Here, we describe the essentials of how to
identify and access a data source. These follow standard ODBC
conventions. For more details, consult one of the many texts on
ODBC.

Note: You must have a DSN already configured on your
machine. If not, consult with your Network Administrator.
See “Configuring a DSN” below.

The general format of a data source identification text is (the sin-
gle quotes are Analytica's text delimiters):

'attr1=value1; attr2=value2; attr3=value3;'

For example, the following data source identifier specifies the
database called 'Automobile Data', with a user login 'John' and a
password of 'Lightning':

'DSN=Automobile Data;UID=John;PWD=Lightning'

If a database is not password protected, then a data source
descriptor may be as simple as:

'DSN=Automobile Data'

If a default data source is configured on your machine (consult
your database administrator), you may specify it as:

'DSN=DEFAULT'

Some systems may require one login and password for the
server, and another login and password for the DBMS. In this
case, both can be specified as:

'DSN=Automobile Data; UID=John;
PWD=Lightning; UIDDBMS=JQR; PWDDBMS=Thunder'

Chapter Accessing external databases

476 Analytica Users Guide

21
You can use the DRIVER Attribute to specify explicitly which driver
to use, instead of letting it be determined automatically by the
data source type. e.g.,

'DSN=Automobile Data;DRIVER=SQL Server'

Instead of embedding a long data source connection text inside
the DBQuery() statement, you can define a Variable in Analytica
whose value is the appropriate text value. The name of this Vari-
able can then be provided as the argument to DBQuery().
Another alternative is to place the connection information in a file
data source (a .DSN file). Such a file would consist of lines such
as:

DRIVER = SQL Server
UID = John
PWD = Lightning
DSN = Automobile Data

Assuming this data is in a file named MyConnect.DSN, the con-
nection text can be specified as:

'FILEDSN=MyConnect.DSN'

In some applications, you may wish to connect directly to a driver
rather than a registered data source. Some drivers may allow this
as a way to access a data file directly, even when it is not regis-
tered. Also, some drivers may provide this as a way of interrogat-
ing the driver itself. To perform such a connection, use the driver
keyword. For example, if the Paradox driver accepts the directory
of the data files as an argument, you may specify:

'DRIVER={Paradox Driver};DIRECTORY='D:\CARS'

The specific fields used here (UID, PWD, UIDDBMS, PWD-
DBMS, DIRECTORY, etc.) are interpreted by the ODBC driver,
and therefore depend on the specific driver used. Any fields inter-
preted by your driver are allowed.

If you do not wish to embed the full DSN in the connection text, a
series of dialogs will pop up when the DBQuery() function is eval-
uated. For example, you can leave the UID and PWD (user name
and password) out of your model. When the model is evaluated,
Analytica will prompt you to enter the required information. Explic-
itly placing information in your model eliminates the extra dialog.
A blank connection text may even be used, in which case you will
need to choose among the data sources available on your
machine when the model is being evaluated. Although the user
can form the DSN via the graphical interface at that point, the
result is not automatically placed in the definitions of your Analyt-

Chapter Accessing external databases

Analytica User Guide 477

21
ica model. However, you may be able to store the information in a
DSN file (depending on which drivers and driver manager you are
using). You may also be able to register data sources on your
machine from that interface.

Configuring a DSN
To access a database using ODBC, you must have a Data
Source Name (DSN) already configured on your machine. In gen-
eral, configuring a DSN requires substantial database administra-
tion expertise as well as the appropriate access permissions on
your computer and network. To configure a data source, you
should consult with your Network Administrator and/or your data-
base product documentation. The general task of configuring a
DSN is beyond the scope of this manual.

If you find you must configure a DSN yourself, the process usu-
ally involves the following steps (assuming your database already
exists):

1. Select the ODBC icon from the Windows Control Panel.

2. Select the User DSN, System DSN, or File DSN tab
depending on your needs. Most likely, you will want System
DSN. Click the Add button.

3. Select the driver. For example, if your database is a Microsoft
Access database, select Microsoft Access Driver and click
Finish.

4. You will be led through a series of dialogs specific to the driver
you selected. These will include dialogs that will allow you to
specify the location of your database, as well as the DSN
name that you will use from your Analytica model. An example
is shown here:

Chapter Accessing external databases

478 Analytica Users Guide

21

Specifying an SQL query
You may use any SQL query as a text parameter within an Ana-
lytica database function. SQL queries can be very powerful, and
may include multiple tables, joins, splits, filters, sorting, and so
on. We give only a few simple examples here. The user inter-
ested in more demanding applications should consult a text on
SQL, of which there are many available.

The SQL expression to select a complete table in a relational
database, where the table is named VEHICLES, would be:

'SELECT * FROM vehicles'

Note: SQL is case insensitive, unlike Analytica.

To select only two columns (make and model) from this same
table and sort them by make:

'SELECT make,model FROM vehicles ORDER BY make'

These examples provide a starting point. When using multiple
tables, one detail to be aware of is that it is possible in SQL to
construct a result table with two columns containing the same
label. For example:

'SELECT * FROM vehicles,companies'

where both tables for vehicles and companies contain a column
labeled 'Id'. In this case, you will only be able to access one (the
first) of the two columns using DBTable(). Thus, you should take
care to ensure that duplicate column labels do not result. This
can be accomplished, for example, using the AS keyword, e.g.,

'SELECT vehicles.Id AS vid,companies.Id AS

The DSN used in your
Analytica queries

The actual location of
the database

Chapter Accessing external databases

Analytica User Guide 479

21
cid,* FROM vehicles,companies'

For users that are unaccustomed to writing SQL statements,
products exist that allow SQL statements to be constructed from
a simple graphical user interface. Many databases allow queries
to be defined and stored in the database. For example, from
Microsoft Access, one can define a query by running Access and
using the Query Wizard graphical user interface. The query is
given a name and stored in the database. The name of the query
can then be used where the name of a table would normally
appear, e.g.,

'SELECT * FROM myQuery'

Retrieving an SQL result table
To retrieve a result table from a data source, you need:

1. The data source connection text,

2. The SQL query. These are discussed in the previous two
sections. For illustrative purposes, suppose the connection
text is 'DSN=Automobile Data', and the SQL statement is
'SELECT * FROM vehicles'. In Analytica, you perform the
following steps:

1. Create an index node. Name it RecordIndex, and specify its
definition as:
DBQuery('DSN=Automobile Data',

'SELECT * FROM vehicles')

2. Create a second index node, and name it Labels. Specify its
definition as:
DBLabels(Record_index)

3. Create a Variable node, name it Result Table, and specify its
definition as:
DBTable(Record_index,Labels)

You can now display Result Table to examine the results.

This basic procedure can be repeated for any result table. The
structure of the model stays the same, and just the connection
text and SQL query text change.

Chapter Accessing external databases

480 Analytica Users Guide

21
Separating columns in a model

Instead of retrieving relational data as a single two-dimensional
table, as described above, it is often more convenient for further
modeling in Analytica to break each column out into a separate
Variable. For this to be useful, each column Variable shares the
Record Index as a common index. An alternative structure is
therefore:

With this model structure, the Record Index is again defined
using DBQuery(), and each column is defined using DBTable().
The actual SQL query is issued only once when the Record Index
is evaluated.

Suppose you wished to have Make, Model, Year, MPG, etc., as
separate Analytica Variables, each a one-dimensional array with
a common index. In this case, the steps are as follows:

1. Create an index node. Name it Record Index, and specify its
definition as:
DBQuery('DSN=Automobile Data',

'SELECT * FROM vehicles')

2. Create a Variable node named Make, and give it the definition:
DBTable(Record_index, 'make')

3. Create a Variable node named Year, and give it the definition:
DBTable(Record_index, 'year')

4. Create a Variable called CarModel, and give it the definition:
DBTable(Record_index, 'model')

In this case, Model is a reserved word in Analytica, so the Vari-
able cannot be named Model. But, the second argument to
DBTable() specifies the name of the column as stored in the
database. This does not have to be the same as the name of the
Variable in Analytica.

The intelligent array feature can be used in Analytica to construct
a table containing only a subset of the columns in a Result Table.

Record
Index

Column 1 Column 2 Column n

Record
Index

Chapter Accessing external databases

Analytica User Guide 481

21
For example, if vehicles has a large number of columns, a node
defined by:

DBTable(Record_index,['make','model','year'])

will have only three columns. This table will be indexed by
Record_index and by an implicit index (a.k.a. a null index or a
self-index). The first argument to DBTable() must always be an
indexed defined by DBQuery()—remember the SQL query is
defined in that node, and this is how DBTable() knows which
table is being retrieved.

DBWrite: writing to a database
You can use SQL to change the contents of the external data
source from within Analytica, or from within an Analytica model.
Using the appropriate SQL statements, records can be added to
or deleted from an existing table (in the data source), columns
may be added (if your data source driver supports this), and
tables may be created or deleted.

You can not use the DBQuery() function to alter the data source,
since it processes the SQL statement in read-only mode. To
change the data source, use the DBWrite() function. DBWrite()
is identical to DBQuery() except that the SQL statement is pro-
cessed in read-write mode.

You can issue any alteration that can be expressed as an SQL
statement, and that is supported by the ODBC driver you are
using, from Analytica using DBWrite(). However, to get data
from your model into the database, you must convert that data
into a text value—more precisely, into an SQL statement. Doing
so can be tricky, but some tools have been provided to make the
process a little easier. In this section, we will show how one of the
more common cases can be handled—the task of writing the data
in a multi-dimensional array to a table in a database. To do this,
we will make use of the ODBC_Library.ana library, which is col-
lection of user-defined functions written in Analytica and included
in the example models distributed with Analytica.

The example scenario is this: An Analytica model computes a
Variable A, whose result is an array indexed by I, J, and K. We
want this array to be written to a table in our database named
TableA. Other applications can then make use of this data.

There are basically two complications with this example. The first
is the fact that our array is three-dimensional, while a database
table is always two-dimensional. The second complication is that,

Chapter Accessing external databases

482 Analytica Users Guide

21
even if you have a two-dimensional table in Analytica, how do you
construct the SQL text to write the table to the database?

Our approach is to first convert the three-dimensional array A into
a two dimensional table, which we will store in an Analytica Vari-
able named TableA. TableA will need two indexes: ARowIndex
and ALabelIndex. These three Variables are defined as follows:

ALabelIndex := concat(IndexNames(A),['A'])
ARowIndex := sequence(1,size(A))
TableA:= MDArrayToTable(A,ARowIndex,ALabelIndex)

MDArrayToTable() is described on page 260. ALabelIndex eval-
uates to ['I','J','K','A'], and ARowIndex sets aside one row for each
element of A. TableA is then a table with one row for each ele-
ment of A, where the value of each index for that element is listed
in the corresponding column, and the value of that element
appears in the final column.

Next, set up TableA in the database with the same columns. This
is most easily done using the front end provided with your data-
base. For example, if you are using MS Access, start the MS
Access program, and from there, create a new table. Alterna-
tively, you could issue the statement

DBWrite(DB,'CREATE TABLE TableA(I TEXT,J TEXT,K
TEXT,A TEXT)')

from an Analytica expression (replacing TEXT with whatever type
is appropriate for your application). Be sure that the column
labels in the database table have the same names as the labels
of ALabelIndex in the Analytica model.

Note: It is possible (and easy) to use column labels in the
database that are different from the index names in the
Analytica model. To do this, define ALabelIndex to be 1-D
array. The domain of the array should be the database
labels, and the values of the array should be the index
names (with the final value being arbitrary).

With our data now in a 2-D table form, as needed for a database
table, we must now construct the SQL text to write the table to the
database. Before doing this, a few choices must be made. Should
the write operation append rows to the existing database table?
Or should it entirely replace the table? Or perhaps, it should
replace only selected entries. The various choices made impact
how the SQL statement is to be constructed. Here we will totally
replace any existing data with the new data, so that after the

Chapter Accessing external databases

Analytica User Guide 483

21
operation completes, the table in the database will be exactly the
same as TableA in the Analytica model. The SQL statements for
performing the write this looks like:

DELETE * FROM TableA
INSERT INTO TableA(I,J,K,A) VALUES
('i1','j1','k1','a111')
INSERT INTO TableA(I,J,K,A) VALUES
('i1','j1','k2','a112')
...

The first statement removes existing data, since we are replacing
whatever is there. Then, there will be one INSERT INTO state-
ment for each row of TableA. The data to the right of the VALUES
keyword is replaced by the specific values for indexes I, J, K, and
array A (the example above assumes the values are all text val-
ues). If your values are numeric, you should note that MSAccess
is happy quoting numeric values when the column is numeric.

Since writing the table requires a series of SQL statements, we
have two options: Evaluate a series of DBWrite() functions, or
lump the series of SQL statements into one long text value and
issue one DBWrite() statement. In Analytica, the second option
is much more efficient for two reasons. First, the overhead of con-
necting with the database occurs only one time. Second, interme-
diate result tables do not have to be read from the ODBC driver,
while if you issued separate DBWrite() statements, each one
would go through the effort of acquiring the result table, only to be
ignored.

Important feature (double semi-colon)
To allow multiple SQL statements in a single DBWrite() function
(or in a single DBQuery() function), Analytica provides an exten-
sion to the SQL language. The double semi-colon separates mul-
tiple statements. For example, the expression

'DELETE * FROM TableA ;; SELECT * FROM TableA'

first deletes the data from the table, and then reads the (now
empty) table. When ;; is used, only the last SQL statement in the
series returns a result table. Most statements that write to a data-
base return an empty result table.

We are now ready to write the Analytica expression that will con-
struct the SQL statement to write the table to the database. The
function to do this already exists in the ODBC_Library. First, use
the Add Module item on the File menu to insert the
ODBC_Library into your model; then use the WriteTableSql()

Chapter Database functions

484 Analytica Users Guide

21
function, which returns the SQL statement (as a text value) for
writing the table to the database. The function requires that I and
L contain no duplicates (which should be the case anyway).

To perform the write, set the definition of a node (named WriteIt)
to:

WriteIt := DBWrite(DB, WriteTableSql(A, RowIndex,
LabelIndex,'TableA'))

Any time WriteIt is evaluated, Analytica writes the table to the
database.

Creating a button to initiate the write operation
The one problem with this setup is that the data doesn't get writ-
ten until WriteIt gets evaluated. Because Analytica is entirely
demand driven, WriteIt will not be automatically evaluated when
A changes. A better solution is to make WriteIt a button (output
node) on the diagram. Then a user can press the button to initiate
the write-to-database operation. To create the button, select the
WriteIt node and select the Make Output Node command on the
Edit menu.

In most cases, it is the side effect, and not the result, of evaluat-
ing DBWrite() that is of interest. Therefore, there is no reason to
force a user to view an empty result window when the WriteIt but-
ton is pressed. This can be avoided by having WriteIt evaluate to
a text value, which will then show in place of the button when the
most recently computed result has been written to the database.
To accomplish this, the definition for WriteIt can be changed to

WriteIt :=
using dummy:=

DBWrite(DB, WriteTableSql(A, RowIndex,
LabelIndex,'TableA'))

do
’Done’

Database functions
The Database Library on the Definition menu contains five func-
tions for working with ODBC databases.

Note: These functions are available only in Analytica Enterprise.

Chapter Database functions

Analytica User Guide 485

21
DBLabels(dbIndex)

Returns a list of the column labels for the result table. This state-
ment may be used to define an index which can then be used as
the second argument to DBTable(). The first argument, dbIndex,
must be defined by a DBQuery() statement.

DBQuery(connectionString, sql)
Used to define an index Variable. The definition of the index
should contain only one DBQuery() statement. ConnectionString
specifies a data source (e.g., 'DSN=MyDatabase'). SQL defines
an SQL query.

When placed as the definition of an index Variable, DBQuery()
will be evaluated as soon as the definition is complete. When it is
evaluated, the actual query is performed. The resulting result
table is cached inside Analytica, to subsequently be accessed by
DBTable() or DBLabels().

DBQuery() returns a sequence 1..n, where n is the number of
records (rows) in the result table.

DBQuery() should appear only once in a definition, and if it is
embedded in an expression, the expression must return a list with
n elements.

DBQuery() processes the sql statement in read-only mode, so
that the data source cannot be altered as a result of executing
this statement. To alter the data source, use DBWrite().

DBTable(dbIndex, column)
DBTable(dbIndex, columnList)
DBTable(dbIndex, columnIndex)

DBTable() is used to get at the data within a result table. The first
argument, dbIndex, must be the name of a Variable (normally an
index) in your Analytica model that is defined with a DBQuery()
statement. If the second argument, column, is a text value, it
identifies the name of a column label in the result table, in which
case DBTable() returns a 1-D array (indexed by dbIndex) with
the data for that column. If the second argument is a list of text
values (the columnList form), then DBTable() returns a 2-D table
with records indexed by dbIndex, and columns implicitly indexed
(i.e., self-indexed/null-indexed). If the second argument is the

Chapter Database functions

486 Analytica Users Guide

21
name of an Analytica Variable (usually an index) whose value
evaluates to a list of text values, those text values become the
column headings for a 2-D table with columns indexed by col-
umnIndex, and rows indexed by dbIndex. With this last form, col-
umnIndex may be defined as DBLabels(dbIndex).

DbTableNames(connectionString, cat, sch, tab, typ)
Connects to an ODBC data source and returns catalog data for
the data source. ConnectionString specifies a data source (e.g.,
'DSN=MyDatabase'). Cat (catalog names), sch (schema names),
tab (table names), and typ (table types) may be patterns if your
ODBC driver manager is ODBC 3 compliant. Use ‘%’ as a wild-
card in each field to match zero or more characters. Underscore,
‘_’, matches one character. Most drivers use backslash (‘\’) as an
escape character, so that the characters ‘%’, ‘_’, or ‘\’ as literals
must be entered as ‘\%’, ‘_’, or ‘\\’. Typ may be a comma-delim-
ited list of table types. Your data source and ODBC driver may or
may not support this call to varying degrees.

Examples To get all valid catalog names in My db:
DBTableNames(‘DSN=My db’,’%’,’’,’’,’’)

To get all valid schemas in My db:
DBTableNames(‘DSN=My db’,’’,’%’,’’,’’)

To get all valid table names in My db:
DbTableNames(‘DSN=My db’,’’,’’,’%’,’’)

To get all valid table types:
DbTableNames(‘DSN=My db’,’’,’’,’’,’%’)

DBWrite(connectionString, sql)
This function is identical to DBQuery() except that the query is
processed in read-write mode, making it possible to store data in
the data source from within Analytica.

SqlDriverInfo(driverName)
Returns a list of Attribute-value pairs for the specified driver. If
driverName='' (an empty text value), returns a list of the names
of the drivers. driverName must be a text value—it cannot be a
list of text values or an index that is defined as a list of text val-
ues. This statement would not normally be used in a model, but

Chapter Protecting intellectual property

Analytica User Guide 487

21
may be helpful in understanding the SQL drivers that are avail-
able.

Protecting intellectual property
Note: These features are available only from Analytica

Enterprise.

When you are ready to let others use the models you have cre-
ated, you may want to protect your hard work either by preventing
the end-user from changing your model, or by limiting the end-
user’s access to selected definitions. Analytica Enterprise pro-
vides features for this purpose.

Using these features to protect intellectual property involves
these steps:

1. Hide selected definitions.

2. Backup your master model file (and any linked submodules)
to a safe place.

3. Save a protected (obfuscated) copy of your model.

"Obfuscated" refers to the fact that the model file is
scrambled into a non-human-readable form.

4. Distribute the "obfuscated" copy to your end-users.

The third step permanently locks your model so that hidden defi-
nitions can never again be viewed in that copy. It is therefore rec-
ommended that you save a protected copy of your model, and
leave your original model as a master (unprotected) copy. Until
the model is stored in an "obfuscated" form (step 3), an end-user
is not prevented from unhiding your definitions, or from viewing
them by other means (e.g., by loading the Analytica model file
into a text editor).

Warning: An obfuscated model file cannot be un-obfuscated,
even by the original author. If it is locked as Browse-
only, it can never again be edited. If definitions are
hidden, they can never again be viewed or edited.
Always place a master copy of your model (and
any submodules) in a safe place before making an
obfuscated copy!

Chapter Protecting intellectual property

488 Analytica Users Guide

21
Hiding definitions

By hiding your definitions, you are essentially hiding the algo-
rithms and data in your Analytica model from the eyes of your
end-user.

When a definition is hidden, the definition Attribute displays as:
[Definition is Hidden]

However, the Variable can still be evaluated and its result viewed.

Note: Variables associated with input nodes are always visible.

Inheritance of definition hiding
Whether a definition is hidden or not is determined through an
inheritance over the module hierarchy. Using this inheritance, you
can easily hide individual definitions or all definitions within a
given model or module (and its submodules). You can also
exclude selected nodes or modules from being hidden. For
example, you can specify that the definitions for all Variables in
module A or any of its submodules are to be hidden, except for
those in submodule B.

As an example, consider the module hierarchy shown above. A
flag to hide definitions is set for module Mo1 and Variable Va4. A
flag to unhide definitions is set for module Mo3. With these set-
tings, all Variables under Mo1, except those under Mo3, have hid-
den definitions. Thus, the definition of Va3 is visible, while the
definitions for Va1, Va2, and Va4 are all hidden.

Mo3Mo2

Mo4

Mo1

Va1

Va2 Va3

Va4

(hide)

(hide)

(unhide)

Chapter Protecting intellectual property

Analytica User Guide 489

21
Hiding and unhiding definitions

To hide all definitions within a model or a module, bring the mod-
ule window to the front and click in the diagram background so
that no nodes are selected. To hide a single definition, select the
Variable’s node (only a single node should be selected when tog-
gling the hide/unhide status). Then examine the Object menu.

Checkmarks next to Hide Definition(s) and Unhide Defini-
tion(s) indicate the cloaking status for the current module or
selected node. If no checkmarks appear, the module or node
inherits its cloaking status from its parent module. If a checkmark
appears next to Hide Definition(s), then the definition for this
Variable, or for all Variables within the selected module, are hid-
den. If a checkmark appears next to Unhide Definition(s), then
the cloaking status of the current node’s parent is overridden so
that definitions under the current node are to be visible. To toggle
the cloaking status, simple select Hide Definition(s) or Unhide
Definition(s) as appropriate.

Remember that the definitions of Variables with associated input
nodes are always visible regardless of cloaking status.

After you have selected the desired cloaking status, you can
browse your model to verify that your definitions are hidden or
visible as desired. However, until you lock these setting in place
by saving your file in an obfuscated format, your end-user may
still be able to view your definitions, for example, by toggling the
cloaking status, or by viewing your model file in a text editor.

The Hide Definition(s) and Unhide Definition(s) menu options
are disabled in the following circumstances:

• If the current model (or any of its linked submodules) has
been loaded from an obfuscated model file.
In this case, you cannot toggle the cloaking status since
obfuscation has locked it in place.

• If more than one node is selected.

Saving an obfuscated copy of your model
There are two main reasons you might wish to create an obfus-
cated model file. The first is to lock the cloaking status of defini-
tions so that an end-user cannot unhide or otherwise gain access
to your proprietary definitions (see the previous section). The sec-
ond reason is to permanently lock your model into a browse-only
mode so end-users cannot edit the model (see the next section).

Chapter Protecting intellectual property

490 Analytica Users Guide

21
When you decide to save an obfuscated copy of your model, you
should do so with extreme caution since obfuscation is irrevers-
ible. This point cannot be emphasized enough. Obfuscation pro-
tects your intellectual property from the eyes of others, but if you
replace the master copy of your model with an obfuscated one,
you will find obfuscation to be equally effective in protecting your
intellectual property from your own eyes! We recommend always
placing a master copy of your model and all its linked submodules
in a safe place before making an obfuscated copy. In this case, it
is better to be safe than sorry.

When you are ready to save an obfuscated copy of your model,
select Save a Copy In... from the File menu. Enter a filename
that is different than the filename of your master copy, and mark
the Lock and obfuscate the copy checkbox at the bottom of the
dialog and press the Save button.

To protect you from accidentally obfuscating your master copy,
these checkboxes appear only on the Save a Copy In... dialog.

Saving a browse-only copy
You may wish to distribute a copy of your model to others, without
allowing them to edit your model. This is accomplished by saving
a browse-only copy. The end-users will be able to change Vari-
ables with associated input nodes, but will not be able to change
other Variables in the model or add or delete Variables. The user
will not be able to leave browse mode while the model is loaded.

If your end-user has only the Analytica Browser, which can be
freely distributed, you do not need to create a browse-only copy.
However, if your end-user obtains a registration number (either a
licensed copy of Analytica or a trial registration number), they will

Chapter Protecting intellectual property

Analytica User Guide 491

21
be able to make changes unless you have given them a browse-
only copy.

If your model uses Enterprise database functionality, and you
wish to share this model with others who have a different edition
of Analytica, you must save the copy you give them as browse-
only. Otherwise, the database functions cannot be evaluated by
these users.

To save a browse-only copy, select Save a Copy In... from the
File menu, enter a file name that is different from the name of
your master copy, and check the Save as a browse-only model
checkbox at the bottom of the dialog.

When a browse-only model (saved as such from Enterprise) is
loaded into Analytica Professional, Analytica Lite, or Analytica
Professional, it runs it in Power Player mode

Warning: The browse-only flag cannot be reset and browse-
only models are obfuscated. Take extreme care to
ensure that you have placed a master copy of your
model in a safe place before saving a browse-only
copy. In general, you should take the same
precautions emphasized in “Saving an obfuscated
copy of your model” above.

Obfuscation and linked submodules
If you plan on distributing an obfuscated version of your model, it
is preferable to embed submodules rather than linking submodule
files into your model. In so doing, you minimize the chances of
accidentally obfuscating a submodule file, or of leaving a sub-

Chapter Huge arrays

492 Analytica Users Guide

21
module file unobfuscated. This only a recommendation and not a
requirement.

If you do have linked submodules, their files are not obfuscated
when you save your main model using the Save a Copy In...
command. To obfuscate these files, open the Object window for
each submodule, and with the window in the foreground, select
Save a Copy In.... Notice that the module name will appear in the
title bar of the dialog. From there, the obfuscation option can be
selected. Again, take extreme caution to avoid replacing your
master copy. To ensure that the links between file name are main-
tained in your copy, you will need to use the same file name as
the original linked file name, but you will want to store the copies
in a new directory, keeping the relative paths the same.

When any obfuscated model file is loaded into Analytica, even if it
is a sub-module, Analytica will treat the entire model as if it has
been obfuscated. If any module file is browse-only, the entire-
model will be browse-only. If any submodule is dirtied and saved
at that point, it will be saved in an obfuscated form.

Warning: Never import an obfuscated submodule into your
master model. Doing so could cause your master
model to become obfuscated next time it is saved.

Huge arrays
Analytica Enterprise edition and ADE can manage Indexes and
Arrays of up to 100 Million elements in any dimension. The only
practical limit on model sizes is the amount of memory.Huge
Arrays means they can also handle Sample Size for probabilistic
simulation up to this size. (You can set this in the Uncertainty
Setup dialog from Result menu.) Huge Arrays also let you read
in large datasets from databases, using the ODBC functions.

Analytica Note: All editions of Analytica other than Enterprise
and ADE are limited to dimensions and sample sizes of up to
30,000 elements.

Result tables and Edit tables will let you scroll over the first
30,000 elements (ending in ‘…’). Result graphs will plot the com-
plete graph correctly.

Chapter Time profiling

Analytica User Guide 493

21
Selecting a small
window onto a Huge
Array

To explore a Huge Array, it is often useful to create a small man-
ageable window into it. In this example, X is a Huge Array
indexed by J, with 100,000 elements. Xview selects a sample of
100 (JViewSize) elements from X starting at J = 50K (JView-
Start):

Index J := 1..100K
Variable X := (j-30K)^2
Variable JViewStart := 50K
Variable JViewSize := 100
Index JView:=JviewStart..(JviewStart+JviewSize)
Variable Xview := X[J = Jview]

To make it easy to select and display windows, you could create
Input Nodes for JViewStart and JViewSize, and an output node
to display the selected XView.

Time profiling
As experienced programmers know, it is often comes as a sur-
prise to find out where a complex computer program spends most
of its time. They use time profiling to find out which parts of a pro-
gram are taking the lion’s share of the CPU cycles.Once they
have this information, they know where to focus their efforts to
speed up the model. Analytica Enterprise 3.1 provides time profil-
ing to help modelers optimize large Analytica models. These facil-
ities trace how long it takes to evaluate each Variable in a model.

First add the Profiling library from the Libraries folder as a
module of your model, selecting the Embed as copy option.
After you have evaluated key nodes in your model, pen the Pro-
filing library and click on the Calculate button for Timing output
button to view how many CPU seconds have been spent on
each node.

Chapter Time profiling

494 Analytica Users Guide

21
The profiler displays a list of all the model Variables whose values
have been computed, with the time to compute each in seconds,
in descending order.

After you evaluate additional Variables of the model, click the but-
ton Recompute timings to update the timings. Click Reset tim-
ings if you want to reset them all to zero to examine a new set of
computation times.

Once you have identified the largest contributors to evaluation
time, you can concentrate your attention on those Variables if you
want to speed up the model.

Time profiling makes use of two special read-ony attributes:

• EvaluationTime returns the time in seconds to evaluate this
Variable, not including the time to evaluate any of its inputs
(or their inputs, etc.).

• EvaluationTimeAll returns the time in seconds to evaluate
this Variable, and any of its inputs that needed to be
evaluated (and their inputs, and so on.).

The command ResetElapsedTimings sets all these attributes
back to zero.

Analytica Note: Time profiling is only available for the Enterprise
edition and ADE.

Chapter Memory profiling

Analytica User Guide 495

21
Memory profiling

In addition to time profiling, Analytica Enterprise 3.1 and ADE 3.1
also support memory profiling. This allows you to determine
which parts of your program are using the most memory and how
much memory they use.

To profile memory use, add the Profiling library from the Librar-
ies folder as a module of your model, selecting the Embed as
copy option. After you have evaluated key nodes in your model,
open the Profiling library and click on the Calculate button for
Timing output button to view how many CPU seconds have been
spent on each node.

This will display a list of memory users, sorted in descending
order of memory use.

Analytica Note: The memory use shown is approximate,
generally showing more memory used than is actually used,
because it does not account for shared blocks of memory. That is,
some blocks of memory may be shared, either within a single
result, or between two different results. These shared blocks,
when they exist, will get counted twice by the memory profiler.

There is also a special memory usage function:
MemoryInUseBy(var1). This function returns the number of
bytes in use by the cached result(s) for Var1 (with the same dis-
claimer that shared memory may be counted more than once).
This the result reported by MemoryInUseBy() includes the mem-
ory used by mid-Value and prob-Value cached result, but it
doesn't force either to be computed if the results are not already
cached.

Analytica Note: Memory profiling is only available for the
Enterprise edition and ADE.

Chapter Memory profiling

496 Analytica Users Guide

21

Appendices

In the Appendices

The following appendices shows you:

• How to select an appropriate
sample size

• The complete set of Analytica
Menus

• The specifications for Analytica

• How to allocate and monitor
memory usage in Analytica

• How to obtain the list of reserved
words in Analytica

• The types of error messages you
may see when you run Analytica

• The list of superseded and
renamed functions

• Books and papers that are referred
to in this manual or that are useful
as background material

Appendix

Analytica User Guide 499

A

Appendices

A. Selecting the sample size
Each probabilistic value is simulated by computing a random
sample of values from the actual probability distribution.

You can control the sampling method and sample size by using
the Uncertainty Setup dialog box (see “Uncertainty Setup dialog
box” on page 291). This appendix briefly discusses how to select
a sample size.

Choosing an appropriate sample size
There is a clear trade-off for using a larger sample size in calcu-
lating an uncertainty Variable. When you set the sample size to a
large value, the result is less noisy, but it takes a longer time to
compute the distribution. For an initial probabilistic calculation, a
sample size of 20 to 50 is usually adequate.

How should you choose the sample size m? It depends both on
the cost of each model run, and what you want the results for. An
advantage of the Monte Carlo method is that you can apply many
standard statistical techniques to estimate the precision of esti-
mates of the output distribution. This is because the generated
sample of values for each output Variable is a random sample
from the true probability distribution for that Variable.

Selecting the sample size: uncertainty about the mean
First, suppose you are primarily interested in the precision of the
mean of your output Variable y. Assume you have a random sam-
ple of m output values generated by Monte Carlo simulation:

(1)

You can estimate the mean and standard deviation of y using in
the following equations:

(2)

y1 y2 y3 …ym, , ,()

y
yi
m

i 1=

m

∑=

Appendix

500 Analytica Users Guide

A

(3)

This leads to the following confidence interval with confidence α,
where c is the deviation for the unit normal enclosing probability
α:

(4)

Suppose you wish to obtain an estimate of the mean of y with an
α confidence interval smaller than w units wide. What sample size
do you need? You need to make sure that:

(5)

or, rearranging the inequality,

(6)

To use this, first make a small Monte Carlo run with, say, 10 val-
ues to get an initial estimate of the variance of y—that is, s2. You
can then use Equation (6) to estimate how many samples will
reduce the confidence interval to the requisite width w.

For example, suppose you wish to obtain a 95% confidence inter-
val for the mean that is less than 20 units wide. Suppose your ini-
tial sample of 10 gives s = 40. The deviation c enclosing a
probability of 95% for a unit normal is about 2. Substituting these
numbers into Equation (6), you get:

(7)

So, to get the required precision for the mean, you should set the
sample size to about 64.

Estimating confidence intervals for fractiles
Another criterion for selecting sample size is the precision of the
estimate of the median and other fractiles, or more generally, the

s2
yi y–()2

m 1–()

i 1=

m

∑=

y c s
m

--------– y c s
m

--------+,⎝ ⎠
⎛ ⎞

w 2c s
m

-------->

m 2cs
w

--------⎝ ⎠
⎛ ⎞

2
>

m 2 2× 40×
20

------------------------⎝ ⎠
⎛ ⎞

2
> 82 64= =

Appendix

Analytica User Guide 501

A
precision of the estimated cumulative distribution. Assume that
the sample m values of y are relabeled so that they are in
increasing order,

and c is the deviation enclosing probability α of the unit normal.
Then the following pair of sample values constitutes the confi-
dence interval:

 where

(8)

(9)

Suppose you want to achieve sufficient precision such that the α
confidence interval for the pth fractile is given by ,
where is an estimate of , and is an estimate of

. In other words, you want α confidence of being
between the sample values used as estimates of the ()th
and ()th fractiles. What sample size do you need? Ignoring
the rounding, you have approximately

, (10)

Thus,

(11)

From Equations (8) and (9) above, you have

(12)

Equating the two expressions for , you obtain

(13)

(14)

y1 y2 …ym≤ ≤

yi yk(,)

i mp c mp 1 p–()–=

k mp c mp 1 p–()+=

Yp yi yk(,)
yi Yp ∆p– yk

Yp ∆p+ Yp
p ∆p–

p ∆p+

i m p ∆p–()= k m p ∆p+()=

k i– 2m∆p=

k i– 2c mp 1 p–()=

k i–

2m∆p 2c mp 1 p–()=

m p 1 p–() c
∆p
-------⎝ ⎠

⎛ ⎞
2

=

Appendix

502 Analytica Users Guide

A
For example, suppose you want to be 95% confident that the esti-
mated fractile Y.90 is between the estimated fractiles Y.85 and Y.95.
So you have , and . Substituting the numbers
into Equation (14), you get:

(15)

On the other hand, suppose you want the credible interval for the
least precise estimated percentile (the 50th percentile) to have a
95% confidence interval of plus or minus one estimated percen-
tile. Then,

(16)

These results are completely independent of the shape of the dis-
tribution. If you find this an appropriate way to state your require-
ments for the precision of the estimated distribution, you can
determine the sample size before doing any runs to see what sort
of distribution it may be.

∆p 0.05= c 2≈

m 0.90· 1 0.90–()× 2 0.05⁄()
2

× 144= =

m 0.5 1 0.5–()× 2 0.01⁄()
2

× 10 000,= =

Appendix

Analytica User Guide 503

B
B. Menus

File menu
The File menu contains commands to open, create, and save
files, as well as to import and export them. In addition, the printing
and Exit commands are in this menu.

Command Description

New Model Starts a new model.

Open Model Opens an existing, previously saved model.

Add Module Adds a filed module to the active model.

Add Library Adds a filed library to the active model.

Close Closes the active window.

Appendix

504 Analytica Users Guide

B

Edit menu
The Edit menu contains commands to manipulate objects, text or
graphics, and display the Preferences dialog.

Close Model Closes the active model.

Save Saves the active model to a file, and saves each
changed linked module and linked library to its
own file. If the model has never been saved
before, prompts for a file name and folder.

Save As Saves the active model, filed module, or filed
library as a new file. Prompts for a file name and
folder.

Save A Copy In Saves a copy of the active model, filed module,
or filed library into a new file, leaving the active
file name for future saves. Prompts for a file
name and folder.

Import Imports the contents of a text or data file into the
selected Variable definition. See “Importing and
exporting” on page 386.

Export Exports the contents of the selected field or cells
into a file. See “Importing and exporting” on
page 386.

Page Setup Displays a dialog box for selecting paper size,
orientation, and scaling options for printing.

Print Preview Displays a view showing where page breaks will
occur before the current window is printed.

Print Displays a dialog box for selecting the printer,
number of copies you want to print, and other
printing options.

Print Report Displays a dialog box for printing multiple
diagrams, Object windows, and result windows at
the same time. See “Printing” on page 38.

Recent files The four most recently opened Analytica models
are listed on the File menu. Selecting one loads
the corresponding model into memory.

Exit Quits the Analytica application. Confirms if you
wish to save changes to the current model.

Command Description

Appendix

Analytica User Guide 505

B

Command Description

Undo Undoes your last action.

Cut Cuts the selected text, nodes, graph, or table cells
into the clipboard temporarily for pasting.

Copy Copies the selected text, nodes, graph, or table
cells into the clipboard temporarily for pasting. See
“Copying and pasting” on page 375.

Paste Pastes the contents of the clipboard at the
insertion point or replaces the current selection.
See “Copying and pasting” on page 375.

Paste Special... Brings up a dialog for selecting the format of data
to OLE link into an Edit Table.

Clear Deletes the selected text or node(s).

Select All Selects all text, nodes, or table cells.

Duplicate
Nodes

Duplicates the selected nodes. See “Duplicating
nodes” on page 76.

Copy Diagram/
Table

When a Result table or Edit Table is active, this
command is Copy Table, which copies the entire
multidimensional Object as a tab-delimited list of
tables. When a Diagram window is active, this
menu command is Copy Diagram, which copies a
picture of the diagram without copying the objects
they represent. See “Copying and pasting” on
page 375.

Appendix

506 Analytica Users Guide

B

Object menu
The Object menu contains commands that find and create Ana-
lytica objects and display their attributes.

Insert Rows Inserts an item in a list, or a row in a table, by
copying the current item, or row. If a column in a
table is selected, this command changes to Insert
Columns. See “Editing a table” on page 228.

Delete Rows Deletes the selected item or items in a list, or rows
in a table. If a column in a table is selected, this
command changes to Delete Columns. See
“Editing a table” on page 228.

Preferences Displays the Preferences dialog box to examine or
change various options. See “Preferences dialog
box” on page 88.

OLE Links... Brings up a dialog that allows properties to be
changed for OLE links from external applications
into your model. Used to change links from Manual
to Automatic, to update manual links, or to open an
external application that is serving a link.

Command Description

Appendix

Analytica User Guide 507

B

Command Description

Find Displays a dialog box to find an Object by its
identifier or title. See “Finding Variables” on
page 399.

Find Next Finds the next Object that partially matches the
previously defined text value. See “Finding
Variables” on page 399.

Find Selection Finds an Object by its identifier that matches the
currently selected text. See “Finding Variables”
on page 399.

Make Alias Creates an alias for the selected Object. See
“Alias nodes” on page 82.

Make Importance Creates an Index and General Variable for the
selected Variable to compute the uncertainty
importance (rank correlation) contributions of its
inputs. See “Importance analysis” on page 343.

Make Input Node Creates an input node as an alias of the selected
Object. See “Using input nodes” on page 161.

Make Output
Node

Creates an output node as an alias of the
selected Object. See “Using output nodes” on
page 164.

Show By
Identifier

Shows Variables by their identifier in the current
diagram, Edit Table, Result window, or Outline
view.

Show With
Values

Shows the mid values of the Variable and all its
inputs. See “Showing mid values” on page 36
and “The Outline window” on page 397.

Attributes Opens the Attribute dialog box to set the visibility
of attributes and define new attributes. See
“Managing attributes” on page 400.

Hide Definition(s) (Analytica Enterprise only) Marks the currently
selected node or module as hidden. The
definitions for all Variables contained within the
selected node will be private.

Unhide
Definition(s)

(Analytica Enterprise only) Unhides the currently
selected node or module. This overrides any
settings in parent modules to hide definitions.

Appendix

508 Analytica Users Guide

B
Definition menu

The Definition menu contains commands for editing Variable
definitions. It lists Analytica’s built-in function libraries, as well as
any user libraries that are currently open.

Command Definition

Edit Definition Opens the appropriate view for editing the definition
of the selected Variable. If the Variable is defined as
a distribution or sequence, the Object Finder
opens. If it is defined as a table or probability table,
its Edit Table window opens. Otherwise, an Object
window or Attribute panel opens, depending on the
Edit attributes setting in the Preferences dialog box.
See “Preferences dialog box” on page 88.

Edit Time Opens the Object window for the Time system
Variable. See “The Time index” on page 361.

Paste
Identifier

Opens the Object Finder dialog box for examining
functions and Variable identifiers, entering function
parameters, and pasting them into definitions. See
“Object Finder dialog box” on page 152.

Show Invalid
Variables

Displays a window listing all Variables with invalid
or missing definitions. See “Invalid Variables” on
page 403.

List of libraries you’ve created in, or
added to, the current model

Appendix

Analytica User Guide 509

B

Math Displays a list of the mathematical functions in the
Math library. See “Math functions” on page 190.

Abs() Logten()

Arctan() Mod()

Ceil() Radians()

Cos() Round()

Degrees() Sin()

Exp() Sqr()

Factorial() Sqrt()

Floor() Tan()

Ln()

Array Displays a list of functions for creating and
manupulating arrays. See Chapter 11, “Arrays and
Indexes,” and Chapter 12, “Advanced Array
Functions.”

Area() Min()

Array() Normalize()

Average() Product()

Choice() Rank()

Concat() Sequence()

CopyIndex() Size()

CumProduct() Slice()

Cumulate() SortIndex()

Determtable() Subscript()

IndexNames() Subset()

Integrate() Sum()

Max() Table()

MdArrayToTable() Uncumulate()

MdTable() Unique()

Command Definition

Appendix

510 Analytica Users Guide

B

Distribution Displays a list of functions for creating probability
distributions in the Distribution library. See
Chapter 14, “Probability Distributions,” and
Chapter 15, “Using Discrete Probability.”

Bernoulli() Logistic()

Beta() Lognormal()

Binomial() Normal()

Certain() Poisson()

Chancedist() ProbDist()

ChiSquared() ProbTable()

Cumdist() StudentT()

Exponential() Triangular()

Fractiles() Truncate()

Gamma() Uniform()

Geometric() Weibull()

Hypergeometric()

Special Displays a list of unusual or less commonly used
functions in the Special library.

Argmax() IsReference()

Attrib of ... Istext()

Cubicinterp() IsUndef()

Dydx() Iterate()

Dynamic() Linearinterp()

Elasticity() MsgBox()

Evaluate() Stepinterp()

For...Do Subindex()

x[I=....] Using...Do

x[time-...] WhatIf()

Index...Do WhatIfAll()

Command Definition

Appendix

Analytica User Guide 511

B

Isnan() While

Isnumber()

Statistical Displays a list of statistical functions in the
Statistical library. See “Statistical functions” on
page 335.

Correlation() Probbands()

Frequency() Rankcorrel()

Getfract() Sample()

Kurtosis() Sdeviation()

Mean() Skewness()

Mid() Statistics()

Probability() Variance()

Operators Displays a list of arithmetic, comparison, logical,
and conditional operators in the Operators library.
See “Operators” on page 180.

(-) Not

+ Or

- And

* If Then Else

/ Ifall Then Else

÷ Ifonly Then Else

^ expr1; expr2

< A.1

<= first..last

= X := expr

<> \[indexes]A

>= # A

> a & b

Command Definition

Appendix

512 Analytica Users Guide

B

System
Variables

Displays a list of system Variables that you can use
in definitions (see the next section).

Matrix Displays a list of matrix functions in the Matrix
library. See “Matrix functions” on page 267.

Decompose() MatrixMultiply()

Determinant() SingularValue()

EigenDeComp() Transpose()

Invert()

Text Functions Displays a list of matrix functions in the Matrix
library. See “Matrix functions” on page 267.

Acs() TextLength()

Chr() TextLowerCase()

FindInText() TextReplace()

JoinText() TextSentence()

SplitText() TextUpperCase()

Optimizer Displays a list of matrix functions in the Matrix
library. See “Matrix functions” on page 267.

LpDefine() LpSlack()

LpFindIIS() LpSolution()

LpObjSA() LpStatusNum()

LpOpt() LpStatusText()

LpRead() LpWrite()

LpReducedCost() LpWriteIIS

LpHSSA() NLPDefine()

LpShadow() QpDefine()

Command Definition

Appendix

Analytica User Guide 513

B

Advanced
Math

Displays a list of advanced and specialized
mathematical and statistical functions. See
“Advanced math functions” on page 192.

Arccos() ErfInv()

Arcsin() GammaFn()

Arctan2() GammaI()

BetaFn() GammaIInv()

BetaI() Lgamma()

Combinations() Permutations()

Cosh() Regression()

CumNormal() Sinh()

CumNormalInv() Tanh()

Erf()

Database Appears only in Analytica Enterprise. Contains a list
of functions for accessing ODBC-compliant
databases. See “Database functions” on page 484.

DbLabels() DbTableNames()

DbQuery() DbWrite()

DbTable() SqlDriverInfo()

Command Definition

Appendix

514 Analytica Users Guide

B

System Variables submenu
The system Variables submenu lists the Analytica Variables and
constants that can be used in Variable definitions.

Financial Displays a list of financial functions. See “Datatype
functions” on page 200.

Cumipmt Pmt()

Cumprinc() Ppmt()

Fv() Pv()

IPmt() Rate()

Irr() Xirr()

Nper() Xnpv()

Npv()

your libraries Any libraries that you have defined or added to the
model are listed at the bottom of the Definition
menu, each with a submenu that lists the functions
contained in the library. See Chapter 19, “Building
Functions and Libraries.”

Command Definition

Appendix

Analytica User Guide 515

B

Result menu
The Result menu contains commands for opening Result win-
dows, changing the appearance of graphs and tables, and setting
uncertainty options.

Command Description

AnalyticaPlatform In Analytica for Windows, this is ‘Windows’.
From Analytica for Macintosh, this is
‘Macintosh’, and from the Analytica Decision
Engine this is ‘ADE’.

AnalyticaVersion An integer encoding the current build number
of Analytica being run. In terms of the major
release number, minor release number, and
sub-minor release number, it is equal to

For example, Analytica 3.1 subminor version 1
returns the value 31001.

False The logical (Boolean) constant that evaluates
numerically to zero.

Pi The ratio of circumference to the diameter of a
circle.

Run The index for uncertainty sampling, defined as
Sequence(1,Samplesize).

Samplesize The number of sample iterations for
probabilistic simulation. See “Uncertainty
Setup dialog box” on page 291.

Time The index Variable identifying the dimension
for dynamic simulation (the Dynamic()
function). See “The Time index” on page 361.

True The logical (Boolean) constant that evaluates
numerically to nonzero.

10K Major⋅ 100 Minor⋅ SubMinor+ +

Appendix

516 Analytica Users Guide

B

Command Description

Show Result Opens a Result window for the selected Object.
See “2: Results” on page 45.

Mid Value Displays the deterministic value, holding most
uncertain Variables to their median value. See
“Uncertainty view options” on page 52.

Mean Value Displays the mean of the uncertain value. See
“Uncertainty view options” on page 52.

Statistics Displays the statistics of the uncertain value in a
table as set in the Uncertainty Setup dialog box.
See “Uncertainty view options” on page 52.

Probability
Bands

Shows probability bands as set in the
Uncertainty Setup dialog box. See “Uncertainty
view options” on page 52.

Probability Displays a probability density graph for an
uncertain value. For a discrete probability
distribution, Probability Mass replaces this
command. See “Uncertainty view options” on
page 52.

Cumulative
Probability

Displays a cumulative probability graph
representing the probability that a Variable's
value is less than or equal to each possible
(uncertain) value. See “Uncertainty view options”
on page 52.

Sample Displays a table of the values determined for
each uncertainty sample iteration. See
“Uncertainty view options” on page 52.

Check mark indicates
the default or current

uncertainty view

Appendix

Analytica User Guide 517

B

Diagram menu
The Diagram menu contains commands for changing the display
of the diagram, including nodes, arrows, and fonts.

Graph Setup Displays a dialog box to specify the graphing
tool, graph frame, and graph style. See “Graph
Setup dialog box” on page 129.

Number Format Displays a dialog box to set the number format
for displays of results. See “Number Format
dialog box” on page 135.

Uncertainty
Options

Displays a dialog box to specify the uncertainty
sample size and sampling method and to set
options for statistics, probability bands,
probability density, and cumulative probability.
See “Uncertainty Setup dialog box” on page 291.

Command Description

Command Description

Set Diagram Style Displays a dialog box to set default arrow
displays, node size, and font. See “Diagram
Style dialog box” on page 121.

Set Node Style Displays a dialog box to set arrow display and
font for specific nodes. See “Node Style dialog
box” on page 123.

Show Color Palette Displays a palette to set the color of the
diagram background or of selected nodes.
See “Changing background or node colors” on
page 120.

Appendix

518 Analytica Users Guide

B

Window menu
The Window menu contains commands for bringing windows to
the front, and for opening special windows.

Align Selection To
Grid

Aligns selected node(s) to the diagram grid.
See “Aligning to the grid” on page 76.

Adjust Size Adjusts the selected node’s size to match the
default node size, or to fit the title label. See
“Default node size” on page 122.

Move Into Parent Moves the selected Object from the current
diagram to its parent diagram. See “Influence
diagram window” on page 28.

Resize Centered If checked, when you resize a node, the
node’s center stays unmoved. If unchecked,
when you resize a node by dragging a corner
handle, the opposite handle stays unmoved.
See “Align nodes horizontally or vertically” on
page 115.

Set Diagram Size (Obsolete) Displays a dialog box to set the
number of diagram pages. See “Changing the
size of the diagram” on page 124.

Snap to Grid Turns alignment to the diagram grid on or off
in edit mode. See “Aligning to the grid” on
page 76.

Edit Icon Opens a window to edit the icon for the
selected node. See “Adding icons to nodes”
on page 168.

Command Description

Appendix

Analytica User Guide 519

B

Help menu
The Help menu allows you to access to Analytica’s online help
system.

Command Description

Bring to Front Displays a list of the current windows; select
one to display on top.

Show Memory
Usage

Displays a window showing memory usage.
See “Memory” on page 524

Show Page Breaks Shows page breaks for the currently active
diagram.

Cascade Rearranges the open Analytica windows. All
windows are resized to be a standard size.
The first window is placed at the upper left
corner of the main Analytica window, with
each subsequent window offset slightly below
and to the right.

Tile Horizontally Rearranges the open Analytica windows.
Windows are resized and repositioned to tile
the main Analytica window area horizontally.

Tile Vertically Rearranges the open Analytica windows.
Windows are resized and repositioned to tile
the main Analytica window area vertically.

Appendix

520 Analytica Users Guide

B

Analytica Note: The options that appear on the help menu will
vary depending on your computer setup and the version of
Analytica you have. If you do not have Adobe Acrobat installed on
your computer, the items that appear above the line will change to
only:

• User guide
• Optimizer (if you have purchased the Optimizer)
• Tutorial

Users with free Acrobat Reader version 6.0 or earlier, or users
with Acrobat Standard or Acrobat Professional, see the expanded

Command Description

Content Outline Displays an outline of the documentation

Function List Displays the list of Analytica functions

Index Opens the Analytica Users Guide Index

Find Opens a documentation search window

What’s New in
3.1

Opens the Users Guide to the "Wat’s new in 3.1"
section

Tutorial Opens the Analytica Tutorial

Optimizer Opens the Optimizer Manual (only appears in
optimizer-enabled version of Analytica)

Web Tech
Support

Opens your default web browser to the Analytica
Tech Support page at: http://www.lumina.com.

Email Tech
Support

Opens your email system to send an email to
Analytica Tech Support

Register Opens your default web browser to the Analytica
softwareregistration page at: http://
www.lumina.com.

Contact Lumina Provides contact information for Lumina

Update License Displays your current Analytica license
information and allow you to update the license
code.

About Analytica Displays useful information such as the
application’s edition, release number, your license
code, and contact information.

Appendix

Analytica User Guide 521

B
listing shown. Users with the free Acrobat Reader version 7.0 or
later will only see the truncated list.

Right mouse button menus
Many of common commands found on the Analytica application
menu are also available from a right mouse button pop-up menu.

The above pop-up appears when you depress the right mouse
button with the mouse above a node in a diagram window while in
edit mode. A slightly different set of options appear if you are in
browse mode, or if you depress the right mouse button while the
mouse is over the diagram background.

There are only two menu items that are appear only on the right
mouse button menu:

Command Description

Bring to Front Brings the selected Object(s) to the front of the
drawing order so that if the Object(s) overlap any
other elements, the Object will be visible.

Send to Back Sends the selected Object(s) to the back of the
drawing order so that the selected Object(s) are
drawn behind any overlapping elements.

Appendix

522 Analytica Users Guide

C
C. Analytica specifications

Hardware and software

Objects

Uncertainty

Numbers and arrays

CPUs supported 486 and higher (Pentium recom-
mended)

System Software Windows 98, 2000, NT 4, ME, or XP

Memory requirements 16 MB (24 MB+ recommended)

Application size Approximately 6 MB

Typical model file size 20K (small)–200K (large)

Number of system objects 619

Maximum user-defined objects 14730

Maximun number of local-variables 31

Probability methods Random Latin HyperCube
Median Latin HyperCube
Monte Carlo

Maximum sample size 30,000 (Analytica Professional)
99,999,999 (Analytica Enterprise)
also limited by available memory

Random sampling
methods

SANE
Minimal Standard
L’Ecuyer
Knuth

Number precision 15 significant digits for floating-
point numbers
9 digits for integers

Appendix

Analytica User Guide 523

C
Maximum elements
in a dimension

30,000 (Analytica Professional)
99,999,999 (Analytica Enterprise
and Power Player)

Maximum dimensions
in an array

15

Appendix

524 Analytica Users Guide

D
D. Memory

Memory usage
The Memory Usage window displays the amount of memory
available on your system, as well as the memory currently in use
by all applications, including Windows itself. The memory avail-
able on your system is the sum of all physical memory installed
on your system and the swapfile on your hard disk, which is used
to complement the physical memory.

To display the Memory Usage window, select Show Memory
Usage from the Window menu.

Analytica Note: This window appears automatically when
Analytica runs low on memory.

If you require additional memory to run your model at a given
sample size, you can take several steps to increase the amount
of memory available to Analytica:

1. Close other open applications.

All applications require a segment of memory to operate, and
this reduces the memory available to Analytica.

2. Increase the size of your computer’s swapfile.

Under Windows 95, the swapfile size is dynamically handled
by the system by default, and is limited only by the free space
available on the hard disk where the swapfile resides. You

Number of user-defined Variables and other objects

Current sample size (reduce it if
you are having memory

problems); see “Uncertainty
Sample” on page 292

Shows proportion of
available memory
currently used

High-water mark indicates
peak memory used

Appendix

Analytica User Guide 525

D
can manually change swapfile settings in the Memory control
panel.

Under Windows NT, the minimum swapfile size is set through
the Hardware control panel. If your hard disk is full or nearly
full, you will need to free space on your hard disk, or select a
different hard disk to hold your swapfile, in order to provide
more memory for Analytica computations.

3. Finally, consider adding more physical memory to your
computer.

Memory message on opening a model
When you save a model, the number of megabytes of peak mem-
ory used during the session is also saved. When you open the
model, the saved peak memory is compared to the amount of
memory allocated to Analytica. If the saved peak memory
exceeds 95% of Analytica’s memory allocation, a message will
recommend either reducing the sample size (see “Uncertainty
Setup dialog box” on page 291) or changing the application mem-
ory size (see next section).

Appendix

526 Analytica Users Guide

E
E. Reserved Words

Identifiers used for Analytica’s builtin functions, attributes,
classes, attributes, and other objects may not be reused for new
objects. Analytica will warn you if you try to do so. You can list all
the reserved words thus:

1. Press CTRL-’, to open the Typescript Window

2. Type in ‘List’, followed by Enter.

Appendix

Analytica User Guide 527

F
F. Error message types

There are several types of error messages in Analytica. Many
messages are designed to inform you that something in the
model needs to be corrected; some messages indicate that Ana-
lytica cannot continue or complete your request. Each error mes-
sage begins with its message type, one of: warning, lexical,
syntax, evaluation, system, and fatal errors.

In general, Analytica allows you to continue working on your
model unless it cannot proceed until a problem has been cor-
rected. When you are editing a Variable definition, you can
request an error message by pressing Alt-Enter or by clicking on
the definition Warning icon().

Warning
A warning indicates that there is a possible problem. For exam-
ple:

A warning is reported during result evaluation to inform you that
continuing may yield unexpected results.

You can suppress evaluation warnings for all Variables by dis-
abling the Show result warnings preference (see “Preferences
dialog box” on page 88). When Show result warnings is
unchecked, any warning conditions encountered during result
evaluation will be ignored. You can also suppress warnings dur-
ing evaluation of a single expression with the IgnoreWarn-
ings(expr) function. See “IgnoreWarnings(expr)” on page 466
for details.

If an identifier in a module you are adding to a model has a name
conflict with an identifier in the model, you will see a warning sim-
ilar to the following:

Warning:

Log of non-positive number.

Appendix

528 Analytica Users Guide

F

Lexical error
A lexical error occurs when a component of an expression was
expected and is missing or is invalid. For example, if you enter a
number with an invalid number suffix, you may get a message
similar to the following:

Syntax error
A syntax error occurs when an expression contains a syntax mis-
take. Analytica often reports the mistake together with the frag-
ment of the expression that contained the error. For example:

The following are two common syntax errors:

Expecting ","
Indicates a comma is missing, or there are too few parameters to
a function.

Warning:

Can’t declare Variable Location because the Identifier
is already in use as Attribute Location.

Declare using the Identifier Location1?

Lexical error while checking:

2sdf
^

Invalid exponent code.

Syntax error while checking:

2 + + 3
^

Expression expected.

Appendix

Analytica User Guide 529

F
Expecting ")"

Indicates there are too many parameters to a function.

If you attempt to change the identifier for a Variable, and the new
identifier is assigned to another node, you will see a message
similar to the following:

Evaluation error
An evaluation error occurs when there is a problem while evaluat-
ing a Variable, user-defined function, or system function. You are
asked if you want to edit the definition of the Variable currently
being evaluated:

If a system function expects a specific kind of argument, an error
message similar to the following is displayed:

This message indicates that an argument passed to the function
is of a different type or cannot be handled by that function. You
may need to redefine a Variable being used as an argument to
the function, or change an expression being passed as an argu-
ment.

Invalid number
If a calculation such as division by zero is performed, a warning is
displayed with an option to continue calculating. Three possible
error codes may be returned as a result of an invalid calculation:

Syntax error:

The Identifier "Location" is already in use.

Error during evaluation of Ch1.

Do you want to edit the Definition of Ch1?

Evaluation error:

First argument of Sysfunction Argmax must be
a table.

Appendix

530 Analytica Users Guide

F

These can be detected in expressions using "X=INF",
Isnan(X), or Isundef(X).

System error
If you see this message type, please contact Lumina Decision
System’s technical support department (see “How to contact us”
on page 17) to report the error.

Out of memory error
Indicates that Analytica has used up all available memory and
cannot complete the current command. If this occurs, first save
your model. Before attempting to evaluate again, close some win-
dows, use a smaller sample size, or expand the memory avail-
able to Analytica (see “Memory” on page 524).

Code Meaning

INF Infinity.

NAN Invalid argument, such as Sqrt(-1), or
Invalid division, such as 0/0.

Undefined
(blank)

Displays as a blank cell if the result is a table, or
shows the Compute button otherwise. Results from
certain functions, such as SubIndex(), when a
result is not available.

Appendix

Analytica User Guide 531

G
G. Forward and backward compatibility

Superseded functions and constructs
Analytica 3.1 includes several syntax constructs and functions
that have been superseded, so it will run models from earlier
releases that used them. We strongly encourage you to use the
new constructs and avoid the superseded ones—they may not be
supported in future releases. Use the old ones only if you abso-
lutely require backward compatibility with colleagues using earlier
releases of Analytica, such as the Macintosh edition.

Analytica Note: there are some caveats to the general ability to
run Analytica 3.0 models in Analytica 3.1.

• Two pixels were added to the left-hand margin of text nodes
for improved athetics & readability, so text nodes in 3.0
models may wrap their text and need adjustment.

• Any expression making use of a binary operation on the
value Null will evaluate differently in 3.1. For example,
5*Null evaluates to 5 in Analytica 3.0 but evaluates to Null
in Analytica 3.1. In most instances, this change would
expose errors in Analytica 3.0 models that went undetected
and is unlikely to impact intended behavior, but it may cause
error messages to occur that did not appear when the model
was run in Analytica 3.0.

• Analytica3.1 contains numerous bug fixes, so any model that
(perhaps inadvertently) utilized a bug to its advantage could
be impacted.

It is also possible to run models created or edited in Release 3.1
in Analytica 3.0, provided you don’t use any functions or new syn-
tax options, such as calling function parameters by name, added
in 3.1. When opening a 3.1 model in Analytica 3.0, you may get a
warning about an unrecognized attribute
Att__discretenessinf, which you can safely ignore.

Appendix

532 Analytica Users Guide

G

Renamed text functions
We have renamed previous text functions to be consistent with
Analytica’s terminology, adding the word Text, or using it instead
of String (the term used in some other computer languages). The
old function names still work in 3.1 for compatibility with old mod-
els, but we encourage you use the new Text ones for greater con-
sistency. The following functions have been renamed.

Encouraged Superseded Meaning For more
see:

Var x := e ; f Using x := e Do f Define local Variable x, assign it initial value e,
and evaluate expression f which may refer to
x.

page 439

For x[j, k..] := a
Do e

Using x := a In i
Do e

Assigns to local Variable x, successive
subarray values from array indexed by all
indexes of a other than i and repeats
evaluation of expression e for each value of i.
Returns an array of values of e with the same
indexes as a.

page 443

For x[] := i Do e Using x := i
Do e

Assigns to local Variable x, successive scalar
values from index i and repeats evaluation
expression e for each value. Returns an array
indexed by i.

page 439

While Test Do
Body

Iterate() Iterate provides an iterative convergence
algorithm. Most such algorithms can now be
more clearly and reliably implemented with the
While construct.

page 446
&
page 447

/*comments */ { comments } Brackets enclose comments within definitions. page 147

text & text text + text Joining text values into a single text value page 195

JoinText(t, i) Join(t, i, ‘’)
Sum(t, i)

To join elements of an array of text and/or
numbers t over index i into one text value

page 195

Old Function Name New Name

Join() JoinText()

Split() SplitText()

StringLength() TextLength()

Appendix

Analytica User Guide 533

G

StringLowerCase() TextLowerSCase()

StringMixedCase() TextSentenceCase()

StringReplace() TextReplace()

StringUperCase() TextUpperCase()

SubFindString() FindInText()

SubString() SelectText()

Old Function Name New Name

Appendix

534 Analytica Users Guide

H
H. Bibliography

Morgan, M. Granger and Henrion, Max. Uncertainty: A Guide to
Dealing with Uncertainty in Quantitative Risk and Policy Analysis,
Cambridge University Press (1990,1998).

Written by the original authors of Analytica, this text provides
extensive background on how to represent and analyze uncer-
tainty in quantitative models. It includes chapters on:

• Building good policy models

• Categorizing types and sources of uncertainty

• How people make judgments under uncertainty

• Encoding expert judgment in the form of probability
distributions

• Choosing a computational method for propagating
uncertainty in a model

• Analyzing uncertainty in very large models

• Displaying and communicating uncertainty

• How to tell if representing uncertainty could make a
significant difference to your conclusions, or "the value of
knowing how little you know"

We recommend the second edition, published 1998, which con-
tains a full chapter on Analytica (Chapter 10). If you have the first
edition (1990), we recommend that you ignore Chapter 10, which
describes the precursor of Analytica and is quite out of date!

Clemen, Robert T. Making Hard Decisions: An Introduction to
Decision Analysis. Duxbury Press (1991).

Howard, R., and Matheson, J. Influence Diagrams. In Readings
on the Principles and Applications of Decision Analysis, eds. R.
Howard and J. Matheson. pp. 721-762. Menlo Park, Calif.: Strate-
gic Decisions Group (1981).

Keeney, R. Value–Focused Thinking: A Path to Creative Decision
Making, Cambridge, MA: Harvard University Press (1992).

Knuth, D.E. Seminumerical Algorithms, 2nd ed., vol. 2 of The Art
of Computer Programming, Reading, MA: Addison-Wesley
(1981).

Appendix

Analytica User Guide 535

H
L'Ecuyer, P. Communications of the ACM, 31, 742-774 (1988).

Park, S.K., and K.W. Miller. Communications of the ACM,
31, 1192-1201 (1988).

Pearl, J. Probabilistic Reasoning in Intelligent Systems, San
Mateo, Calif.: Morgan Kaufmann (1988).

Appendix

536 Analytica Users Guide

H

Function List

Function List

In this Chapter

This appendix lists all the built-in
functions in Analytica, organized by cat-
egory. It also contains information on
obsolete functions and constructs,
explaining what functions have taken
their place

Analytica User Guide 539

Basic Math
Abs, Arctan, Ceil, Cos,
Degrees, Exp, Factorial,
Floor, Ln, Logten, Mod,
Radians, Round, Sin, Sqr,
Sqrt, Tan

Advanced Math
Arccos, Arcsin, Arctan2,
BetaFn, BetaI,
Combinations, Cosh,
CumNormal, CumNormalInv,
Erf, ErfInv, GammaFn,
GammaI, GammaIInv, Lgamma,
Permutations, Regression,
Sinh, Tanh

Creating Arrays
[...], m..n, Array,
CopyIndex, Sequence,Table

Array-Reducing
Area, Argmax, Average,
Max, Min, Product,
Subindex, Sum

Transforming arrays
Cumproduct, Cumulate,
Integrate, Normalize,
Rank, Sortindex,
Uncumulate

Selecting from Arrays
v[I=v], Choice, Slice,
Subscript

Interpolating
Cubicinterp, Linearinterp,
Stepinterp

Other Array functions
Concat, IndexNames, Size,
Sortindex, Subindex,
Subset, Unique

Tables and arrays
MDArrayToTable, MDTable

Matrix functions
Decompose, Determinant,
Determtable, DotProduct,
Invert, Transpose,
SingularValueDecomp

Continuous distributions
Beta, Chisquared, Cumdist,
Exponential, Fractiles,
Gamma, Logistic,
Lognormal, Normal,
Probdist, StudentT,
Triangular, Truncate,
Uniform, Weibull

Discrete distributions
Bernoulli, Binomial,
Certain, Chancedist,
Geometric,Hypergeometric,
Poisson, Probtable

Statistical functions
Frequency, Getfract,
Kurtosis, Mean, Mid,
Probability, Probbands,
Rankcorrel, Regression,
Sample, Sdeviation,
Skewness, Statistics,
Variance

Text functions
&, Asc, Chr, FindinText,
JoinText, SelectText,
SplitText, TextUpperCase,
TextLength, TextLowerCase,
TextSentenceCase,
TextReplace, ReadTextFile,
WriteTextFile

Sensitivity analysis
Correlation, Dydx,
Elasticity, RankCorrel,
Regression, Whatif,
WhatIfAll

Special functions
Dynamic, Error, Evaluate,
IgnoreWarnings, Iterate,
Subindex, Time, Today,
MsgBox, Whatif, WhatIfAll

Financial functions
Cumipmt, Cumprinc, Fv,
Ipmt, Irr, Nper, Npv, Pmt,
Ppmt, Pv, Rate, Xirr, Xnpv

Operators
+ - * / ^ < <= = <> >= > :=
& \ # NOT OR AND OF

Database access
DBLabels, DBQuery,
DBTable, DBTableNames,
DBWrite, SqlDriverInfo
(Enterprise edition Only)

Datatypes
Isnan, Isnumber,
IsReference, Istext,
Isundef

Control constructs
(s1;s2;...), Begin … End,
Error, For, FunctionOf,
Index, If, IfAll, IfOnly,
IgnoreWarnings, Iterate,
MemoryInUseBy, Var, While

System Variables
AnalyticaPlatform,
AnalyticaVersion,
CurrentDataDirectory,
CurrentModelDirectory,
Run, Samplesize, Time

System constants
False, Null, Pi, True, Inf

Object classes
Chance, Constant,
Decision, Determ, Form,
Index, Library, Model,
Module, Objective,
Variable

Parameter qualifiers
All, Atomic, ArrayType,
Ascending, Coerce,
Context, Descending,
DetermType, IndexType,
IsNotSpecified Numeric,
Optional, Positive,
ProbType, ReferenceType,
Sample, Scalar,
TextType,Vartype, Vector

Optimizer functions
LpDefine, LpFindIIS,
LpObjSA, LpOpt, LpRead,
LpSolution, LpStatusNum,
LpStatusText, LpWrite,
LpWriteIIS, NlpDefine,
QpDefine

Function list
When viewing this list online, click on the category or function name to see details.

540 Analytica Users Guide

B

Glossary

Glossary

In this Chapter

A compilation of terms specific to
Analytica as well as statistical
terms used in this manual.

Analytica User Guide 543

C

Glossary
ADE See “Analytica Decision Engine.”

Alias A node in a diagram that refers to a Variable or other node
located somewhere else, usually in another module. An alias per-
mits you to display a Variable in more than one module. An alias
node is distinguished by having its title in italics.

Analytica Browser A free edition of Analytica that allows a user to evaluate and view
results, and change input fields; however, from Analytica Browser
a user cannot enter edit mode or otherwise change the content of
a model. Copies of Analytica without a valid registration number
run as the Analytica Browser.

Analytica Decision
Engine

A product sold by Lumina Decision Systems, Inc., separate from
Analytica. With the Analytica Decision Engine (ADE), you embed
the Analytica computation engine in your web-server backend or
in your custom applications built in Visual Basic, C++, Microsoft
Office, or any language supporting ActiveX Automation or COM.

Analytica Enterprise A edition of Analytica for users who intend to share data or mod-
els with others in their organization. Analytica Enterprise contains
all features of Analytica Pro as well as functions for accessing
ODBC databases and features for protecting your intellectual
property.

AnalyticaProfessional
edition

The standard fully-functional edition of Analytica. Analytica Pro
provides all the features and functionality required to create, edit,
and evaluate models.

Analytica Trial A fully-functional, but expiring, edition of Analytica. Analytica Trial
can be downloaded from the Lumina web site (www.lumina.com)
for those wishing to "test drive" the product. Analytica Trial con-
tains the complete functionality of Analytica Pro. After expiration,
Analytica Trial converts to Analytica Browser.

Array A collection of values that can be viewed as one or more tables.
An array has one or more dimensions; each dimension is identi-
fied by an index.

Array abstraction See “Intelligent Array Abstraction™.”

Arrow An arrow or influence from one Variable node to another indicates
that the origin node affects (influences) the destination node. If
the nodes depict Variables, the origin Variable usually appears in
the definition of the destination Variable.

544 Analytica Users Guide

C
Arrow tool The Arrow tool, or Influence Arrow tool, is in the shape of a

left-to-right pointing arrow cursor. The Arrow tool is used to draw
arrows connecting Variables to create relations between them.

Attribute A property or descriptor of an Object, such as its title, description,
definition, value, or inputs.

Attribute panel An auxiliary window pane that you can open below a diagram or
outline window. Use the Attribute panel to rapidly examine one
Attribute at a time of any Variable in the model, by selecting the
Variable and then the Attribute from a popup menu.

Author An Attribute recording the names of the person or people who
created the model, or other Object.

Behavior analysis Model behavior analysis is a type of sensitivity analysis in which
you specify a set of alternative values for one or more inputs and
examine the effect on selected model output Variables. It is also
known as parametric analysis.

Browse-only models Analytica Enterprise users can save a copy of their model in a
browse-only form. When a browse-only model is loaded into any
edition of Analytica, the user cannot enter edit mode, and there-
fore can only make changes to Variables with input nodes.
Browse-only models are also obfuscated.

Browse tool The Browse tool is in the shape of a hand. With the Browse tool,
you can examine the diagram but cannot make any changes,
except to change the values in input nodes.

Chance Variable A Chance Variable is uncertain and cannot be directly controlled
by the decision maker. Usually, it is defined by a probability distri-
bution. A Chance Variable is depicted as an oval node.

Check The check Attribute contains an expression that checks the valid-
ity of the value of a Variable. It displays a message when the Vari-
able's value is out of specified bounds.

Class The type of Analytica Object: decision, chance, objective, or
index Variable; function; module; library; form; model.

Cloaking See “Definition Hiding.”

Conditional
dependency

A Chance Variable a is conditionally dependent on another Vari-
able b if the probability of a value of a depends on the value of b.
If a is defined by a probability table, b may be an index of its prob-
ability table.

Constant A Variable whose value is not probabilistic, and does not depend
on other Variables, such as the number of minutes in an hour.

Analytica User Guide 545

C
Continuous
distribution

A probability distribution defined for a continuous Variable—that
is, for a real-valued Variable. Example continuous distributions
are beta, normal, and uniform. Compare to “Discrete distribution.”

Continuous Variable A Variable whose value is a real number—that is, one of an infi-
nite number of possible values. Its range can be bounded (for
example, between 0 and 1) or unbounded. Compare to “Discrete
Variable.”

Created The date and time at which the model was first created. This
model Attribute is entered automatically, and is not user-modifi-
able.

Cumulative
probability
distribution

A representation of a probability distribution that plots the cumula-
tive probability that the actual value of the uncertain Variable x will
be less than or equal to each possible value of x. The cumulative
probability distribution is a display option in the Uncertainty View
popup menu.

Cyclic dependency A cyclic dependency occurs when a Variable depends on itself
directly or indirectly so that the arrows form a directed circular
path. The only cyclic dependencies allowed in Analytica are in
Variables using the Dynamic() function that contain a time lag on
the cycle.

Decision Variable A Variable that the decision maker can control directly. Decision
Variables are represented by rectangular nodes.

Definition A formula that defines how to compute a Variable’s value. It can
be a simple number, a mathematical expression, a list of values,
a table, or a probability distribution. In text format, it is limited in
length to 32,000 characters.

Definition Hiding A feature in Analytica Enterprise for protecting your intellectual
property when distributing models you have created to others.
Definition hiding controls whether the end-user of your model can
view the definitions of selected nodes.

Description Text explaining what the node represents in the real system being
modeled. It is limited in length to 32,000 characters.

Deterministic table A deterministic function that gives the value of a Variable x condi-
tional on the values of its input Variables. The input must all be
discrete Variables. The table is indexed by each of its inputs, and
gives the value of x that corresponds to each combination of val-
ues of its inputs.

Deterministic value A Variable's deterministic value, or mid value, is a calculation of
the Variable's value assuming all uncertain inputs are fixed at
their median values.

546 Analytica Users Guide

C
Deterministic
(determ) Variable

A Variable that is a deterministic function of its inputs. Its defini-
tion does not contain a probability distribution. The value of a
deterministic Variable can be probabilistic if one or more of its
inputs are uncertain. A deterministic Variable is displayed as a
double oval. You can also use a general Variable (rounded rect-
angle) to depict a deterministic Variable.

Determtable See “Deterministic table.”

Diagram See “Influence diagram.”

Dimension An array has one or more dimensions. Each dimension is identi-
fied by an index Variable. When an array is shown as a table, the
row header (vertical) and column headers(horizontal) give the
two dimensions of the table.

Discrete distribution A probability distribution over a finite number of possible values.
Example discrete distributions are Bernoulli and the Probtable
function. Compare to “Continuous distribution.”

Discrete Variable A Variable whose value is one of a finite number of possible val-
ues. Examples are the number of days in a month (28, 29, 30, or
31), or a Boolean Variable with possible values True and False.
A Variable that is defined as a list or list of labels is discrete. Com-
pare to “Continuous Variable.”

Domain The possible outcomes of a Variable. The Domain has a type as
well as value. The possible types are List of labels, List of num-
bers, or Continuous; the default type is Continuous, except for
Variables defined with the Choice(), Probtable(), and Deter-
mtable() functions.

Dynamic Variable A Variable that depends on the system Variable Time and is
defined by the Dynamic() function. A dynamic Variable can
depend on itself at a previous time period, directly or indirectly,
through other dynamic Variables.

Edit Table A definition that is a table is also called an Edit Table because it
can be edited.

Edit tool The Edit tool is in the shape of the normal mouse pointer cursor.
The Edit tool is used to create a new model or to change an exist-
ing model. It allows you to move, resize, and edit nodes, and
exposes the Arrow tool and node palette.

Excel Graph The graphing engine of Microsoft Excel®. Users who have Excel
installed on their computers can take advantage of Excel Graph
to graph results.

Analytica User Guide 547

C
Expression A formula that can contain numbers, Variables, functions, distri-

butions, and operators, such as 0.5, a-b, or Min(x), combined
according to the Analytica language syntax. The definition of a
Variable must contain an expression.

Expression type The Expression popup menu, which appears above the definition
field, allows you to change the definition of a Variable to one of
several different kinds of expressions. Expression types include
expression, list (of expressions or numbers), list of labels (text
values), table, probability table, and distribution. Any definition,
regardless of expression type, can be viewed as an expression.

File Info The name of the file and folders in which the model was last
saved.

Filed library A library whose contents are saved in a file separate from the
model that contains it. A filed library can be shared among sev-
eral models without making a copy for each model.

Filed module A module whose contents are saved in a file separate from the
model that contains it. A filed module can be shared among sev-
eral models without making a copy for each model.

Fractile The median is the 0.5 fractile. More generally, there is probability
p that the value is less than or equal to the p fractile. Quantile is a
synonym for fractile. (Fractal is something different!) Compare to
“Percentile.”

General Variable A Variable that can be certain or probabilistic. It is often conve-
nient to define a Variable as a general Variable without worrying
about what particular kind of Variable it is. A general Variable is
depicted by a rounded rectangle node.

Identifier A short name for a Variable used in mathematical expressions in
definitions. An identifier must start with a letter, have no more
than 20 characters, and contain only letters, numbers, and ‘_’
(underscore, used instead of a space). Each identifier in a model
must be unique. Compare to “Title.”

Importance analysis Importance analysis lets you determine how much effect the
uncertainty of one or more input Variables has on the uncertainty
of an output Variable. Analytica defines importance as the rank
order correlation between the sample of output values and the
sample for each uncertain input. It is a robust measure of the
uncertain contribution because it is insensitive to extreme values
and skewed distributions.

Unlike commonly used deterministic measures of sensitivity, this
rank order correlation averages over the entire joint probability

548 Analytica Users Guide

C
distribution. Therefore, it works well even for models where the
sensitivity to one input depends strongly on the value of another.

Index An index of an array identifies a dimension of that array. An index
is usually a Variable defined as a list, list of labels, or sequence.
An index is often, but not always, a Variable with a node class of
Index.

Indexes Plural of index. Indicates a set of index Variables that define the
dimensions of a table (in an Edit Table or value).

Index selection area The top portion of a Result window, containing a description of
the result and other information about the dimensions of the
result.

Index Variable A class of Variable, defined as a list, list of labels, or sequence,
that identifies the dimensions of an array—for example, in an Edit
Table. An Index Variable is depicted as a parallelogram node.
Variables of other classes whose definition or domain consist of
list, list of labels, or sequence can also be used to identify the
dimensions of an array, and are sometimes referred to as index
Variables.

Influence arrow See “Arrow.”

Influence diagram An intuitive graphical view of the structure of a model, consisting
of nodes and arrows. Influence diagrams provide a clear visual
way to express uncertain knowledge about the state of the world,
decisions, objectives, and their interrelationships.

Innermost dimension The dimension of an array that varies most rapidly in the Table()
function. The innermost dimension is the last index listed in a
Table() or Array() function. Compare to “Outermost dimen-
sion.”

Input A Variable that appears in the definition of the selected Variable.
See also “Output.”

Input arrowhead An arrowhead pointing into a node, indicating that the node has
one or more inputs from outside its module. Click on the arrow-
head for a popup menu of the input Variables.

Inputs A list of the Variables or functions on which this Variable or func-
tion depends. The inputs are determined by the arrows drawn to
and the Variables or functions referred to in this Variable’s or
function’s definition or check Attribute. See also “Outputs.”

Intelligent Array
Abstraction™

A powerful key feature of the Analytica Engine that automatically
propagates and manages the dimensionality of multidimensional
arrays within models.

Analytica User Guide 549

C
Key In a results graph, the key shows the value of the key index Vari-

able that corresponds to each curve, indicated by pattern or color.

Kurtosis A measure of the peakedness of a distribution. A distribution with
long thin tails has a positive kurtosis. A distribution with short tails
and high shoulders, such as the uniform distribution, has a nega-
tive kurtosis. A normal distribution has zero kurtosis.

Last Saved The date and time at which the model was last saved. This model
Attribute is entered automatically, and is not user-modifiable. If
the model is new, this field remains empty until the model is first
saved.

Library A model component that typically contains a collection of
user-defined functions and/or Variables to be shared.

List A type of expression available in the Expression popup menu
consisting of an ordered set of numbers or expressions. A list is
often used to define Index and Decision Variables.

List of labels A type of expression available in the Expression popup menu
consisting of an ordered set of text items. A list of labels is often
used to define Index and Decision Variables.

Matrix A two-dimensional array of numbers with indexes of equal length.

Mean The average of the population, weighted by the probability mass
or density for each value. The mean is also called the expected
value. The mean is the center of gravity of the probability density
function.

Median The value that divides the range of possible values of a quantity
into two equally probable parts. Thus, there is 0.5 probability that
the uncertain quantity is less than or equal to the median, and 0.5
probability that it is greater than the median.

Mid value The result of evaluating a Variable deterministically, holding prob-
ability distributions at their median value. Analytica calculates the
mid value of a Variable by using the mid value of each input. The
mid value is a measure of central value, computed very quickly
compared to uncertainty values. Compare “Probvalue.”

Mode The most probable value of the quantity. The mode is at the high-
est peak of the probability density function. On the cumulative
probability distribution, the mode is at the steepest slope, at the
point of inflection.

Model A module, or a hierarchy of linked and/or embedded modules and
libraries, on which you work during an Analytica session; the

550 Analytica Users Guide

C
main, or root, module at the top of the module hierarchy. Between
sessions, a model is stored in an Analytica document file.

Module A collection of related nodes, typically including Variables, func-
tions, and other modules, organized as a separate Influence Dia-
gram. A module is depicted in a diagram as a node with a thick
outline.

Module hierarchy A model can contain several modules, each one containing
details of the model. Each module can contain further modules,
containing still more detail. This module hierarchy is organized as
a tree with the model at the top. You can view the hierarchical
structure in the Outline window.

Multimodal
distribution

A probability distribution that has more than one mode.

Node A shape, such as a rectangle, oval, or hexagon, that represents
an Object in an Influence Diagram. Different node shapes are
used to represent different types of Variables.

Obfuscated Saved in a non-human-readable (i.e, encrypted) form. Obfusca-
tion provides a mechanism for protecting intellectual property.
Analytica Enterprise users can distribute obfuscated copies of
their models to their end-users. In Analytica, obfuscation also has
the effect of making settings for definition hiding and/or browse-
only mode permanent.

Object A Variable, function, or module in an Analytica model. Each
Object is depicted as a node in an Influence Diagram and is
described by a set of attributes. See also “Class,” “Node,”
“Attribute,” and “Influence diagram.”

Object Finder A dialog box used to browse and edit the functions and Variables
available in a model.

Object window A view of the detailed information about a node. The Object win-
dow shows the visible attributes, such as a node’s type, identifier,
and description.

Objective Variable A Variable that evaluates the overall desirability of possible out-
comes. The objective can be measured as cost, value, or utility. A
purpose of most decision models is to find the decision or deci-
sions that optimize the objective—for example, minimizing cost or
maximizing expected utility. An objective Variable is represented
by a hexagonal node.

OLE Linking A standard in the Windows operating system for sharing data
between applications.

Analytica User Guide 551

C
Operator A symbol, such as a plus sign (+), that represents a computa-

tional process or action such as addition or comparison.

Outermost dimension The dimension of an array that varies least rapidly in the Table()
function. The outermost dimension is the first index listed in a
Table() or Array() function. Compare to “Innermost dimen-
sion.”

Outline window A view of a model that lists the objects it contains as a hierarchi-
cal outline.

Output A Variable whose definition refers to the selected Variable. See
also “Input.”

Output Arrowhead An arrowhead pointing out of a node, indicating that the node has
one or more outputs outside its module. Click on the arrowhead
for a popup menu of the output Variables.

Outputs A list of the Variables or functions that depend on this Variable or
function. The outputs are determined by the arrows drawn from
this Variable or function and the Variables or functions in whose
definition or check Attribute this Variable or function appears. See
also “Inputs.”

Parameters The arguments of a function.

Parametric analysis See “Behavior analysis.”

Parent diagram The diagram for the module that contains this Object.

Percentile The median is the fiftieth percentile (also written as 50%ile). More
generally, there is probability p that the value is less than or equal
to the pth percentile. Compare to “Fractile.”

Probabilistic Variable A Variable that is uncertain, and is described by a probability dis-
tribution. A probabilistic Variable is evaluated using simulation; its
result is an array of sample values indexed by Run.

Probability bands Probability bands are a way to display the uncertainty in a value
by showing percentiles from its distribution—for example, the 5%,
25%, 50%, 75%, and 95% percentiles. On a graph, these often
appear as bands around the median (50%) line. Probability
bands are also referred to as credible intervals.

Probability density
function

A representation of a probability distribution that plots the proba-
bility density against the value of the Variable. The probability
density at each value of X is the relative probability that X will be
at or near that value. The probability density function can be dis-
played for continuous, but not discrete Variables. It is a display
option in the Uncertainty View popup menu. Compare to “Proba-
bility mass function,” which is used with discrete Variables.

552 Analytica Users Guide

C
Probability
distribution

A probability distribution describes the relative likelihood of a Vari-
able having different possible values.

Probability mass
function

A probability mass function is a representation of a probability
distribution for a discrete Variable as a bar graph, showing the
probability that the Variable will take each possible value. The
probability mass function can be displayed for discrete, but not
continuous Variables. It is a display option in the Uncertainty
mode View menu. Compare to “Probability density function,”
which is used with continuous Variables.

Probability table A table for specifying a discrete probability distribution for a
Chance Variable. In a probability table, you specify the numerical
probability for each value in the domain of the Variable. If the
Variable depends on (that is, is conditioned by) other discrete
Variables, each of these conditioning Variables gives an addi-
tional dimension to the table, so you can specify the probability
distribution conditional on the value of each conditioning Variable.

Probtable See “Probability table.”

Probvalue The probabilistic value of a Variable, represented as a random
sample of values from the probability distribution for the Variable.
The probvalue for a Variable is based on the probvalue for the
inputs to the Variable. See also “Probabilistic Variable” and com-
pare to “Mid value.”

Reducing function A function that operates on an array over one of its indexes. The
result of a reducing function has that dimension removed, and
hence has one fewer dimension.

Remote Variable A Variable in another module, not shown in the active diagram.
Typically a remote Variable is an input or output of a node in the
active diagram.

Result view A window that shows the value of a Variable as a table or graph.

Sample An array of values selected at random from the underlying proba-
bility distribution for a quantity. Analytica represents uncertainty
about a quantity as a sample, and estimates statistics, probability
density function, and other representations of a probability distri-
bution from the sample.

Sampling method A method used to generate a random sample from the probability
distributions in a model (for example, Monte Carlo and Latin
hypercube).

Scalar A value that is a single number.

Analytica User Guide 553

C
Scatter plot A graph that plots the samples of two probabilistic Variables

against each other.

Self A keyword used in two different ways:

• Refers to the index of a table that is indexed by itself. Self
refers to the alternative values of the Variable defined by the
table.

• Refers to the Variable itself, as a substitute for the Variable’s
identifier, in a Check Attribute expression or a Dynamic
expression.

Sensitivity analysis A method to identify and compare the effects of various input
Variables to a model on a selected output. Example methods for
sensitivity analysis are importance analysis and model behavior
analysis.

Skewness A measure of the asymmetry of the distribution. A positively
skewed distribution has a thicker upper tail than lower tail, while a
negatively skewed distribution has a thicker lower tail than upper
tail. A normal distribution has a skewness of zero.

Slice A slice of an array is an element or subarray selected along a
specified dimension. A slice has one less dimension than the
array from which it is sliced.

Standard deviation The square root of the variance. The standard deviation of an
uncertainty distribution reflects the amount of spread or disper-
sion in the distribution.

Suffix Numbers such as 10K, 123M, or 1.23u are in suffix notation. The
suffix letter denotes a power of ten; for example, K, M, and u
denote 103, 106, and 10-6, respectively.

Symmetrical
distribution

A distribution, such as a normal distribution, that is symmetrical
about its mean.

System function A function available in the Analytica modeling language. See also
“User-defined function.”

System Variable A Variable that is part of the Analytica modeling language, such
as Samplesize or Time.

Table A two-dimensional view of an array. The array can have more
than two dimensions, but only two can be seen at one time. In the
Result window, click on the Table button to select the table view
of an array-valued result.

Tail The upper and lower tails of a probability distribution contain the
extreme high and low quantity, respectively. Typically, the lower

554 Analytica Users Guide

C
and upper tails include the lower and upper ten percent of the
probability, respectively.

Title The full name of an Analytica Object. A Variable's or module's title
is displayed in its node, in window titles, and in Object lists. It is
limited to 255 characters. It can contain any characters, including
spaces and punctuation. Compare to “Identifier.”

Uncertain value See “Probvalue.”

Units The units of measurement for a Variable. Units are used to anno-
tate tables and graphs; they are not used in any calculation.

User-defined function A function that the user defines to augment the functions pro-
vided as part of the Analytica modeling language.

Value See “Mid value.”

Variable An Object that has a value, which may be text, a number, or an
array.

Variance A measure of the uncertainty or dispersion of a distribution. The
wider the distribution, the greater its variance.

Analytica User Guide 555

Index

Alphabetical Index
Symbols
- (subtraction) operator 180
(dereference) operator 271, 458
& (concatenation) operator 195
* (multiplication) operator 180
+ (addition) operator 180
.. (sequence) operator 222
/ (division) operator 180
:: (scoping) operator 182
:= (assignment) operator 440
< (less than) operator 181
<= ((less than or equal to) operator 181
<> (not equal) operator 181
= (equal) operator 181
> (greater than) operator 181
>= (greater than or equal to) operator 181
\ (reference) operator 426
^ (exponentiation) operator 180

A
About Analytica command 520
Abs() function 190
abstraction, automatic 210
Accept button 148, 231
Add Library command 406, 503
Add Module command 406, 503
Add Module dialog box 406
Adjust Size command 113, 518
Advanced Math command 513
aliases

creating 80, 82
modifying 85

Align Selection to Grid command 76, 116, 518
all qualifier 426
AnalyticaPlatform system variable 515
AnalyticaVersion system variable 515
Arccos() function 193
Arcsin() function 193
Arctan() function 190

Index

556 Analytica Users Guide

Arctan2() function 193
Area() function 247
Argmax() function 248
arithmetic operators

applying to arrays 232
meanings 180

Array command 509
Array library 509
array qualifier 424
Array() function 243, 246
arrays

abstraction 210
arithmetic operations on 232
changing index of 245
conventions for examples 231
defining 244
defining variables as 225
functions that create 221
huge 492
introduction 207
modeling ??–188, 207–??
one-dimensional 389
operations on 211–215
three-dimensional 390
two-dimensional 389
value sources 210
values 37

arraytype qualifier 425
arrows

and nodes 78
arranging 114
Arrow tool 26, 77
automatically drawn 79, 150
between modules 81
bold 407
changes to model when created 79
creating 79
deleting 79
drawing 77–80
drawing between modules 84
dynamic 122, 369
hiding 116, 122, 123
removing 79
showing 122, 123
small arrow head 79

to and from indexes 209
Asc 194
Assignment Operator 440
atomic qualifier 424
Attrib Of Ident function 403
Attribute panel

closing 36
displaying 35
popup menu 35
resizing 36
using 34

attributes
creating new 402
displaying 35, 402
displaying Check 157
in a definition 403
managing 400–402
of functions 400, 421
of modules 400
of variables 400
renaming 402
user-created 401

Attributes command 507
Attributes dialog box 157, 401
Author attribute 400
automatic parens matching 148
Average() function 248

B
background

printing 40
behavior analysis 61
Bernoulli() function 302
Beta() distribution function 313
BetaFn() function 329
BetaI() function 329
bevel, displaying 124
Binormal() function 327
Boolean

number format 136
operators 182
values 180
variables 284

borders, displaying 123

Index

Analytica User Guide 557

Bring to Front command 77, 519, 521
Browse mode 27, 161
Browse tool button 26
browse-only models, saving 490
button objects 31

C
Cancel button 148, 231
Cascade command 519
Ceil() function 190
cells

adding 229
adding and deleting 229
copying and pasting 230
deleting 221, 229
editing 229
inserting 221
selecting 229

Certain() function 315
chance variables 30
Chancedist() function 312
Change identifier 90
Check attribute

defining 157
displaying 157
features 400
triggering checks 158

check value bounds 91
check variable class 91
ChiSquared() distribution function 315
Choice option 163
Choice() function 256
Chr 194
Class attribute 400
Class popup menu 87
class, changing for nodes 86
Clear command 505
Close command 503
Close Model command 24, 504
coerce qualifier 427
colors

background 120
changing 120
grouping nodes 120

in influence diagrams 119
input and output node 166
node 120
palette 120

columns
adding and deleting 229
index 48
separating 480

Combinations() function 330
comments in definitions 147
comparison operators 181, 233
computation time 499
Concat() function 265
concatenation operators 195
conditional dependencies 309
conditional deterministic table 310
conditional operators 183
conditional probability tables 307
confidence intervals 500
constants 31
Contact Lumina command 520
Content Outline command 520
context qualifier 422
continuous distributions 284
control functions 443
conventions

array examples 231
typographic 16

Copy command 76, 375–376, 505
Copy Diagram command 376, 505
Copy Table command 376, 505
Correlate_Dists() function 328
Correlate_With() function 328
Correlation() function 336
Cos() function 190
Cosh() function 193
Created attribute 400
cross-hatching 149
Cubicinterp() function 263
Cumdist() distribution function 323
Cumipmt() function 273
CumNormal() function 331
CumNormalInv() function 331
Cumprinc() function 274
Cumproduct() function 252

Index

558 Analytica Users Guide

Cumulate() function 252
cumulative orobability options 297
Cumulative Probability command 56, 516
currency symbols 137
curve fitting, see Regression function
Cut command 76, 505
cyclic dependencies 80

D
data

copying diagrams 376
identifying source 475
import/export format 388
importing and exporting 375–391
numerical 391
pasting from programs 375
pasting from spreadsheets 375

Database command 513
Database library 474

functions 484
databases

configuring DSN 477
querying 473
writing to 481

Date number format 136
DBLabels() function 485
DBQuery() function 485
DBTable() function 485
DBTableNames() function 486
DBWrite() function 481, 486
Decimal number format 177
decimal points 137
decision variables 30, 99, 114
Decompose function 267
default view 49
Definition attribute 400
Definition button 25
Definition menu

overview 508
pasting from a library 155

definitiond
incomplete 403

definitions
adding identifiers 147

alphabetical list 543
changes to influence diagrams 149
comments in 147
creating 145–149
cross-hatching 149
description 145
editing 145–149, 155
exporting 387
hiding 488
hiding and unhiding 489
importing 386
inheritance 488
invalid or missing 508
overview 422
special editing key combinations 146
syntax check 148
updating arrows 150

Degrees() function 190
Delete Columns command 230, 506
Delete Rows command 221, 230, 506
dependencies

conditional 309
cyclic 80
with the Dynamic() function 369

dereference operator 458
Description attribute 400
descriptions 421
determ variables 31
Determinant() function 267
deterministic conditional tables 310–312
deterministic variables, See determ variables
Determtable() function 310, 312
determtables 310–312
determtype qualifier 423
Diagram menu 517
Diagram Style dialog box 121
Diagram window

background color 120
customizing 121
description 28
maximum number of 412
resizing 36

diagrams
adding frames 170
adding graphics 169

Index

Analytica User Guide 559

adding text 170
changing size 124
copying 376
influence, see influence diagrams
opening details 29
organizing 115
screentshots 125
see also Diagram window

dimensions
adding to a probability table 309
adding to and removing from tables 230
modeling arrays and tables 207

Dirichlet() function 328
discrete probability distributions

creating 304
vs. continuous 284
with label values 308

Distribution button 27
Distribution command 510
Distribution library 510
distributions

exponential 316
logistic 317
lognormal 318
multivariate 327
symmetric vs. skewed 286

Domain attribute 400
Domain Service Name 475
dot product 272
DRIVER attribute 476
DSN

configuring 477
identifying data source 475

Duplicate Nodes command 76, 505
Dydx() function 347
dynamic arrows, showing or hiding 122, 369
dynamic models 114
dynamic simulation 361–372
Dynamic() function 362–372

E
Edit Definition command 145, 508
Edit Icon command 168, 518
Edit menu 504

Edit Table buttons 27
Edit Table window

copying 376
importing to 387
opening 228
viewing arrays 209

Edit Time command 361, 508
Edit tool button 26
EigenDeComp() function 268
Elasticity() function 347
Email Tech Support command 520
Enterprise version 473–492
Erf() function 331
ErfInv() function 331
errors

evaluation 464, 529
factor 318
fatal 530
lexical 528
message types 527–530
naming 529
out of memory 530
syntax 528

Evaluate function 465
evaluation errors 464, 529
evaluation mode qualifiers 422
Exit command 24, 504
Exp() function 191
Exponent number format 136, 177
exponential distribution 316
Exponential() distribution function 316
Export command 386–391, 504
export format 388
Expr keyword 80
Expression popup menu 150, 226
expressions

listing 151
parenthesis matching 147, 148
syntax of 183
types 151
using 177–??

F
Factorial() function 191

Index

560 Analytica Users Guide

False system variable 180, 515
fatal errors 530
File Info attribute 400
File menu 503
filed libraries 88, 404
Filed Library class 88
Filed Module class 88
filed modules 404
files, changing locations 380, 385
fill color, displaying 124
Find command 399, 507, 520
Find dialog box 399
Find Next command 400, 507
Find Selection command 400, 507
FindinText 194
Fixed Point number format 136
Floor() function 191
fonts

in graphs 135
in nodes 122

For...Do function 443
Form class 88
form modules 166
fractiles 500
Fractiles() distribution function 324
frames, adding to diagrams 170
Frequency() function 337
Function List command 520
FunctionOf() 80, 406, 466
functions 31

attributes 421
built-in 237
control 443
creating 420
pasting 148

Fv() function 274

G
Gamma() distribution function 316
GammaFn() function 331
GammaI() function 332
GammaIInv() function 332
Gaussian distribution 328
Gaussian probability distributions 319

Gaussian() function 328
generalized linear regression 348
Geometric distribution function 304
Getfract() function 338
Graph Setup command 129, 517
Graph Setup dialog box 129
Graph View button 51
graphics, adding to diagrams 169
graphs

background grid 133
displaying 51
exporting 376
fonts 135
formatting 129
frames around 133
line style 134
origin 132
ranges for 52
scatter 357
styles 52
tick marks 133
X-Y 355

grid, aligning to 76

H
hardware specifications 522
Help attribute 400
Help menu 519
hidden definitions

creating 488
inheritance 488
setting 507
unhiding 489

Huge Arrays, overview 492
Hypergeometric distribution function 304
hyperlinks, model documentation 173

I
icons, adding to nodes 168
Ident(I=U) function 258, 259
Ident(Time-n) function 363
identifiers

changing 90
naming 529

Index

Analytica User Guide 561

overview 147, 421
Identifiers attribute 400
If...Then...Else operator 184
Ifall...Then...Else operator 187
Ifonly...Then...Else operator 186
IgnoreWarnings 466
Import command 386–391, 504
import format 388
importance analysis 343
Index button 230
Index command 520
indexes 207–??

adding to a probability table 309
adding to and removing from tables 230
changing on arrays 245
column 48
creating 215, 216, 227
defining 485
description 208
dialog box features 227
displaying arrows 209
in diagrams 209
interchanging 47
key 48
recognizing nodes 31
removing from tables 228
row 48
selection area 47
showing or hiding arrows 122
summing over 213
table dimensions 226
using in OLE linking 380
x-axis 48

IndexNames() function 266
indextype qualifier 424
INF 178
infinity 178
influence arrows, see arrows
influence diagrams

copying 376
decision variables 99
definition changes 149
editing 73–77
guidelines 111–??
overview 28

input nodes
using 161–164
viewing values 27

inputs
displaying arrows 123
examining 33
remote 29
values 37

Inputs attribute 400
Inputs popup menu 145
Insert Columns command 230, 506
Insert Rows command 221, 230, 506
Integer number format 136, 177
Integrate() function 253
intellectual property, protecting 487
interpolation functions 262
Invert() function 269
Ipmt() function 275
Irr() function 275
Isnan() function 200
Isnumber() function 200
Istext() function 201
Isundef() function 201
Iterate function 447

J
Join() function 249
joining text 195

K
key 132
key combinations for editing 146
key icon 35
key index 48
Knuth random number generator 295
Kurtosis() function 338

L
L’Ecuyer random number generator 295
labels

autofilling 217
displaying 123, 219
listing 151

Last Saved attribute 400

Index

562 Analytica Users Guide

lexical errors 528
Lgamma() function 193
libraries

adding to a model 405
Array 509
creating 429
custom 514
Database 474, 484
Distribution 510
filed 88, 404
Math 509
matrix 512
Operators 511
optimizer 512
popup menu 153
removing from a model 405
saving 406
Special 510
statistical 511
text functions 512
user 508
user-defined functions 429
using 430

Library class 88
linear regression 348
Linearinterp() function 263
List buttons 27, 162
lists

autofilling 217
creating 62, 216
displaying 219
editing 221
navigating 221
numbers 219
Sequence option 218
vs. lists of labels 219

Ln() function 191
logical operators 182, 233
logical values 180
logical variables 284
Logistic() distribution function 317
Lognormal() distribution function 318
Logten() function 191

M
m to n sequence 222
magnification, printouts 39
Make Alias command 83, 507
Make Importance command 343, 507
Make Input Node command 162, 507
Make Output Node command 165, 507
Math command 509
math functions 232
Math library 509
Matrix command 512
matrix functions 267–271
Matrix library 512
Matrix multiplication 272
Matrix() function 269
Max() function 249
MDArrayToTable() function 260, 482
MDTable() function 261
Mean Value command 53, 516
Mean() function 339
median Latin hypercube sampling method
293
memory

Memory Usage window 524
profiling 495
requirements 522
usage 519

MemoryInUseBy 495
menus

command descriptions ??–521
right mouse button 521

Mid Value command 53, 516
mid values, showing 36
Mid() function 339
Min() function 250
Minimal Standard random number generator
295
Mod() function 191
mode 285
Model class 87
models

browse-only copies 490
building 97
changes when an arrow is created 79
changes when an arrow is removed 80

Index

Analytica User Guide 563

closing 24
combining 408
creating 71
defined 23
defining 72
documentation 105
dynamic 80, 114
editing 73–86, 400
expansion 105
hyperlinks 173
integrated 408
locking 487
modular 409
navigating 397
obfuscated copies 489
opening 23
opening details 28
protecting intellectual property 487
saving 71, 406
separating columns 480
switching 24
testing 102
using in XML format 170
viewing details 29

Module class 87
modules 31

filed 88, 404
hierarchy 396
linking 491
organizing hierarchy 117
showing or hiding arrows 122

Monte Carlo sampling method 293
Move Into Parent command 518
MsgBox function 467
Multinomial() function 328
multivariate distributions 327

N
naming errors 529
NAN 178
natural cubic spline 263
New Model command 503
Node Style dialog box 85, 123
nodes

adding icons 168
aligning 76, 115
and arrows 78
arranging 114
borders 123
changing class 86
changing size 75
color 120
consistent sizes 113
creating 74
creating aliases 82
customizing 123
default size 122
deleting 76
deselecting 32
displaying arrows to/from 123
duplicating 76
editing title 74
fill colors 124
grouping related 118
identifying types 30
in fonts 122
labels 123
moving 75
selecting 32, 75
shape descriptions 30
small and large 114
text node type 170
title characteristics 112
undefined 91, 126
visual grouping 120
Z-order 77

Normal() distribution function 319
Normalize() function 253
Nper() function 276
Npv() function 276
Number Format command 135, 517
numbers

combining with text 220
formats 135, 177
lists of 219

numeric qualifier 426
numerical data formats 391

Index

564 Analytica Users Guide

O
obfuscated models

creating 489
linking 491

object attributes, reading 403
Object button 25
Object Finder dialog box 152
Object menu 506
Object window 90

maximum number of 412
opening 33
using 32

objective variables 31, 98, 114
ODBC 473
OLE linking

activating other applications 386
auto recompute links 92, 380
automatic vs. manual updates 380, 385
changing file locations 380, 385
linking data from Analytica 377–381
linking data into Analytica 381–386
number formatting 380
OLE Links command 506
Open Source button 386
Paste Special dialog 384
procedure, from Analytica 377
procedure, to Analytica 382
refreshing links 381
table example 382
terminating links 386
usign indexes 380

OLE Links command 506
one-dimensional array format 389
Open Database Connectivity 473
Open Model command 24, 503
Open Source button 386
operators

arithmetic 180, 232
Boolean 182
comparison 181, 233
conditional 183
logical 182, 233
scoping 182
text concatenation 195

Operators command 511

Operators library 511
Optimizer command 512, 520
Optimizer library 512
order of precedence 183
ordering qualifiers 427
Outline button 25
Outline window 397
output nodes

using 164
viewing values 27

outputs
displaying arrows 123
examining 33
remote 29

Outputs attribute 400

P
page breaks 519
palettes

color 120
Result 47
tool 24

parameter qualifiers 422
Parameters attribute 401
parameters, overview 421
parametric analysis 61
parent diagram

returning to 34
viewing 29

Parent Diagram button 25
parenthesis matching 147, 148
Paste command 76, 375–376, 505
Paste Identifier command 152, 508
Paste Special... command 505
Percent number format 136
percentiles 338
Permutations() function 330
Pi system variable 515
Pmt() function 276
Poisson() distribution function 304
popup menus

creating 163
using 27

positive qualifier 426

Index

Analytica User Guide 565

Ppmt() function 277
precedence, order of 183
precision 522
Preferences command 88, 413, 506
Preferences dialog box 88, 158, 396, 413
Print command 38, 388, 504
print options

magnification 39
multiple windows 40
outlines 41
page preview 38
printing to files 388
scaling 39
setting 38

Print Preview command 504
Print Report command 40, 504
Print Setup command 38, 504
Printing the background 40
Prob Table button 305
Probability Bands command 54, 516
probability bands, settings 296
Probability Density command 55, 516
probability density options 297
probability distributions

beta 313
Chi-squared 315
choosing 283–287
computing 301
continuous 284
defining a variable as 287
discrete 284, 304
functions 301–323
Gaussian 319
normal 319
triangular 321
truncating 326
uniform 322

Probability Mass command 55, 516
Probability Table command 305
probability tables 304–309
Probability() function 339
Probbands() function 340
Probdist() distribution function 325
Probtable() function 307
probtables 304–309

probtype qualifier 423
Probvalue attribute 401
Product() function 250
profiling

memory 495
time 493

Pv() function 277

Q
qualifier

all 426
array 424
arraytype 425
atomic 424
coerce 427
context 422
determtype 423
indextype 424
numeric 426
positive 426
probtype 423
referencetype 426
sample 423
scalar 424
textype 426
vartype 424

qualifiers
evaluation mode 422
ordering 427
parameter 422
type checking 426

quantiles 338

R
Radians() function 192
random Latin hypercube sampling 294
random number methods 295
random seed 295
Rank() function 254
Rankcorrel() function 340
Rate() function 277
Recent files 504
Recomputing results 49
reducing functions 247–251

Index

566 Analytica Users Guide

referencetype qualifier 426
Register command 520
Regression() function 348
remote variables 29
resampling 371
Resize Centered command 76, 115, 518
Result button 25
result graphs, exporting 376
Result menu 515
result tables

copying 376
getting data 485
retrieving 479

Result tool palette 47
Result window

default view 49, 91
graph view 51
maximum number of 89, 412
opening 46
table view 49
working with 45–49

results
comparing 57
recomputing 49
viewing 30, 45

Round() function 192
rows

adding and deleting 229
index 48

Run system variable 228, 290, 340, 515

S
Safe Intermediates 92
Sample command 56, 516
sample qualifier 423
sample size

description 292
selecting 499
setting 292

Sample() function 340
SampleCovariance() function 329
Samplesize system variable 292, 340, 515
sampling methods

choosing 294

median Latin hypercube 293
Monte Carlo 293
random Latin hypercube 294
selecting 293

Save A Copy In command 406, 504
Save As command 71, 406, 504
Save command 71, 406, 504
scalar functions 232
scalar qualifier 424
scalar variables 207
scale, printouts 39
scatter plots 357
scenario analysis 61
Scoping operator 182
scoping operator 182
screenshots, taking 125
Sdeviation() function 341
Select All command 116, 505
Self

check attribute settings 157
probability tables 306

Send to Back command 77, 521
sensitivity analysis 346–349
sequence operator 222
Sequence option 218
Sequence() function 223
Set Diagram Size command 124, 518
Set Diagram Style command 121, 517
Set Node Style command 123, 517
shells, stand alone 410
Show By Identifier command 148, 507
Show Color Palette command 120, 517
Show Invalid Variables command 403, 508
Show Memory Usage command 519, 524
Show module hierarchy 91, 396
Show Page Breaks command 38, 519
Show Result command 516
Show result warnings 92
Show undefined 91
Show With Values command 37, 398, 507
Sin() function 192
Sinh() function 193
Size() function 266
skewed distributions 286
Skewness() function 341

Index

Analytica User Guide 567

Slice() function 256
Snap to Grid command 77, 518
software specifications 522
Special command 510
Special library 510
specifications 522
SplitText() function 196
SQL 473

case sensitivity 478
retrieving result tables 479
specifying queries 478

SqlDriverInfo() function 486
Sqr() function 192
Sqrt() function 192
Standard Query Language 473
Statistical command 511
Statistical library 511
Statistics command 54, 516
Statistics() function 342
statistics, setting 296
Stepinterp() function 264
string, see text values
Stringlength() function 197
StudentT() distribution function 320
Subindex() function 250
Subscript function 257
Suffix number format 136, 177
Sum() function 213, 251
symmetrical distributions 286
syntax

checking in definitions 148
errors 528

system constants 201
System Variables submenu 512

T
table lookup 264
Table View button 47, 49
Table() function 243, 245
tables

adding cells 229
copying 376
copying and pasting cells 230
creating 225–228, 244

defining variables as 225
deleting cells 229
deterministic conditional 310–312
displaying 49
editing 228–231
editing cells 229
import/export data format 388
modeling ??–188, 207–??
numerical data formats 391
removing indexes 228
saving 231
selecting cells 229

Tan() function 192
Tanh() function 194
terminology 543
text

adding to diagrams 170
combining with numbers 220

text concatenation operators 195
Text functions command 512
Text functions library 512
text joining 195
text values 179
textype qualifier 426
thousands separators 137
three-dimensional array format 390
Tile Horizontally command 519
Tile Vertically command 519
time profiling 493
Time system variable 361, 515

defining 364
description 228
details 364–367
modeling changes 361
using in a model 367

Title attribute 401
titles

attribute description 421
characteristics 112
editing 74, 85

today() function 469
Tornado diagrams 350
transformed beta distribution 314
transforming functions 251–255
Transpose() function 270

Index

568 Analytica Users Guide

Triangular() distribution function 321
True system variable 180, 515
Truncate() distribution function 326
truncating distributions ??–329
Tutorial command 520
two-dimensional array format 389
type checking qualifiers 426
Typescript 442
typographic conventions 16

U
uncertainty factor 318
Uncertainty Sample option 292
Uncertainty Setup command 517
Uncertainty Setup dialog box 291
Uncertainty View popup menu 47, 52
Uncumulate() function 255
undefined nodes 91
Undo command 86, 505
Unhide Definition(s) command 507
Uniform() distribution function 322
Unique() function 225
Units 421
Units attribute 401
Update License command 520
Use Return to enter data 92
user libraries 429, 508
user-created attributes 401
user-defined functions 418–431
Using 139

V
Value attribute 401
values

arrays 37
checking bounds 91
checking validity 156–158
disabling checking 158
inputs 37
listing 151

variables
automatic renaming 90
chance 30
class checking 91

defining as arrays 225
description 28
deterministic 31
finding 399
general 30
influences 28
invalid 403
objective 31
public 408
remote 29
scalar 207
showing dependencies among 78

Variance() function 342
vartype qualifier 424

W
Warning icon 148, 527
warnings, see errors
Web Tech Support command 520
Weibull() distribution function 322
What’s New in 3.1 command 520
what-if analysis 61
Whatif() function 349
While...Do function 446
Window menu 518
windows

browsing 27
managing 412
numbers of 89
print settings 40
see also Diagram window, Object win-

dow, Outline window
Windows system software 522
WriteTableSql() function 483

X
x-axis index 48
Xirr() function 278
XML format, using models 170
Xnpv() function 278
XY button 355, 357
X-Y results 355

Index

Analytica User Guide 569

Z
Z-order, nodes 77

Index

570 Analytica Users Guide

Analytica windows and dialogs

Outline Window

Diagram Window: Inputs and
Outputs

Diagram Window:
Influence Diagram

Result Window—Graph View

Object Window
Object Finder

Result Window—Table View

Diagram Style Dialog Node Style Dialog

Graph Setup Dialog

Uncertainty Setup Dialog

Number Format Dialog

Find Dialog

Preferences Dialog

Attributes Dialog

Analytica Quick Reference
The Tool Bar

Numerical Formats (Output)

Numerical Prefixes and Suffixes (Input)

Analytica Note: If integer or fixed point is selected, numbers
larger than 109 display in exponent format.

Format Description Example

Suffix the default (see the following table) 12.35K

Exponent scientific exponential 1.235e04

Fixed Point fixed decimal point 12345.68

Integer fixed point with no decimals 12346

Percent percentage 1234568%

Date text date 12 Jan 93

Boolean true or false True

Power
of 10

Suffix Prefix Power
of 10

Suffix Prefix

3 K Kilo -2 % percent

6 M Mega or Million -3 m milli

 9 G Giga -6 µ micro (mu)

 12 T Tera or Trillion -9 n nano

15 Q Quad -12 p pico

-15 f femto

O
bj

ec
t

De
fin

itio
n

Re
su

lt

O
ut

lin
e

Br
ow

se
 to

ol
Ed

it
to

ol
Ar

ro
w

to
ol

The node palette is displayed
when either the Edit tool or
Arrow tool is selected.

Ch
an

ce
 n

od
e

Va
ria

bl
e

no
de

De
cis

io
n

no
de

O
bj

ec
tiv

e
no

de

In
de

x
no

de

Fu
nc

tio
n

no
de

M
od

ul
e

no
de

Co
ns

ta
nt

 n
od

e

Pa
re

nt
 D

ia
gr

am

Te
xt

 b
ox

	Contents
	About Analytica
	Welcome
	Click on cross references

	If you don’t read manuals
	Requirements
	Installation and license codes
	Editions of Analytica
	Product features by edition

	Online help and electronic documentation
	Help menu

	What’s new in Analytica 3.0 and 3.1?
	New to release 3.0
	New to release 3.1

	Conventions used in this guide
	Online help
	User guide examples folder
	How to contact us
	Web site

	Credits
	Analytica User Guide

	1: Examining a Model
	Opening, closing, and switching models
	Models
	Opening a model
	Closing a model
	Switching to another model
	Quitting Analytica

	The tool palette
	Browsing with input and output nodes
	Browsing the window
	Viewing input node values
	Viewing output node values
	Opening model details

	Influence diagram window
	Opening details from a diagram
	Going to the parent diagram
	Finding remote inputs and outputs
	Viewing results

	Node types
	Selecting nodes
	To select one node
	To select multiple nodes
	To deselect one node
	To deselect all nodes

	The Object window
	Opening an Object window
	Examining inputs and outputs
	Returning to the parent diagram
	Displaying additional Attributes

	The Attribute panel
	Displaying the Attribute
	The Attribute popup menu
	Changing the panel size
	Closing the Attribute panel

	Showing mid values
	Array values
	Values of inputs

	Printing
	Previewing page breaks before printing
	Scaling printouts
	Printing the background
	Printing multiple windows

	2: Results
	The result window
	Opening a result window
	The result tool palette
	Index selection area
	Index navigation buttons
	The default view
	Recomputing results

	Viewing a result as a table
	Displaying a table
	Display of values
	Formatting numbers

	Viewing a result as a graph
	Displaying a graph
	Display of values
	Changing graph ranges and styles

	Uncertainty view options
	Comparing results

	3: Analyzing model behavior
	Varying input parameters
	Which inputs to vary
	How many values to assign
	Creating a list
	How many inputs to vary

	Analyzing model behavior results
	Understanding unexpected behavior
	Understanding model behavior

	4: Creating and editing a model
	Creating and saving a model
	Creating a new model
	Saving a model

	The model Object window
	Creating and editing nodes in a diagram
	Creating a node
	Editing a node title
	Selecting nodes
	Working with nodes
	Aligning to the grid
	Adjusting node Z-order

	Drawing arrows in a diagram window
	Arrow tool
	Arrows and nodes
	Creating and removing arrows
	Model changes when creating an arrow
	Model changes when deleting an arrow
	Cyclic dependency

	Arrows between Variables in different modules
	Drawing arrows across windows
	Moving, drawing, and moving back
	Indirectly drawing an arrow

	Alias nodes
	Use the Make Alias command
	Draw arrow between Variable and module
	Draw arrow between two modules

	Alias nodes
	Modifying an alias node

	Editing Attributes
	Attribute changes
	Cancel and Undo

	Changing the class of a node
	Module Classes

	Preferences dialog box
	Windows of each kind
	Change identifier
	Opens
	Default result view
	Checkboxes

	5: Building effective models
	Creating a model
	Identify the objectives
	Identify the decisions
	Link the decisions to the objectives
	Move from the qualitative to the quantitative
	Keep it simple
	Reuse and adapt existing models
	Aim for clarity and insight

	Testing and debugging a model
	Test as you build
	Test the model against reality
	Test the model against other models
	Have other people review your model
	Test model behavior and sensitivities
	Celebrate and learn from unexpected behavior
	Document the model as you build it

	Expanding your model
	Extend the model by stages
	Identify ways to improve the model
	Discover what parts are important to guide expansion
	Simplify where possible

	6: Creating lucid Influence Diagrams
	Guidelines for creating lucid and elegant diagrams
	Use clear, meaningful node titles
	Use consistent node sizes
	Use small and large nodes sparingly
	Arrange nodes from left to right (or top to bottom)
	Tolerate spaghetti at first…
	…reorganize later
	Align nodes horizontally or vertically
	Hide less important arrows
	Keep diagrams compact

	Organizing a module hierarchy
	Group related nodes in the same diagram
	Use 5 to 15 nodes per diagram

	Color in Influence Diagrams
	Use colors judiciously
	Background color
	Node colors
	Changing background or node colors
	Grouping nodes by color

	Diagram Style dialog box
	Show arrows to/from
	Default node size
	Font Style

	Node Style dialog box
	Changing the node style
	Display
	Font Style

	Changing the size of the diagram
	Taking screenshots of diagrams
	Use Browse mode
	Switch off cross-hatching
	Diagram colors
	Use a common level of reduction

	7: Formatting graphs and tables
	Graph Setup dialog box
	Setup option popup menu
	Buttons

	Selecting the Graphing Tool
	Analytica® (built-in)
	Excel Chart®

	Graph Frame setup option
	Value entry boxes
	Check boxes

	Graph Style setup option
	Grid
	Frame
	Tick marks
	Line Style
	Symbol Size
	Font Style

	Number Format dialog box
	Formats
	Options
	Using multiple formats in a single result table

	Using Excel Graph with Analytica
	Switching a Result Graph to an Excel Graph
	Important notes about Excel Graph

	8: Creating and editing definitions
	Creating or editing a definition
	Special editing key combinations
	Comments in definitions
	Identifiers
	Functions
	Automatic parentheses matching
	Syntax check

	How a valid definition may change the diagram
	Cross-hatching disappears
	Arrow updating

	The Expression popup menu
	Expression
	List
	List of labels
	Sequence
	Table
	Probability table
	Distribution
	Choice
	Other

	Object Finder dialog box
	Pasting from a library in the Definition menu
	Checking the validity of a Variable’s values
	Displaying the Check Attribute
	Defining the check
	Triggering a check
	If a check fails
	Disabling value checking

	9: Creating models used by others
	Using input nodes
	Creating an input node

	Creating a popup menu
	Creating a menu from a list
	Creating a new definition

	Using output nodes
	Creating an output node

	Resizing controls
	Changing display style
	Using form modules
	Creating input and output nodes in a form module

	Adding icons to nodes
	Opening the Icon window
	Drawing or editing an icon

	Graphics, frames, and text in a diagram
	Adding graphics
	Adding a frame
	Adding text

	Models in XML file format
	Hyperlinks in model documentation

	10: Expressions
	Numbers
	Range
	Numbers out of range
	INF (infinity)
	Precision

	Text values
	Boolean or logical values
	Operators
	Arithmetic operators
	Comparison operators
	Alphabetic ordering of text values
	Logical operators
	Scoping operator (::)
	Operator binding precedence

	Conditional operators
	If B Then U Else V
	Ifonly B Then U Else V
	Ifall B Then U Else V

	Functions
	Example data

	Math functions
	Abs (X)
	Arctan (X)
	Ceil(X)
	Cos (X)
	Degrees(R)
	Exp (X)
	Factorial (X)
	Floor(X)
	Ln (X)
	Logten (X)
	Mod(X, Y)
	Radians(D)
	Round (X)
	Sin (X)
	Sqr (X)
	Sqrt (X)
	Tan(X)

	Advanced math functions
	Arccos(X)
	Arcsin(X)
	Arctan2(Y, X)
	Cosh(X)
	Lgamma(X)
	Sinh(X)
	Tanh(X)

	Text functions
	Asc(t)
	Chr(n)
	FindinText(t1, t2, start)
	Joining Text: a & b
	JoinText(a, i, sep, finalsep)
	SelectText(t, m, n)
	SplitText(t, sep)
	TextLength(t)
	TextLowerCase(t)
	TextReplace(t, t1, t2, all)
	TextSentenceCase(t)
	TextUpperCase(t)
	ReadTextFile(filename)
	WriteTextFile(filename, text: TextType; append, warn: Boolean optional; sep: TextType optional)
	Converting a number to text
	Converting text to a number
	Alphabetic ordering of text values

	Datatype functions
	Isnan(X)
	Isnumber(X)
	Istext(X)
	Isundef(X)

	Null, Undefined, NAN, and INF
	Warnings

	11: Arrays and indexes
	Introduction to arrays
	What is an array?
	What is an index?
	Index Variables in a diagram
	Viewing an array as an Edit table
	Two sources of array value
	Array abstraction

	Operations on arrays
	Operation on a scalar and an array
	Operation on two arrays with the same indexes
	Operation on a one- and two-dimensional array
	Summing over an index Variable
	Operation on arrays with different dimensions
	General rule for operations on arrays

	Creating an index
	Creating a list
	Autofilling a list
	Autofilling a list of labels
	Creating a list with the Sequence option
	List vs. list of labels
	List (of numbers)
	List of labels
	Mixing numbers and text

	Editing a list
	Inserting cells
	Deleting cells
	Navigating a list

	Functions that create indexes
	[u1, u2, u3, … um]
	CopyIndex(i)
	m .. n
	Sequence (Start, End, Stepsize)
	Sortindex (D, I)
	Subset (D)
	Unique(A,I)

	Creating an array with an Edit Table
	Indexes dialog box
	Creating a new index
	Removing an index
	System index Variables Run and Time

	Editing a table
	The Edit Table window
	Selecting cells
	Editing a cell
	Adding and deleting cells
	Copying and pasting cells
	Adding or removing indexes
	Saving the table

	Calculating with arrays
	Conventions for array examples
	Scalar functions
	Arithmetic operations
	Comparison and logical operations

	12: Function reference
	Overview
	Intelligent Arrays™
	The value of flexibility
	Array abstraction and Intelligent Arrays
	Choosing the right level of detail
	Errors, testing, and reliability
	Exceptions to array abstraction

	Functions that create arrays
	Array(I1, I2, … In, A)
	Table (I1, I2, … In) (u1, u2, u3, … um)

	Array-reducing functions
	Area (R, I, X1, X2)
	Argmax (R, I)
	Average (X, I)
	JoinText(A, I, separator,finalSeparator)
	Max (X, I)
	Min (X, I)
	Product (X, I)
	Subindex (A, U, I)
	Sum (X, I)

	Transforming functions
	Cumproduct (X, I)
	Cumulate (X, I)
	Integrate (R, I)
	Normalize (R, I)
	Rank (X, I)
	Uncumulate (X, I, firstElement)

	Selecting, slicing, and subscripting arrays
	Choice (I, n, inclAll)
	Slice (U, I, N)
	Slice (U, N)
	Subscript (U1, I, U2)
	x[I = U]
	x [Time-n]

	Array flattening functions
	MDArrayToTable(A, I, L)
	MDTable(T,Rows,Cols,Vars,conglomFn,missingval)

	Interpolation functions
	Cubicinterp (D, R, X, I)
	Linearinterp (D, R, X, I)
	Stepinterp (D, A, X, I)

	Other array functions
	Concat (A1, A2, I, J, K)
	IndexNames(A)
	Size (U)

	Matrix functions
	Decompose (C, I, J)
	Determinant (C, I, J)
	EigenDecomp(A : Numeric [I,J] ; I, J : IndexType)
	Invert (C, I, J)
	MatrixMultiply(A : Numeric all[aRow,aCol] ; aRow, aCol : IndexType ; B : Numeric all[bRow,bCol] ; bRow, bCol : IndexType)
	SingularValueDecomp(A, I, J, J2)
	Transpose (C, I, J)
	Dot product of two matrices

	Financial functions
	Parameters
	Cumipmt(Rate, Nper, Pv, StartPeriod, EndPeriod, Type)
	Cumprinc(Rate, Nper, Pv, Start_period, End_Period, Type)
	Fv(Rate, Nper, Pmt, Pv, Type)
	Ipmt(Rate, per, Nper, Pv, Fv, Type)
	Irr(Values, I, Guess)
	Nper(Rate, Pmt, Pv, Fv, Type)
	Npv(DiscountRate, Values, I)
	Pmt(Rate, Nper, Pv, Fv, Type)
	Ppmt(Rate, Per, NPer, Pv, Fv, Type)
	Pv(Rate, Nper, Pmt, Fv, Type)
	Rate(NPer, Pmt, Pv, Fv, Type, Guess)
	Xirr(Values, Dates, I, Guess)
	Xnpv(Rate, Values, Dates, I)

	13: Expressing uncertainty
	Choosing an appropriate distribution
	Is the quantity discrete or continuous?
	Does the quantity have bounds?
	How many modes does it have?
	Is the quantity symmetric or skewed?
	A standard or custom distribution?

	Defining a Variable as a distribution
	Entering a distribution as an expression

	Including a distribution in a definition
	Probabilistic calculation
	Uncertainty Setup dialog box
	Uncertainty Sample
	Sample size
	Sampling method
	Choosing a sampling method
	Random number method
	Random seed
	Reset once
	Statistics option
	Probability Bands option
	Probability density and cumulative probability options
	Samples per plot point
	Equal probability steps
	Equal X axis steps

	14: Probability distributions
	Built-in probability distributions
	Parametic discrete distributions
	Bernoulli (P)
	Binomial(n, p)
	Geometric(p)
	Hypergeometric(s, m, n)
	Poisson(m)

	Custom Discrete probabilities
	Probability Tables
	Probtable (I1, I2, … In) (p1, p2, p3, … pm)
	Deterministic conditional tables
	Determtable(I1, I2, … In) (r1, r2, r3, … rm)
	Chancedist (P, A, I)

	Parametric Continuous distributions
	Beta (X, Y, lower, upper)
	Certain (U)
	ChiSquared (d)
	Exponential(r)
	Gamma(A, B)
	Logistic (m, s)
	Lognormal (median, gsdev)
	Normal (mean, stddev)
	StudentT(d)
	Triangular (min, mode, max)
	Uniform (min, max)
	Weibull(n, s)

	Custom continuous distributions
	Cumdist (P, R, I)
	Fractiles (L)
	Probdist (P, R, I)
	Truncate (Dist, X)

	Multivariate distributions
	Binormal(Mean_Vector, SDev_Vector, I, CorrelationCoef)
	Correlate_Dists(Distributions, RankCorrelations, I, J)
	Correlate_With(Sample, ReferenceSample, RankCorrelation)
	Dirichlet(alpha, N)
	Gaussian(MeanVector, CovarianceMatrix, I, J)
	Multinomial(N, theta, I)
	SampleCovariance(X, I, J, R)

	Advanced Probability Functions
	BetaFn(A, B)
	BetaI(X, A, B)
	Combinations(k, n)
	Permutations(k, n)
	CumNormal(X, mean, stddev)
	CumNormalInv(P, mean, stddev)
	Erf(X)
	ErfInv(Y)
	GammaFn(X)
	GammaI(X, A, B)
	GammaIInv(Y, A, B)

	15: Uncertainty and sensitivity
	Statistical functions
	Correlation (X, Y)
	Frequency (X, I)
	Getfract (X, P)
	Kurtosis (X)
	Mean (X)
	Mid (X)
	Probability(B)
	Probbands (X)
	Rankcorrel (X, Y)
	Sample (X)
	Sdeviation (X)
	Skewness (X)
	Statistics (X)
	Variance (X)

	Importance analysis
	Importance analysis defined
	Creating an importance Variable
	Editing importance Variables

	Sensitivity analysis functions
	Examples
	Dydx (Y, X)
	Elasticity (Y, X)
	Regression(Y, B, I, K)
	Whatif (Ident, Tempval, X)
	WhatIfAll(Ident, varlist, X)

	X-Y results
	Scatter plots

	16: Modeling changes over time
	The Time index
	Using the Dynamic function
	Dynamic (initial1, initial2..., initialn, Expr)
	x [Time - k]

	More about the Time index
	Reference to earlier time
	Defining time
	Using Time in a model

	Initial values for Dynamic
	Using arrays in Dynamic
	Dependencies with Dynamic
	Dynamic dependency arrows
	Expressions inside dynamic loops

	Uncertainty and Dynamic
	Resampling

	17: Importing, exporting, & OLE linking data
	Copying and pasting
	Pasting data from a spreadsheet
	Pasting data from another program
	Copying a diagram
	Copying an Edit Table or Result Table
	Copying a Result Graph

	Using OLE to link results to other applications
	Linking procedure
	Detailed example of linking Analytica results
	Important notes about linking to Analytica results

	Linking data from other applications into Analytica
	Linking procedure
	Example of linking a table into Analytica
	Important notes about linking into Analytica Edit Tables

	Importing and exporting
	Importing a definition
	Importing into an Edit Table
	Exporting

	Printing to a file
	Edit Table data import/export format
	One-dimensional array
	Two-dimensional array
	Three-dimensional array
	Number format

	18: Working with large models
	Show module hierarchy preference
	The Outline window
	Opening the Outline window
	Opening details from an outline
	Expanding and contracting the outline
	Viewing and editing attributes
	Viewing values

	Finding Variables
	Find dialog box

	Managing attributes
	Attributes dialog box
	Displaying optional attributes
	Creating new attributes
	Renaming an Attribute
	Referring to the value of an Attribute

	Invalid Variables
	Using filed modules and libraries
	Creating a filed module or library
	Locking a filed module or library
	Adding a module to a model
	Adding library to a model
	Removing a module or library from a model
	Saving changes

	Adding a module or library
	Embed a copy
	Link to original
	Merge contents (overwrite)

	Combining models into an integrated model
	Define public Variables
	Create a modular model
	Identical identifiers
	Redundant nodes
	Stand alone shells
	Cautions in combining models

	Managing windows
	Overriding the limits on the number of windows

	Optimization and speed-up
	Rectangularization of intermediate results

	19: Building functions and libraries
	Example function
	Using a function
	Position-based calling syntax
	Name-based calling syntax

	Creating a function
	Attributes of a function
	Parameter qualifiers
	Evaluation mode qualifiers
	Array qualifiers
	Type checking qualifiers
	Ordering qualifiers
	Optional parameters

	Libraries
	Creating a library
	Adding a filed library to a model
	Using a library

	20: Procedural programming
	An example of procedural programming
	Summary of programming constructs
	Programming constructs
	Begin-End, (), and ’;’ for grouping expressions
	Var v := e : Defining a local Variable
	Assigning to a local Variable: v := e
	Assignment to a non-local Variable

	Iteration loops and recursion
	For Temp:= I Do Expr
	While (Test) Do Body
	Iterate(x1, xi, bstop, maxIter, warn)
	Recursion

	Local indexes
	Dot operator: a . i
	Example using a local index

	Ensuring array abstraction
	Functions needing scalars and array abstraction
	Atomic parameters and array abstraction
	While and array abstraction
	If b Then c Else d and array abstraction
	Omitted index parameters and array abstraction
	Selecting indexes for iterating with For and Var

	References and data structures
	Managing indexes of referenced subarrays: \ [i, j,...] e
	IsReference(X)
	Using references for linked lists: Example functions

	Miscellaneous functions
	Error(message)
	Evaluate(t)
	FunctionOf(e)
	IgnoreWarnings(expr)
	MsgBox(message, buttons, title)
	Today()

	21: Analytica Enterprise
	Accessing external databases
	Overview of ODBC in Analytica
	Separating columns in a model

	Database functions
	DBLabels(dbIndex)
	DBQuery(connectionString, sql)
	DBTable(dbIndex, column) DBTable(dbIndex, columnList) DBTable(dbIndex, columnIndex)
	DbTableNames(connectionString, cat, sch, tab, typ)
	DBWrite(connectionString, sql)
	SqlDriverInfo(driverName)

	Protecting intellectual property
	Hiding definitions
	Inheritance of definition hiding
	Hiding and unhiding definitions
	Saving an obfuscated copy of your model
	Saving a browse-only copy
	Obfuscation and linked submodules

	Huge arrays
	Time profiling
	Memory profiling

	Appendices
	A. Selecting the sample size
	Choosing an appropriate sample size
	Selecting the sample size: uncertainty about the mean
	Estimating confidence intervals for fractiles

	B. Menus
	File menu
	Edit menu
	Object menu
	Definition menu
	Result menu
	Diagram menu
	Window menu
	Help menu
	Right mouse button menus

	C. Analytica specifications
	Hardware and software
	Objects
	Uncertainty
	Numbers and arrays

	D. Memory
	Memory usage

	E. Reserved Words
	F. Error message types
	Warning
	Lexical error
	Syntax error
	Evaluation error
	Invalid number
	System error
	Out of memory error

	G. Forward and backward compatibility
	Superseded functions and constructs
	Renamed text functions

	H. Bibliography

	Function list
	Glossary
	Alphabetical Index
	Analytica windows and dialogs
	Analytica Quick Reference
	The Tool Bar
	Numerical Formats (Output)
	Numerical Prefixes and Suffixes (Input)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

