
User Guide
Release 4.0

Copyright Notice
Information in this document is subject to change without notice and does not represent a commitment on the part
of Lumina Decision Systems, Inc. The software program described in this document is provided under a license
agreement. The software may be used or copied, and registration numbers transferred, only in accordance with the
terms of the agreement. It is against the law to copy the software on any medium except as specifically allowed in
the license agreement. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any
purpose other than the licensee's personal use, without the express written consent of Lumina Decision Systems,
Inc.

This document is © 1993-2007 Lumina Decision Systems, Inc. All rights reserved.

The software program described in this document, Analytica, includes code that is copyrighted:
© 1982-1991 Carnegie Mellon University
© 1992-2007 Lumina Decision Systems, Inc., all rights reserved.

Analytica was written using MacApp®: © 1985-1996 Apple Computer, Inc.

Analytica incorporates Mac2Win technology, © 1997 Altura Software, Inc.

The Analytica® software contains software technology licensed from Carnegie Mellon University exclusively to
Lumina Decision Systems, Inc., and includes software proprietary to Lumina Decision Systems, Inc. The MacApp
software is proprietary to Apple Computer, Inc. The Mac2Win technology is technology to Altura, Inc. Both MacApp
and Mac2Win are licensed to Lumina Decision Systems only for use in combination with the Analytica program.
Neither Lumina nor its Licensors, Carnegie Mellon University, Apple Computer, Inc., and Altura Software, Inc.,
make any warranties whatsoever, either express or implied, regarding the Analytica product, including warranties
with respect to its merchantability or its fitness for any particular purpose.

Lumina Decision Systems is a trademark and Analytica is a registered trademark of Lumina Decision Systems, Inc.

Acknowledgements
This Analytica User Guide was written and edited by Lonnie Chrisman, Max Henrion, and Richard Morgan, with
contributions from Brian Arnold, Fred Brunton, Adrienne Esztergar, Jason Harlan, Lynda Korsan, Randa Mulford,
Rich Sonnenblick, Brian Sterling, and Eric Wainwright.

Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
Phone: (650) 212-1212
Fax: (650) 240-2230
www.lumina.com

 Analytica User Guide iii

Contents
Acknowledgements .. ii

About Analytica . 1
Welcome! ... 2
If you don’t read manuals... 2
Hardware and software requirements .. 2
Installation and license codes .. 3
Editions of Analytica... 5
Help menu and electronic documentation.. 7
Normally, usually, and defaults .. 9
Typographic conventions in this guide... 9
User guide examples folder ... 10
What’s new in Analytica 4.0? ... 10

Chapter 1: Examining a Model 15
To open or exit a model ... 16
Diagram window .. 17
Classes of variables and other objects .. 18
Selecting nodes ... 19
The toolbar ... 20
Browsing with input and output nodes ... 21
The Object window .. 22
The Attribute panel .. 23
Showing values in the Object window.. 24
Printing... 25

Chapter 2: Result Tables and Graphs 27
The result window .. 28
Viewing a result as a table ... 30
Viewing a result as a graph.. 31
Uncertainty views... 32
Comparing results ... 36

Chapter 3: Analyzing Model Behavior 39
Varying input parameters ... 40
Analyzing model behavior results .. 42

Chapter 4: Creating and Editing a Model 47
Creating and saving a model ... 48
Creating and editing nodes .. 48
Drawing arrows .. 51
How to draw arrows between different modules .. 53
Alias nodes ... 55
To edit an attribute ... 57
To change the class of an object ... 58
Preferences dialog ... 59

iv Analytica User Guide

Chapter 5: Building Effective Models 63
Creating a model ... 64
Testing and debugging a model .. 67
Expanding your model ... 69

Chapter 6: Creating Lucid Influence Diagrams 71
Guidelines for creating lucid and elegant diagrams..................................... 73
Arranging nodes to make clear diagrams .. 75
Organizing a module hierarchy.. 79
Color in influence diagrams ... 80
Diagram Style dialog.. 81
Node Style dialog... 82
Taking screenshots of diagrams.. 83

Chapter 7: Formatting Numbers, Tables, and Graphs 85
Number formats ... 86
Date formats .. 88
Multiple formats in one table.. 90
Graphing roles ... 91
Graph setup dialog box.. 94
Graph templates .. 102
XY comparison .. 105

Chapter 8: Creating and Editing Definitions 115
Creating or editing a definition ... 116
The Expression popup menu... 120
Object Finder dialog... 121
Using a function or variable from the Definition menu 123
Automatic checking for valid values... 124

Chapter 9: Creating Inputs and Outputs 127
Using input nodes .. 128
Creating a choice menu... 129
Using output nodes.. 131
Input and output nodes and their original variables 132
Using form modules... 132
Adding icons to nodes ... 133
Graphics, frames, and text in a diagram.. 135
Models in XML file format .. 135
Hyperlinks in model documentation... 137

Chapter 10: Using Expressions 139
Numbers .. 140
Text values .. 142
Boolean or logical values... 142

 Analytica User Guide v

Operators .. 142
IF a THEN b ELSE c.. 145
Functions ... 145
Math functions ... 146
Numbers and text .. 147
Datatype functions ... 148

Chapter 11: Arrays and Indexes 151
Introduction to arrays ... 153
Operations on arrays ... 155
IF a THEN b ELSE c with arrays ... 159
Creating an index... 161
Editing a list ... 165
Functions that create indexes.. 165
Creating an array with an edit table ... 168
Editing a table .. 171
Choice menus in an edit table ... 173
Shortcuts to navigate and edit a table ... 174

Chapter 12: More Array Functions 177
Intelligent Arrays™ ... 178
Functions that create arrays .. 181
Array-reducing functions.. 185
Transforming functions .. 190
Selecting, slicing, and subscripting arrays... 193
Converting between multiD and relational tables 197
Interpolation functions.. 199
Other array functions ... 201
SubTable ... 203
Matrix functions.. 203

Chapter 13: Other Functions 209
Text functions .. 210
Date functions.. 212
Advanced math functions .. 213
Financial functions ... 214
Financial library functions .. 219
Advanced probability functions .. 222

Chapter 14: Expressing Uncertainty 225
Choosing an appropriate distribution ... 226
Defining a variable as a distribution... 229
Including a distribution in a definition... 231
Probabilistic calculation ... 231
Uncertainty Setup dialog box... 232

vi Analytica User Guide

Chapter 15: Probability Distributions 239
Probability distributions.. 240
Parametric discrete distributions.. 241
Probability density and mass graphs ... 243
The domain attribute and discrete variables.. 245
Custom discrete probabilities... 246
Parametric continuous distributions... 252
Custom continuous distributions.. 261
Special probabilistic functions.. 263
Multivariate distributions .. 265
Importance weighting... 270

Chapter 16: Statistics, Sensitivity, and Uncertainty Analysis 273
Statistical functions .. 274
Weighted statistics and w parameter... 282
Importance analysis... 282
Sensitivity analysis functions ... 284
Tornado charts... 287
X-Y plots .. 289
Scatter plots... 291
Regression analysis... 292
Uncertainty in regression results ... 294

Chapter 17: Dynamic Simulation 297
The Time index .. 298
Using the Dynamic() function... 298
More about the Time index .. 300
Initial values for Dynamic... 303
Using arrays in Dynamic() ... 304
Dependencies with Dynamic ... 305
Uncertainty and Dynamic... 306

Chapter 18: Importing, Exporting, and OLE Linking Data . 309
Copying and pasting .. 310
Using OLE to link results to other applications .. 311
Linking data from other applications into Analytica.................................... 314
Importing and exporting ... 318
Printing to a file .. 319
Edit table data import/export format .. 319

Chapter 19: Working with Large Models 323
Show module hierarchy preference ... 324
The Outline window ... 325
Finding variables.. 326
Managing attributes ... 327

 Analytica User Guide vii

Invalid variables .. 329
Using filed modules and libraries... 330
Adding a module or library... 332
Combining models into an integrated model .. 333
Managing windows .. 335
Optimization and speed-up.. 336

Chapter 20: Building Functions and Libraries 337
Example function ... 338
Using a function ... 339
Creating a function... 339
Attributes of a function ... 340
Parameter qualifiers... 340
Libraries ... 345

Chapter 21: Procedural Programming 347
An example of procedural programming.. 348
Summary of programming constructs.. 350
Begin-End, (), and ’;’ for grouping expressions... 350
Declaring local variables and assigning to them.. 351
For and While loops and recursion .. 353
Local indexes... 358
Ensuring array abstraction... 359
References and data structures... 364
Miscellaneous functions... 368

Chapter 22: Analytica Enterprise 373
Accessing databases... 374
Database functions ... 381
Reading and writing text files... 383
Making a browse-only model and hiding definitions 384
Huge Arrays... 387
Creating buttons and scripts .. 387
Performance Profiler.. 391
RunConsoleProcess(program, cmdline, stdIn, block)................................ 393

Appendix A: Selecting the Sample Size 398

Appendix B: Menus . 401
File menu ... 401
Edit menu... 402
Object menu .. 403
Definition menu.. 403
System Variables submenu ... 405
Result menu... 405

viii Analytica User Guide

Diagram menu ... 406
Align submenu ... 407
Make Same Size submenu.. 407
Space evenly submenu ... 407
Window menu .. 408
Help menu ... 408
Right mouse button menus.. 409

Appendix C: Analytica Specifications 410
Memory usage ... 410

Appendix D: Identifiers Already Used 412

Appendix E: Error Message Types 413

Appendix F: Forward and Backward Compatibility 416

Appendix G: Bibliography 418

Appendix H: Function List 419

Analytica windows and dialogs 449

Introduction About Analytica

This introduction explains:

• How to use this manual

• How to install Analytica

• The online help system

• How to access Analytica example models

• What’s new in Analytica release 4.0.

• Typographic conventions used in this guide

Introduction About Analytica

2 Analytica User Guide

Welcome!

Welcome!
This User Guide describes how to use Analytica 4.0. If you are new to Analytica, we
invite you to start with the Analytica Tutorial to learn the essentials. Most people find
they can work through the Tutorial quite rapidly. You may then want to read a few sec-
tions of the User Guide listed in the next section to learn more key concepts. You may
consult the rest of this guide as a reference when you need more depth. For still more,
visit Anawiki (the Analytica Wiki online at http://www.lumina.com/wiki), including Tips,
Libraries, and Reference.

If you can’t find what you want, or have comments on our documents or software,
please email us at Lumina at support@lumina.com. We are always glad to hear from
Analytica users.

Click cross
references

If you are reading this guide as a PDF document on your computer, you can click the
page number in any cross reference to jump to that page. To return to the previous loca-
tion, use Acrobat’s Go To Previous View feature by pressing Alt+left-arrow (may vary
depending on your version of Acrobat).

If you don’t read manuals
Experienced modelers find most Analytica features intuitive. But, it’s helpful to get a
good grasp of some key concepts so you can get up to speed rapidly. Here are a few
chapters that you may find especially helpful to review:

Chapter 5:
Building effective

models

offers guidelines for creating effective models, distilled from the experience of master
modelers. It offers a practical guide for building effective models that are clear, reliable,
and focus on what really matters — the decisions, objectives, and key uncertainties.
These tips are not specific to Analytica, but we designed Analytica to make them espe-
cially easy to follow.

Chapter 6: Creating
lucid diagrams

gives tips on how to create influence diagrams that are truly lucid and elegant — and
how to avoid incomprehensible spaghetti.

Chapter 11:
Arrays and Indexes

explains Analytica’s Intelligent Arrays™. After you grasp the essentials, they let you
build complex multidimensional models with surprising ease. But, you may find they
take a little getting used to, particularly if you have spent a lot of time with spreadsheets
or programming with arrays. We recommend that even — perhaps especially — experi-
enced modelers review this chapter.

Chapter 13:
Expressing
uncertainty

discusses how to select appropriate probability distributions to express uncertainties. It
also provides an overview of how Analytica computes probability distributions using
Monte Carlo and other random sampling methods, and your options for controlling and
displaying probabilistic values.

Chapter 20:
Procedural

programming

With Analytica, you can create large and sophisticated models without procedural pro-
gramming. But, if you really want to write complex procedural functions, read this chap-
ter to understand Analytica as a programming language.

Hardware and software requirements
To use Analytica, you need the following quite modest minimum configuration:

mailto:support@lumina.com
http://www.lumina.com/wiki

 Analytica User Guide 3

Introduction About Analytica Installation and license codes

• 486-66 MHz (Pentium 500 MHz+ recommended)

• 20 MB disk space

• 256 MB RAM (2 GB recommended for large models)

• 8-bit color display

• Windows 98, 2000, NT 4, ME, XP, or Vista

It helps to have a faster CPU, and, especially, more RAM for large models. Analytica will
benefit from up to 3 GB RAM if you have it. It is also handy to have a large screen, or
even multiple screens, when working with a large model.

Installation and license codes
After downloading the Analytica 4.0 installer from www.lumina.com, or inserting the
Analytica CD-ROM into your CD or DVD drive, just double-click the installer to start
installation. It will install onto your hard drive the executable software, all documentation
as Adobe PDF files, plus a range of Analytica libraries and example models. If you have
installed an earlier release of Analytica, such as 2.0 or 3.1, the installer will leave it
there, so you can run either version.

The setup program will ask you to confirm the directory name in which to install Analyt-
ica, by default, C:\Program Files\Analytica 4.0. Most users can accept the defaults.

License codes You need a license code to activate the software. Lumina will email you a license code
when you download a Player or Trial edition, or when you purchase a copy. If someone
else purchased Analytica for you, you may need to ask that person to forward you the
email with your license code.

During installation, Analytica will prompt you for a license code. You can copy and paste
the code from the email into the field, or just retype it. The license code activates the
specified edition of Analytica, e.g., Player, Trial, Professional, Enterprise, or Optimizer.

Stale license codes Each license code goes stale a few days after it is generated. If yours is stale — per-
haps, because you didn’t install Analytica right away, or, later, if you want to move Ana-
lytica onto another computer — fear not! Click the URL on the registration screen, or go
to http://www.lumina.com/ana/stale. Provide the requested information, and it will imme-
diately email you a fresh license code. This mechanism is designed to prevent unautho-
rized use of old license codes. Authorized users can always get a fresh license code.

Expiration dates Some license codes — notably, for a Trial or an edition licensed per year — have a lim-
ited life, after which they expire. After expiration, Analytica reverts to the Player edition,
so you will still be able to open, view, and evaluate your models. You just won’t be able
to make or save changes. Expiration is not the same as going stale. To reactivate Ana-
lytica after expiration, you may need to purchase a copy.

When you purchase a
license or upgrade to

another edition

You don’t need to download and reinstall Analytica again when you purchase a license
after testing the free trial, or if you want to upgrade from, say, the Professional to Enter-
prise edition. Just select Update License from the Help menu in Analytica and enter
your new license code into the Licensing Information dialog:

www.lumina.com
http://www.lumina.com/ana/stale

Introduction About Analytica

4 Analytica User Guide

Installation and license codes

Analytica Decision Engine (ADE) is a different application from Analytica, and requires a
new installation, even if you already have another edition of Analytica installed.

To upgrade to a minor
or patch release

When you upgrade a licensed copy with a patch or minor release (e.g., 4.0 to 4.0.1),
simply run the installer. It will replace the older release and reuse your existing license
code.

To upgrade to a major
release

You can install Analytica 4.0 and retain an earlier major release, such as Analytica 3.1,
on your computer. You will need a new license code for the new release.

To uninstall Analytica After confirming that Analytica 4.0 is working, you will usually want to uninstall the ear-
lier release. To uninstall Analytica 3.1 — or any release:

1. From the Windows Start menu, open the Control Panel.

2. Click Add or remove programs.

3. Find Analytica 3.1 (or whichever release you want to remove) and click Change/
Remove button to start the Wizard.

4. In the InstallShield Wizard dialog, select the Remove radio button, and click Next.

 Analytica User Guide 5

Introduction About Analytica Editions of Analytica

Editions of Analytica
Analytica is available in these editions. See the next page for a list of key features by
edition:

Player Lets you review and run Analytica models without having to purchase a license. With the
Player edition, you can change designated inputs, run the model, view results, and
examine selected model diagrams and variables. It does not let you create new models,
make changes other than to selected inputs, or save models.

Professional Provides most features, including the ability to create, edit, and save models.

Trial A free edition of Analytica that provides the full functionality of Analytica Professional for
a limited time, usually 15 days. After that, it reverts to the functionality of Analytica
Player, so you can still view and run any models you have created, but not save
changes.

Power Player Like the Player, it lets you review models, change inputs, and view results, and does not
let you create or edit models. Unlike the Player, it does let you save models with
changed inputs. It also supports models that use Enterprise features, including data-
base access, Huge Arrays, and the Profiler. See Chapter 22, “Analytica Enterprise” for
details.

Lite Available to qualified educational users only for teaching and research. It has the fea-
tures of the Professional edition, except: No OLE linking, Outline Window, Advanced
function libraries, nor ability to create input and output nodes and forms.

Enterprise Offers all the features of Analytica Professional, plus Huge Arrays, reading and writing
databases, profiling for analysis of computational effort by variable, and obfuscation
(encryption) of sensitive model elements. See Chapter 22, “Analytica Enterprise” for
details.

Optimizer Offers all the features of Analytica Enterprise, plus the Optimizer Library that provides
powerful solver and optimization methods, including linear programming (LP), quadratic
programming, and nonlinear programming (NLP). Optimizer is available as an extension
to Analytica Enterprise, Power Player, and ADE. See the Analytica Optimizer Guide for
details.

The Analytica
Decision Engine

(ADE)

ADE runs Analytica models on a server computer. It provides an Application Program-
ming Interface (API) to provide access to view, edit, and run models from another appli-
cation, including a web server. You can create a user interface to models via a web
browser, so that many end users may view and run a model via the Internet. You will
need Analytica Enterprise as the development tool to create models to run with ADE.
The ADE Kit includes a license for Analytica Enterprise in addition to ADE.

Introduction About Analytica

6 Analytica User Guide

Editions of Analytica

Compare Analytica features by edition
H=I

Features

Editions of Analytica

Pl
ay

er

Po
w

er
 P

la
ye

r

Tr
ia

l

Li
te

Pr
of

es
si

on
al

En
te

rp
ris

e

A
D

E

Open models, change inputs, & view results ✓ ✓ ✓ ✓ ✓ ✓ ✓

Save model with changed inputs ✓ ✓ ✓ ✓ ✓ ✓

Create and edit models ✓ ✓ ✓ ✓ ✓

No marking of printout ✓ ✓ ✓ ✓ ✓

Hierarchical influence diagrams ✓ ✓ ✓ ✓ ✓ ✓

Monte Carlo uncertainty analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓

Intelligent Arrays ✓ ✓ ✓ ✓ ✓ ✓ ✓

Procedural programming ✓ ✓ ✓ ✓ ✓

OLE linking with Excel ✓ ✓ ✓ ✓

Outline Window ✓ ✓ ✓ ✓ ✓

Create input and output controls and forms ✓ ✓ ✓

General function libraries: Math, Array,
Distributions, Special, Statistical, Text

✓ ✓ ✓ ✓ ✓ ✓ ✓

Advanced function libraries: Advanced math,
Financial, and Matrix

✓ ✓ ✓ ✓ ✓ ✓

Save browse-only models and hide sensitive
model details

✓ ✓

Huge Arrays™ — dimension up to 100
million

✓ ✓ ✓

ODBC database access ✓ ✓ ✓

Time and Memory Profiling ✓ ✓ ✓

Optimizer available ✓ ✓ ✓

Application Programming Interface. See ADE
User Guide

✓

 Analytica User Guide 7

Introduction About Analytica Help menu and electronic documentation

Help menu and electronic documentation
Select the Help menu from the menu bar:

Tip Most users see the left-hand version of the menu starting with User Guide. The right-
hand version appears if you have Adobe Acrobat Standard or Professional installed,
which enable direct links into sections of a PDF document.

Content outline F1 Opens the User Guide showing chapters, sections, and subsections as an expandable
outline, using bookmarks. Press the function key F1 as a shortcut.

Function list Opens a page listing all functions, operators, and other constructs, classified by type.
Click a name to jump to an explanation of how to use it. This is a fast way to find a func-
tion if you don’t know its name.

Index Opens the User Guide to its alphabetized index. Select the first letter of the term from
the bookmark outline, and click an entry to jump to its explanation.

Find Opens the Find dialog box in Adobe Acrobat so you can search for a term.

What’s new in 4.0? Opens “What’s new in Analytica 4.0?” in the User Guide.

User Guide F1 Opens this Analytica User Guide as a PDF document in Adobe Reader. Press the func-
tion key F1 as a shortcut (see “Online help and electronic documentation” on page 8).

Optimizer Opens the Optimizer Guide (if you have Analytica Optimizer).

Tutorial Opens the Analytica Tutorial as a PDF document in Adobe Reader.

Web tech support Opens Lumina’s Analytica tech support web page in your default Web browser, with
support information and links to frequently asked questions.

Email tech support Starts an email message to send to Lumina tech support using your default email appli-
cation.

Register Opens a web page where you can register your copy of Analytica, and copies your
license code into the required field.

Introduction About Analytica

8 Analytica User Guide

Help menu and electronic documentation

Contact Lumina Opens a dialog box with Lumina contact information: web links, phone numbers, email,
and physical mailing address.

Update license Opens the Licensing Information dialog box so you can review your or enter a new
License Code or enter a new code to upgrade your copy of Analytica.

About Analytica Opens the startup splash screen, mentioning the Analytica Edition, release number, and
the name of the person to whom it is licensed.

Online help and electronic documentation
You can open the Tutorial, User Guide and Optimizer Guide (when available) from the
Help menu, or press the F1 key to open the User Guide.

You can read and search these PDF documents using the Adobe® Reader available
free from http://www.adobe.com. Some additional features are available if you purchase
Adobe Acrobat Standard or Professional.

The expandable
outline

Click a section title to view that section. Click or icons to expand and contract
chapters and sections of the outline.

Appendix H:
Function list

If you can’t remember the name of a function, go to this page. It lists functions and sys-
tem variables by functional groups. From here, click a function name to jump to its full
description.

http://www.adobe.com/

 Analytica User Guide 9

Introduction About Analytica Normally, usually, and defaults

Alphabetical index If the search box finds too many occurrences of a term, try the Alphabetical Index in the
bookmarks: It usually links to the best explanation for each term.

Normally, usually, and defaults
Sometimes this guide says “normally it does this” or “usually it does that.” This isn’t
because Analytica is unpredictable, or because we’re just addicted to uncertainty. It’s
because Analytica has a lot of preference and style options, and it’s often simpler to say
“normally” or “usually” when we mean “with the standard defaults.”

Typographic conventions in this guide

Code examples This guide includes snippets of code to illustrate features, for example:

Index N := [1, 2, 3, 4, 5]
Variable Squares := N^2
Sum(Squares, N) → 55

This code says that there are two objects, an Index I and a variable Squares. You would
create these objects in a Diagram window by dragging from the node toolbar into the
diagram (see “Creating and editing nodes”). You would enter the expressions, [1, 2,
3, 4, 5] and N^2 into their definitions (see “Creating or editing a definition”). You would
not enter the assignment “:=”. The last line says that the expression Sum(Squares, I)
evaluates to the result 55 after the "→ ". You might include that expression in the defini-
tion of third variable.

Array examples We use these typographic conventions to show Analytica arrays:

• An index or list and its values

N:

• A one-dimensional array, Squares:

Example Meaning

behavior analysis Key terms when introduced. Most of these terms are included
in the Glossary

Diagram Menus and menu commands, window names, panel names,
dialog box names, function parameters

Sequence() Name of a variable or function in Analytica

Price - DownPmt Expressions, definitions, example code

10^7 → 10M In example code, this means that the variable or expression
before the “→” generates the result after it

Enter, Control+a A key or key-combination on the keyboard. A letter, such as
“a”, may be lower- or uppercase

1 2 3 4 5

Introduction About Analytica

10 Analytica User Guide

User guide examples folder

N

• A two-dimensional array

Index_b , Index_a

• A three-dimensional array

Index_a , Index_b , Index_c displayed value

User guide examples folder
The Examples folder distributed with Analytica includes User Guide Examples as a
subfolder. It contains Analytica models used in Chapters 9, 10, 11, 12, 14, 15, 16, and
17. Open these models to see the examples in more detail.

See Chapter 8 of the Tutorial for a summary of the models in the Examples folder.

What’s new in Analytica 4.0?
These are highlights of new and improved features in release 4.0.

User interface
Graphs and charts We completely rewrote the graphing and charting engine, adding a wide range of new

styles and options. The Graph Setup dialog now has six tabs:

• Chart type tab includes stacked bars, filled areas with transparency, using symbol
shape and size to indicate extra dimensions, 3D effects on bar charts, cylinders or
boxes, and changing line width. It lets you swap horizontal (X) and vertical (Y) axes,
e.g., to create horizontal bars for tornado diagrams.

• Axis tab offers log scales, reversed scales, and categorical scale. You can save
axis settings as defaults associated with corresponding index variables. Graphing is
much smarter in choosing which dates to display along an axis — by week, month,
quarter, or year.

• Style tab lets you change colors of grid and frame — in addition to style of the grid,
frame, tick marks, and key.

1 2 3 4 5

1 4 9 16 25

a b c
x value value value

y value value value

z value value value

a b c
x value value value

y value value value

z value value value

´

 Analytica User Guide 11

Introduction About Analytica What’s new in Analytica 4.0?

• Text tab lets you change the font type, size, style, and color for titles and labels. You
can also rotate labels for axis tick marks to prevent overlaps, say for long text
values.

• Background tab now lets you set a color or color gradient for the background of the
entire chart, plot area, or key.

• Preview tab lets you look at the effects of the options you have selected before you
decide to accept them. You can apply new graph settings to the current graph, or as
defaults for all graphs.

See “Graph setup dialog box”for more information.

Graph style templates let you apply and reuse a collection of graph settings, for a con-
sistent style for a model or your entire organization. See “Graph templates”

Graphing associates settings with the view so that it changes appropriately when you
pivot or change the uncertainty view.

XY comparison now lets you plot one slice against another slice of an array variable
over the Comparison index, as well as one variable against another. See “XY compari-
son”

Tables In graphs or tables, you can reorder slicer indexes (any graph indexes not shown on
horizontal axis or key) simply by dragging them.

You can create smarter end-user interfaces by putting dropdown menus in cells of an
edit table, using Choice() to let end users select from a list of options. See “Choice
menus in an edit table”. When viewing a table, using Find from the Object menu (Con-
trol+F) lets you search for selected text.

The new SubTable function lets you define a variable as a subset of another edit table
— any edit to a subtable makes the same change to its parent table, and vice versa.
See “SubTable”

Smart table splicing controls how an edit table changes if its indexes change, e.g., edit-
ing a label or adding an item or index. You can specify default values for new cells cre-
ated by expanding and index.

Number, currency,
dates, and languages

Analytica is less US-centric: Number formats offer multiple currency symbols and flexi-
ble date formats, with format and language of days and months depending on Windows
regional settings. You can paste text containing accents and non-English characters
(Ascii>127) into object attributes and diagram nodes. The date functions DateAdd,
DatePart, and Today add flexibility for computing dates. See “Number formats”

Scroll wheel and
keyboard shortcuts

The scroll wheel on your mouse scrolls windows (diagrams, tables, and objects), verti-
cally, or horizontally when you press Control. Dozens of new keyboard shortcuts let
you navigate and select cells and regions from tables (like Microsoft Excel). When edit-
ing a diagram, shortcuts Control+1, Control+2, etc., add a new decision node, variable
node, etc. Control+e now opens the script of a button, just like it opens the definition for
a variable or function.

Influence diagrams To make diagrams neater, use the new Align, Make same size, and Space evenly
options from the Diagram menu (see “Arranging nodes to make clear diagrams”). You
can now add web links to a diagram as URLs in a text node. An optional red flag in node
shows which objects have descriptions (see “Preferences dialog”).

Here’s an alternative to drawing arrows: When you’re editing a definition in the Attribute
panel below a Diagram window, Alt-click another node in the diagram to insert its identi-
fier into the definition.

Introduction About Analytica

12 Analytica User Guide

What’s new in Analytica 4.0?

The Application
Auto save Analytica writes each change to an auto save file, so you won’t lose any work after a

software or hardware crash. Next time you start the model, it asks if you want to use the
backup or revert to the previously saved version.

CPU sharing It shares CPU nicely with other applications, and doesn’t hog the CPU when it is active.

Multiple screens Analytica now supports editing diagrams across multiple screens for a larger desktop.

Probability distributions and statistical functions
Discrete or
continuous

When graphing a probability distribution, it is smarter about displaying a probability
mass function for a discrete variable or density function for a continuous variable. If
needed, you can override this, by specifying Continuous or Discrete in the Domain
attribute, or checking Categorical in the Axis scale tab in Graph set up. See “The
domain attribute and discrete variables”.

New functions Random() generates single random sample from any distribution. Shuffle(x, i) ran-
domly shuffles an array. Pdf(x) and Cdf(x) return the estimated probability density or
cumulative probability functions as arrays. The system variable IsSampleMode returns
true in prob mode, false in mid mode, so you can tell the evaluation mode within a func-
tion. See “Random(expr)”, “Shuffle(a , i)”, and “PDF(X) and CDF(X)”.

Over parameter You can create an array of independent probability distributions over one or more
indexes by adding optional Over parameter to a univariate probability distribution, e.g.,
Normal(0, 1, Over: I, J). See “Over indexes as parameters to probability distributions”.

Extended functions Lognormal uses mean and stddev (standard deviation) as an alternative to median and
gsdev (geometric standard deviation). Truncate(x, min, max) accepts min and/or max
threshold parameters and preserves sample ordering, and hence rank correlations.
Uniform(min, max, integer) adds the optional parameter integer to specify that values
be integers in the range. CumDist(p, r, i, smooth) adds an optional Smooth parameter
to control interpolation. See “Parametric continuous distributions” and “Truncate(u, min,
max)”.

Uncertain parameters Many distribution functions are much faster, especially when their parameters are
uncertain (hierarchical distributions). Gamma, Binomial, GammaIInv are more accu-
rate for extremely large or small parameter values. See “GammaI(x, a, b)”, “Binomial(n,
p)”, and “GammaIInv(y, a, b)”.

Multivariate
Distributions library

New distributions include MultiUniform and UniformSpherical, generalized
Dist_reshape, functions for creating time series with serial correlations, and uncertainty
about regression coefficients. See “MultiUniform(cm, i, j, lb, ub)”, “Dist_reshape(x,
newdist)”, and “UniformSpherical(i, r)”.

Distribution
Variations library

New distributions include Smooth_fractile, Warp_dist, Erlang, Pareto, Rayleigh,
Lorenzian, NegBinomial, InverseGaussian, Wald.

Running index for
statistics

By default, the running index defining which dimension statistical functions operate over
is Run, the index over random samples. You may specify a different running index as
the last parameter to any statistical function if you want something other than Run, e.g.,
Variance(X, I) computes the variance over index I, even if X is not uncertain. This ren-
ders obsolete the Data Statistics Library.ana, previously included with Analytica.

Importance weighting Importance weighting is a powerful enhancement to Monte Carlo simulation that lets
you get more information from fewer samples; it is especially valuable for risky situa-
tions with a small probability of an extremely good or bad outcome. Instead of treating

 Analytica User Guide 13

Introduction About Analytica What’s new in Analytica 4.0?

all samples as equally likely, you can set SampleWeighting to generate more samples
in the most important areas. Graphs of probability distributions and statistical functions
downweight sample values with SampleWeighting so that their results are unbiased.
You can modify SampleWeighting interactively to reflect different input distributions
and so rapidly see the effects the effects on results without having to rerun the simula-
tion. In the default mode, it uses equal weights, as before, so you don’t have to worry
about importance sampling unless you want to use it. See “Importance weighting”.

Weights for statistics By default, statistics functions use SampleWeighting when you are using importance
sampling. You may also provide an optional parameter W to a statistical function to
specify a nondefault set of weights. For example, Mean(X, W: X > 0) gives the mean of
X conditional on X being positive.

New functions and language extensions
List of variables If you define a variable as a list of variables, e.g., X := [A, B], it creates the list vari-

ables as the index value of X. This is very convenient for comparing several variables. In
a table view, it usually shows the title of each variable in the index. If you double-click a
variable title, it opens its Object window. You can add another variable C to the list sim-
ply by drawing an arrow from C to X, or remove it by redrawing the arrow.

IndexVals If you define X as a list of variables, as above, it saves the list of variables as its index in
its IndexVals attribute. You can get these with the IndexVals(X) function. If you pass X
to a function as an Index parameter, it uses IndexVals.

FOR iteration index In FOR j := x DO e, x can now be any expression that evaluates to an array. It evaluates
e with j set successively to each cell (atom) of x. The value of the FOR expression is an
array with the same index(es) as x.

You can now subscript an expression, as in (A+B)[I=x].

Position operator @ @J returns the position (an integer from 1 to n) of each element of index J. X[@J = 2] is
equivalent to Slice(A, J, 2). PositionInIndex(a, u, i) gives the position n in index i for
which a[i=n] = u. See “@: Index Position Operator”.

Slice assignment x[I=y] := b, now lets you assign to a cell or slice of a local variable x, allowing you to
write some algorithms much more efficiently. See “Assigning to a slice of a local vari-
able”.

Argmin and Argmax The new Argmin(x, i) and existing ArgMax(x, i) can both now work over multiple
indexes, and return the value or position of the indexes containing the minimum or max-
imum value. See “Argmin(a, i)” and “Argmax(a, i)”.

Trig functions We have added the inverse trigonometric functions ArcCos, ArcSin, ArcTan, and
hyperbolic functions CosH, SinH, and TanH. They use or return degrees, not radians.
See “Math functions” and “Advanced math functions”.

Rank Lets you specify mid, lower, or upper rank in the event of a tie.

RunConsoleProcess Lets you run another application from Analytica. It can pass data as function parameters
or via data files. It can run a process concurrently with Analytica or wait for its result to
be computed. See “RunConsoleProcess(program, cmdline, stdIn, block)”.

System functions GetRegistryValue() returns selected values from the computer registry, such as the
default directory for model or data files. ShowPdfFile() shows an Adobe PDF file, for
example, to open PDF documentation for a model. AnalyticaLicenseInfo returns infor-
mation about the license, such as its edition, beta status, expiration date, or user ID.

Introduction About Analytica

14 Analytica User Guide

What’s new in Analytica 4.0?

TypeOf(X) Returns the type of each atom in X as a text value, including “Number”, “Text”, “Refer-
ence”, or “Null”. If X is a handle, it returns the class of the object pointed to by X.

Handles A pointer to an object, such as a variable or module. The Inputs, Outputs, or Contains
attributes create a list of handles to objects. With handles, you can write functions that
navigate around a model, e.g., to get a list of the inputs or all ancestors of a variable.
The new function Handle(X) gives a handle to X instead of its value. HandleFromIden-
tifier(T), as you might expect, gives a handle if T is the text identifier of an object.
IndexesOf(A) returns a list of handles of the indexes of array A.

Optional and
repeated parameters

The qualifier Optional in the parameters of a function specifies that the parameter is
optional. You can also supply a default for when the parameter is omitted. The repeat
qualifier “...” lets you define a function that takes one or more parameters of the given
type.

Multiply by zero 0*NaN and 0*INF now give a warning and return NaN, consistent with the IEEE 754 and
SANE arithmetic standards. Earlier releases simply returned 0.

Analytica Enterprise Edition
These features are available in the Enterprise edition, and may be used from the Power
Player edition:

Database functions You can now assign result of DbQuery to a local index variable, letting you create a sin-
gle variable or function to return a relational table, without having to create auxiliary glo-
bal indexes for rows and columns.

MDX hypercube
access

The new MDXQuery function supports the standard MDX language for querying and
writing to multidimensional OLAP hypercube databases, such as offered by Microsoft
SQL Server Analysis Services. It greatly expands ways to integrate Analytica with busi-
ness intelligence and related applications.

MDTable Now lets you specify the first N columns of X as coordinates and the rest as measures,
as used in a fact table, the format used to specify OLAP hypercubes. It also lets you
pass it a conglomeration function. See “MDTable(t, rows, cols, vars, conglomFn, miss-
ingVal)”.

Performance Profiler
library

This library now shows a sorted table with memory and time used by each variable and
function. Double-click any object title to open its Object window.

Analytica Optimizer
The Analytica Optimizer uses the new 7.0 release of the Premium Solver from Frontline
Systems. New features include: Grouped Integer variable type, where a solution must
assign a different integer from 1 to n to each variable in the group. The quadratic pro-
gramming solver, QpDefine, now supports quadratic constraints in additional to linear
constraints. SolverInfo function returns information about the current solver. The solv-
ers offer a more flexible option for passing all parameters as a single array of parame-
ters, labeled by parameter name in the index. You can add yet more powerful solvers,
including OptQuest, Knitro NLP, Mosek SOCP and NLP, and Xpress LP, QP and MIP
(priced separately). See the Optimizer Guide or What’s New in Optimizer 4.0 for more.

Generalized
Regression library

Offers Logistic_Regression and Probit_Regression, using the Optimizer. See
“Logistic_Regression(Y, B, I, K)” and “Probit_regression(Y, B, I, K)”.

Chapter 1 Examining a Model

This chapter introduces the basics of how to open and view an
Analytica model, generate results, and print them, including:

• Start up a model

• Explore its Diagram window

• Explore its Object window

• Explore its Result window

• Print the contents of windows

Chapter Examining a Model

16 Analytica User Guide

1 To open or exit a model

To open or exit a model
Models An Analytica model is a collection of variables, modules, and other objects intended to

represent some real-world system you want to understand. Between sessions, a model
is stored in an Analytica document file with the file type ".ana".

To open a model The simplest way to open an existing model is just to double click the icon for the model
file in the Windows directory.

Another way to open a model is to:

1. Start up Analytica — by double-clicking the icon of the Analytica application, or
selecting Analytica from the Windows Start menu. Analytica will open a new,
untitled model.

2. In the top left of the Analytica application window, press on the File pull-down menu,
and select Open Model. A directory browser dialog will appear to let you to find the
model file you want.

Whichever way you start a model, Analytica will show this progress bar as it reads in the
model file:

Tip Click the Stop button if you change your mind and decide not to open the model. It will
stop reading, resulting in a partially loaded model.

Next, it shows a progress bar as it checks the definitions of variables and functions in
the model:

Tip If you click the Stop button, it will stop checking. Diagrams may have missing arrows and
cross-hatched nodes indicating unchecked definitions. If you later ask to show the result
of a variable, it will check any variables needed. Thus, clicking stop here simply defers
some checking, and causes no problems with the model.

If the model contains any variables whose definitions are missing or invalid, it will let you
know by listing them in the Invalid Variables window (see “Invalid variables”). You can
still compute results for variables with valid definitions, as long as they don’t depend on
variables whose definition is invalid.

To close a model To close a model, select Close Model from the File menu. If you have made any
changes to the model, a dialog box asks you whether you want to save the changes

 Analytica User Guide 17

Chapter Examining a Model1 Diagram window

before closing — except if you are using the Player Edition, which doesn’t let you save
a changed model.

To open another
model

Analytica can open only one model at a time. To switch to another model, first close the
model, by selecting Close Model from the File menu. Then select Open Model from
the File menu. A dialog box prompts you to locate and open another model.

To exit Analytica To exit (or quit) Analytica, select Exit from the File menu. If you have made any
changes to the model, it will prompt you to save your model first (if you are not using the
Player Edition).

Diagram window
When you open a model it shows a Diagram window. This window usually shows an
influence diagram, like this:

Each node depicts a variable (thin outline) or module (thick outline). The node shape
and color tells you its class — decision, chance, objective, module, and so on. The
arrows in a Diagram window depict the influences between variables. An influence
arrow from variable A to variable B, means that the value of A influences B, because A is
in the definition of B. So, when the value of A changes, it may change the value (or prob-
ability distribution) for B.

In the diagram above, the arrow from Buying price to Cost to buy means that the
price of the house affects the overall cost of purchasing it. The influence diagram shows
the essential qualitative structure of the model, unobscured by details of the numbers or
mathematical formulas that may underlie that structure. For more on using influence
diagrams to build clear models, see Chapter 6, “Creating Lucid Influence Diagrams”.

To view results
To view the value of a variable, first click its node to select it.Then click this Result but-
ton in the navigation toolbar to open a Result window showing its value as a table or
graph. Chapter 2, “Result Tables and Graphs,” tells you more.

Decision

Chance
variables

Modules

Objective

Other
variables

Chapter Examining a Model

18 Analytica User Guide

1 Classes of variables and other objects

Tip If it needs to calculate the value, it shows the waiting cursor while it computes.

Opening details from
a diagram

To see more details of a model, double-click nodes in the Diagram window:

• Double-click a variable node (thin outline) to open its Object window. See “The
Object window”.

• Double-click a module node to (thick outline) see its Diagram window, showing the
next level of detail of the model.

Going to the parent
diagram

To see the diagram that contains the active module or variable, click the Parent Dia-
gram button in the navigation toolbar. The module or variable will be highlighted in the
parent diagram.

Tip If the active diagram is of the top model, it has no parent diagram, and the Parent
Diagram button is grayed out.

Seeing remote inputs
and outputs

When a variable has a Remote input — that is, it depends on a variable in another mod-
ule — a small arrowhead appears to the left of its node. Similarly, if it has a remote out-
put, a small arrowhead appears to its right. Press on the arrowhead to quickly view and
navigate influences between nodes in different diagrams (modules).

To see a list of the inputs (or outputs), remote and local, press the arrowhead on the left
(or right) of the node:

To jump to a remote input or output, select it from the list and stop pressing. It opens the
Diagram window containing the remote variable , and highlights its node.

Classes of variables and other objects
The shape of a node indicates the class of the variable or other object:

A rectangle depicts a decision variable — a quantity that the decision maker can con-
trol directly. For example, whether or not you take an umbrella to work is your decision.
If you are bidding on a contract, it is your decision how much to bid.

An oval depicts a chance variable — that is an uncertain quantity whose definition con-
tains a probability distribution. For example, whether or not it will rain tomorrow is a
chance variable (unless you are a rain god). And whether or not your bid is the winning
bid is a chance variable in your model, although it is a decision variable for the person
or organization requesting the bid.

Small arrowhead
indicates that this

variable has remote
inputs

Popup menu of inputs

 Analytica User Guide 19

Chapter Examining a Model1 Selecting nodes

A hexagon depicts an objective variable — a quantity that evaluates the relative value,
desirability, or utility of possible outcomes. In a decision model, you are trying to find the
decision(s) that maximize (or minimize) the value of this node. Usually, a model con-
tains only one objective.

A rounded shape (with thin outline) depicts a general variable — a quantity that is not
one of the above classes. It may be uncertain because it depends on one or more
chance variables. Use this class initially if you’re not sure what kind of variable you
want. You can change the class later when it becomes clearer.

A rounded node (with thick outline) depicts a module — that is, a collection of nodes
organized as a diagram. Modules can themselves contain modules, creating a nested
hierarchy.

A parallelogram depicts an index variable. An index is used to define a dimension of an
array. For example, Year is an index for an array containing the U.S. GNP for the past
20 years. Or Nation name is an index for an array of GNPs for a collection of nations
(see “Introduction to arrays”). Indexes identify the row and column headers of a table,
and the axes and key of a graph.

A trapezoid depicts a constant — that is, a variable whose value is fixed. A constant is
not dependent on other variables, so it has no inputs. Examples of numerical constants
are the atomic weight of oxygen (16) or the number of feet in a kilometer. It is clearer to
define a constant for each such value you need in a model, so you can refer to them by
name in each definition that uses it, rather than retyping the number each time

A shape like an arrow tail depicts a function. You can use existing functions from librar-
ies, and define new functions to augment the functions provided in Analytica. See
Chapter 20, “Building Functions and Libraries.”

This node is a button — when you click a button (in browse mode), it executes its script
to perform some useful action. You can use buttons with any edition of Analytica, but
you need Analytica Enterprise or Optimizer to create a new button. See “Creating but-
tons and scripts” on page 387.

Selecting nodes
To view or change details of a variable or other object in a diagram, you must first select
a node (or a set of nodes). You do this in much the same way as you select files or fold-
ers in the Windows File Browser, and most other applications:

To select a node Simply click a node once to select it. Selected node(s) are highlighted with reverse color
in browse mode, or with handles (little corner squares) in edit mode.

You can also press the Tab key to select a node. Each time you press Tab, it selects the
next node in the diagram, in the order the nodes were created. Control+Tab cycles
through the nodes in the reverse sequence.

To select multiple
nodes

Click a node while pressing the Shift key to add it to the set of selected nodes. You can
remove a node from the selection by clicking it again while pressing Shift.

In edit mode, you can also select a group of nodes by dragging the selection rectangle
to enclose them. Press the mouse button in a corner of the diagram — say top left —
and drag the cursor to the opposite corner — say bottom right. This will show the selec-
tion rectangle and select all nodes within the rectangle.

Chapter Examining a Model

20 Analytica User Guide

1 The toolbar

To deselect all nodes Just click the background of the diagram outside any node.

The toolbar
The toolbar appears across the top of the Analytica application window. It contains but-
tons to open various views of the model, and to change between browse and edit
modes.

Navigation toolbar The first five buttons on the toolbar each open a window relating to the variable or the
object selected in the active (frontmost) window:

Parent Diagram button: Click to open the Diagram window for the module or model
containing the object in the current active Diagram, Object, or Result window. It high-
lights the object you were viewing in the parent diagram. If you are viewing the top-level
model, which has no parent, this button is grayed out. The keyboard shortcut is F2.

Outline button: Click to open the Outline window. The outline highlights the object you
were previously looking at. See “The Outline window”. The keyboard shortcut is F3.

Object button: Click to open the Object window for the selected node in a diagram or
the active module. See “The Object window”The keyboard shortcut is F4.

Result button: Click to open a Result window (table or graph) for the selected variable
(see “The result window”). This button is grayed out if no variable is selected. If you
have selected more than one variable, it will offer to create a compare variable that
shows a result combining the values of all the variables. The keyboard shortcut is Con-
trol+r or F5.

Definition button: Click to view the definition of the selected variable. If the variable is
defined as a probability distribution or sequence, it opens the function in the Object
Finder (see “Object Finder dialog”); if the variable is an editable table (edit table, sub-
table, or probability table), it opens the Edit Table window (see “Viewing an array as an
edit table”). Otherwise, an Attribute panel (see “The Attribute panel”) or an Object win-
dow (see “The Object window”) opens, depending on the Edit Attributes setting in the
Preferences dialog box (see “Preferences dialog”.) This button is grayed out if no vari-
able is selected. The keyboard shortcut is Control+e or F6.

Edit buttons These three buttons control your mode of interaction with Analytica. The shape of the
cursor reflects which mode you are in:

Browse tool: Lets you navigate a model, compute and view results, and change inputs.
It will not let you change other variables. See “Browse mode”.

Edit tool: Lets you create new objects, and move and edit existing objects. See “Creat-
ing and editing nodes”.

 Analytica User Guide 21

Chapter Examining a Model1 Browsing with input and output nodes

Arrow tool: Lets you draw arrows (influences) between nodes on a diagram. See
“Drawing arrows”.

Tip If the model is locked as browse-only, or if you are using the Player or Power Player
edition of Analytica, only the browse tool is available.

Browsing with input and output nodes
When you open a model with input and output nodes, the top-level Diagram window
may look like this (instead of an influence diagram):

You can change the values in the input nodes directly. The output node, Net present
value, shows a Calc button. Click it to compute and see its value. Double-click the
Model details node to open up a diagram showing details of the model (the influence
diagram shown above).

Browse mode
An existing model opens in browse mode. In browse mode, the browse tool button is
highlighted in the navigation toolbar, and the cursor looks like this .

In the browse mode, you can change input node values, view output node results, and
examine the model by opening windows to see more detail.

Viewing input nodes
An input field lets you see a single number or text value. Click in the box to edit the
value. If it’s a text value, you must put matching quotes around it (single or double).

Output node

Input nodes

Hand tool is highlighted
to show that you are

browsing

Chapter Examining a Model

22 Analytica User Guide

1 The Object window

A pulldown menu lets you choose from a menu of alternatives. Press the menu to see
the alternatives.

Click the button to open a list of values, usually defining an Index. To change a value,
click in its cell. For more about lists, see “Editing a list”.

Click to open an edit table showing an editable array with one or more dimensions dis-
played as a table. For more, see “Editing a table”.

Click to view and edit a probability distribution in the Function Finder. For more, see
“Probabilistic calculation”.

Viewing output node values
Click the Calc button to compute and display the value of this output variable. When
computing is complete, it will show a number in this node, or, if it’s an array, it changes
to the Result button and opens a Result window showing a table or graph. See
Chapter 2, “Result Tables and Graphs” for more.

The Result button shows that an array has been calculated. Click it to open a Result
window showing a table or graph. See Chapter 2, “Result Tables and Graphs” for more.

Opening module details
To see the structure of the model, double-click the module Model details, to display its
diagram window (see “The Object window”).

The Object window
The Object window shows the attributes of an object. All objects have a class and
identifier — a unique name of up to 20 characters. A variable also has a title, units,
description, definition, inputs, and outputs:

To open an Object
window

Here are some ways to open the Object window for an object X:

Double-click an input
or output to open its

Object window

Class menu Identifier

Expressions
popup menu (see

page 120)

Editable field

 Analytica User Guide 23

Chapter Examining a Model1 The Attribute panel

• Double-click X in a Diagram window (see page 22).

• Select X in its Diagram window and click the Object button in the navigation
toolbar.

• Double-click the entry for X in the Outline window (see “The Outline window”).

• If a Result window for X is displayed, click the Object button in the navigation
toolbar.

• Double-click X in the Inputs or Outputs list of a variable in an Object window.

Returning to the
parent diagram

Click the Parent Diagram button in the navigation toolbar to see the diagram that con-
tains this node, with the node highlighted.

The Attribute panel
The Attribute panel offers a handy way to rapidly explore the definitions, descriptions,
or other attributes of the variables and other nodes in a Diagram window. You can open
the panel below the diagram, and use it to view or edit any attribute of the node you
select. It shows the same attributes that you can see in the Object window, and often
several other attributes.

Click the key icon to open the Attribute panel. Here are things you can do in it:

Select node to
see its attribute

below

Title of the
selected object

Value of the
attribute

Attribute menu from
which you select the
attribute to show

Drag
partition to
change
panel height

Key icon is open

Drag box to
change
panel
height and
diagram
width

Chapter Examining a Model

24 Analytica User Guide

1 Showing values in the Object window

• Select another node in the diagram to see the selected attribute of a different
object.

• Click the background of the diagram to see the attributes of the parent module.

• Select another option from the Attribute menu to see a different attribute.

• To enter or edit the attribute value, make sure you are in edit mode, and click in the
attribute panel, and start typing. (Not all attributes are user-editable.)

Different classes of objects have different sets of attributes:

If you try to see an attribute not defined for an object, it will show its description.

See the “Glossary” for descriptions of these attributes. To display other attributes or to
add new attributes, see “Managing attributes”.

To close the Attribute panel, click the key icon again,.

Showing values in the Object window
When reviewing a model and trying to understand how it works, it is useful to show the
value of a variable and its inputs in the object window. To switch on this option, select
Show with Values from the Object menu. The Object window for a variable then
shows the mid (deterministic) value of the variable and each of its inputs:

 Analytica User Guide 25

Chapter Examining a Model1 Printing

Atom and array
values

If a value has not yet been calculated, it shows a Calc button. Click to compute it. If the
resulting value is an atom — a single number or text value, not an array — it shows the
value in the Object window, as above. If the value is an array, it shows instead a Result
button , which you can click to compute and display the array in a separate
Result window.

For more about the Result window, see Chapter 2, “Result Tables and Graphs.”

Printing
To print the contents of an active window — Diagram, Outline, Object, Result Table or
Graph — select Print from the File menu. Selecting Print Setup on the File menu can
then set printing options such as page orientation, paper size, or scaling. Any print set-
tings that you specify are associated only with the window that was active when you
selected Print Setup.

Previewing page
breaks before

printing

When you select the Print preview command on the File menu, it displays a Preview
window to show what will be printed and where page breaks will occur. You can adjust
print settings such as scaling until you get the desired page breaks. When previewing a
result table or graph, you can toggle the option for showing or hiding the index variable
titles.

When viewing a diagram, outline, or Object window, page breaks can be viewed while
working by enabling Show Page Breaks on the Window menu.

Scaling printouts You can adjust the magnification of your printouts using the Print Setup command on
the File menu, or by using the Setup button on the Print Preview window, in two ways:

• Adjust to p % of normal size: p<100% to shrink output. p>100% to enlarge it.

• Fit to n page(s) wide by m page(s) tall: Shrinks the output to fit on the specified
pages. It preserves aspect ratio. It does not enlarge, so the actual number of pages
printed may be less than n x m.

List of inputs, with
units and values

Value of
selected variable

Chapter Examining a Model

26 Analytica User Guide

1 Printing

Printing the
background

There is a check box on the Print Setup window for controlling whether a diagram's
background color is printed. By not printing the background color, one can save on ink
or toner. Whether the background is printed or not is controlled by the Print influence
diagram background color check box. By default, it does not print the background.

Printing multiple
windows

To print the contents of several windows into a single document, use the Print Report
command in the File menu. It uses the print settings set in Print settings for each win-
dow.

Check Print outline (all objects) to print a list of all objects in the model, each in its
parent module, indented to show the module hierarchy.

Check Print outline (modules only) to print a list of all modules (including libraries and
form nodes), indented to show the module hierarchy.

Settings to
magnify or shrink

print output

Check box to print
the background

color for influence
diagrams

Diagram window
printing options

Result window
printing options

Object window
printing options

Chapter 2 Result Tables
and Graphs

This chapter shows you how to:

• View Result windows as graphs or tables

• Rearrange or pivot results, exchanging rows and columns, or
graph axes and keys, and slicer dimensions.

• Select an uncertainty view to display probabilistic results.

• Compare two or more variables in the same table or graph.

Chapter Result Tables and Graphs

28 Analytica User Guide

2 The result window

The result window
When you open the Result window for a variable, it computes its value if it hasn’t previ-
ously cached it, and displays it. If the value is an array or a probability distribution, you
can display it as a table or graph. Here is a Result window with a table and equivalent
graph:

To open a result
window

Click the variable node in its influence diagram to select it, and do one of these:

• Click the Result button in the toolbar, or press key Control+r.

• Select Show Result from the Result menu.

• Select an uncertainty view option, such as Mid Value, Mean Value, or
Cumulative probability, from the Result menu.

• In the Attribute panel below a diagram, select Value or Probvalue from the
Attribute menu, and click the Calc or Result button.

To open a Result window for an output node, simply click its Calc or Result button.

Result controls The Result controls, in the upper left corner of the Result window include:

Press the Uncertainty View popup menu, to select how to display an uncertain quan-
tity. See “Uncertainty views”.

Click this button to display the result as a table.

Click this button to display the result as a graph.

Uncertainty View
popup menu

Table view
Graph view

Index selection area
Result controls

 Analytica User Guide 29

Chapter Result Tables and Graphs2 The result window

Toggle between the table and graph views using the Table View and Graph View but-
tons.

Index selection
The Index selection area is the top part of a Result window. For a table, it shows which
index goes down the rows, and which across the columns. For a graph, it shows which
index is on the X axis (and sometimes Y axis) and which is in the key. For either view, if
the array has too many dimensions to display directly, it also shows slicers that select
the values of the extra indexes. Each control has a popup menu to let you exchange
indexes and rearrange (pivot) the view:

The index selection area of a graph or table contains these items (example variables
and indexes in the following text refer to the figure above):

Title Shows the uncertainty view (Mid, Mean, etc.), the title of the variable, and its units, e.g.,
Mid Value of Costs of buying and renting ($).

Slicer index The title, units, and value of any index(es) showing dimensions not currently displayed
in the table or graph.

Slicer menu Press for a popup menu from which you can change the slicer value for the results
displayed.

Slicer stepper arrows Click or to cycle up or down through the slicer values.

Row or key index Shows the title of the index displayed down rows for a table, or in the color key for a
graph. Press to open a menu from which you can select another index:

Column or X axis
index

Shows the title of the index displayed across the columns for a table, or along the X
(horizontal) axis for a graph. Press to open a menu from which you can select another
index.

XY button Click to be able to plot this variable against one or more other variables, or to plot
one slice of this variable against another slice. See “XY comparison” on page 105.

Totals check boxes Check a box to show row or column totals the table view. If you check Totals for an
index and then pivot it to be a slicer index, "Totals" will be its default slicer value. This
lets you show total values over the slicer index in the graph or table.

Check totals for
row or column

Title of the result

Row or Column or

Slicer index for
third or higher

dimensions

X-Y buttonSlicer Slicer

key index X axis index

menu value steppers
Slicer

Popup menu

Chapter Result Tables and Graphs

30 Analytica User Guide

2 Viewing a result as a table

The default view
When you first display a result for a variable, by default, it displays it as graph, if possi-
ble, and otherwise as a table. You can change this default in the Default result view in
the Preferences dialog box (see “Preferences dialog”).

When you display the Result window again, it uses all the options you last selected
when you viewed this variable, including table versus graph, uncertainty view, index piv-
oting and slicer values, and any graph settings.

Recomputing results
If you change a predecessor of a variable shown in a Result window, the table or graph
disappears from the window and is replaced by a Calculate button.

Click Calculate to compute and display the new value.

Viewing a result as a table
Toggle to table view If a result window shows a graph, click on the top left to toggle to table view.

The index display options depend on the number of dimensions in the variable.

Row index (down) Use this menu to select which index to display down the rows of the table. Select blank
to display a single row.

Column index Use this menu to select which index to display across the columns of the table. Select
blank to display a single column.

Slicer index(es) If the array has more than two indexes, the extra index(es) are shown as Slicer menus.
The table shows values only for the slice (subarray) setting the slice index to the shown
slicer value. Open the slicer menu select a different slicer value, or click or

to step through the slicer values.

Formatting numbers To specify the format for the numbers in a table or along the Y (usually vertical) axis of a
graph, show the graph and select Number Format from the Result menu, or press

Three-dimensional table

Result controls
(see page 28)

Index
selection
area
(see page 29)

Row index

Column index

Slicer index

 Analytica User Guide 31

Chapter Result Tables and Graphs2 Viewing a result as a graph

Control-b. The Number format dialog offers many options, including currency signs,
dates and Booleans. See “Number formats” for details.

Viewing a result as a graph
Toggle to graph view If a result window shows a table, click on the top left to toggle to graph view.

The y axis, usually vertical, plots the values of the variable. The x axis, usually horizon-
tal, shows the value of a selected index. The index display options depend on the num-
ber of dimensions in the variable:

X axis If the array has more than one index, use this menu to select which index to display
along the x axis (usually horizontally).

Key index If the array has more than one index, use this menu to select which index to display in
the key, usually showing each value by color.

Slicer index(es) If the array has more indexes than you can assign graphing roles (such as x axis or
key), the extra indexes are shown as Slicer menus, as in a table view. The graph shows
values only for the slice (subarray) setting the slice index to the shown slicer value.
Open the slicer menu select a different slicer value, or click or to step
through the slicer values.

To reorder slicers If the graph has more than one slicer index, you can reorder the slicer indexes simply by
dragging one up or down.

Graph setup options There are a rich variety of ways to customize the graph, including line style (lines, data
points, symbols, barcharts, stacked bars, thickness, transparency), axis ranges, log or

x axis
key

Result controls
(see page 28)

Index selection area
(see page 29)

y axis

Chapter Result Tables and Graphs

32 Analytica User Guide

2 Uncertainty views

inverted axes, grid and tickmarks, background colors, and font color and size. To
change these settings, open the Graph Setup dialog:

• Select Graph Setup from the Result menu, or

• Double-click anywhere on a graph in the Result window.

See “Graph setup dialog box” for details.

Uncertainty views
Every variable has a certain or deterministic value, which we term its mid value. Some
variables, notably chance variables and variables that depend on chance variables,
may also have an uncertain (probabilistic) value, which we term a prob value. A mid
value is computed using the mid value of each variable it depends on or the median of
any probability distribution. The mid value of a result is not necessarily the median of its
probability distribution, but usually close.

The Result window offers a Mid value and six uncertainty views as a way to visualize
a prob value. You can select the uncertainty views from a menu in the top-left corner of
a Result window. Or you may select a variable, and select an uncertainty view option
from the Result menu:

The check mark indicates the currently selected view.

Here we illustrate each uncertainty view using the chance variable,
Rate_of_inflation, defined as a normal distribution with a mean of 2.5 and a stan-
dard deviation of 1:

Chance Rate_of_inflation := Normal(2.5, 1)

Mid value The deterministic value, computed by using the median instead of any input probability
distribution. It is computed very quickly compared to uncertain values. It is the only
option available for a variable that is not probabilistic:

Uncertainty View popup menu

Currently selected
uncertainty view option

Result menu uncertainty
view options

 Analytica User Guide 33

Chapter Result Tables and Graphs2 Uncertainty views

Tip A mid value is much faster to compute than a prob(abilistic) value, since it doesn’t use
Monte Carlo simulation to compute a probabilistic sample. It is often useful to look first
at the mid value of a variable as a quick sanity check. Then you might select an
uncertainty view, which will cause its prob value to be computed if it has not already been
cached.

Mean value An estimate of the mean (or expected value) of the uncertain value, based on the ran-
dom (Monte Carlo) sample.

Statistics A table of statistics of the uncertain value, usually, the minimum, median, mean, maxi-
mum, and standard deviation, estimated from the random sample. You can select which
statistics to show in the Statistics tab of the Uncertainty Setup dialog from the Result
menu (see “Statistics option”).

Chapter Result Tables and Graphs

34 Analytica User Guide

2 Uncertainty views

Probability bands An array of percentiles (fractiles) estimated from the random sample, by default the 5%,
25%, 50%, 75%, and 95%iles. You can select which percentiles to show in the Proba-
bility bands tab of the Uncertainty Setup dialog from the Result menu (see “Statistics
option”).

Probability density Select probability density to display the uncertain distribution as a probability density
function (PDF).

For a probability density function, it plots values of the quantity over the X (usually hori-
zontal) axis, and probability density on the Y (vertical axis). Probability density shows
the relative probability of different values. High values show probable regions; low val-
ues show less probable regions. The peak is the mode, the most probable value. If the
density is zero, it is certain that the quantity will not have values in that range.

Probability mass
function

If you select Probability density for a discrete variable, it actually displays the variable
as a probability mass function (PMF) in a bar graph with the height of each bar indicat-
ing the probability of that value:

 Analytica User Guide 35

Chapter Result Tables and Graphs2 Uncertainty views

Usually, it figures out whether to use a probability density or mass function. Very rarely,
you may need to tell it the domain is discrete. See “The domain attribute and discrete
variables”. See “Is the quantity discrete or continuous?”and “Probability density and
mass graphs” for more about the distinction between discrete and continuous distribu-
tions.

Cumulative
probability

The cumulative probability distribution (CDF) plots the possible values of the uncertain
quantity along the X (usually horizontal) axis. The Y value (usually height) of the graph
at each value of X shows the probability that the quantity will be less than or equal to
that x value. The CDF must start at a probability of 0 on the extreme left and increase to
a probability of 1 on the extreme right, never decreasing.

The steeper the curve, the more likely the quantity will have a value in that region. The
PDF is the slope (first derivative) of the CDF. Conversely, the CDF is the cumulative
integral of the PDF.

Sample A sample is an array of the random values from the distribution generated by the Monte
Carlo sampling process. The sample is the underlying form used to represent each

Chapter Result Tables and Graphs

36 Analytica User Guide

2 Comparing results

uncertain quantity. All the other uncertainty views use statistics estimated from the sam-
ple. The sample view gives more detail than you usually want. You will likely want to
view it mainly when verifying or debugging a model.

Like any other graph, you can display a sample as a table by clicking to see the
underlying numerical values:

The precision of these estimates depends on the sample size and the sampling
method. A larger sample size gives higher precision and takes more time and memory
to compute. You can modify the sample size and sampling method in the Uncertainty
setup dialog from the Result menu. See “Uncertainty Setup dialog box”“Selecting the
Sample Size”.

Comparing results
It’s easy to compare directly two or more variables in one table or graph:

1. Select the variables together in the diagram, using Shift+click to add each to the
selection, or dragging a selection rectangle around them:

 Analytica User Guide 37

Chapter Result Tables and Graphs2 Comparing results

2. Click in the navigation toolbar, or press Control+r.

3. Click OK in the confirmation dialog.

This creates a new variable with a default identifier, Compare1, with a list of the selected
variables:

Chapter Result Tables and Graphs

38 Analytica User Guide

2 Comparing results

The result of Compare1 is a graph containing an index containing the titles of the vari-
ables being compared. This index is Self index of the Compare1. It also includes all the
indexes of the array variables being compared — in this case, Time and Buying Price:

This helps clarify how the interest payments reduce (become less negative) as the prin-
cipal payments on the mortgage increase (become more negative).

Chapter 3 Analyzing Model
Behavior

This chapter shows you how to perform a parametric analysis on
a model by:

• Selecting variables as parameters

• Specifying alternative values for the parameters

• Examining the results

Chapter Analyzing Model Behavior

40 Analytica User Guide

3 Varying input parameters

A potent source of insight into a model is examining the behavior of its outputs as you
systematically vary one or more of its inputs. This technique is called model behavior
analysis. Each input that you vary systematically is called a parameter, and so this
technique is also known as parametric analysis. Analytica makes it simple to analyze
model behavior in this way. All you have to do is to assign a list of alternative values to
selected input parameter. When you view the result of any output, Analytica computes
and displays a table or graph showing how the output values vary for all combinations of
the input values.

This chapter describes how to select variables as parameters, how to specify alterna-
tive values for the parameters, and how to examine the results.

Varying input parameters
The first step in analyzing model behavior is to select one or more input variables as
parameters and to assign each parameter a list of possible values.

Which inputs to vary? You can vary any numerical input variable of your model, including decision and chance
variables. Often you will want to vary each decision variable to see which value gives
the best results according to the objectives. You may also want to vary some chance
variables to see how they affect the results. It is often best to look first at the decision or
chance variables that you expect to have the largest effect on the model outputs. In
complicated models, you may want to start with an importance analysis, to identify
which chance variables are likely to be most important. (See Chapter 16, “Statistics,
Sensitivity, and Uncertainty Analysis”.) You can then select the most important variables
as the parameters to vary to analyze model behavior.

How many values to
assign?

Usually it is best to assign a list of three alternative values to each parameter — a low,
medium, and high value. In some cases, two values may be sufficient. If you have a
special interest in a particular parameter (for example, if you suspect it may have a
strongly nonlinear effect) you may want to assign more than three values to examine in
more detail the model behavior as the parameter varies. Naturally, the computation time
increases with the number of values.

Creating a list Change the definition of each parameter to a list, thus:

1. Select the variable by clicking its node in the influence diagram.

2. Display the variable’s definition by clicking the Definition button in the tools palette,
or press Control+e.

3. Click the Expressions popup menu above the definition and select the List option.
(Do not select the List of Labels option.)

 Analytica User Guide 41

Chapter Analyzing Model Behavior3 Varying input parameters

4. A dialog box asks for confirmation. Click OK.

It displays a list with one item, containing the old definition of the variable.

5. Click the item to select it.

6. Type in the lowest value for the variable.

7. Press Enter and type in the next value.

8. Repeat step 7 until you have all the values you want.

Tip When you add an item to a list of two or more numbers, it uses the increment between
the last two numbers to generate the next. If the last two values are 10 and 20, it offers
30 as the next.

For details on how to edit a list, see “Editing a list” on page 165.

If you want to create a list of successive integers, use the ".." operator, for example:
Decision Year := 2000 .. 2010

If you want to create a list of evenly spaced numbers, use the Sequence(x1, x2, dx)
function, for example:

Decision Quarters := Sequence(2000, 2010, 025)

See “Sequence (start, end, stepSize)” on page 166).

How many inputs to
vary

Typically you should start a model behavior analysis by varying just one input variable,
the one you expect to be most important. Vary additional variables one at a time, in
order of their expected importance. If a variable turns out to have little effect, you may
restore it to its original value or probability distribution. If you have many inputs whose

New one-element list

Chapter Analyzing Model Behavior

42 Analytica User Guide

3 Analyzing model behavior results

effects on model behavior you would like to explore, vary just a few at a time, rather
than trying to vary them all simultaneously.

Each parameter that you vary becomes a new dimension of your output result array.
The computation time and memory needed increase roughly exponentially as you add
parameters. Moreover, you may find it hard to interpret an array with more than three or
four dimensions. Remember that the goal is to obtain insight into what affects the model
behavior and how.

Analyzing model behavior results
Once you have assigned a list to one or more inputs, you can examine their effect by
viewing the result on an output variable. If your model has an objective, you might start
by looking at that variable.

1. Select the variable you wish to view by clicking its node in the diagram.

2. View the result by clicking the Result button in the navigation toolbar. The
result displays as a table or graph.

The result is an array with a dimension for each input parameter that you have varied (in
this example, Buying price and Appreciation rate). If an input parameter does not
appear as a dimension of the result, it implies that the result variable does not depend
on the input. The result may also have other dimensions that are not input parameters
you have varied — for example, Time for a dynamic model.

It is generally easiest to look first at the result graph to see the model’s general behav-
ior. You need to look only at the result table if you want to see the precise numerical val-
ues. If you are varying more than one input parameter, try rearranging the dimensions
(see “Index selection”) to get additional insights into model behavior.

 Analytica User Guide 43

Chapter Analyzing Model Behavior3 Analyzing model behavior results

Understanding
unexpected behavior

If you find the model’s behavior unexpected or inexplicable, you may want to look more
deeply into how the behavior arises. An easy way to do this is simply to look at the
results for other variables between the input(s) and the output(s) in which you’re inter-
ested. You can work forwards from an input towards the output, or backwards from the
output towards the inputs. Look at the behavior of each intermediate variable, and see if
you can understand why the inputs affect it the way they do.

Typically, the reason for unexpected behavior will quickly become clear to you. It may
be that some intermediate relationship has an effect different from what you expected. It
may turn out that there is an error in a definition. In either case, this kind of exploration
can be very revealing about the model. You may end up improving the model or gaining
a deeper understanding of the system it represents.

Understanding model
behavior

By examining result graphs, you can learn if each input affects the output, if the effect is
linear or non-linear, and if there are interactions among inputs in their effect on the out-
put. Below are some typical graph patterns and their qualitative interpretations.

• A horizontal line shows that changes in the input over the specified range have no
effect on the output.

Result graph
with dimensions

reversed

Chapter Analyzing Model Behavior

44 Analytica User Guide

3 Analyzing model behavior results

• A straight line shows that the output depends linearly on the input — provided that
you have specified more than two different values for the input.

• A bent or curved line shows that there is a nonlinear dependence. (If you have only
two values for the input, the graph will be a straight line even if there is a nonlinear
dependence.)

 Analytica User Guide 45

Chapter Analyzing Model Behavior3 Analyzing model behavior results

Chapter Analyzing Model Behavior

46 Analytica User Guide

3 Analyzing model behavior results

Chapter 4 Creating and Editing a
Model

This chapter shows you how to:

• Create a new model

• Save changes

• Create and edit nodes

• Draw arrow connections between nodes

• Create aliases

Chapter Creating and Editing a Model

48 Analytica User Guide

4 Creating and saving a model

Creating and saving a model
To start a new model Start Analytica like any Windows application: Select Analytica from the Windows Start

menu or double-click the Analytica application file. It opens a new, untitled model.

If you are already running an Analytica model, you can also select New Model from the
File menu. Since once instance of Analytica can’t run two models at once, it first
prompts you to save the existing model, if you have changed it.

The model Object
window

The model Object window shows information about the model, such as the author(s),
and creation and save dates; it also includes space for a description of the model’s pur-
pose.

When you start a new model, it displays the Object window for the new model, initially
untitled. First, enter a title, description, and possible name yourself in the Author
attribute:

When you have entered a title and other attributes into the Model object window, bring
the Diagram window to the top:

• Click the Parent Diagram button, or

• Click anywhere in the Diagram window behind the Object window.

You are now ready to draw an influence diagram for the new model.

Creating and editing nodes
To begin editing a diagram, if you are not already in edit mode, click the edit tool .
This displays the node toolbar as an extension of the navigation toolbar:

Attributes

Blank Diagram window

 Analytica User Guide 49

Chapter Creating and Editing a Model4 Creating and editing nodes

For a description of each node shape (or class), see “Classes of variables and other
objects”.

Create a node To create a new node, press the node class you want in the node toolbar and drag it to
the location you want in the diagram. You can then type a title into the new node.

Edit a node title To edit the title of a node (in edit mode) click it once to select the node; then click its title.
(Pause momentarily between mouse clicks to prevent them being interpreted as a dou-
ble-click, which would open the node’s Object window.) Then type in a new title to
replace the old one. Or click a third time to put a cursor into the existing title where you
can add text.

Click a node once to selects it, showing its handles — small black squares at its cor-
ners:

Nodes

Selected node

Node toolbar
The edit tool is

highlighted to show
that it is selected

The node toolbar is displayed
when either the edit tool or
arrow tool is selected.

Ch
an

ce

Va
ria

bl
e

De
cis

io
n

O
bj

ec
tiv

e

In
de

x

Fu
nc

tio
n

M
od

ul
e

Co
ns

ta
nt

Te
xt

Bu
tto

n

You can edit the title when
The node is resizedthe node looks like this

 to fit the text

Chapter Creating and Editing a Model

50 Analytica User Guide

4 Creating and editing nodes

After editing the title, click outside the node (or press Tab or Alt-Enter) to accept the new
title. If the node is too small for the title text, it expands the node vertically to fit. It can
accept a title of up to 128 characters, but it’s usually best not to have titles longer than
about 40 characters.

Identifiers and titles Every node has a unique identifier of up to 20 characters. Formulas in the definition of
a variable or function refer to other variables or functions by their identifier. The title is
usually longer. It is used for node labels in the diagram and other places for your conve-
nience as the model builder or end user.

By default, when you create a node, it forms an identifier for the node from its title, con-
sisting of the first 20 characters of the title, using underscore ’_’ to replace any charac-
ter that is not a letter or number. If the first character is not a letter, it substitutes ’A’,
because identifiers must start with a letter.

Identifiers must be unique, unlike titles. So, if by chance there already exists an object
with the same identifier, it will append a number to the new identifier to keep it unique.

If you want, you can edit an identifier directly in the Object window or attribute panel,
like any other user-editable attribute.

If you edit the title again, by default, it will ask if you want to change the identifier to
match the new title. Usually, it’s simplest to have them match. But, sometimes you may
want to retain the original identifier. You can switch off this default behavior by uncheck-
ing Change identifier when title changes in the Preferences dialog from the Edit
menu. (See “Change identifier”).

When you, or Analytica, change an identifier, it automatically updates any definitions
that refer to it to use the new version, to keep the model consistent.

Select a node To select a node, single-click it. Handles indicate that you have selected the node. To
deselect a selected node, click anywhere outside of it.

To select or deselect multiple nodes, press and hold the Shift key while selecting the
nodes. You can also select a group of nodes by dragging a rectangle around them.
Move the cursor to a corner of the diagram (not in a node), press the mouse button, and
drag the mouse to draw a rectangle. When you release the button, all the nodes com-
pletely inside the rectangle are selected.

Move a node To move a node, click the mouse in the node (not on a handle), and drag the node to
where you want it.

You can also adjust node positions using the arrow keys (up, down, left, right). By
default, each arrow press moves the node by 8 pixels. If you uncheck Snap-to-grid in
the Diagram menu, each arrow press moves it by a single pixel.

Move a node to
another module

Simply drag the node onto the module until the module becomes highlighted. When you
release the mouse button, the node moves into the module. It will have the same loca-
tion in the diagram of the new module that it previously had in the old one.

Alternatively, double-click the module to open its diagram window. Move the diagram
windows so both you can see both the node and the new diagram. Then drag the node
to the desired location in the new diagram.

handles

 Analytica User Guide 51

Chapter Creating and Editing a Model4 Drawing arrows

Change the size
of a node

Click the node to show its handles. Then drag a handle until the node is the size you
desire. By default, it fixes the center of the node at the same location, and expands or
contracts its four corners. This keeps node centers aligned with the grid. If you want to
move one corner, leaving the opposite corner fixed, uncheck Resize Centered in the
Diagram menu.

Delete a node Select the node(s) and choose Clear from the Edit menu, or press the Delete key. It will
ask you to confirm your intention because deleting cannot be undone. Sometimes it is
better to create a module and title it Trash. (There is a Trash library with a suitable icon.)
Then you can drag nodes into it — and still retrieve them just in case.

Cut, copy and
paste nodes

You can use the standard Cut (Control+x), Copy (Control+c), and Paste (Control+v)
commands from the Edit menu on one or a collection of nodes. Initially, the copies are
identical except it appends a number to the identifiers to make them unique.

If you cut a node, you can paste it just once. If you copy a node you can paste it as
many times as you wish.

Duplicate nodes Select the node(s) and choose Duplicate Nodes from the Edit menu (or press Con-
trol+d). This is equivalent to using Copy and Paste, without writing to the clipboard.
Duplicating a node creates a new object identical to the original, adding a number to its
identifier to make it unique and located below and to the right.

Duplicating a set of nodes retains the same relationships among the duplicated nodes
as exists among the origin nodes. For example, suppose you have three variables:

Variable X := 100

Variable Y := X^2

Variable Z := X + Y

If you duplicate Y and Z, but not X, you will get two new variables:
Variable Y1 := X^2

Variable Z1 := X + Y1

Note that it appends "1" to the identifiers to make them distinct from their original nodes.
And that the definition of Z1 refers to the unduplicated X and the duplicated variable Y1.

Drawing arrows
Use the arrow tool to draw or remove arrows (influences) between variable nodes.
Drawing an arrow from variable or function A to B puts A in the list of inputs of B. This
makes it conveniently available to select from the inputs menu when creating or editing
the definition of B (see “Creating and Editing Definitions”).

Draw an arrow To draw an arrow, first click the arrow icon in the toolbar to select the arrow tool. In
arrow mode, the cursor changes to this arrow icon when over a diagram window.

1. Drag from the origin node (which highlights) to the destination node (which also
highlights).

2. Release the mouse button, and it draws the arrow.

To speed up drawing arrows from multiple nodes to a single destination, select all the
origin nodes. Then drag from any origin node to the destination node. When you
release the mouse, it draws arrows from all the origin nodes.

Chapter Creating and Editing a Model

52 Analytica User Guide

4 Drawing arrows

Tip Some arrows are hidden. They do not appear even when you try to draw them. For
example, by default arrows to and from indexes and functions are not shown. See
“Diagram Style dialog” on page 81 and “Node Style dialog” on page 82 to change these
settings.

To remove an arrow • Click the arrow to select it, then press the Backspace or Delete key, or

• Just redraw the arrow from the origin node to the destination node. If the origin
variable is used in the definition of the destination, it will ask if you really want to
remove it.

Tip When you enter or edit a definition, Analytica automatically updates the arrows into the
variable to reflect those other variables that it mentions (or does not mention). See
“Creating or editing a definition”.

Influence cycle
or loop

An influence cycle occurs when a variable A depends on itself directly, where A → A,
or indirectly so that the arrows form a directed circular path, e.g., A → B → C → A.

If you try to draw arrows that would make a cycle, it will warn and prevent you. The
exception is if at least one of the variables in the cycle is defined with the Dynamic func-
tion, and contains a time-lagged dependence on another variable in the cycle, shown as
a gray arrow (see Chapter 17, “Dynamic Simulation”).

Arrows linking to
module nodes

When there are arrow between variables in different modules, they are reflected by
arrows to and from the module nodes:

Arrow from module to
variable

Arrow from variable
to module

The arrow tool is
highlighted to show

that it is selected

 Analytica User Guide 53

Chapter Creating and Editing a Model4 How to draw arrows between different modules

Arrows between variable and module nodes:

How to draw arrows between different modules
You may draw arrows between variables in different modules, either directly (if both dia-
gram windows are visible on screen, or indirectly. Here a several methods. Suppose
you want to draw an arrow from the variable Buying price to the variable Mortgage
loan amount in another module:

Arrow from variable node to variable node

Arrow from variable node to module node

Arrow from module node to variable node

Arrow from module node to module node

Double-headed arrow between module nodes

Small arrowhead to the right or left of a variable node

Indicates that the target variable
depends on the origin variable.

Indicates that at least one variable in the
target module depends on the origin variable.

Indicates that the target variable depends on
at least one variable in the origin module.

Indicates that the target module contains at
least one variable that depends on at least
one variable in the origin module.

Indicates that each module contains at least
one variable that depends on at least one
variable in the other module.

Indicates that the variable has a remote input
or output — a variable that is not inside the
displayed variable’s module (see “Seeing
remote inputs and outputs”).

input arrow output arrow

Chapter Creating and Editing a Model

54 Analytica User Guide

4 How to draw arrows between different modules

Draw arrow
across windows

1. Open the two Diagram windows and arrange them so that both origin and
destination nodes are visible on screen at the same time.

2. In arrow mode , press on the origin node, Buying price, so that it highlights.
Drag an arrow to the destination node, Mortgage loan amount, which also
highlights. Release the button.

If, as in this case, the destination module appears in the origin diagram, the arrow points
from the origin node Buying price to the destination module Cost to Buy; a small
arrowhead appears on the left edge of destination node Mortgage loan amount show-
ing that it has an input node from another diagram:

Move nodes to same
diagram to link them

A second method is to move one of the nodes into the diagram containing the other.
Then you simply draw an arrow between them. Finally, you move the node back to the
diagram it came from. This may be convenient if you have large diagrams and a small
screen so that they are hard to arrange so that both nodes are visible in different dia-
grams.

Copy or type the
origin into destination

definition

Copy the identifier of the origin variable, open the definition of the destination variable,
and paste it in. (See “Creating or editing a definition”). When the definition is complete
and accepted, it will automatically draw the arrows to reflect the relationships.

Make an alias node in
the other diagram

If the origin node and destination module are in the same diagram, you can draw an
arrow directly between them. This will make an alias node of the origin in the destination

Destination
nodeSource node

Small arrowhead indicates
that this variable has

remote inputs

 Analytica User Guide 55

Chapter Creating and Editing a Model4 Alias nodes

diagram. Then you can simply draw an arrow from the alias to the destination node. You
can use a corresponding method when the origin module and destination node are in
the same diagram. See next section for more.

Alias nodes
An alias is a copy of a node, referring to the same variable, module, or other object as
the original node. It’s often useful to display an alias node in a different module than it’s
original node. For example, if module M1 contains variable X and its inputs, and X has
outputs in another module M2, it is often useful to add an alias of X in M2 to display the
influence of X on its outputs explicitly. This makes it easy to draw arrows from X to or
from other variables in M2.

A variable or other object may have only one original node, but an unlimited number of
alias nodes.

Tip An alias node is identified by its title being shown in italics.

You can create an alias directly with the Make alias command, or indirectly by drawing
an arrow to or from a module node:

Make Alias command Select the original node. Then choose the Make Alias option from the Object menu (or
press Control+m). The alias node appears next to the original node. You can then drag
it into another module.

Draw arrow between
variable and module

Draw an arrow from the original node to a module node, or from a module node to the
original node. This creates an alias in the module. For example, draw an arrow from the
variable Buying price to the module Cost to Buy:

It displays an arrow between the nodes:

Original node

Alias node (title is in italics)

Chapter Creating and Editing a Model

56 Analytica User Guide

4 Alias nodes

Open up the module Cost to Buy to see the new alias:

Draw arrow between
two modules

If you draw an arrow from one module node Cost to Buy to another module Total
Cost,

it creates a new variable node with a default name, such as Va1, in the first module
Cost to Buy, with an alias of Va1 in the second module Total Cost.

An alias is like
its original

An alias looks and behaves like its original node, except the fact that its label is in italics:
You can select it, double-click it to open it Object window, move, resize, edit its label,
and draw arrows to or from it, just like any other node. The alias and original show the
same title: If you edit the title in one of them, it automatically changes in the other.

How alias and
original can differ

On the other hand, the properties of the node — rather than the object that it depicts —
may differ between the original and its alias: You can modify one node’s location (obvi-
ously) and size, its color (using the Color palette), and its styles (see “Node Style dia-
log”).

Tip If an alias and its original node are in the same diagram, it displays any arrows to or from
only the original node, not the alias. If the alias is in a different module, it displays arrows
connecting it to other nodes in that module, as they would be displayed if it were the
original node.

Input and output
nodes are aliases

Input and output nodes are kinds of alias nodes that have special node style properties.
See “Using input nodes”page 128 and “Using output nodes”.

 Analytica User Guide 57

Chapter Creating and Editing a Model4 To edit an attribute

To edit an attribute
You can edit most attributes of an object directly in the Attribute panel (see “The
Attribute panel”) or in the Object window (see “The Object window”). User-editable
attributes include identifier, title, description, units, and definition. See next section on
how to change class. Some attributes you cannot edit because they are computed,
including inputs, outputs, and value.

To edit an attribute, first display it in the Attribute panel or Object window for the object,
and make sure you are in edit mode. Then:

1. Click in the Attribute field. A blinking text cursor and dotted outline around the
attribute indicate that the attribute is editable.

2. Use standard text-editing methods to edit it: type, copy and paste, and use the
mouse to select text or move the cursor.

3. To save the changes, click anywhere outside the Attribute field, press Enter, or
display another attribute.

Cancel and
undo edits

To cancel changes while editing an attribute, press the Esc (escape) key to revert to the
previous version. Except when editing a definition, click to cancel changes. To can-
cel changes after you have just made and accepted them, select Undo from the Edit
menu (or press Control+z).

Attribute changes All displays of an object use its same attributes: So any change to an attribute will affect
all views that display that attribute. For example, any change to a title appears in other
diagram nodes, object windows, or result views referring to that object by title. Any
change to a definition will cause redrawing arrows to reflect any changes in dependen-
cies.

Chapter Creating and Editing a Model

58 Analytica User Guide

4 To change the class of an object

To change the class of an object
You may press on the class of a variable or module in an object window or attribute
panel to open a popup menu. The options depend on whether the node is a variable or
a module:

To change class, just select another option from the menu. The shape of the node and
other class-dependent properties will change automatically.

Tip You cannot change the class of a function, and you cannot change a variable into a
module, or vice versa.

For more, see “Classes of variables and other objects”.

Module Subclasses
All modules contain other objects, including sometimes other modules. There are sev-
eral different subclasses of module:

Model: is usually the top module in a module hierarchy, and is saved as a separate file
(document with extension .ANA). Any nondefault preferences (see “Preferences dia-
log”) , uncertainty options (see “Uncertainty Setup dialog box”), and graph style tem-
plates are saved with the model, but not other module types.

Module: A collection of nodes that are displayed in a single diagram. A standard mod-
ule contains a set of other nodes, and is usually part of the module hierarchy within a
model or other module type.

Filed module: A module whose contents are saved in a file separate from the model
that contains it. A filed module can be shared among several models, without having to
make a copy for each model. See “Using filed modules and libraries”.

Library: A module that contains functions and sometimes variables. Read-in libraries
are listed in the Definition menu below the built-in libraries, with a hierarchical sub-

Variable classes

Module classes

 Analytica User Guide 59

Chapter Creating and Editing a Model4 Preferences dialog

menu listing the functions they contain, giving easy access. See “Libraries” on
page 345.

Filed library: A library saved in a file separate from the model that contains it. A filed
library can be shared among several models, without having to make a copy for each
model. See “Using filed modules and libraries”

Form: A module containing input and output nodes. You can easily create input and
output nodes in a form node by drawing arrows from their original node to the form (for
inputs) or from the form to the variable for outputs. See Chapter 9, “Creating Inputs and
Outputs”.

Preferences dialog
Use the Preferences dialog to inspect and set a variety of preferences for the operation
of Analytica. All preference settings are saved with the model. To open the Preferences
dialog, select Preferences from the Edit menu.

Windows of each kind Use the options in this box to control how many windows of various kinds are displayed
at once (see “Managing windows”).

Change identifier Use the options in this box to control the changing of identifiers. See “Creating and edit-
ing nodes” for a description of how identifiers are initially assigned.

One only Check this box to close an existing window (if there is one) whenever you
open a new window.

Any number Check this box to keep all windows open until you explicitly close them.

Result windows Enter a value in this field to indicate the number of Result windows that
you can keep open simultaneously. The default (and minimum) number is
2; the maximum number is 20.

Chapter Creating and Editing a Model

60 Analytica User Guide

4 Preferences dialog

Opens These radio buttons control where you view the definition of a selected object, when
you click in the toolbar, press Control+e, or when you choose to edit a variable
from a warning message:

Maintain
Recovery Info

When this checkbox is checked (the default), Analytica saves each change to a recov-
ery file, starting from the last point at which the model was saved. If the application ter-
minates unexpectedly due to a software or hardware problem, the next time you start
Analytica, it detects the recovery file and displays a dialog offering to resume the model
where you left off, including all changes.

The only reason to switch off this option is when you are editing huge edit tables, in
which case, this feature may slow down editing and consume significant disk space for
the recovery file.

Unlike the other preference settings, this is stored as a user setting, and is not stored
with the model.

Tip Even when Maintain Recovery Info is checked, we recommend you save your model at
frequent intervals.

Default result view Select the radio button to specify which view you prefer as the default when you first
display the Result window for a variable (see “The result window”).

If you change the view in a result window, it will use that view next time you open that
result.

When title changes Check this box to change a variable’s identifier whenever you change
its title. Analytica uses up to the number of specified characters (20 by
default, range from 2 to 20), replacing spaces and returns with an
underscore character (_), and omitting anything between
parentheses.
If the box is not checked, the identifier is changed only when you
explicitly edit it.

Ask before renaming Check this box to see a confirmation dialog box before automatic
changing of a variable’s identifier.

Object window Open the Object window and select the definition text (see “The
Object window”.

Diagram Attribute
panel

Open the Attribute panel on the appropriate Diagram window
and select the definition text (see “The Attribute panel”.

 Display result as a table.

 Display result as a graph.

 Analytica User Guide 61

Chapter Creating and Editing a Model4 Preferences dialog

Checkboxes

Check Variable
class

Display a warning if:

• A variable whose class is not Chance contains a probability
distribution.

• A constant depends on another variable (other than indexes
to an edit table).

• An index has a value that is not a one-dimensional array, or
is an array with another index.

Check value
bounds

Evaluate check attributes for variables that have them. See
“Automatic checking for valid values”.

Show undefined Nodes without a valid definition display with cross-hatching:

Flag nodes
w/descriptions

Show a red triangle in their upper right corner of nodes that
have text in their description attribute:

Show module
hierarchy

Show a hierarchy bar at the top of each Diagram window show-
ing its nesting level. See “Show module hierarchy preference”

Show result
warnings

If checked, it stops evaluation and shows a warning message,
when it encounters a warning condition. If unchecked, it contin-
ues without displaying a warning.

Use Return to enter
data

A standard MS Windows keyboard has a Return key located on
the alphanumeric section of the keyboard, and a separate Enter
key located on the numeric keyboard. When this checkbox is
unchecked (the default), the return key starts a new line in a
multi-lined text field (such as a definition) while the Enter key or
Alt-Return signal that the data entry is complete. When
checked, these are reversed, with Enter or Alt-Return starting a
new line and Return completing the entry of data.

Safe Intermediates Analytica ensures that all intermediate arrays generated during
evaluation are fully rectangular. By default this is checked. If
unchecked, some large models — especially those using
dynamic simulation — run faster, sometimes dramatically so.
Very occasionally, unchecking can cause incorrect results. If
speed is an issue, compare results with this box checked and
unchecked. If the values are the same, uncheck this checkbox
to improve performance.

Auto recompute
outgoing OLE links

Analytica automatically recomputes and updates OLE-linked
tables whenever model changes affect them. With large models,
it is sometimes best to uncheck this box to avoid immediate
time-consuming recomputation after each small change. See
OLE linking in “Using OLE to link results to other applications”.

Node is filled with diagonal pattern:
the definition is missing or is
syntactically incorrect

Node is flagged with a red triangle to
indicate that it has a description.

Chapter Creating and Editing a Model

62 Analytica User Guide

4 Preferences dialog

Chapter 5 Building Effective
Models

This chapter shows you how to build models that are:

• Focused

• Simple

• Clear

• Comprehensible

• Correct

Chapter Building Effective Models

64 Analytica User Guide

5 Creating a model

Creating useful models is a challenging activity, even for experienced modelers; effec-
tive use of influence diagrams can make the process substantially easier and clearer.
This chapter provides tips and guidelines from master modelers (including Newton and
Einstein) on how to build a model that is effective, one that focuses on what matters,
and that is simple, clear, comprehensible, and correct. The key is to start simple and
progressively refine and extend the model where tests of initial versions suggest it will
be most important.

Most of the material in this chapter, unlike the other chapters in this guide, is not specific
to Analytica. These guidelines are useful whether you are using Analytica, a spread-
sheet, or any other modeling tool. However, Analytica makes it especially easy to follow
these guidelines, using its hierarchical influence diagrams, uncertainty tools, and Intelli-
gent Arrays.

These guidelines have been distilled from many years of experience by master model-
ers, using Analytica and a variety of other modeling software. However, they are gen-
eral guidelines, not rules to be adhered to absolutely. We suggest you read this chapter
early in your work with Analytica and revisit it from time to time as you gain experience.

Creating a model
Below are general guidelines to help you build models that provide the greatest value
with the least effort.

Identify the objectives What are the objectives of the decision maker? Sometimes the objective is simply to
maximize expected monetary profit. More often there are a variety of other objectives,
such as maximizing safety, convenience, reliability, social welfare, or environmental
health, depending on the domain and the decision maker. Utility theory and multi-
attribute decision analysis provide an array of methods to help structure and quantify
objectives in the form of utility. Whatever approach you take, it is important to represent
the objectives in an explicit and quantifiable form if the objectives are to be the basis for
recommending one decision option over another.

It is a useful convention to put the objective variable or variables (hexagonal nodes) on
the right of the diagram window, leaving space on the left side for the rest of the dia-
gram.

The most common mistake in specifying objectives is to select objectives that are too
narrow, by concentrating on the most easily quantifiable objective — typically, near-term
monetary costs — and to forget about the other, less tangible objectives. For example:

 Analytica User Guide 65

Chapter Building Effective Models5 Creating a model

• When buying software you may want to consider the usability and reliability of
different software packages, as well as long-term maintenance, not just cost and
performance.

• In pricing a product, you may want to consider the long-term effects of increased
market share in developing new customers and markets and not just short-term
revenues.

• In selecting a medical treatment, you may want to consider the quality of life if you
survive the treatment, and not just the probability of survival.

For an excellent guide on how to identify and structure objectives, see Value-Focused
Thinking by Ralph Keeney (Appendix G., “Bibliography”.)

Identify the decisions The purpose of modeling is usually to help you (or your colleagues, organization, or cli-
ents) discover which decision options will best meet your (or their) objectives. You
should aim, therefore, to include the decisions and objectives explicitly in your model.

A decision variable is one that the decision maker can affect directly — which com-
puter to buy, how much to bid on the contract, which medical treatment to choose, when
to start construction, and so on. Occasionally, people want to build a model just for the
sake of furthering understanding, without explicitly considering any decisions. Most
often, however, the ultimate purpose is to make a better decision. In those cases, the
decision variables are where you should start your model.

When starting a new influence diagram, put the decision variables — as rectangular
nodes — on the left of the diagram window, leaving space for the rest of the influence
diagram to the right.

Link the decisions to
the objectives

The decisions and objectives are the starting and ending points of your model. Once
you have identified them, you have reduced the diagram construction to the process of
creating the links between the decisions and objectives, via intermediate variables. You
may wish to work forward from the decisions, or backward from the objectives. Some
people find it easiest to alternate, working inward from the left and the right until they
can link everything up in the middle.

Chapter Building Effective Models

66 Analytica User Guide

5 Creating a model

It helps to identify the decisions and objectives early during model construction, to main-
tain focus on what matters. There may be a bewildering variety of variables in the situa-
tion that may seem to be of potential relevance, but, you only need to worry about
variables that influence how the decisions might affect the objectives. You can ignore
any variable that has no effect on the objectives.

Focus on identifying the variables that make clear distinctions — variables whose inter-
pretations won’t change with time or viewer. Extra effort here will be repaid in model
accuracy and cogency.

Move from the
qualitative to the

quantitative

An influence diagram is a purely qualitative representation of a model. It shows the vari-
ables and their dependencies. It is usually best to create most or all of the first version
of your model just as an influence diagram, or hierarchy of diagrams, before trying to
quantify the values and relationships between the variables. In this way, you can con-
centrate on the essential qualitative issues of what variables to include, before having to
worry about the details of how to quantify the relationships.

When the model is intended to reflect the views and knowledge of a group of people, it
is especially valuable to start by drawing up influence diagrams as a group. A small
group can sit around the computer screen; for a larger group, it is best if you have the
means to project the image onto a large screen, so that the entire group can see and
comment on the diagram as they create it. The ability to focus on the qualitative struc-
ture initially lets you involve early in the process participants who might not have the
time or interest to be involved in the detailed quantitative analysis. With this approach,
you can often obtain valuable insights and early buy-in to the modeling process from
key people who would not otherwise be available.

Keep it simple Perhaps the most common mistake in modeling is to try to build a model that is too com-
plicated or that is complicated in the wrong ways. Just because the situation you are
modeling is complicated doesn’t necessarily mean your model should be complicated.
Every model is unavoidably a simplification of reality; otherwise it would not be a model.
The question is not whether your model should be a simplification, but rather how sim-
ple it should be. A large model requires more effort to build, takes longer to execute, is
harder to test, and is more difficult to understand than a smaller model. And it may not
be more accurate.

“A theory should be as simple as possible, but no simpler.” Albert Einstein

Reuse and adapt
existing models

Building a new model from scratch can be a challenge. If you can find an existing model
for a problem similar to the one you are now facing, it is usually much easier to start with
the existing model and adapt it to the new application. In some cases, you may find
parts or modules of existing models that you can extract and combine to address a new
problem.

 Analytica User Guide 67

Chapter Building Effective Models5 Testing and debugging a model

To find a suitable model to adapt, you can start by looking through the example models
distributed with Analytica. If there is an Analytica users’ group in your own organization,
it may collect a model library of classes of problems of interest to your organization.
You can also check the Lumina wiki for Analytica libraries, templates, and example
models (http://lumina.com/wiki).

“If I have seen further than [others] it is by standing upon the shoulders of
Giants.” Sir Isaac Newton

Aim for clarity and
insight

The goal of building a model is to obtain clarity about the situation, about which decision
options will best further your objectives, and why. If you are already clear about what
decision to make, you don’t need to build a model, unless, perhaps, you are trying to
clarify the situation and explain the recommended decisions for others. Either way, your
goal is greater clarity. This goal is another reason to aim for simplicity. Large and com-
plicated models are harder to understand and explain.

Testing and debugging a model
Even with Analytica, it is rare to create the first draft of a model without mistakes. For
example, on your first try, definitions may not express what you really intended, or may
not apply to all conditions. It is important to test and evaluate your model to make sure it
expresses what you have in mind. Analytica is designed specifically to make it as easy
as possible to scrutinize model structures and dependencies, to explore model implica-
tions and behaviors, and to understand the reasons for them. Accordingly, it is relatively
easy to debug models once you have identified potential problems.

Test as you build With Analytica, you can evaluate any variable once you have provided a definition for
the variable and all the variables on which it depends, even if many other variables in
the model remain to be defined. We recommend that you evaluate each variable as
soon as you can, immediately after you have provided definitions for the relevant parts
of the model. In this way, you’ll discover problems as soon as possible after specifying
the definitions that may have caused them. You can then try to identify the cause and fix
the problem while the definitions are still fresh in your memory. Moreover, you’ll be less
likely to repeat the mistake in other parts of the model.

If you wait until you believe you have completed the model before testing it, it may con-
tain several errors that interact in confusing ways. Then you’ll have to search through
much larger sections of the model to track them down. But if you have already tested
the model components independently, you’ll have already removed most of the errors,
and it will usually be much easier to track down any that remain.

Test the model
against reality

The best way to check that your model is well-specified is to compare its predictions
against past empirical observations. For example, if you’re trying to predict future
changes in the composition of acid rain, you should try to compare its "predictions" for
past years for which you have empirical observations. Or, if you’re trying to forecast the
future profitability of an existing enterprise, you should first calibrate your model for past
years for which accounting data are available.

Test the model
against other models

Often you don’t have the luxury of empirical measurements or data for the system of
interest. In some cases, you’re building a new model to replace an old model that is out-
of-date, too limited, or not probabilistic. In these cases, it is usually wise to start by reim-
plementing a version of the old model, before updating and extending it. You can then
compare the new model against the old one to check for discrepancies. Of course, dif-
ferences may be due to errors in the new model or the old model. Once you have

http://www.lumina.com/wiki

Chapter Building Effective Models

68 Analytica User Guide

5 Testing and debugging a model

resolved any discrepancies, you can be confident that you are building on a foundation
that you understand.

If the model is hard to test against reality in advance of using it, and if the conse-
quences of mistakes could be catastrophic, you can borrow a technique that NASA
uses widely for the space program. You can get two independent modelers (or two mod-
eling teams) each to build their own model, and then check the models against each
other. It is important that the modelers be independent, and not discuss their work
ahead of time, to reduce the chance that they will both make the same mistake. For a
sponsor of models for critical applications in public or private policy, this multiple model
approach can be very effective and insightful. The competition keeps the modelers on
their toes. Comparing the models’ structure and behavior often leads to valuable
insights.

Have other people
review your model

It’s often very helpful to have outside reviewers scrutinize your model. Experts with dif-
ferent views and experiences may have valuable comments and suggestions for
improving it. One of the advantages of using Analytica over conventional modeling envi-
ronments is that it’s usually possible for an expert in the domain to review the model
directly, without additional paper documentation. The reviewer can scrutinize the dia-
grams, the variables, their definitions and descriptions, and the behavior of the model
electronically. You can share models electronically on diskette, over a network, or by
electronic mail.

Test model behavior
and sensitivities

Many problems become immediately obvious when you look at a result — for example,
if it has the wrong sign, the wrong order of magnitude, or the wrong dimensions, or if
Analytica reports an evaluation error. Other problems, of course, are not immediately
obvious — for example, if the value is wrong by only a few percentage points. For more
thorough testing, it is often helpful to analyze the model behavior by specifying a list of
alternative values for one or two key inputs (see Chapter 3, “Analyzing Model Behav-
ior”), and to perform sensitivity analysis (see Chapter 16, “Statistics, Sensitivity, and
Uncertainty Analysis”). If the model behaves in an unexpected way, this may be a sign
of some mistake in the specification. For example, suppose that you are planning to
borrow money to buy a new computer, and the net value increases with the interest rate
on the loan; you might suspect a problem in the model.

Celebrate and learn
from unexpected

behavior

If analyzing the behavior or sensitivities of your model creates unexpected results, there
are two possibilities:

• Your model contains an error, in that it does not correctly express what you
intended.

• Your expectations about how the model should behave were wrong.

You should first check the model carefully to make sure it contains no errors, and does
indeed express what you intended. Explore the model to try to figure out how it gener-
ates the unexpected results. If after thorough exploration you can find no mistake, and
the model persists in its unexpected behavior, do not despair! It may be that your intui-
tions were wrong in the first place. This discovery should be a cause for celebration
rather than disappointment. If models always behaved exactly as expected, there would
be little reason to build them. The most valuable insights come from models that behave
counter-intuitively. When you understand how their behavior arises, you can deepen
your understanding and improve your intuition — which is, after all, a fundamental goal
of modeling.

Document as you
build

Give your variables and modules meaningful titles, so that others — or you, when you
revisit the model a year later — can more easily understand the model from looking at
its influence diagrams. It’s better to call your variable Net rental income than NRI23.

 Analytica User Guide 69

Chapter Building Effective Models5 Expanding your model

It’s also a good idea to document your model as you construct it by filling in the
Description and Units attributes for each variable and module. You may find that enter-
ing a line or three of description for each variable, explaining clearly what the variable
represents, will help to keep you clear about the model. Entering units of measurement
for each variable can help you avoid simple mistakes in model specification. Avoid the
temptation to put documentation off until the end of the project, when you may run out of
time, or may have forgotten key aspects.

Most models, once built, spend the majority of their lives being used and modified by
people other than their original author. Clear and thorough documentation pays continu-
ing dividends; a model is incomplete without it.

Expanding your model
Extend the model by

stages
The best way to develop a model of appropriate size is to start with a very simple model,
and then to extend it in stages in those ways that appear to be most important. With this
approach, you’ll have a usable model early on. Moreover, you can analyze the sensitiv-
ities of the simple model to find out where the key uncertainties and gaps are, and use
this to set priorities for expanding the model. If instead you try to create a large model
from the start, you run the risk of running out of time or computer resources before you
have anything usable. And you may end up putting much work into creating an elabo-
rate module for an aspect of the problem that turns out to be of little importance.

Identify ways to
improve the model

There are many ways to expand a model:

• Add variables that you think will be important.

• Add objectives or criteria for evaluating outcomes.

• Expand the number of decision options specified for a decision variable, or the
number of possible outcomes for a discrete chance variable.

• Expand a single decision into two or more sequential decisions, with the later
decision being made after more information is revealed.

• For a dynamic model, expand the time horizon (say, from 10 years to 20 years) or
reduce the time steps (say, from annual to quarterly time periods).

• Disaggregate a variable by adding a dimension (say, projecting sales and costs by
each division of the company instead of only for the company as a whole).

• Start with a deterministic model, then add probabilistic inputs to make the model
probabilistic.

Before plunging in to one of these approaches to expanding a model, it’s best to list the
alternatives explicitly and think carefully about which is most likely to improve the model
the most for the least effort. Where possible, perform experiments or sensitivity analysis
to figure out how much effect alternative kinds of expansion may have.

Changing the size or numbers of dimensions of tables is a difficult and time-consuming
task in conventional modeling environments. Analytica makes it relatively easy, since
you only need to change those definitions that directly depend on the dimension (for
example, the edit tables), and Analytica will propagate the needed changes automati-
cally throughout the model.

Chapter Building Effective Models

70 Analytica User Guide

5 Expanding your model

Discover what parts
are important to guide

expansion

A major advantage of starting with a simple model is that you use it to guide extensions
in the ways that will be most valuable in improving the model’s results. You can analyze
the sensitivities of the simple model (for example, using Importance Analysis, as
described in “Importance analysis”) to identify which sources of uncertainty contribute
most to the uncertainty in the results. Typically, only a handful of variables contribute the
lion’s share of the overall uncertainty. You can then concentrate your future modeling
efforts on those variables and avoid wasting your energy on variables whose influence
is negligible.

Early intuitions about what aspects of a model are important are frequently wrong, and
the results of the sensitivity analysis may come as a surprise. Consequently, it’s much
safer to base model development on sensitivity analysis of simple models than to rely
on your intuitions about where to spend your efforts in model construction.

Once you have identified the most important variables in your simple model, there are
several ways to reduce the uncertainty they contribute. You can refine the estimated
probability distribution by consulting a better-informed expert, by analyzing more exist-
ing data, by collecting new data, or by developing a more elaborate model to calculate
the variable based on other available information.

Simplify where
possible

There’s no reason that a model must grow successively more complex as you develop
it. Sensitivity analysis may reveal that an uncertainty or submodel is just not very impor-
tant to the results. In this case, consider eliminating it. You may find that some dimen-
sions of a table are unimportant — for example, that there’s little difference in the
performance of different divisions. If so, consider aggregating over the divisions and
eliminating that dimension from your model.

Simplifying a model has many benefits. It becomes easier to understand and explain,
faster to run, and cheaper to maintain. These savings may afford you the opportunity to
extend parts of the model that are more important.

Chapter 6 Creating Lucid Influence
Diagrams

This chapter offers guidelines for creating influence diagrams that
are clear and comprehensible by careful arrangement of nodes,
well-designed module hierarchies, and judicious use of color. It
also describes how to adjust and align nodes, and customize
styles for nodes and diagrams. Options include which arrows to
show, node sizes, colors, text size, and font family.

Chapter Creating Lucid Influence Diagrams

72 Analytica User Guide

6

Hierarchical influence diagrams can provide a lucid display of the essential qualitative
structure of a model, uncluttered by quantitative details.

 Analytica User Guide 73

Chapter Creating Lucid Influence Diagrams6 Guidelines for creating lucid and elegant diagrams

It is also possible to create impenetrable spaghetti!

Guidelines for creating lucid and elegant diagrams
Where aesthetics are involved, rules cannot be hard and fast. You may adapt and mod-
ify these guidelines to suit your particular applications and preferences.

Use clear, meaningful
node titles

Aim to make each diagram stand by itself and be as comprehensible as possible. Each
node title can contain up to 255 characters of any kind, including spaces. Use clear,
concise language in titles, not private codes or names (as are often used for naming
computer variables). Mixed-case text (first letter uppercase and remaining letters lower-
case) is clearer than all letters uppercase.

Good object titlesPoor object titles

Chapter Creating Lucid Influence Diagrams

74 Analytica User Guide

6 Guidelines for creating lucid and elegant diagrams

Use consistent
node sizes

Diagrams usually look best if most of the variable nodes are of the same size:

Node sizes will be uniform if you set the default minimum node size in the Diagram
Style dialog (see “Diagram Style dialog”) large enough so that it fits the title for nodes.
When creating nodes, it uses this default size unless the text is too lengthy, in which
case it expands the node vertically to fit the text. For more information on how to adjust
node sizes see “Adjust node size” on page 75.

To make nodes the same size, select the nodes (Control+a selects all in the diagram),
and select Make same size > Both from the Diagram menu (or press = key twice)

Use small and large
nodes sparingly

Sometimes, it is effective to make a few special nodes extra large or small. For exam-
ple, start and end nodes, which may link to other models, often look best when they are
very small. Or you may make a few nodes containing large input tables or modules con-
taining the "guts" of a model larger to convey their importance.

Arrange nodes from
left to right (or top to

bottom)

People find it natural to read diagrams, like text, from left to right, or top to bottom.1 Try
to put the decision node(s) on the left or top and the objective node(s) on the right or
bottom of the diagram, with all of the other variables or modules arranged between
them.

You may need to let a few arrows go counter to the general flow to reduce crossings or
overlaps. In dynamic models, time-lagged feedback loops (shown as gray arrows) may
appropriately go counter to the general flow.

Inconsistent node sizes Consistent node sizes

1. Or right to left for models in Arabic or Hebrew.

 Analytica User Guide 75

Chapter Creating Lucid Influence Diagrams6 Arranging nodes to make clear diagrams

Tolerate spaghetti
at first…

It is often hard to figure out a clear diagram arrangement in advance. It is usually easi-
est to start a new model using the largest Diagram window you can: Click the maximize
box to have the diagram fill your screen. You may want to create key decisions and
other input nodes near the left or top of the window, and objectives or output nodes near
the right or bottom of the window. Aside from that, create nodes wherever you like, with-
out worrying too much about clarity.

…reorganize later When you start linking nodes, the diagram may start to look tangled. This is the time to
start reorganizing the diagram to create some clarity. Try to move linked nodes together
into a module. Develop vertical or horizontal lines of linked nodes. Accentuate symme-
tries, if you see them. Gradually, order will emerge.

Arranging nodes to make clear diagrams
Adjust node size If you have nodes of different sizes, you can make them more consistent by selecting

Adjust Size (Control+t) from the Diagram menu. All of the selected nodes are resized
to the default minimum node size, or the minimum size needed to enclose each node’s
title, whichever is larger.

You can also resize several nodes by the same amount simultaneously by following
these steps:

1. Select the nodes to resize.

2. Resize one of the selected nodes by dragging one of its handles. All the other
selected nodes are also resized.

Selected nodes can also be set to be the same width, height, or size. To set the size of
selected nodes to be the same size use the Make Same Size submenu in the Diagram
menu. The options are:

• Make Same Size Width — Sets all the selected nodes to the width of the widest
node

• Make Same Size Height — Sets all the selected nodes to the height of the tallest
node

Decision variables
on the left

Objective variable on the right

Chapter Creating Lucid Influence Diagrams

76 Analytica User Guide

6 Arranging nodes to make clear diagrams

• Make Same Size Both — Sets all the selected nodes to the width of the widest
node and the height of the tallest node

Align to the grid It usually looks best to align nodes with their centers on the same horizontal or vertical
lines, so that many arrows are exactly horizontal or vertical. The square grid of 9x9 pixel
blocks underlying each diagram makes this easy. When the grid is on (the default),
each node that you create or move is centered on a grid intersection. This default
makes it easier for you to position nodes so that arrows are exactly horizontal or vertical
when nodes are aligned vertically or horizontally.

To re-center nodes, select Align Selection to Grid from the Diagram menu (Control+j).

To turn the grid off in edit mode, uncheck Snap to Grid from the Diagram menu. When
the grid is off in edit mode, the grid is still visible, and you can move the nodes pixel by
pixel.

If nodes are not centered on a grid point, re-center them by following these steps:

1. Select all nodes in the diagram with the Select All (Control+a) command from the
Edit menu.

2. Select Align Selection To Grid from the Diagram menu.

Align selected nodes To line up selected nodes with each other, use the Align submenu in the Diagram
menu. You can align selected nodes with one another in the following ways:

• Align their left edges

• Align their centers left and right — this aligns their centers horizontally

• Align their right edges

• Align their left and right edges — this makes all the selected nodes the same width
and aligns, so that their left and right edges match up. All nodes will be set to the
width of the widest node.

Good alignmentPoor alignment

 Analytica User Guide 77

Chapter Creating Lucid Influence Diagrams6 Arranging nodes to make clear diagrams

• Align their top edges

• Align their centers up and down — this aligns the nodes so that their centers are at
the same vertical height

• Align their bottom edges

Distributing nodes To distribute selected nodes evenly, use the Space Evenly submenu in the Diagram
menu. You can distribute selected nodes so that their centers are evenly spaced verti-
cally (Space Evenly Across) or horizontally (Space Evenly Down).

Choosing which node
is in front

By defaults, text and picture nodes are behind arrows, and arrows are behind all other
types of nodes (decision, chance, variable, etc.). If nodes overlap, the more recently
created node will be on top of the older node. You can change this order by selecting a
node(s) and using the Send to Back and Bring to Front options from the right-click
menu.

Hide less important
arrows

Sometimes so many nodes are interrelated that it is hard or impossible to arrange a dia-
gram to avoid arrows crossing each other or crossing nodes. It may be helpful to hide
some arrows that show less important linkages. For example, indexes and functions are
often connected to many other variables; that’s why arrows to and from them are
switched off by default.

Align Left Edges Align Right EdgesAlign Centers Left Align Left and
Right Edgesand Right

Align Top

Align Centers

Align Bottom

Up and Down

Edges

Edges

Chapter Creating Lucid Influence Diagrams

78 Analytica User Guide

6 Arranging nodes to make clear diagrams

You can hide all of the arrows linking indexes, functions, or modules, or the grayed
feedback arrows in dynamic models, using the Set Diagram Style command from the
Diagram menu (see “Diagram Style dialog”). You can also hide the input or output
arrows from each node individually, using the Set Node Style command (see “Node
Style dialog”).

Keep diagrams
compact

Screen space is valuable. To save space, keep nodes close together, leaving enough
space between them for the arrows to be visible.

When first creating a diagram, use plenty of space. Your diagram window can be as
large as your monitor screen. Using this space, first find a clear arrangement, which
minimizes arrow crossing and avoids node overlaps. Then, you can usually make the
diagram more compact by moving the nodes closer together and moving the entire dia-
gram closer to the upper left corner of the window. Finally, you can reduce the window
size to fit the diagram.

A spread-out diagram

A compact diagram

 Analytica User Guide 79

Chapter Creating Lucid Influence Diagrams6 Organizing a module hierarchy

Organizing a module hierarchy
In addition to properly arranging the nodes in a single diagram, you can also improve
the clarity of your models by using module hierarchies effectively.

Group related nodes
in the same diagram

When assigning nodes to diagrams, the goal is to put groups of nodes that have many
links among them in the same diagram, and to separate them from other groups with
which they have few or no links. For example, the diagram below shows that a group of
nodes related to annual housing costs have been organized into the Annual costs
module within the larger model.

Sometimes you have a good idea of how to group nodes before you create them. In
such cases, it is easy to create the modules first, and then create and link the nodes in
groups in each module.

In other cases, it may not be obvious what groupings will work best. It is then often best
to create all the nodes in a single large diagram. After drawing all the arrows, you may
have a confusing spaghetti diagram. At this point, try to move the nodes around to iden-
tify groups containing 5 to 15 nodes, with many links within each group and fewer links
between groups. When you arrive at a satisfactory grouping, create a module node for
each group and move the group of variables into its own module.

Chapter Creating Lucid Influence Diagrams

80 Analytica User Guide

6 Color in influence diagrams

Use 10 to 20 nodes
per diagram

When creating a hierarchy of diagrams for a model with 100 variables, you could create
a single module with 100 nodes, 10 modules with an average of 11 nodes each, 20
modules with 6 nodes each, or 50 modules with 3 nodes each.2

A module containing more than 20 nodes often looks overwhelmingly complicated,
unless there are strong regularities in the structure. On the other hand, if modules have
fewer than 5 nodes, you need so many modules that it is easy for users to get lost.

The range of 10 to 20 nodes per diagram is a good general goal. But don’t feel too con-
strained by it if a few diagrams are outside this range.

Contrast the module hierarchy in the illustration on page 79 with the spaghetti on
page 73. The relationships among objects are much easier to see and understand in
the model with 10 nodes in the top-level module and 12 nodes in the embedded module
(page 79) than in the model with 24 top-level nodes (page 73).

Color in influence diagrams
Color can greatly improve the clarity and appeal of diagrams. The diagram’s back-
ground and its nodes have light colors by default. You can change the colors to meet
your special needs.

Use colors
judiciously

Garish or uncoordinated colors can be distracting. It generally looks messy to have
nodes in many different colors. Sometimes it’s useful to use color coding beyond the
default colors by class of node. For example, you might want to color all input nodes to
identify them clearly.

Light colors work best because its easier to see the black arrows and text over light
backgrounds. Analytica’s default colors provide a light neutral color for the background
and a slightly stronger color for the nodes.

Recoloring nodes
or background

1. In edit mode, select Show Color Palette from the Diagram menu:

2. Select the node or nodes you want to recolor, or to recolor the background, just click
the background. The current color of the node(s) or background appears in the single
square at the top of the color palette.

3. Click a color square to apply the new color to the nodes or background.

For a wider range of colors, click Other to display a full color chart.

Grouping nodes
with a text box

It often improves the look and clarity of a user interface to group related nodes in rect-
angular boxes with a contrasting color, white in this case:

2. Each module also creates a new node, so the total number of nodes is the number of variables plus
the number of modules.

 Analytica User Guide 81

Chapter Creating Lucid Influence Diagrams6 Diagram Style dialog

To create a grouping rectangle using a text box:

1. With the diagram in edit mode, create a text node by dragging from on the
node toolbar onto the diagram

2. Type a title into the text node, or leave it blank as desired.

3. Move and resize the node to enclose the group of inputs or outputs. You may find it
convenient to deselect the Resize centered option from the Diagram menu.

4. With the node selected, open the Set Node Style dialog from the Diagram menu,
check the Border and Fill color options (and Bevel, if you like), and click OK.

5. Select the Color palette from the Diagram menu, and click the preferred color for
the node, e.g., white.

Usually, text nodes appear behind all other nodes, which is what you want for organiz-
ing groups. But if a node is not in the back and is obscuring other items, you can select
Send to Back from the right-click button menu.

Tip The background color of a diagram also applies to the background color of any modules
contained in the diagram — unless you explicitly override the default by setting a different
background color for each submodule. Similarly, the color you apply to a module node
will also apply to any submodule nodes inside the module — unless you override the
default by recoloring any submodule node(s).

Diagram Style dialog
Use the Diagram Style dialog to customize the font size and typeface for nodes,
whether arrows are displayed for specified node classes, and the node size. To display
the Diagram Style dialog, select Set Diagram Style from the Diagram menu.

Chapter Creating Lucid Influence Diagrams

82 Analytica User Guide

6 Node Style dialog

Show arrows to/from Check the corresponding boxes to display (or hide) arrows that go to and from nodes of
each type, Indexes, Functions, Modules, and Dynamic. Dynamic controls the display
of time-lagged dependencies to variables defined with Dynamic, usually displayed as
gray arrows. See “Dynamic(initial1, initial2..., initialn, expr)” on page 298.

By default, diagrams show arrows to and from modules and dynamic, but not indexes
and functions. Showing more arrows can render some diagrams confusing with criss-
crossing arrows. But, showing fewer arrows makes important dependencies (influ-
ences) invisible. The best balance depends on the model.

Default node size Drag the handle in this box to set the default node size. When you create a new variable
or select the Adjust Size command from the Diagram menu, it tries to make the node
this size — if the node title is too large, it expands the node vertically until it fits. It is usu-
ally best to size the default to include at least two lines of text at the selected font size.
Input and output nodes do not use this default; they extend horizontally to fit their text
plus field or button.

Font Style To change the default font size, use the menu or type in a font size (in typographic
points). Select the default typeface from the font menu.

Overriding diagram
defaults

The Diagram Style dialog sets defaults for the diagram and for any modules contained
in that diagram. You may override these defaults for particular nodes with the Node
Style dialog (below), or for a submodule by using the Diagram style dialog for the sub-
module.

Node Style dialog
The Node Style dialog lets you customize the display of one or more nodes in a dia-
gram. You can change the typeface and font size, and whether to display the incoming
and outgoing arrows, the text label, border, fill color, and bevel, and the text size and
font. These options override any defaults set for in the Diagram Style dialog.

To open the Node
Style dialog

1. Select one or more nodes in a diagram.

2. Choose Set Node Style from the Diagram menu or the right-click menu.

3. Select the options for which you want to override the default styles.

Diagram arrow
display options

Diagram font
style options

Drag this anchor to
set default node size

 Analytica User Guide 83

Chapter Creating Lucid Influence Diagrams6 Taking screenshots of diagrams

4. Click OK.

Input arrows Check to display arrows into this node.

Output arrows Check to display arrows out of this node.

By default, input and output arrows are not displayed for index and function nodes.

Label Check to display the title in the node. By default, this is checked for all nodes.

Border Check to display a thin black border around the node.

Fill color Check to display the color in the node. Otherwise the node appears transparent, and
any nodes or arrows under it will be visible.

Bevel Check to show a bevel effect around the node. By default, this is checked only for but-
ton nodes.

By default, text nodes, input and output nodes do not show arrows, border or fill color.

Tip A grayed out check box indicates that this option is not the same for all selected nodes.
If you leave it unchanged (gray), each node keeps its current setting. If you change it (on
or off), it changes all nodes to the new setting.

Font style To override the default diagram font, select Use custom font. Then you can select the
font size and typestyle.

Taking screenshots of diagrams
These are some tips for taking good screenshots of influence diagrams and other
Analytica windows for use in other documents or printing.

Use browse mode When making screen captures of a Diagram window, select browse mode rather
than the edit or arrow mode to switch off the background grid, which makes the diagram
clearer.

Check box
grayed out

Chapter Creating Lucid Influence Diagrams

84 Analytica User Guide

6 Taking screenshots of diagrams

Switch off
cross-hatching

By default, the nodes of undefined variables show a cross-hatched pattern around the
title. To remove this pattern, uncheck Show undefined in the Preferences dialog from
the Edit menu (see “Preferences dialog”).

Diagram colors Use white for the background if you plan to print screenshots of the diagram on a black
and white printer at less than 600 dpi (dots per inch). The print command lets you not
print the background color if any.

Chapter 7 Formatting Numbers,
Tables, and Graphs

This chapter shows you how to control the display of numbers,
including Booleans and dates, in tables and styles and options for
graphs.

Chapter Formatting Numbers, Tables, and Graphs

86 Analytica User Guide

7 Number formats

Number formats
The Number format dialog box lets you control the format of numbers to display in
result tables and graphs — including dates and Booleans. You can select options like
the number of decimal digits, currency signs, and commas to separate thousands. The
default number format is suffix, which uses a letter following the number, such 10K to
mean 10,000 (where K means Kilo or thousands).

The number format of a variable is used wherever the value of that variable appears —
in a result table, graph, input or output field. The number format of an Index applies
wherever that index is used, including row or column headers of a table, or along an
axis of a graph that uses that index.

You may enter a number into an expression or table in any format, no matter what out-
put format it uses — except for dates, where you need to specify a date format, so that
it will interpret 10/10/2007, for example, as a date, not two divisions.

To set the number format for a variable:

1. Select a variable by showing its edit table, result table, or graph, or by selecting its
node in a diagram. To apply the same format to multiple variables, select their nodes
together in a diagram.

2. Select Number format from the Result menu, or press Control+b, to show this
dialog:

3. Select the format you want from the list on the left.

4. Select options you want, such as Decimal digits, Show trailing zeroes, or
Thousands separators, or Show currency symbol.

5. Check the example at the top of the dialog to see if it’s what you want.

6. If so, click the Apply button.

 Analytica User Guide 87

Chapter Formatting Numbers, Tables, and Graphs7 Number formats

Format types Choose one of these number formats:

Suffix characters Suffix is Analytica’s default format. It uses a conventional letter after each number to
specify powers of 10: 12K means 12,000 (K for kilo or thousands), 2.5M means
2,500,000 (M for Mega or millions), 5n means 0.000,000,005 (n means nano or bil-
lionths). Here are all the suffix characters:

Tip Note the difference between ’M’ for Mega or Million and ’m’ for milli (1/1000). This is the
only situation in which Analytica cares about the difference between upper- and
lowercase. Otherwise, it is insensitive to case (except when matching text values).

Tip In suffix format, it displays four-digit numbers without the ‘K’ suffix, which looks better for
years — e.g., 2010, not 2.010K. For suffix, integer, or fixed point formats, it uses
exponent format for numbers too large or small — e.g., numbers larger than 109 in
integer or fixed point format, or larger than 1018 in suffix format.

Maximum precision The maximum number of digits including decimal digits is 15 (14 for fixed point and per-
cent); the maximum number precision is 15 digits (9 for integers).

Number format options
Decimal digits The number of digits to show after the decimal point.

Format Description Example

Suffix A letter after the number specifies powers of
ten (see below for details)

12.35K

Exponential Scientific or exponential notation. The number
after the “e” gives the powers of ten.

1.235e04

Fixed Point A decimal point with fixed number of decimal
digits

12345.68

Integer A whole number with no decimals 12346

Percent A percentage 12%

Date Date (see below for details) 12 Jan 2007

Boolean Displays 0 as False, any other number as
True.

True, False

Power of 10 Suffix Prefix Power of 10 Suffix Prefix

10-2 % percent

103 K Kilo 10-3 m milli

106 M Mega or Million 10-6 µ micro (mu)

109 G or B Giga or Billion 10-9 n nano

1012 T Tera or Trillion 10-12 p pico

1015 Q Quad 10-15 f femto

Chapter Formatting Numbers, Tables, and Graphs

88 Analytica User Guide

7 Date formats

Show trailing zeroes Check to show trailing zeroes in decimals, e.g., 2.100 instead of 2.1, when decimal dig-
its are set to 3.

Thousands
separators

Check to show commas between every third digit of the integer part, e.g., 12,345.678,
instead of 12345.678.

Show currency
symbol

Check to show a currency symbol. Select the symbol and placement from these menus:

Placement controls the relative location of the currency symbol, e.g., $200 or 200DM,
and whether to use a minus sign -$200 or parentheses ($200) to indicate a negative
number.

Regional settings If you select the last entry, “regional”, from the Symbol or Placement menu, it uses,
respectively, the regional currency or placement settings set for your computer. You can
modify these settings in the Regional and Language options available from the Win-
dows Control Panel.

Date formats
A date is a number shown in Date format. The date number represents the date as the
number of days since the date origin, usually Jan 1, 1904.

 Analytica User Guide 89

Chapter Formatting Numbers, Tables, and Graphs7 Date formats

The Date format in the Number format dialog offers these options:

Short: e.g., 8/5/2006

Abbrev: e.g., Aug-5-2006

Long: e.g., Thursday, 05 August, 2006

Custom: Use an existing custom format or set up a new one, for example:

Date format codes Custom date format uses these letter codes, conventional for Microsoft Windows:

Tip To show literal text within the date, enclose it in quotes, e.g., 'q'q → q2.

Interpreting
input dates

If you specify any date format for an input variable or edit table, you can enter dates in
any acceptable date format. For example, a variable with a date format, interprets 1/5/
2005 as 5 January, 2005 on a computer set to USA region or 1 May, 2005 else-
where. Without the date format, it would interpret 1/5/2005 as (1 divided by 5) divided
by 2005!

Regional and
language settings

The language for day and month names and the formats used for Short and Long
dates depend on the regional settings for Windows. In the U.S., you might see a short
date as 9/11/2001, but in Denmark you might see 11.9.2001. You can review and
change these settings in Regional and Language options available from the Windows
Control Panel. These apply to Analytica and all standard Windows applications. To
modify settings, click the Customize button and select either the Date tab or Lan-
guages tab. For example, if you set the language to Spanish (Argentina), a variable
with the Long date setting, the date displays as:

StartDate → Sábado, 03 de Febrero de 2007

Date format Displays as

dd-MM-yy 05-8-06

'Q'Q YYYY Q2 2006

www, d MMM yyyy Thu, 5 Aug 2006

wwww, d of MMMM, yyyy Thursday, 5 of August, 2006

Code Description Example
d numeric day of the month as one digit 1, 2,… 31
dd numeric day of the month as two digits 01, 02,…31
ddd ordinal day of month in numeric format 1st, 2nd, …, 31st
dddd ordinal day of month in text format first, second, …, thirty-first
Dddd capitalized ordinal day of month First, Second, … Thirty-first
www weekday in three letters Mon, Tue,.. Sun
wwww weekday in full Monday, Tuesday, … Sunday
M month as a number 1, 2, … 12
MM month as two-digit number 01, 02, …12
MMM month as three letter name Jan, Feb, … Dec
MMMM month as full name January, February, … December
q quarter as one digit 1, 2, 3, 4
yy year as two digits e.g., 99, 00, 01
yyyy year as four digits e.g., 1999, 2000, 2001

Chapter Formatting Numbers, Tables, and Graphs

90 Analytica User Guide

7 Multiple formats in one table

where
Variable StartDate := Makedate(2007, 2, 3)

Date numbers
and the date origin

Analytica represents a date as a date number, that is, the number of days since the
date origin. By default, the date origin is Jan 1, 1904, as used by most Macintosh appli-
cations, including Excel on Macintosh, and all releases of Analytica on Macintosh and
Windows up to Analytica 3.1. If you check Use Excel date origin in the Preferences
dialog, the date origin is Jan 1, 1900, as used by default in Excel on Windows and most
other Windows software.

With Use Excel date origin checked, the numeric value of dates are the same in Ana-
lytica and Excel for Windows for dates falling on or after 1 Mar 1900. Because of a bug
in Excel, in which Excel incorrectly treats Feb 29, 1900 as a valid day (1900 was not
really a leap year), dates falling before that date do not have the same numeric index in
Analytica as they do in Excel.

When using models containing dates or date functions from Analytica releases 3.1 or
earlier, you should keep Use Excel date origin unchecked. If you want to paste or link
values from Excel or other Windows software to or from Analytica, you should check
this option.

Range of dates Analytica can handle dates from 1 CE to well beyond 9999 CE (CE means Common
Era or Christian Era, and is the same as AD.). Dates earlier than the date origin are rep-
resented as negative integers. Dates use the Gregorian calendar, so years divisible by
4 are leap years and those divisible by 100 are not leap years, except those divisible by
400 which are leap years.

Date arithmetic and
functions

You can simply add an integer n to a date to get the date n days ahead. See “Date func-
tions” for MakeDate(), DatePart(), DateAdd(), and Today().

Multiple formats in one table
Usually, the same number format applies to all numbers in a table (except its index val-
ues in column or row headers, which use the format set for the index variable.) Some-
times, you may want to use different formats for different rows (more generally, slices)
of a table. You can do this if you define the table as a list of variables, for example:

Index Years := 2007..2012

Variable DollarX := Table(Years)(...) { Formatted as dollars }

Variable PercentX := DollarX/40JK { Formatted as percent }

Variable MultiformatX := [DollarX, PercentX]

MultiformatX →

 Analytica User Guide 91

Chapter Formatting Numbers, Tables, and Graphs7 Graphing roles

This table uses the number format set for each variable responsible for a row here — as
long as you don’t override their settings by setting a format for MultiformatX.

Graphing roles
A graphing role is an aspect of a graph or chart used to display a dimension (or index)
of an array value; they include the horizontal axis, vertical axis, and key. A simple key
uses colors, but you can expand it to include a symbol shape and size for each data
point. When the array has too many dimensions to assign them all graphing roles, you
can assign the extra indexes as slicer dimensions, from which you can select any value
to display. For each available role, a graph shows a menu from which you can select the
index you want to assign to that role. The flexibility of being able to directly assign
graphing dimensions (such as indexes) to roles on the graph helps you find the best
way to communicate multidimensional results. Graphing roles can display a continuous
numeric scale or a discrete numerical or categorical scale — except for symbol size
which must be numerical.

This example shows projections of US energy consumption made by two organizations,
the US Energy Information Administration (actual) and the Alliance for Renewable
Energy (fictional). The horizontal axis is set to Energy source, the key (color) is set to
Organization, leaving the Year as a slicer, from which we have selected 2025:

Chapter Formatting Numbers, Tables, and Graphs

92 Analytica User Guide

7 Graphing roles

Here we have changed graphing roles, assigning Year to the horizontal axis, Energy
source to the color key, and Organization to the symbol key, leaving no need for a
slicer:

In this version, the color key and symbol key both show the Organization index. The
index Energy source is not assigned a visible graphing role, so shows up as a slicer. It
is set to Totals, to show total over energy sources for each organization:

 Analytica User Guide 93

Chapter Formatting Numbers, Tables, and Graphs7 Graphing roles

These are the graphing roles available:

Vertical axis Simply the vertical direction, labeled along the left edge of the graph. By default, it
shows the actual values in the array — other roles usually show values of an index. All
graphs use this role, but the Vertical Axis menu only appears if you have set Swap
horizontal and vertical in the Graph setup dialog (page 94) or for XY graphs
(page 105).

Horizontal axis The horizontal direction, labelled with numbers or text along the lower edge of the
graph. It always appears, except when you set Swap horizontal and vertical for a 1D
array. In the table view, it becomes the column headers.

Key Defines the color of lines or symbols. By default, it appears for the second index, if the
array has more than one dimension. The key appears below the graph — unless reset
in the Style tab of Graph setup (page 94). In the table view, it becomes the row head-
ers.

Color key and
symbol key

If you check Use separate color/symbol keys in Graph setup (page 94) (available for
the two line styles that show symbols), it expands the key into two graphing roles, color
key and symbol key. Each has its own role menu, letting you assign a second and third
index.

Symbol size key If you further check Allow variable symbol size, it adds symbol size as a fourth
graphic role. You can specify the range of sizes from smallest to largest in typographic
points, corresponding to smallest and largest values of the corresponding index. (It only
works for a numerical index.) Symbol key and symbol size key do not appear in the
Table view.

Slicers If the array has a dimension not assigned to a visible graphing role, it appears as a
slicer — a menu above the graph. The value you select from a slicer menu applies to
the entire graph, so the graph does not show values for other elements of the slicer. You
can also select “Totals” from a slicer to show the total over all numerical values over that
index. Slicers appear the same in the table as in the Graph view. If you have more than

Chapter Formatting Numbers, Tables, and Graphs

94 Analytica User Guide

7 Graph setup dialog box

one slicer, you can reorder them from top to bottom, in edit mode, simply by dragging a
slicer up or down.

Graph setup dialog box
The Graph setup dialog box lets you apply a wide variety of graphing styles and
options to the selected graph, or as the new defaults for all graphs in this model. It also
lets you use or define graph templates, to apply a standard collection of styles and
options to a graph.

When you display the result of a variable, it shows it as a table or graph, according to
how you last viewed it. The first time you view a result, it appears as a graph, unless
you changed the default result view in the Preferences dialog.

When displaying a graph, Analytica uses the default graphing settings, unless you have
selected other settings for it. You can modify these with the Graph setup dialog.

To open the Graph
setup dialog

First display a graph. Then do one of these:

• Select Graph Setup from the Result menu.

• Select Graph Setup from the right mouse button menu.

• Double-click the graph in the Result window.

The graph setup dialog has six tabs. All tabs show the template panel and these three
buttons:

• Apply: Apply any changes to settings to the current graph, and close the dialog.

• Set Default: Save any changed settings on the current tab as the default for all
graphs, and close the dialog. It does not affect any settings that you have not
changed since you opened the Graph setup dialog. Changing a default affects all
graphs that use the default, but not graphs for which you override the default (in the
past or future).

• Cancel: Close the dialog without changing or saving anything.

Chart Type tab
This tab shows options for modifying the style and arrangement of the graph:

 Analytica User Guide 95

Chapter Formatting Numbers, Tables, and Graphs7 Graph setup dialog box

Line style

Swap horizontal and
vertical

Check this box to exchange the x and y axes, so that x axis is vertical and y axis is
horizontal. If x values are discrete with long labels, swapping axes gives a more easily
legible bar graph.

3-D effects Check to use three-dimensional style to view graphs. For a bar graph line style, it offers
the choice of Box or Cylindrical shapes for the bars.

Line style settings Displays when you select a line style showing lines.

• Area fill: Check to fill in the area beneath each line with a solid color. If there are
multiple lines, the graph will have a key index. It draws the fill areas from last to first
element of the key index, which works well if the y values are sorted from smallest
to largest over the key index. Otherwise, later values will obscure earlier ones.
Here’s an example:

Line segments join the data points.

Line segments, with a symbol at each data point.

A symbol at each data point with no lines.

A pixel at each data point, with no line.

A histogram or step function, with a vertical line and horizontal line from
each data point to the next.

A bar centered on each x value, with height showing the y value. Forces the
graph to be discrete.

Chapter Formatting Numbers, Tables, and Graphs

96 Analytica User Guide

7 Graph setup dialog box

• Transparency: Drag the cursor to change transparency of fill colors between
opaque and transparent. Transparency lets you see fill lines and areas that would
otherwise be obscured behind others.

• Line thickness: Select the thickness of lines to display. (Only for styles that show
lines.)

• Use separate color/symbol keys: Check to display two key index roles, one
indicated by color and the other by symbol type or size.

• Allow variable symbol size: Check to have the size of symbols vary with their
value.

• Symbol size: Enter a number to specify size of symbols in typographic points.

• Min symbol size and Max symbol size: If you check Allow variable symbol size,
use these fields to specify the range of symbol sizes from smallest and largest.

Bar graph settings Displays when you select Bar graph line style:

• Stacked bars: Check to show bars stacked one on top of the other over the key
index, instead of side by side. The values for each bar are cumulated over the key
index.

• Variable origin: Check if you want to set the origin (starting point) for each bar
other than zero (the default). The graph will then display a Bar Origin menu to let
you select the bar origin.

• Bar overlap: With stacked bars, they overlap 100%. You can specify partial overlap
between 0 and 100%.

 Analytica User Guide 97

Chapter Formatting Numbers, Tables, and Graphs7 Graph setup dialog box

Axis Ranges tab
This tab lets you control the display for each axis, vertical and horizontal, including scal-
ing, range, and tickmarks:

Autoscale Uncheck this box if you want to specify the range for the axis, instead of letting Analyt-
ica select the range automatically to include all values.

Max and Min The maximum and minimum values of the range to use when you have unchecked
Autoscale.

Include zero Check if you want to include the origin (zero) in the range.

Approx. # ticks Specify the number of tick marks to display along the axis. Analytica might not match
the number exactly, in the interests of clarity.

Reverse order Check this box if you want to show the values ordered from large to small instead of the
default small to large.

Categorical Treat this axis as categorical. Usually, Analytica figures out the quantity is categorical
without help. Occasionally, if the values are numerical, you might want to control it your-
self. See “Probability density and mass graphs”.

Log scale Check if you want to display this on a log scale. This is useful for numbers that vary by
several orders of magnitude. It uses a “double log” scale with zero if the values include
negative and positive numbers.

Set default If you have changed settings for an axis that is an index of the variable being graphed,
clicking this button applies these changes to that index for all graphs that use that index.
For example, if the scale is the Index Time, you can use this to change the Time scale
(e.g., start and end year) for every graph that displays a value over Time, unless you
want to override that default in another graph.

Style tab
The Style tab lets you modify the display of the style and color of the grid, frame, and
tick marks, and where to display the key.

Chapter Formatting Numbers, Tables, and Graphs

98 Analytica User Guide

7 Graph setup dialog box

Grid Select the radio button to control the display of the grid over the graphing area. You can
also select the color. A light or medium gray is often a good choice.

Frame Select the radio button to control the display of the lines framing the graphing area. You
can also select the color for the frame. It is usually best to make the frame the same
color as the grid, or a darker shade of the same color.

Tick marks: The top radio buttons control where to show tick marks. The lower ones control how
they are displayed.

Display key Select the radio button to control where to display the key on the graph. Select the
Show border check box to display an outline rectangle around the key.

Text tab
The Text tab lets you change the font, size, style, and color on the graph for the text of
axis titles, axis labels (i.e., numbers or text identifying points along each axis), key titles,
and key labels (i.e., identifying values in the key).

 Analytica User Guide 99

Chapter Formatting Numbers, Tables, and Graphs7 Graph setup dialog box

Font Select the font family. Graphic designers recommend using the same font for all text,
which you can easily do by leaving all except axis titles as “(Same as axis titles)”.

Size The size in typographic points. Set to 0 if you want that type of text to not display.

Color Select the color.

Bold, Italics, and
Underline

Check these boxes to add bold, italic, and underlined formats to the text.

Axis label rotation Enter a number from -90 to 90 degrees to rotate the labels for each axis. For example,
for a bar graph with many long labels along the horizontal axis, they won't all fit. By
rotating them by 45 or 90 degrees, you can make them all fit without getting truncated.

Adapt displayed font
sizes to graph height

If you check this box, the font size automatically adjusts when you make the graph win-
dow larger or smaller. This can be useful when you give a demo and want to expand
graphs so they are easily readable to people at the back of the room. The font sizes
match those specified at the default graph height of 300 pixels.

Background tab
This tab lets you control the fill color, gradient, or pattern on the graph background. The
main area covers the entire graph window (exclusive of the top area containing
indexes). The plot area is the rectangle showing the graph values. If you leave or set
the Fill to None for the Plot area or Key area, they will show the same fill settings (if
any) as the Main area.

Chapter Formatting Numbers, Tables, and Graphs

100 Analytica User Guide

7 Graph setup dialog box

Fill Select from:

• None: No fill. Default to blank (white) background.

• Solid: Use a solid fill with the selected Color 1.

• Gradient: Use a gradient of color, going from Color 1 to Color 2, in the direction
you specify in Gradient style.

• Hatch: Use a hatched fill using the selected Hatch Style with Color 1 and Color 2.

Graphic designers recommend avoiding hatched backgrounds, and using solid or gradi-
ent backgrounds with pale colors, if at all. The data should not be overwhelmed by the
background.

Preview tab
This tab shows the graph using the current settings so that you can see their effects
before you decide to Apply or Cancel them.

 Analytica User Guide 101

Chapter Formatting Numbers, Tables, and Graphs7 Graph setup dialog box

Categorical and Continuous Plots
Analytica 4.0 gives much more attention and consistency to the treatment of categori-
cal, continuous, and discrete results.

The discrete vs. continuous distinction is determined by the domain attribute, and deter-
mines whether probability plots are density and cumulative density plots (continuous) or
probability mass and cumulative probability (discrete) plots.

The categorical vs. continuous distinction determines how a graphing axis is laid out.
Continuous dimensions require numeric values. The determination of whether a graph-
ing dimension is categorical or continuous is partially determined by the domain
attribute. However, the values actually occurring in the dimension are determined by the
chart type (bar or non-bar chart) and by the Categorical checkbox in the axis range set-
ting.

Exporting graph image type
You can export a graph as an image file in most common formats, including BMP, JPEG,
TFF, PNG, and Enhanced Windows Metafile (EMF):

1. Display the graph the way you want.

2. Select Export from the File menu, to open the Save Graph Image as file browser
dialog.

Chapter Formatting Numbers, Tables, and Graphs

102 Analytica User Guide

7 Graph templates

3. If you want to change the defaults, edit the File name and select the Save as type,
i.e., the file format.

4. Click Save.

Graph templates
Graph templates let you apply a collection of graph settings to several graphs, or even
to all the graphs in a model. Analytica 4.0 includes several standard templates. You can
also define your own templates to create standard graphing styles for a model, project,
or an entire organization.

To use a graph style template
To apply an existing graph template to a graph:

1. Double click your graph to open the Graph setup dialog.

2. From the Style template menu at the bottom of the dialog, select the template you
want.

3. To see what the templates look like, click the Preview tab. As you select each
template from the Style template menu, it applies it to the selected graph. All
template settings will be reflected in the settings in the other tabs.

4. If you want to modify any other settings beyond what the template specifies, you can
do so now.

5. When you are happy with the results (check them in the Preview tab), click Apply,
or if you don't like any of them, click Cancel.

To stop using a graph style template
If you have a graph that uses a template T, and you wish to unlink it from the template,
change the Style Template menu back from T to Global Default. It asks “Do you want
to retain these styles for this graph?” If you answer yes, it copies the template settings
to be local for this variable, so it looks the same, but future changes to the template
have no effect. If you answer no, it removes the template settings from this graph so it
reverts to the global defaults.

 Analytica User Guide 103

Chapter Formatting Numbers, Tables, and Graphs7 Graph templates

To define a new graph style template
To create a new graph template so you can reuse a collection of graph settings for other
variables:

1. Open the Graph setup dialog by double-clicking the graph with the settings you
want to reuse, or if you want to save only new settings, open it for a new variable.

2. If you want to modify or add any settings, make those changes. You can also make
a new template with changes to an existing template: In that case, select the existing
template and click Apply template.

3. Click the Preview tab to see what all settings will look like.

4. From the Style Template menu, select New Template.

5. Type in a name for the template.

6. Click the Set Template button.

You have now created a new template, which will be saved with the model. You can
apply it to any graph in the model.

To modify a graph style template
To modify an existing graph style template T:

1. Open the Graph setup dialog by double-clicking a graph for variable V.

2. If variable V does not already use template T, select T from the Style template
menu.

3. Modify any Graph settings you want for T.

4. Check the effect in the Preview tab.

5. When satisfied, click Set template.

Any changes you make to a template will affect all variables that use it, except for any
local settings that override them for a particular variable.

Combining local, template, and model default settings
You can apply graph settings, and most uncertainty settings, at three levels:

Local Clicking Apply in the Graph setup or Uncertainty Setup dialog applies any settings
you have modified in the dialog to the current variable. These settings override any glo-
bal or template settings.

Graph template By selecting a style template in the Graph setup dialog and clicking Apply, you apply
the template settings to the current variable. The template overrides any global settings,
but not local settings.

Model defaults Clicking Set Default in the Graph setup or Uncertainty Setup dialog changes the glo-
bal defaults for the model for any settings you have modified in the dialog.

Chapter Formatting Numbers, Tables, and Graphs

104 Analytica User Guide

7 Graph templates

Tip If you change a global setting by clicking Set default, that change will change that setting
for all graphs that do not override it by a template or a local setting.

The Uncertainty sample tab of the Uncertainty Setup dialog is an exception: Settings
on that tab — e.g., Sample size — are always defaults that affect the entire model.
They cannot be local and are not saved in a graph template.

Saving defaults as a template model
Analytica comes with a wide variety of standard defaults for graph settings, uncertainty
options, preferences, diagram style, and more. If you want to save nonstandard default
settings for these, perhaps also including graph templates and libraries so that you can
use them for new models, the easiest method is to create a new template model:

1. Find or build a model that has all the default settings you want, including any graph
settings, uncertainty settings, preferences, diagram style, graph templates, and
user-defined attributes. It could also contain any libraries that you will want in all the
new models.

2. Select Save as from the File menu to save the model under a new name, e.g.,
Template.ANA.

3. Delete all the contents of the model that you won’t need for new models.

4. Select Exit from the File menu and save the model.

Whenever you want to start a new model using these defaults, double-click Tem-
plate.ANA, and save the model under a new name. To protect your template model
from you accidentally changing it by saving a new model over it with the same name:

1. In the Windows Finder, open the folder containing Template.ANA.

2. Right-click Template.ANA, and select Properties.

3. Check the Read-only attribute, and click OK.

Graph templates and setting associations
Chart type and

uncertainty views
Graph settings from the Chart type tab are associated with particular uncertainty
views. For example, if you set Line style to symbols only (instead of the default pixel
per data point) for a Sample plot, that line style will apply to any sample plot, but not to
other uncertainty views Mid, Mean, Statistics, PDF, or CDF. Thus, you may set a differ-
ent Style setting for each uncertainty view, except Mid, Mean, and Probability Bands,
which share the same style.

Settings for discrete
vs. continuous

It maintains separate line-style settings for continuous and discrete (categorical) plots.
So, pivoting a continuous dimension to the x-axis to replace what was a discrete dimen-
sion may change the plot from a bar graph to line graph, and use the corresponding set-
tings.

Axes and indexes If the horizontal axis is an index (as it usually is), any settings on the Axes Ranges tab
apply to that index only. For example, suppose variable Earthquake_damage is indexed
on the horizontal axis by Richter_scale. You set Richter_scale to Log scale, and
save into a template T. If you use template T for another variable Y also indexed by
Richter_scale, it also displays Richter_scale on a log scale. But, if Y is not indexed
by Richter_scale, the Axis setting will have no effect.

 Analytica User Guide 105

Chapter Formatting Numbers, Tables, and Graphs7 XY comparison

Uncertainty options
and graph templates

A graph template also saves non-default settings made in the Uncertainty setup dialog
tabs: Statistics, Probability bands, Probability density, or Cumulative probability.
These settings apply to the corresponding uncertainty view of any variable using the
template. Changes to the Uncertainty sample tab, however — e.g., to Sample size —
set global defaults, which affect the entire model. They are not associated with particu-
lar variable, or saved in a graph template.

Changing the global default
Global default specifies the default settings used by every graph unless overridden in
the Graph setup dialog for that graph or by a template that it uses. If the Style Tem-
plate menu says Global default, it means that the graph uses the global defaults with
no template.

To modify the global defaults:

1. Select a new variable with no graph settings, or a graph whose settings you want to
make the global default.

2. Double click the graph to open Graph setup dialog.

3. If you want, make further changes to the settings, and review them in the Preview
tab.

4. From the Style template menu, select Global Default, if it isn't already selected.

5. Click Set default button.

Note:Changes to global defaults change all existing and new graphs that use those
global defaults; that is, all that are not overridden by any graph settings
specifically set for that graph or by a template that it uses.

To rename a graph style template
1. Open the Graph setup dialog, by double-clicking a graph.

2. In the Style template menu, select the graph template you want to rename.

3. Click the Style template menu to select the old name.

4. Type in the new name.

5. Click Set template.

Note:The template "name" is actually its Title attribute, not its identifier. So, renaming
a template does not affect any variables that use it.

XY comparison
When you display a standard (non XY) graph of a variable, V, it plots the values of V up
the vertical (Y) axis against an index of V along the horizontal (X) axis. If V has more
than one dimension, you can choose which index to plot horizontally from the Horizon-
tal Axis menu. With XY Comparison, in contrast, you can plot V against another vari-
able, U, along the horizontal (X) axis, over a Common index of V and U. You can also

Chapter Formatting Numbers, Tables, and Graphs

106 Analytica User Guide

7 XY comparison

plot one slice of V against another slice over a Comparison Index. (See “Scatter plots”
to use XY comparison for scatter plots.)

XY comparison sources dialog
This dialog lets you set options for XY comparison and extends or adds menus to the
XY graph described below.

To open the dialog Click the XY button in top right corner of Result window (graph or table). You must be in
edit or arrow mode, so it is not available in Analytica editions or models confined to
browse mode.

Use comparison
index

Check this box if you want to compare one slice of the variable against another slice,
slices selected from the Comparison index. The graph will show the Comparison Index
menu from which you can select the index you want. The Vertical Axis and Horizontal
Axis menus will then offer slices from the comparison index so that you can choose
which two slices to plot against each other.

Use another variable Check this box if you would like to compare the base variable by plotting it against one
or more other variables (or simple expressions). When you check it, the following items
appear:

Add Click this button to open the Object Finder dialog to select a variable against which to
plot the base variable. You can also use the Object Finder to select a function or oper-
ation from one of the relevant libraries. You can add up to five items.

Remove Select a item from the list of other variables, and click this button to remove it from the
list of variables for comparison.

 Analytica User Guide 107

Chapter Formatting Numbers, Tables, and Graphs7 XY comparison

Menus added to XY Comparison graph
An XY comparison graph adds a Common index and, sometimes, a Comparison
index to the usual graphing roles menus on a graph or table.

Comparison index This menu lists the indexes of the base variable. The Horizontal Axis and Vertical
Axis menus each let you choose a slice from the selected comparison index to plot
against each other. It appears on the graph when Use comparison index is checked in
the XY comparison sources dialog.

Common index It defines the correspondence among the variables or slices to be plotted against each
other: Each value of the Common index identifies a data point on the graph, with vertical
(X) and horizontal (Y) values from the variables or slices you have selected for those
graphing roles. For a scatter plot, the common index should be Iteration (Run). It
appears on the graph when one or both checkboxes on the XY comparison sources
dialog are selected.

If Use another variable is checked in the XY comparison sources dialog, the com-
mon index will be an index in common to the base variable and other variable(s). If the
variables have more than one index in common, Common index will be a menu from
which you can choose the index you want.

If Use comparison Index is checked in the XY comparison sources dialog, Common
index will show the index(es) of the base variable not selected for the Comparison
index. Common index will be a menu if the variable has more than two indexes — leav-
ing more than one for the Common index.

Example: Plot one variable against another
For example, suppose you have an index and two variables:

Index Degrees := Sequence(0, 360, 5)

Variable V := Sin(Degrees)

Variable U := Cos(Degrees)

Chapter Formatting Numbers, Tables, and Graphs

108 Analytica User Guide

7 XY comparison

For a standard graph of V against its index, Degrees, select V from the diagram and
click the Result button (Control+r). Repeat with U to display the graph for U against
Degrees:

For these graphs, we selected the symbol plus line line style from Graph setup to show
the data points for each value of Degrees (page 95).

With XY Comparison, you can graph U against V, instead of against its index Degrees:

1. Change to edit mode. In the Graph window for U, click the XY button in the top right
corner (above) to open the XY Comparison sources dialog box.

XY comparison button

 Analytica User Guide 109

Chapter Formatting Numbers, Tables, and Graphs7 XY comparison

2. Select checkbox Use another variable.

3. Click Add button to open the Object Finder dialog.

4. Select the variable V, and click OK. You can now see V listed in the XY comparison
sources dialog.

Chapter Formatting Numbers, Tables, and Graphs

110 Analytica User Guide

7 XY comparison

5. Click OK.

The graph of U now plots the values of U on the vertical (Y) axis against corresponding
values of V on the horizontal (X) axis. By "corresponding" we mean for each value of
Degrees, in the Common index. If U and V had more than one index in common, it
would show a menu from which you could select the index you want.

Example: Compare variables using comparison index
You can also use XY Comparison to compare one slice of a variable against another
slice of the same variable. This is especially useful when you combine several variables
as a list. Let’s add a third variable to U and V defined above:

Variable W := Sin(2*Degrees)

The parameter 2*Degrees creates a sine curve with twice the frequency. Here is an
easy way to create a list to compare several variables:

 Analytica User Guide 111

Chapter Formatting Numbers, Tables, and Graphs7 XY comparison

1. Select the three nodes for the variables to compare, U, V, and W, and click Result
(Control+r).

2. When it prompts,

click OK.

It creates a new variable Compare1, and shows the standard (not XY) graph
comparing U, V, and W against Index Degrees:

3. Make sure you are in edit mode. In the graph window for Compare1, click the XY
button in the top right corner to open the XY comparison sources dialog box.

Chapter Formatting Numbers, Tables, and Graphs

112 Analytica User Guide

7 XY comparison

4. Select checkbox Use comparison index and click OK.

This sideways figure of 8 results because W is a sine wave with twice the frequency of
V. You can select other pairs of variables to compare, from U, V, and W, from the Verti-
cal and Horizontal Axis menus — for example, changing to W against V puts the figure
of 8 the right way up:

 Analytica User Guide 113

Chapter Formatting Numbers, Tables, and Graphs7 XY comparison

You can also select Degrees from the Horizontal Axis menu to revert to a standard
(non XY) graph of the selected variable against Degrees.

Chapter Formatting Numbers, Tables, and Graphs

114 Analytica User Guide

7 XY comparison

Chapter 8 Creating and Editing
Definitions

This chapter shows you how to:

• Create definitions

• Edit definitions

• Use the Object Finder

• Check the validity of a variable’s value

Chapter Creating and Editing Definitions

116 Analytica User Guide

8 Creating or editing a definition

This chapter introduces the tools for creating and editing mathematical models by giving
each variable a formula that defines how to compute its value in its definition. The def-
inition of a variable can be a simple number, text, a probability distribution, or a more
complicated expression. It can also be a list or table of numbers or other expressions.
Subsequent chapters present more details about using mathematical expressions,
arrays, and probability distributions.

Creating or editing a definition
To create or edit the definition of a variable, first be sure that the edit tool is
selected. Select the variable of interest and do any of the following:

• Click in the toolbar, or press Control+e.

• Select Edit Definition from the Definition menu.

• Double-click the variable to open its Object window. Then click in the definition
field.

• Click the key icon to open the Attribute panel of the diagram. Select Definition
from the Attribute popup menu. Then click in the definition field.

If you have drawn arrows into this variable from other variables (Down_payment and
Buying_price in this example), they appear in the menu. Select an input to
paste its identifier into the definition. (The menu doesn’t appear if the variable has no
inputs.)

Inputs popup menu

Attribute panel

Object window

Variable
title

Expression
popup menu

Cancel
button

Accept
button

Definition
field

 Analytica User Guide 117

Chapter Creating and Editing Definitions8 Creating or editing a definition

Tip If you are editing in the attribute panel, a handy way to insert the identifier of a node into
the definition is to click the node while pressing the Alt key. It only works for nodes in the
same diagram.

To edit a definition that is a simple number, text, or other expression:

1. Select the definition.

2. Edit it by typing, by deleting, or by using the standard text editing operators — that
is, Copy (Control+c), Cut (Control+x), and Paste (Control+v).

See Chapter 10, “Using Expressions”, for the syntax of numbers, operators, simple
expressions, and mathematical functions.

You can change the definition to one of several commonly used expressions with the
Expression popup menu (see “The Expression popup menu”).

Special editing key
combinations

These special mouse and key combinations are useful when editing a definitions:

If you also press Shift with any arrow movements, it selects the text between old and
new cursor positions for copy/paste operations, etc.

Parenthesis matching Analytica expressions sometimes contain several levels of nested parentheses. To help
keep parentheses clear, when you place the cursor just to the right of a parenthesis, it
makes it and its matching parenthesis bold. This works for left or right parentheses,
square brackets, or curly brackets (used for comments). It helps you see whether you
have the right number and types of parentheses in complex expressions, without resort-
ing to counting.

The Alt+Control+arrow keys also help: For example, pressing Alt+Control+right-arrow when
the cursor is at A moves the cursor to B. Then pressing Alt+Control+left-arrow moves it
back again:

Comments in
definitions

It is wise to document your models generously. Usually, it’s best to document what a
variable or function represents in its Description attribute, and also explain its algorithm
if it’s not obvious. For complex, multiline definitions, it’s also useful to insert comments
within the definition. Comments can also be used to disable portions of expressions
while debugging.

Key or key combination Action

double-click Selects the entire identifier containing the cursor.

option-click a node Inserts identifier of the node at the cursor position.

left-arrow ←, right-arrow → Moves cursor one character left or right.

Up-arrow, down-arrow Moves one line up or down.

Control+left-arrow,
Control+right-arrow

Moves to the beginning or end of the next word or
identifier.

Alt+Control+left-arrow,
Alt+Control+right-arrow

Moves the cursor from the adjacent parenthesis to the
next matching parenthesis, left or right.

c * (- (Ln(Uniform(1f,1)))^(1/k)

A B

Chapter Creating and Editing Definitions

118 Analytica User Guide

8 Creating or editing a definition

Enclose comments in curly brackets:
Variable X := -b*Sqrt(B^2 - 4*A*C)/A { Positive quadratic root }

You may insert a comment at any point in an expression where whitespace is allowed.
Analytica ignores anything inside a comment when parsing or evaluating an expression.
If you start a comment with "{" , then your comment cannot contain the "}" character
within the comment.

It does not preserve comments in the cells of an edit table — so it’s not worth entering
comments there.

Identifiers To refer to the value of another variable, use its identifier. To place a variable's identifier
at the insertion point in the definition, do any of the following:

• If the variable is an input, select it from the Inputs popup menu.

• Type in the variable’s identifier. To see all nodes in the active diagram labeled by
their identifiers (instead of their titles), select Show By Identifier from the Object
menu (Control+y). (Note that entering Control+y a second time switches the
diagram back to displaying the nodes by their titles.)

• Select Paste Identifier from the Definition menu and use the Find button or
identifier menu items (see “Object Finder dialog”).

• If the definition is being edited from the Attribute panel, you can insert the identifier
of a variable in the same module window by holding down the Alt key and clicking
the node. The identifier of the clicked node will be inserted at the caret position.
This shortcut isn't available from the Object window or for nodes is different
modules.

Functions You can paste functions at the insertion point by doing either of the following:

• Select Paste Identifier from the Definition menu to open the Object Finder (see
“Object Finder dialog”).

• Select the function from its library in the Definition menu (see “Using a function or
variable from the Definition menu” on page 123).

Syntax check After entering or editing a definition, press Alt-Enter or click the accept button to per-
form a syntax check of the revised definition and accept the changes.

Click the cancel button to cancel your changes.

The definition warning icon appears next to the definition if it is not syntactically cor-
rect. Click the icon to see a message about what may be wrong.

 Analytica User Guide 119

Chapter Creating and Editing Definitions8 Creating or editing a definition

A definition’s syntax check may reveal syntax errors (see “Syntax error”). For example,
if a definition contains text that is not an identifier, the following dialog box appears.

Automatically updating the diagram
After you give a variable a valid definition, the influence diagram containing that variable
might change.

Cross-hatching
disappears

Normally, any node whose definition is missing or invalid displays with a cross-hatch
pattern:

After you enter a valid definition, the node becomes clear.

You can remove cross-hatching even from invalid variables by unchecking Show Unde-
fined in the Preferences dialog from the Edit menu.

Arrow updating After you enter or edit a definition, it ensures that the arrows going into the node to prop-
erly reflect its inputs: It adds an arrow from any extra variable you mentioned. It
removes an arrow from any variable you didn’t use in the definition.

Definition
Warning icon

Cross-hatch pattern: the definition is
missing or is syntactically incorrect

Node is clear: the definition
is syntactically correct

Chapter Creating and Editing Definitions

120 Analytica User Guide

8 The Expression popup menu

The Expression popup menu
Click expr to see the Expression popup menu. The Expression popup menu shows
the type of the definition, which is an empty expression in the following figure.

Use this popup menu to change the definition to one of several common kinds of
expressions. The entries in this menu depend on the class of the node being defined.

Expression Shows the definition as a mathematical expression, even if it was
defined using the other expression types in this popup menu. See
Chapter 10, “Using Expressions”.

List Creates an ordered set of expressions or numbers. See “Creating
an index”.

List of Labels Creates an ordered set of text labels. See “Creating an index”.

Sequence Creates a list of numerical values. See “Sequence (start, end,
stepSize)”.

Table Creates an array of numbers or expressions. See “Arrays and
Indexes”.

Probability Table Creates an array defining probabilities (numbers or expressions)
across the domain of a discrete (chance) variable. See “Prob-
table(): Probability Tables”.

Expression popup menu

Current definition type

 Analytica User Guide 121

Chapter Creating and Editing Definitions8 Object Finder dialog

Object Finder dialog
The Object Finder dialog lets you browse built-in functions, your own library functions,
and all the objects in your model to insert into a definition. You can open the Object
Finder in two ways:

• To insert the desired function or identifier at the cursor position in the definition,
select Paste Identifier from the Definition menu, or

• To replace the entire definition with the desired function, select Other from the expr
(Expression) menu.

Distribution Creates an uncertain definition by selecting a function from the
Distribution System library. See “Defining a variable as a distribu-
tion”.

Choice Creates a popup menu for choosing one or all elements from a
list. See “Creating a choice menu”.

Other Opens the Object Finder dialog box, which is described in the
next section. Changes the definition to the function or variable
that you select from the Object Finder.

Library popup
menu

Contents of
selected library

Parameters to
selected function

Description of
selected function

Find button for
searching for
model objects

Chapter Creating and Editing Definitions

122 Analytica User Guide

8 Object Finder dialog

Select the desired set or library from the Library menu:

These are the top items in the library menu:

Use the Find button to search for an object by its identifier or title

The Found objects library in the Object Finder dialog will then list all objects whose
identifier or title matches in their first n characters (the n characters you type into the
search box).

To use a function, identifier, or system expression in a definition, select it. For a function,
enter the required parameters in the parameter fields.

Found objects Objects found from Find button (see below)

All Available All objects and functions, from model and built-in

All Modules Objects from all module in the models

Current Module Objects in the current module

Inputs Inputs to the selected node

Identifier menu items

Contents of the
selected library

(e.g., Math)

Find button for
searching for
model objects

 Analytica User Guide 123

Chapter Creating and Editing Definitions8 Using a function or variable from the Definition
menu

Click OK to place the function, identifier, or expression in the definition.

Using a function or variable from the Definition menu
The Definition menu lists built-in libraries of functions, system variables, and operators,
as well as any libraries you have added. It shows these as a hierarchical menu that so
you can rapidly find what you need and paste it into the definition you are editing. To find
and paste a function or other object from a library:

1. Move the cursor to the place in the definition that you want to insert a function or
other item.

2. From the Definition menu, select the library you want, and then the function or other
item.

Chapter Creating and Editing Definitions

124 Analytica User Guide

8 Automatic checking for valid values

3. This pastes the item function into the definition, along with its formal parameters or
operands, if any, each enclosed in << >>:

4. Now edit each parameter or operand to replace it with the appropriate identifier or
expression. As usual, you may type it, select an item from the expr menu or the
Inputs menu, or paste another object from the Definitions menu.

Automatic checking for valid values
You can create an automatic check on the validity of the value of a variable by setting its
check attribute. For example, to check that the value of Percent_damage is between 0
and 100, set its check attribute:

Check: Percent_damage>=0 AND Percent_damage<=100

If the check attribute evaluates to False, whenever the variable is evaluated, it shows a
warning dialog and the opportunity to edit the definition.

You can always view and edit the check attribute in the Attribute panel, if you open it
below a diagram. If you want to view or edit it in Object windows, you must first cause it
to be shown:

Displaying the
check attribute

1. Select Attributes from the Object menu to open the Attributes dialog. (For more
see “Managing attributes”.)

 Analytica User Guide 125

Chapter Creating and Editing Definitions8 Automatic checking for valid values

2. Scroll down the attribute list and find Check.

3. Click Check once to select it, and a second time to add a check mark next to it. The
check mark indicates that the attribute is displayed in the Object window.

4. Click OK.

Now the check attribute will appear in Object windows for all variables. You can also
set it to appear for functions by repeating the steps above but selecting Functions from
the Class menu in the Attributes dialog.

Defining the check Either open the Object window for the variable, or open the Attribute panel below the
diagram and select Check from the Attribute menu. Enter a Boolean (logical) expres-
sion in the Check field that will return true (1) if the value is acceptable, or false (0) if
not. The expression should refer to the variable by its identifier or as Self. For example,
to check that the value for the Lifetime of a car is more than 0 and less than 12 years,
define the check as:

or

If the Check expression refers to another variable, it makes a dependency from the
variable being checked to the variable mentioned. It will usually show an arrow from that
variable.

Triggering a check If a variable x has an input node, it performs the check whenever you change its input
value (or definition) (see “Users of your model can then easily view and modify input
variables, and view the results, without navigating the details of the model, unless they
wish to.”). Otherwise, it performs the check each time it evaluates the checked variable,
X — that is, when you first view a result for X or a variable on which X depends. If you
view or compute a probabilistic value for X, it will warn if any sample value of X fails the
check. More generally, if the value of the Check expression is an array, it will fail if any
atom in the array is false (0). If you view first the mid value of X and then a probabilistic
value, that causes two evaluations and so two checks.

If you change the definition of X or any variable on which it depends, including any vari-
able mentioned in its Check expression, it will perform the check again next time you
view X or a variable that depends on it.

Check attribute

Chapter Creating and Editing Definitions

126 Analytica User Guide

8 Automatic checking for valid values

If a check fails If a check fails — evaluates to False — the warning dialog offers the option of editing
the variable's definition, cancelling, or continuing. If you continue, it will not perform the
check again unless you change the definition of the variable or a variable it depends on.

Custom error
messages

The default warning when a check fails shows the Check expression. This is OK for
modelers, but may be obscure for end users. If you call the Error() function (see
“Error(message)” on page 368) in the check, it displays the message you pass to
Error() instead of the default warning. Using this, you can craft a more helpful message.
The warning gives the same options:

To disable checking You can disable all value checking by unchecking Check value bounds in the Prefer-
ences dialog from the Edit menu (see “Preferences dialog”). This check box is
checked by default.

Chapter 9 Creating Inputs and
Outputs

This chapter shows you how to create a user interface containing
input and output nodes for easy access for other people who may
use your model.

Chapter Creating Inputs and Outputs

128 Analytica User Guide

9 Using input nodes

For a complex model, you can make it easier to use, especially by other people, by cre-
ating a user interface. A user interface is simply a diagram containing input and output
nodes. These inputs and outputs are selected variables that users may change (inputs)
or view (outputs). By gathering input and output nodes into a single user interface dia-
gram, users have quick access from a central window, even if the underlying variables
may be located in other parts of the module hierarchy.

Input nodes allow the user to see and change the values of variables directly in a dia-
gram. Input nodes may be a field to enter a number or text value, a button that opens an
edit table or probability distribution, or a pulldown menu. Output nodes show atoms (sin-
gle numbers or text values) in the diagram, and show a button for uncertain or array-val-
ued variables, so that users can open tables or graphs with a single click.

Input and output nodes are a kind of alias node linked to the original node. Input and
output nodes usually show the title and units of a variable to the left of the input or out-
put field or button:

Users of your model can then easily view and modify input variables, and view the
results, without navigating the details of the model, unless they wish to.

This diagram shows input nodes on the left side and output nodes on the right side. To
see the details of the model, you would double-click the Details node to open up its
diagram.

See Chapter 1, “Examining a Model.”

Using input nodes
An input node lets you, or your end user, see and easily change the value of a variable
directly in the diagram, without opening an Attribute view or Object window (see
“Browsing with input and output nodes”). In browse mode you can change only the val-
ues and definitions of input nodes.

An input node is an alias of a variable that you want to treat as an input to the model
(see “An alias is like its original”).

 Analytica User Guide 129

Chapter Creating Inputs and Outputs9 Creating a choice menu

The type of definition of the original variable determines the appearance of the input
node (see “The Expression popup menu”). If you want your users to be able to change
the type of definition, instruct them on how to open an Attribute view or Object window
and use the Expression popup menu.

Input field
A single number or text value (scalar) displays as an input field. You can have Analytica
check if the input value is acceptable by using the Check attribute (see “Automatic
checking for valid values”); the check is performed on input of a new value.

Input popup menu
A choice displays as an input popup menu. To create an input menu for an input node,
see “Creating a choice menu”.

List
A list or list of labels displays as a List button (see “Creating an index”).

Edit table
An edit table displays as an Edit Table button (see “Viewing an array as an edit table”).

Probability distribution
A probability distribution displays a button with the name of the distribution (see “Defin-
ing a variable as a distribution”).

Creating an input
node

To create an input node from a variable:

1. Make sure you are in edit mode.

2. Select the variable.

3. Select Make Input Node from the Object menu. The input node will appear in the
same diagram next to the selected node.

4. Move the input node to the location you want.

5. Adjust the size of the node.

Tip To make several input nodes at once, select the nodes and then choose Make Input
Node.

Creating a choice menu
For the classes of nodes that may be used for parametric analysis, such as decision
and chance, the Expression popup menu includes the Choice option. The Choice
option provides a way to offer the user a choice of selecting one or all values from a list.

Creating a menu from
a list

If the original variable is already defined as a list of numbers or labels, create a popup
menu to select from the list as follows:

1. Show the definition of the variable as a list, either in the Attribute view or the Object
window.

Chapter Creating Inputs and Outputs

130 Analytica User Guide

9 Creating a choice menu

2. Click the Expression popup menu and select the Choice option. Click OK to
"Replace current definition with a Choice?" Click OK to "Replace current definition?"

3. The Object Finder dialog displays with parameter I=Self and n=0. Press OK.

The definition field of the original variable now displays as a popup menu, and in
browse mode, the input node displays as a popup menu. The original definition (list of
numbers or labels) is now available as the domain of the variable — the possible out-
comes. In the expression view, the popup menu displays as the Choice() function (see
“Choice(i, n, inclAll)”).

Tip To define Var1 as a popup menu of another variable Var2, that is defined as a list, select
Choice from the Expression popup menu, and set the first parameter to I=Var2 in the
Object Finder dialog).

Tip To hide the All option on the popup, enter inclAll=False as the third parameter in the
Object Finder dialog.

Creating a new
definition

If a variable has no previous definition, when you select Choice from the Expression
popup menu, a domain (possible outcomes) of List of labels is created, with one ele-
ment in the list.

To change the domain to List of numbers, press the Domain popup menu and select
List of numbers.

Edit the list of values as you would edit a list of labels or list of numbers (see “Editing a
list”).

Note:The values in the domain are evaluated deterministically.

 Analytica User Guide 131

Chapter Creating Inputs and Outputs9 Using output nodes

Using output nodes
An output node gives you, or your end user, rapid access to a selected result in the
model. You can use output nodes to focus attention on particular outputs of interest.

An output node displays a result value in the view style — i.e., whether table or graph,
the indexes displayed, and the uncertainty view — last selected for display and saved
with the model. It also shows the uncertainty view icon (see “Uncertainty views”).

If the result is a single value (mid value or mean), it displays directly in the output field.

If the result is a table, the output node displays a Result button. Click the button to dis-
play the table or graph.

After you display the table or graph, you can use the result toolbar to change the view.

If the value of an output has not yet been computed, the Calc button appears in the
node. Click the Calc button to compute and display the value.

Creating an output
node

To create an output node from a variable:

1. Make sure you are in edit mode.

2. In a Diagram window, select the node of the variable for which you wish to create
an output node.

3. Select Make Output Node from the Object menu. The output node will appear in
the diagram next to the selected node.

4. Move the output node to the location you want.

5. Adjust the size of the node.

The view style of the output result — table or graph — will be the format you last set for
it (see “Formatting Numbers, Tables, and Graphs”).

Resizing controls

You can resize input and output nodes by dragging their corner handles, just like other
nodes. But for these, its usually most convenient to deselect Resize centered from the
Diagram menu so you can align them either along their right edges, or both edges.

You can also drag the left edge of the control field, button, or menu left or right to
change its width. This is especially useful for choice menus when you may want to
expand the width to be large enough for the widest menu option.

When using a pull-down menu containing long text values, you may wish to adjust the
pull-down control as necessary to accommodate your longest text value. Input and out-
put nodes contain text and graphics, in addition to the control itself. The node resizing
handles that appear as small black squares at the corners of the node adjust the size of
the bounding rectangle that holds all these items, but does not change the width of the
control itself. To change the width of a control (a pull-down menu, textedit box, or but-
ton), position the mouse over the left edge of the control, depress the mouse button and
drag the cursor to the left or right.

Drag corners to resize node

Drag left or right to resize
control

Chapter Creating Inputs and Outputs

132 Analytica User Guide

9 Input and output nodes and their original variables

Input and output nodes and their original variables
The title and units of an input or output node are obtained from the original node. To edit
them, edit the title and units of the original node (see “To edit an attribute”). If you edit
the title or units of the original node, the input or output node's title or units changes to
match the original.

By default, an input or output node shows its original node's title (label) in the original
font, with no node outline or arrows. The node takes its color from its original node when
the node is created. Later changes to the original node color do not change the color of
the input or output node.

To change the appearance of an input or output node alone, use the Set Node Style
and Show Color Palette options from the Diagram menu (see “Node Style dialog” and
“Recoloring nodes or background”). When you use these options to change the appear-
ance of an input or output node, its original node does not change. Similarly, using
these options to change the appearance of an original node does not affect its previ-
ously created input or output node.

Using form modules
It is often helpful to group input and output nodes into a single diagram for easy access
by model users. The form module makes it easy for you to create input and output
nodes in the form by drawing arrows between the form and variables.

To create a form
module

1. Make sure a diagram window is active with the edit tool selected.

2. Drag the module icon from the node toolbar and position it in the diagram.

3. Type in a title for the module — for example, User interface.

4. Open the Attribute panel at the bottom of the diagram window.

5. With the new form module still selected, press to open the Attribute popup menu,
and select Class.

6. The class Module appears in the Attribute panel. Press to open a popup menu of
module classes:

7. Select Form from the menu.

Creating input and
output nodes in a

form module

An input or output node is an alias to another variable in the model. Creating an input or
output node is similar to creating an alias (see “Alias nodes”). To create a set of input
and/or output nodes in the form module:

1. Adjust the diagram(s) on your screen so the form node and the source variables for
the input or output nodes are all visible — they may be in the same or different
diagrams.

 Analytica User Guide 133

Chapter Creating Inputs and Outputs9 Adding icons to nodes

2. In the toolbar, click to enter arrow mode.

3. To create an input node for variable X, draw an arrow from the form node to X. It
creates an input node for X inside the form module.

4. To create an output node for variable Y, draw an arrow from Y to the form node.
It creates an output node for X inside the form module.

5. When you have finished creating input and output nodes, double-click the form node
to open its diagram window.

6. In the toolbar, click to enter edit mode.

7. Rearrange and resize the input and output nodes for clarity. It is sometimes clearest
to arrange the input nodes on the left side and the output nodes on the right side.

A form module is like any other module, except when you draw arrows into or out of a
form module, it creates outputs or inputs, instead of normal alias nodes in the module.
But, you can also create standard variables and modules inside a form. If you have too
many nodes to fit comfortably in a single diagram, you may wish to organize them into
additional modules (which need not be forms) to enclose related groups of inputs and
outputs.

Adding icons to nodes
You can add an icon to any node in a diagram. The Icon window contains an enlarged
space that you can use for creating or editing an icon.

Opening the Icon
window

To add an icon:

1. Make sure that the edit tool is selected.

2. Select the node that you wish to illustrate.

3. Choose Edit Icon from the Diagram menu to open the Icon window.

Chapter Creating Inputs and Outputs

134 Analytica User Guide

9 Adding icons to nodes

Drawing or editing
an icon

You can draw or edit the icon one pixel at a time using mouse clicks, or you can draw
lines by holding down the mouse button as you drag the cursor.

• To make a dark pixel light or a light pixel dark, click the pixel.

• To draw a line or curve hold down the mouse button while you move the cursor. If
the starting pixel of the line or curve is black the line or curve will be black; if the
starting pixel of the line or curve is white the line or curve will be white.

• To set the node’s icon, click the Accept button .

• To restore the original icon in the window (or to clear the window if there was no
previous icon), click the Revert button .

You can copy and paste an icon from one place in a model to another using the stan-
dard Copy (Control+c) and Paste (Control-v) commands. You can delete an icon from a
node by selecting it and using the Cut (Control+c) command or the Delete key.

The same node with an icon added.
Adjust the size of the node as
necessary to show the icon and title.

 Analytica User Guide 135

Chapter Creating Inputs and Outputs9 Graphics, frames, and text in a diagram

Graphics, frames, and text in a diagram
Adding graphics You can add a graphic image created in another application to any node or to the dia-

gram background. Both color bitmaps and PICT graphics can be pasted in.

To paste in a graphic:

1. Copy (Control+c) the graphic to the clipboard from within a graphics application.

2. Make sure that the edit tool is selected in Analytica.

3. Select the node or the diagram window where you want the graphic to appear.

4. Paste (Control+v) the graphic from the clipboard.

When you paste a graphic into the diagram window, a special node of class picture is
created. Picture nodes can be placed on top of variable, module, and function nodes.

To remove a graphic, select it and press Delete, or choose Clear from the Edit menu.

Adding a frame You can create a rectangular frame for nodes in a diagram in either of the following
ways:

• Paste a graphic into the diagram window to create a picture node, then delete the
graphic. This leaves a blank picture node. Use the Node Style dialog box (see
“Node Style dialog”) to display the border of the node. Other nodes can be placed
on top of this node.

• Create a decision node and leave the title blank. Give it a definition of 0 (or any
number) to remove the cross-hatch pattern. Use the Node Style dialog box (see
“Node Style dialog”) to hide the label and fill color. Create this frame first, then
create the nodes to be framed and place them in the frame. If you create a framing
decision node after you create the nodes to be framed, the nodes will be "under"
the framing decision node; they will be visible, but you will not be able to select
them. To place the decision node underneath the other nodes, select the decision
node while in edit mode, right mouse click and select the Send to Back command
from the pop-up menu.

• Create a text node by dragging a text node from the text button on the
toolbar. Use the Node Style dialog box (see “Node Style dialog”) to add a fill color
and border to the node.

Adding text To add text to a diagram, drag a text node from the text button on the toolbar to
the diagram and enter the desired text. This creates a new node with a special class
text. Use the handles to resize the node, and use the Node Style dialog box (see
“Node Style dialog”) to change the font or to change the background from transparent to
filled.

Models in XML file format
By default, Analytica 4.0 saves models in its own slot-filler format. You can also save
Analytica models in XML format. XML format lets you use a variety of applications that
work with XML to read and edit the model files.

The format for saving
models

Analytica 4.0 remembers which file format a model used and will save models in the
same format. Hence, models created in earlier releases of Analytica for Windows or

Chapter Creating Inputs and Outputs

136 Analytica User Guide

9 Models in XML file format

Macintosh will continue to use the old format. You can override that format by
(un)checking Save in XML Format in the Save as dialog selected from the File menu.

Compatibility with
older releases

If you want to share models created in Analytica 4.0 with users who are using earlier
releases, you should uncheck the Save in XML Format check box in the Save as dia-
log. You will also need to avoid using any of the new syntax or functions introduced in
Analytica 4.0 and described in the Upgrade Guide.

Sample old file format Here is part of a sample model file in the old "slot filler" format:
{ From user Richard Morgan, Model Sample_old_file_format ~~

at Jun 1, 2007 3:56 PM}

Softwareversion 3.1.0

Model Sample_old_file_format

Title: Sample of old file format

Author: Richard Morgan

Date: Jun 1, 2007 11:55 PM

Savedate: Jun 1, 2007 3:56 PM

Objective Net_income

Title: Net income

Units: $ millions

Definition: Revenues - Expenses

Nodelocation: 304,64,1

Variable Revenues

Title: Revenues

Units: $ millions

Definition: 700 * (1+ 0.10)^(Year - 2003)

Nodelocation: 176,32,1

Variable Expenses

Title: Expenses

Units: $ millions

Definition: Table(Year)(750,750,780,800,850)

Nodelocation: 176,96,1

Close Sample_old_file_format

Sample XML file
format

Here is part of the same model, saved in the XML format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ana user="Richard" project="Sample_XML_file_format" generated=" Jun

1, 2007 3:57 PM" softwareversion="4.0.0" software="Analytica">

<model name="Sample_XML_file_format">

<title>Sample XML file format</title>

<author>Richard Morgan</author>

<date> Jun 1, 2007 11:55 AM</date>

<saveauthor>Richard Morgan</saveauthor>

<savedate>Fri, Jun 1, 2007 3:57 PM</savedate>

<fileinfo>0,Model Sample_XML_file_format,

 Analytica User Guide 137

Chapter Creating Inputs and Outputs9 Hyperlinks in model documentation

2,2,0,1, C:\Documents\Upgrade guide\Netincome example XML.ANA </

fileinfo>

<objective name="Net_income">

<title>Net income</title>

<units>$ millions</units>

<definition>Revenues - Expenses</definition>

<nodelocation>304,64,1</nodelocation>

<nodesize>48,24</nodesize>

<valuestate>2,313,273,197,250,0,MIDM

</valuestate>

<numberformat>1,D,4,2,0,1</numberformat>

</objective>

<Variable name="Revenues">

<title>Revenues</title>

<units>$ millions</units>

<definition>700 * (1+ 0.10)^(Year - 2003)

</definition>

<nodelocation>176,32,1</nodelocation>

<nodesize>48,24</nodesize>

</Variable>

<Variable name="Expenses">

<title>Expenses</title>

<units>$ millions</units>

<definition>Table(Year)(750,750,780,800,850)

</definition>

<nodelocation>176,96,1</nodelocation>

<nodesize>48,24</nodesize>

</Variable>

</model>

</ana>

Hyperlinks in model documentation
Any description, or other text attribute of a variable or other object, can contain a
hyperlink to any Web page. This is useful for linking to detailed explanations, data, or
references for a model, or even to related downloadable Analytica models. In browse
mode, hyperlinks appear conventionally underlined in blue. When you click a hyperlink,
your computer will show the indicated web page in your default web browser.

To define or edit a hyperlink, enter edit mode, and use a standard HTML link syntax of
the form

Click here

When you switch to browse mode the HTML code will display as a hyperlink.

Chapter Creating Inputs and Outputs

138 Analytica User Guide

9 Hyperlinks in model documentation

In edit mode

In browse mode

Chapter 10 Using Expressions

This chapter tells you how to:

• Write values, including numbers, Booleans, and text values

• Define expressions using arithmetic, logical, and comparison
operations, and functions

• Select common functions that operate on numbers and text
values

Chapter Using Expressions

140 Analytica User Guide

10 Numbers

This chapter describes the building blocks for creating and editing expressions to define
variables: numbers, operators and mathematical functions.

Numbers
The following formats are all valid for entering numbers:

• The signed integer after the e is an exponent that denotes a power of ten. For
example:

5e4 = 5 x 104 = 50,000

4.3e-3 = 4.3 x 10-3 = 0.0043

• A character suffix denoting a power of ten is a convenient way to express very large
or small numbers. For example:

50K → 50,000

1.5m → 0.0015

The character suffixes are the same as used in the default output number format
(see the table on page 87).

Tip The character suffixes m (10-3) and M (106) are distinct. This is the only situation in which
the case of a letter makes any difference for input to Analytica. For example, you can use
k and K interchangeably.

Range Analytica can represent numbers between 10-308 and 9•10+307.

Number Format Examples

Integers 2, 10, 1234, -16

Decimals 32.5, .0002, 0.000012345

Suffix 250K, 10.5M, 10.5m, 22%

Exponential form 5.3e+11, 1e20, 4.5632e-25

Power of 10 Suffix Prefix Power of 10 Suffix Prefix

3 K Kilo -2 % percent

6 M Mega or Million -3 m milli

9 B Billion -6 µ micro (mu)

9 G Giga -9 n nano

12 T Tera or Trillion -12 p pico

15 Q Quad -15 f femto

 Analytica User Guide 141

Chapter Using Expressions10 Numbers

Numbers out of range When a calculation results in a number whose absolute value is less than the smallest
number that can be represented, Analytica rounds the number to 0 (zero) without warn-
ing. For example:

1/10^1000 → 0

INF (infinity) When a calculation results in a number whose absolute value is greater than the largest
that can be represented, Analytica displays it as INF or -INF, for positive or negative
infinity. For example:

10^1000 → INF

-1 * 10^1000 → -INF

1/0 → INF

You can enter INF as a value in an expression. Analytica can perform some computa-
tions with INF, such as:

INF + 10 → INF

INF/0 → INF

10 - INF → -INF

Other computations with INF, such as difference and ratio, give results that are ill-
defined and return NAN (Not A Number):

INF - INF → NAN

INF/INF → NAN

A NAN may be detected in an expression using the IsNaN() function. See page 148.

Null, Undefined,
NAN, and INF

Analytica may return the following system constants:

Functions such as Slice(), Subscript(), Subindex(), and MDTable() may return Null
—for example, when trying to Slice() out the nth element of an array whose index has
less than n elements, for example:

Index I := 1..5

Slice(I^2, I, 6) → Null

Undefined may result from attempting to use the value of an optional parameter in a
user-defined function that hasn't been provided by the caller. Undefined and Null are
treated as the same in evaluation of expressions.

You can test for Null using the standard = or <> operators, or you can use IsUndef().

Precision The maximum internal precision of numbers is 15 significant digits.

Some calculations, especially those that involve small differences between numbers,
may result in less precision than the maximum.

Constant Meaning

Undefined A value has never been defined or is uncomputed.

Null There is no such item.

NAN The result is numeric, but not a real number or infinity; (e.g., Sqrt(-1) or
0/0).

INF Infinity or a real number larger than can be represented (e.g., 1/0).

-Inf Negative infinity or a number smaller than can be represented (e.g., -1/0).

Chapter Using Expressions

142 Analytica User Guide

10 Text values

Text values
You specify a text value by enclosing text in single quotes, or in double quotes, for
example:

'A', "A25", ’A longish text - with punctuation.’

A text value can contain any character, including any digit, comma, space, and new line.
To include a single quote(') or apostrophe, type two single quotes in sequence, such as:

'Isn''t this easy?'

The resulting text will contain only one apostrophe character. Or you can enclose the
text value in double quotes:

"Don’t do that!"

Similarly, if you want to include double quotes, enclose the text in single quotes:
’Did you say "Yes"?’

You can enter a text value directly as the value of a variable, or in an expression, includ-
ing as an element of a list (see “Creating an index” and “List vs. list of labels”) or edit
table (see “Creating an array with an edit table”). Analytica displays text values in
results without the enclosing quotes. Also see “Converting a number to text”.

Boolean or logical values
There are two Boolean or logical values — True and False. You can specify a Boolean
value in an expression as False or True, or, equivalently, as the numbers, 0 or 1,
respectively. For example:

False or True → True

1 and 0 → False

1 or 0 → True

Analytica treats every nonzero number as True. For example:
2 And True → True

Analytica displays Boolean results as 0 or 1, by default. To display them as False or
True, change the format of the definition or result to Boolean (see “Number formats”).

Operators
An operator is a symbol, such as a plus sign (+), that represents a computational oper-
ation or action such as addition or comparison. Analytica includes the following sets of
standard operators.

Arithmetic operators The arithmetic operators apply to numbers and produce numbers.

Operator Meaning Examples

+ plus 3+2 → 5

- minus 3- 2 → 1

 Analytica User Guide 143

Chapter Using Expressions10 Operators

Comparison
operators

Comparison operators apply to numbers and text values and produce Boolean values.

Alphabetic ordering
of text values

The comparison operators, >, >=, >=, and <, compare the alphabetic ordering based on
ASCII coding of two text values. For example,

’Analytica’ < ’Excel’ Æ 1 (true)

Using the numerical (ASCII) representation of the characters, means:

1. Digits precede (are smaller than) letters, so
’9’ < ’A’ Æ 1 (True)

2. Uppercase letters precede lowercase letters. If you want to alphabetize without
regard to case, first use TextUppercase (or TextLowerCase) to convert all letters to
the same case.

’Analytica’ > ’excel’ Æ 0 (False)

TextUpperCase(’Analytica’) < TextUpperCase(’excel’) Æ 1 (True)

3. Letters with accents, umlauts, cedillas, ligatures, and other decoration come after
undecorated letters, hence alphabetic ordering may be different from what you
expect.

Sortindex(a, i) sorts text values in a using the same ordering scheme. But, Rank()
works only on numerical values, and does not rank text values.

* multiplied by 3*2 → 6

/, ÷ divided by 3/2 (=) → 1.5

^ to the power of 3^2 (= 32) → 9

^fraction root
(fractional exponent) 4^.5 (=) → 2

Operator Meaning Examples

3
2

4
1
2

Operator Meaning Examples → (1 = true, 0 = false)

< less than 2<2

'A'<'B'

→ 0

→ 1

<= less than or equal to 2<=2

'ab'<='ab'

→ 1

→ 1

= equal to 100=101

'AB'='ab'

→ 0

→ 0

>= greater than or equal to 100>=1

'ab'>='cd'

→ 1

→ 0

> greater than 1>2

'A'>'a'

→ 0

→ 1

<> not equal to 1<>2

'A'<>'B'

→ 1

→ 1

Chapter Using Expressions

144 Analytica User Guide

10 Operators

Logical operators The logical operators apply to Boolean values and produce Boolean values.

Scoping operator (::) Since new versions of Analytica introduce new functions that did not exist in previous
releases of Analytica, it is possible that a model created in a previous release may con-
tain a variable or other object with the same identifier as a new built-in variable or func-
tion. In this situation, an identifier name appearing in an expression may be ambiguous.

Prepending :: to the name of a built-in function causes the reference to always refer to
the built-in function. Otherwise, the identifier will refer to the user’s variable or function.
With this convention, existing models are not changed by the introduction of new built-in
functions.

Example Suppose a model from an older release of Analytica contains the user-defined function
Irr(Values,I). Then

Operator binding precedence
A precedence hierarchy resolves potential ambiguity when evaluating operators and
expressions. The precedence for operators, from most tightly bound to least tightly
bound is:

1. parentheses ()

2. function calls

3. Not

4. @I , \A, \[I]A, #R.

5. A.I

6. A[I=x]

7. Attrib of Obj

8. ^

9. - (unary, negative)

10. *, /

11. +, - (binary, minus)

12. m..n

13. <, >, <=, >=, =, <>

Operator Meaning Examples
(1 = true, 0 = false)

b1 AND b2 true if both b1 and b2 are true,
otherwise false

1 AND 20<2 → 0

b1 OR b2 true if b1 or b2 or both are
true, otherwise false

0 OR 1<2 → 1

NOT b true if b is false, otherwise
false

NOT (2<3) → 0

Irr(Payments,Time) User’s Irr function

::Irr(Payments,Time) The built-in function

 Analytica User Guide 145

Chapter Using Expressions10 IF a THEN b ELSE c

14. And, Or

15. & (text concatenation)

16. :=

17. If … Then … Else, Ifonly … Then … Else, Ifall … Then … Else

18. Sequence of statements separated by semicolons, sequence of elements or
parameters separated by commas

Within each level of this hierarchy, the operators bind from left to right (left associative).

Examples The following arithmetic expression:
1 / 2 * 3 - 3 ^ 2 + 4

is interpreted as:
((1 / 2) * 3) - (3 ^ 2) + 4

The following logical (Boolean) expression:
If a and b > c or d + e < f ^ g Then x Else y + z

is interpreted as:
If ((a and (b > c)) or ((d + e) < (f ^ g))) Then x Else (y + z)

IF a THEN b ELSE c
This conditional expression returns b if a is true (1) or c if a is false (0), for example:

Variable A := 1M

Variable B := 1

IF X > Y THEN X ELSE Y

will return the larger of X and Y.

It is possible to omit the ELSE clause:
IF X > Y THEN X

But, if the condition is false, it will give a warning. If you ignore the warning, it returns
NULL.

Conditional expressions get more interesting when they work on arrays. See “IF a
THEN b ELSE c with arrays”.

Functions
Analytica provides a large number of built-in functions for performing mathematical,
array, statistical, textual, and financial computations. There are also probability distribu-
tion functions for uncertainty and sensitivity analysis. Other more advanced or special-
ized functions are described in Chapter 13, “Other Functions.” The Enterprise edition of
Analytica also includes functions for accessing external ODBC data sources. Finally,
you can write and use your own user-defined functions (see “Building Functions and
Libraries”)

Chapter Using Expressions

146 Analytica User Guide

10 Math functions

Position-based
function calls

The conventional position-based syntax to call a function has this form:

FunctionName(param1, param2, ...)

The function name is followed by a comma-delimited list of parameters enclosed
between parentheses. In most cases, parameters can themselves be expressions built
out of constants, variable names, operators, and function calls. Here are some simple
examples of expressions involving functions.

Exp(1) → 2.718281828459

Sqrt(3^2 + 4^2) → 5

Round(2*Pi) → 6

Mod(X, 3) → 1 where X → 7

Pmt(8%, 30, -1000) → $88.83

N * Sum(w*w, J)

Normal(500,100)

Name-based
function calls

Analytica also offers name-based parameter calling for most functions with multiple
parameters.

Math functions
These functions can be accessed under the Definition menu Math command, or in the
Object Finder dialog box, Math library.

Abs(x) Returns the absolute value of x.
Abs(180) → 180

Abs(-210) → 210

Ceil(x) Returns the smallest integer that is greater than or equal to x.
Ceil(3.1) → 4 Ceil(5) → 5

Ceil(-2.9999) → -2 Ceil(-7) → -7

Floor(x) Returns the largest integer that is smaller than or equal to x.
Floor(2.999) → 2 Floor(3) → 3

Floor(-2.01) → -3 Floor(-5) → -5

Round(x) Returns the value of x rounded to the nearest integer.
Round(1.8) → 2 Round(-2.8) → -3

Round(1.499) → 1 Round(-2.499) → -2

Exp(x) Returns the exponential of x — that is, ex. x must not be greater than 709.
Exp(5) → 148.4

Exp(-4) → 0.01832

Ln(x) Returns the natural logarithm of x, which must be positive.
Ln(150) → 5.011

Ln(Exp(5)) → 5

Logten(x) Returns the logarithm to the base 10 of x, which must be positive.
Logten(180) → 2.255

Logten(10 ^ 30) → 30

Sqr(x) Returns the square of x.

 Analytica User Guide 147

Chapter Using Expressions10 Numbers and text

Sqr(5) → 25

Sqr(-4) → 16

Sqrt(x) Returns the square root of x, which must be positive or zero.
Sqrt(25) → 5

Mod(x, y) Returns the remainder (modulus) of x/y.
Mod(7,3) → 1 Mod(12,4) → 0

Mod(-14,5) → -4

Factorial(x) Returns the factorial of x, which must be between 0 and 170.
Factorial(5) → 120

Factorial(0) → 1

If x is not an integer, x is rounded to the nearest integer before taking the factorial.

Cos(x), Sin(x), Tan(x) Returns the cosine, sine, and tangent of x, x assumed in degrees.
Cos(180) → -1

Cos(-210) → -0.866

Sin(30) → 0.5

Sin(-45) → -0.7071

Tan(45) → 1

Arctan(x) Returns the arctangent of x in degrees.
Arctan(0) → 0

Arctan(1) → 45

Arctan(Tan(45)) → 45

See also “Arccos(x), Arcsin(x), Arctan2(y, x)” on page 213.

Degrees(r),
Radians(d)

Degrees gives degrees from radians, and radians gives radians from degrees:
Degrees(Pi/2) → 90

Degrees(-Pi) → -180

Radians(-90) → -1.57079633

Radians(180) → 3.141592654

Numbers and text
Converting a number

to text
If you apply the & operator or JoinText() to numbers, they convert the numbers to text
values, using the number format specified for the variable or function in whose definition
they appear. You can use this effect to convert ("coerce") numbers into text values, for
example:

123456789 & '' → ’123.5M’

123456789 & '' → ’$123,456,789.00’

’The date is: ’ & 38345 → ’The date is: Thursday, December 25, 2008’

Tip The actual result depends on Number Format setting for the variable or function in whose
definition the expression appears. The first example assumes the default Suffix format.
The second assumes Fixed Point format, with currency and thousands separators

Chapter Using Expressions

148 Analytica User Guide

10 Datatype functions

checked, and 2 decimal digits. The third assumes the Long Date format. Use the
Number format dialog on the Result menu to set the formats.

Converting text to a
number

You can use the Evaluate() function to convert a text representation of a number into an
actual number, for example:

Evaluate(’12350’) → 12.35K

Evaluate() can convert any number format that Analytica can handle in an expression
— and no others. Thus, it can handle decimals, exponent format, dates, true or false, a
’$’ at the start of a number (which it ignores), and letter suffixes, like ’K’ and ’M’. (See
“Evaluate(t)”.)

An alternative method, for converting text to a number is to use the Coerce Number
qualifier on a user-defined function. (See “Parameter qualifiers”.)
For example, you could define a user-defined function such as:

ParseNum(X: Coerce Number) := X

Datatype functions
Non-array values in Analytica may be numbers, text, or the special value undefined
(and its equivalent null). The functions in this section, found on the Special sub-menu
of Definition, can be used to determine the value type.

Isnumber(x) Returns True if x is numeric, including INF or NAN
IsNumber(0) → True

IsNumber(0/0) → True

IsNumber(INF) → True

IsNumber(’hi’) → False

IsNumber(5) → True

IsNumber(’5’) → False

IsNumber(NAN) → True

Istext(x) Returns True if x is a text value.
IsText(7) → False

IsText(’hello’) → True

IsText(’7’) → True

Isnan(x) Returns True if x is "not a number,", i.e. NAN. INF and a regular number do not qualify,
nor does a text or NULL.

0/0 → NAN

IsNaN(0/0) → True

IsNaN(5) → False

IsNaN(INF) → False

IsNaN(’Hello’) → False

x = NULL To test if x is NULL.

Isundef(x) Returns True if x is either of the special values undefined or Null. Equivalently, returns
False if x is a number or a text value.

 Analytica User Guide 149

Chapter Using Expressions10 Datatype functions

The value Undefined displays as a blank in a result table and generally indicates that a
value is unavailable or hasn't been computed. For backward compatibility with releases
of Analytica, this can also be used to detect Null.

The special value undefined cannot be directly entered in an expression. However, it
may result from the evaluation of certain Analytica expressions. For example, the Sub-
index() function returns Null if the given value is not found.

Isundef(’hello’) → False

Isundef(5) → False

Isundef(0/0) → False

Isundef(1/0) → False

Isundef(Subindex(Time*2,1000,Time)) → True

Note: In the last example, Time*2 does not contain the value 1000, so Subindex()
returns Null.

TypeOf(x) Returns the type of expression x as a text value, usually one of "Number", "Text", "Ref-
erence", or "Null".

Warnings Warnings may occur during evaluation, for example when trying to take the square root
of a negative number or divide by zero, for example:

VARIABLE X := Sequence(-2, 2)

VARIABLE Y := Sqrt(X) →

This Warning dialog gives you the option to ignore this and future warnings. If you
select Ignore Warnings, Y yields:

Y → [NAN, NAN, 0, 1, 1.414]

The NAN (Not A Number) values may be propagated further into a model.

Analytica displays warning conditions detected while evaluating an expression only if
the resulting value assigned to a variable contains an explicit error. In the following
example, the errant NAN does not appear in the result, so it does not display a warning:

Variable Z := IF X<0 THEN 0 ELSE Sqrt(X)

Z → [0, 0, 0, 1, 1.414]

Because (X<0) evaluates to an array containing both True (1) and False (0) values, the
expression will evaluate Sqrt(X), and generate NAN as for Y above. But, the conditional
means that resulting value for Z contains no NANs, and so Analytica generates no warn-
ing when Z is evaluated.

You can also make use of the return value, even if it might be errant, as in the following
example:

VAR x := Sqrt(y);

Chapter Using Expressions

150 Analytica User Guide

10 Datatype functions

IF IsNaN(x) THEN 0 ELSE x

The commonly encountered conditions of "subscript or slice value out of range" are
warnings with the return value of Null, for example:

Index I := 1..5

Slice(I^2, I, 6) → Null

Chapter 11 Arrays and Indexes

This chapter introduces how to define and work with arrays and
indexes. In particular, it explains Intelligent Arrays™, Analytica’s
powerful and convenient features for working with multidimen-
sional arrays.

Chapter Arrays and Indexes

152 Analytica User Guide

11 Introduction to arrays

The value of a variable may be an atom — a single number, Boolean, text value, or ref-
erence — or it may be an array — a collection of such values, viewable as a table with
one or more dimensions. The ease and flexibility with which you can create, operate
with, and display multi-dimensional arrays is the source of much of the power of Analyt-
ica for creating and managing large models. Each dimension of an array is identified by
an index variable. You can extend a dimension simply by adding elements to its index.
Or you can add a dimension to an array variable. These changes to dimensions will
automatically carry through the rest of the model, often with no need to make other
modifications.

There are some subtleties to the effective use of arrays. Your past experience with
spreadsheets or programming languages may actually mislead you about how best to
use arrays in Analytica. So, if you plan to use arrays in your models, we suggest that
you first read the following sections, “Introduction to arrays” and “Operations on arrays”.
The rest of this chapter gives the details on how to create index variables, how to use
edit tables to create array values, and how the arithmetic, comparison, logical, and con-
ditional operators work with arrays.“More Array Functions”, describes the special func-
tions that create and operate on arrays.

Introduction to arrays
What is an array? An array is a collection of values that you can view as a table or graph. An array has

one or more dimensions, which may appear as the row headers or column headers of a
table. For example, the value of variable Fuel_price_per_gallon is a one-dimen-
sional array indexed by Car_type with two values, $2.70 for the small car (which uses
regular gasoline) and $2.90 for the large car (which uses premium gasoline):

Maintenance_cost is a two-dimensional array, indexed by Car_type and by Year:

The small car is cheap to maintain initially, but it gets more expensive than the large car
after three years as its components start to wear out and need replacing.

 Analytica User Guide 153

Chapter Arrays and Indexes11 Introduction to arrays

Tip You can swap the rows (Car_type) and columns (Year) by using the row or column
popup menus (see “Index selection”).

Intelligent Arrays™ refers to the full set of features in Analytica for handling array
abstraction. See “Intelligent Arrays™” for more information.

What is an index? Each dimension of an array is identified by an index variable. The index variable holds
the possible values — a list of numbers or a list of labels. In the examples above,
Car_type is a list of labels, “small car” and “large car.” Year is a list of numbers.

To create an index, see “Creating an index”.

Before creating an array, it is usually best to create the indexes for the array’s dimen-
sions. An index may be used in multiple arrays. When building a model that will use
several multidimensional arrays, a key task is to define the indexes.

Index variables
in a diagram

This diagram of a Car_cost_model includes the variables described above. The two
indexes appear as purple parallelograms:

Fuel_price_per_gallon is the destination of an arrow from Car_type because it is
defined as an array indexed by Car_type. Similarly, Maintenance_cost has arrows
from Car_type and from Year, because it is indexed by both.

index variables

Chapter Arrays and Indexes

154 Analytica User Guide

11 Introduction to arrays

Tip By default, Analytica does not show arrows to and from index variables. This often
makes diagrams simpler by avoiding excessive numbers of arrows. But, you can display
these arrows, as above, by checking Show arrows to/from Indexes in the Diagram
Style dialog from the Diagram menu (see “Diagram Style dialog”).

Viewing an array as
an edit table

An edit table looks similar to a result table with the difference that you can edit the
value of each cell, and sometimes also its index values. If you select a variable defined
as an edit table and click the edit definition button , you will see its edit table.

Miles_per_gallon →

To create or edit an array with an edit table, see “Creating an array with an edit table”.

Two sources of
array value

When you evaluate a variable and its Result window shows an array value, there are
two possible sources. A variable will have an array value if:

• It is defined as an array using an edit table, or

• It is defined as an expression calculated from one or more other array-valued
variables.

Array abstraction Analytica performs operations on arrays without your needing to explicitly identify or
iterate over the dimensions of each array. When you use variables in expressions, you
only need to refer explicitly to dimensions that are relevant to the operations being per-
formed. If the actual values involve dimensions other than those that appear in your
expressions, Analytica automatically abstracts over those dimensions with no extra
effort on your part.

Because array abstraction automatically takes care of most iteration over arrays, Ana-
lytica expressions seldom contain explicit looping constructs. Individual expressions
involving multi-dimensional arrays can be very simple, while in other languages the
same operations would require multiple nested loops over the non-relevant dimensions.

Designing a model often requires you to make hard trade-offs between computational
complexity, which dimensions to include, and the degree of detail. Spreadsheets and
other programming languages force you to make these decisions early before you have
implemented your algorithms and obtained the information that is relevant for making
these trade-offs. The automatic management of dimensionality provided by array
abstraction makes it easy for you make these trade-offs late in the model building pro-
cess.

 Analytica User Guide 155

Chapter Arrays and Indexes11 Operations on arrays

Operations on arrays
Arithmetic operations and simple functions generalize straightforwardly when they are
applied to arrays, according to the dimensions of the arrays. This section gives some
simple examples.

Operation on a scalar
and an array

An operation applied to a scalar and an array results in an array of the same shape,
applying the scalar operation to each element in the array.

Miles_per_gallon : Table(Car_type, Miles_per_year) (35, 25)

Gallons_per_year: Miles_per_year / Miles_per_gallon

The result of an operation (division in this case) combining a scalar and an array is a
result array with the same index(es) as the original array:

Operation on two
arrays with the same

indexes

An arithmetic operator applied to two arrays with the same indexes creates another
array with the same indexes. Analytica applies the operator to pairs of corresponding
elements.

Fuel_cost_per_year:
Fuel_price_per_gall * Gallons_per_year

Both Fuel_price_per_gallon and Gallons_per_year are arrays with the same index,
Car_type. The result is an array also indexed by Car_type, containing the value
obtained by multiplying the corresponding elements of each array:

Operation on a one-
and two-dimensional

array

An arithmetic operator applied to a one-dimensional array and a two-dimensional array,
that have one index in common, creates another two-dimensional array with the same
two indexes.

Op_cost_per_year:
Fuel_cost_per_year + Maintenance_per_year

Chapter Arrays and Indexes

156 Analytica User Guide

11 Operations on arrays

Operating_cost_per_year is the sum of a one dimensional variable indexed by
Car_type and a two-dimensional variable indexed by Car_type and Year. The result is
a two-dimensional array indexed by both indexes:

Each Car_type (row) in the result uses the fuel cost and maintenance cost for the cor-
responding Car_type. Each Year (column) uses the same annual fuel cost, which does
not change by year, and the corresponding maintenance cost, which does change by
year.

Changing the above table to a graph, using the graph button , shows:

The graph shows how the operating costs of the small car are less than the costs of the
large car in the first three years and grow to be larger in the fifth year, crossing over just
after the fourth year.

Summing over an
index variable

The Sum() function sums an array over one index, giving a result without that index.

Total_operating_cost: Sum(Op_cost_per_year,Year)

This operation sums Operating_cost_per_year over the Year dimension, producing a
result indexed only by the Car_type dimension:

 Analytica User Guide 157

Chapter Arrays and Indexes11 Operations on arrays

Tip The expression does not need to mention any other possible indexes, such as Car_type.

Because the Sum() function eliminates one index of an array, it is called an array-
reducing function. Analytica includes several array-reducing functions (see “Array-
reducing functions”).

Operation on arrays
with different

dimensions

An arithmetic operator applied to two one-dimensional arrays with different indexes cre-
ates a two-dimensional array with both indexes.

Miles_per_year is redefined as a list (see “Create a list”):

Miles_per_year: [5000, 10K, 15K]

A list is a one-dimensional array that is indexed by itself. Lists are eligible to be used as
indexes of other arrays.

Miles_per_gallon remains an array indexed by Car_type. Gallons_per_year
remains defined as follows:

Gallons_per_year: Miles_per_year / Miles_per_gallon

The result of Gallons_per_year is now an array indexed by both Miles_per_year
and Car_type (compare to the definitions in the section “Operation on a scalar and an
array”):

Each value in the table is computed from the Miles_per_year for the column divided
by the Miles_per_gallon for each Car_type (row). For example, 5000 miles per year
divided by the large car’s 25 miles per gallon gives 200 gallons per year.

The list value for Miles_per_year propagates through the model as a new dimension
to all its dependent variables. Recomputing the result for Operating_cost_per_year
now gives a three-dimensional table with an added index of Miles_per_year:

Chapter Arrays and Indexes

158 Analytica User Guide

11 IF a THEN b ELSE c with arrays

The results for the other Car_type can be displayed by clicking the diagonal arrow :

General rule for
operations on arrays

We can summarize and generalize the behavior of an operation on two arrays with the
following rule: An operation on two arrays yields an array whose indexes are the union
of the indexes of the two arrays. In this way, Analytica combines arrays without requir-
ing explicit iteration over each index. We call this feature of generalized operations for
multidimensional values Intelligent Arrays.

IF a THEN b ELSE c with arrays
The IF a THEN b ELSE c construct (introduced in “IF a THEN b ELSE c” generalizes
appropriately if any or all of a, b, and c are arrays. In other words, it fully supports Intel-
ligent Arrays. For example, if condition a is an array of Booleans (true or false values), it
returns an array with the same index, containing b or c as appropriate:

Variable X := -2..2

If X > 0 THEN ‘Positive’ ELSE IF X < 0 THEN ‘Negative’ ELSE ‘Zero’→

X

If b and/or c are arrays with the same index(es) as a, it returns the corresponding the
values from b or c according to whether a is true or false:

IF X >= 0 THEN Sqrt(X) ELSE ‘Imaginary’→

-2 -1 0 1 2
'Negative' 'Negative' ’Zero’ ’Positive’ ’Positive’

 Analytica User Guide 159

Chapter Arrays and Indexes11 IF a THEN b ELSE c with arrays

X

In this case, the expression Sqrt(X) is also indexed by X. The If expression evaluates
Sqrt(X) for each value of X, even the negative ones, which return NAN, even though
they are replaced by ’Imaginary’ in the result.

To avoid evaluating
all of b or c

Sometimes, you want to avoid evaluating elements of b or c corresponding to elements
of a that give errors or NULL results, to avoid wasting computation time on intermediate
results that won’t be used in the final result, or because the computations will cause
evaluation errors, not just warnings. In such cases, you can use explicit iteration, using
a FOR or While loop over index(es) of a. See “Begin-End, (), and ’;’ for grouping
expressions”

Omitting ELSE If you omit the ELSE c part, it usually gives a warning when it is first evaluated.

If you click Ignore Warnings, it returns NULL for elements for which a is false:
IF X >= 0 THEN Sqrt(X)→

X

After you have clicked Ignore Warnings, it will not give the warning again, even after
you save and reopen the model.

Tip Usually, you should omit the ELSE c part of an IF construct only in a compound
expression (see “Begin-End, (), and ’;’ for grouping expressions”), when the IF a THEN
b is not the last expression, but rather is followed by ";". In this situation, the NULL result
is not part of the result of the compound expression, and it gives no warning:

BEGIN

VAR A := Min([X,Y]);

IF A<0 THEN A:=0;

Sqrt(A)

END

The dimensions of
the result

If a is an array containing some True and some False values, IF a THEN b ELSE c,
evaluates both b and c. The result contains the union of the indexes of all operands, a,
b, and c. But, if a is an atom or array whose value(s) are all true (1), it does not bother
to evaluate c and returns an array with the indexes of a and b. Similarly, if all atoms in a

-2 -1 0 1 2
'Imaginary' 'Imaginary' 0 1 1.414

-2 -1 0 1 2
<<null>> <<null>> 0 1 1.414

Chapter Arrays and Indexes

160 Analytica User Guide

11 Creating an index

are false (0), it does not bother to evaluate b and returns an array with the indexes of a
and c. This means that the values in the condition a can affect whether b and/or c are
evaluated, and which indexes are included in the result.

IFALL a THEN b
ELSE c

If you don’t want the dimensions of the result to vary with the value(s) in a, use the
IFALL construct. This is like the IF construct, except that it always evaluates a, b, and c,
and so the result always contains the union of the indexes of all of three operands.

IFALL requires the ELSE c clause. If omitted, it gives a syntax error.

IFONLY a THEN b
ELSE c

IFALL has the advantage over IF (and IFONLY) that the dimensions of the result are
always the same, no matter what the values of the condition a. The downside is that if a
is an array and all its atoms are True (or all are False), it wastes computational effort
calculating c (or b) even though its value is not needed for the result. IFALL also may
waste memory (and therefore also time) by including the index(es) that are only in c (or
b) even though the result has the same values over those indexes. The standard IF
construct may also waste some memory when all of the values of array a are True (or
all are False), because the result includes any index(es) of a that are not indexes of b
(or c), even though the result must be the same over such index(es). In situations,
where this is a concern, you may use a third conditional construct, IFONLY a THEN b
ELSE c. Like IF, when all atoms of a are True (or all False), it evaluates only b (or
only c). But, unlike IF, the result in these cases does include any index(es) of a that
are not indexes of b (or c, respectively). Thus, IFONLY can be more memory-effi-
cient.

In the vast majority of cases, you may just use IF without worrying about IFALL or
IFONLY. The only reason to use IFALL is if you don’t want the dimensions of results to
vary with values of inputs. The only reason to use IFONLY is when memory is tight and
it’s common for condition a to be all true or all false.

To summarize the differences between these three constructs: If condition a is an atom
or array containing only true (only False) values, IF and IFONLY evaluate only b (only
c), whereas IFALL always evaluates both b and c. The result of IFONLY contains the
indexes of only b (only c). The result of IF contains the indexes of a and b (or c). The
result of IFALL always contains the indexes of a, b, and c, and so its dimensions do not
depend on the values of a.

If condition a is an array containing mixed true and false atoms, all three constructs
behave identically: They evaluate a, b, and c, and the result contains the union of the
indexes of a, b, and c.

IFALL requires the ELSE part. It is optional for IF and IFONLY, but recommended
except when part of a compound expression, followed by ";",

Creating an index
An index is a class of variable used to identify a dimension of an array. The same index
may identify the same dimension shared by many arrays. Sometimes, you may also
use other classes of variables, such as a decision. Any variable defined as a list — one-
dimensional array with no separate index — can serve as an index to an array. For clar-
ity in your model, use an index variable whenever possible.

You create an index much like any other variable:

1. Select the edit tool and open a Diagram window.

 Analytica User Guide 161

Chapter Arrays and Indexes11 Creating an index

2. Drag the parallelogram shape from the node palette to the diagram.

3. Type a title into the new index node.

4. You may define an index as a list (of numbers), list of labels, sequence, or other
expression that generates a list. Here we define it as a list.

Create a list To define a variable as a list, first select the variable and open one of the following:

• The variable’s Object window.

• The Attribute panel of the diagram (see “The Attribute panel” on page 23).

• In the Attribute panel, select Definition from the Attribute popup menu (see
“Creating or editing a definition”) as the attribute to display.

To create a list:

1. Press the Expression popup menu above the definition field and select List (of
numbers) or List of Labels (for text).

(If the variable already has a definition, Analytica confirms that you wish to replace
it. Click OK to replace the definition with a one-element list.)

A one-element list is displayed in the definition field.

2. Select the element by clicking it.

3. Type in a number or expression (for List) or text (for List of Labels).

4. Press Enter and type in the next value.

5. Repeat step 4 until you have entered all the values you want.

List icon for the Expression
popup menu

New one-element list

Chapter Arrays and Indexes

162 Analytica User Guide

11 Creating an index

Autofill a list It gives the first cell of a list the default value of 1 (or the previous definition if it had one).
When you press Enter or down-arrow, it adds a cell adding 1, or the increment between
the two preceding cells, to the value of the preceding cell.

Create a list with the
Sequence option

For the classes of nodes that are often defined as lists, such as index and decision vari-
ables, the Expression popup menu includes the Sequence option.

The Sequence option provides a quick way to define a list of equally spaced numbers.

When you select Sequence, the Object Finder opens, showing the Sequence() func-
tion.

After entering the Start, End, and Stepsize values, click OK; the definition field shows
the Sequence button with its parameters.

Values entered into a list

 Analytica User Guide 163

Chapter Arrays and Indexes11 Creating an index

Tip To edit the sequence, click the Sequence button.

List vs. list of labels You can display a list or list of labels in two ways: List view or Expression view. The List
view displays by default; the Expression popup menu shows the list or list of labels
icon.

The Expression view displays when you select in the Expression popup menu.

List (of numbers) In a list of numbers (usually called simply a list), each value is a number or an expres-
sion that evaluates to a number. For example, the sequence of five integers above is a
list.

List of labels In a list of labels, every value is text. For example, the set of states below is a list of
labels; in the Expression view, each label is contained in single quotation marks.

To include a single quote (apostrophe) as part of the text in a label in Expression view,
insert two adjacent single quotes, for example:

[’can’’t’,’won’’t’,’didn’’t’]

Mixing numbers
and text

A list can include a mix of cells containing text and numbers. In both views the text is
contained in single quotation marks. For example:

If you attempt to mix numbers and text in a list of labels, all the values will be treated as
text. For example:

List view Expression view
[1, 2, 3, 4, 5]

List view Expression view
['Alabama', 'Alaska', 'Arizona','Arkansas']

List view Expression view
[1, 'Alabama', 2, 'Alaska']

Chapter Arrays and Indexes

164 Analytica User Guide

11 Editing a list

Tip A list cell can contain any valid expression, including one that refers to other variables or
one that evaluates to an array.

Editing a list
You can edit a list by changing, adding, or deleting cells (list items).

Insert a cell To add a cell at the end of the list, select the last cell and press Enter or the down arrow
key.

To insert a cell anywhere other than at the end of the list, select a cell and choose Insert
Rows (Control+i) from the Edit menu. The value in the selected cell is duplicated in the
new cell.

To insert several contiguous cells in the middle of the list, select the number of cells you
want to insert and choose Insert Rows (Control+i) from the Edit menu. The value of the
last selected cell is duplicated in the new cells.

Delete a cell To delete one or more cells, select them and do one of the following:

• Choose Delete Rows (Control+k) from the Edit menu.

• Press Delete.

Tip If you add or delete a cell in a list that is an index of an edit table, the corresponding
elements of the table are also added or removed (see “Editing a table”).

Navigating a list Use the up and down arrow keys to move the cursor up and down the list.

Functions that create indexes
Use the List option in the Expression popup menu to define a variable as a list of num-
bers or text values (labels) (see “Create a list”). You can also create a list within a vari-
able definition using the constructs and functions described below.

[u1, u2, u3, … um]
A list of expressions, separated by commas and surrounded by square brackets, cre-
ates a list, whose values are u1, u2, u3, … um.

List view Expression view
['1', 'Alabama', '2', 'Alaska']

 Analytica User Guide 165

Chapter Arrays and Indexes11 Functions that create indexes

Using square brackets to specify a list directly as an expression is equivalent to using
the List or List of Labels options in the Expression popup menu, as described in “Cre-
ate a list”, according to the type of values, for example:

Examples [8000, 12K, 15K]

['VW', 'Honda', 'BMW']

Tip If you draw an arrow from a node X into a variable Y defined as list, it automatically adds
X as the last element of the list. Or if X is already in the list it removes it. This is a handy
way to make a list of variables.

m .. n
Returns an increasing sequence of integers from m to n if n >= m or decreasing if n <
m. It is equivalent to Sequence(m, n). For example,

2003..2006 → [2003, 2004, 2005, 2006]

Tip The parameters n and m must be atoms, that is single numbers. Otherwise, it would
result in a non-rectangular array. See “Functions expecting atomic parameters” for
information on using this construct in a way that supports array abstraction.

Sequence (start, end, stepSize)
Creates a list of numbers increasing or decreasing from start to end by increments (or
decrements) of stepSize. stepSize is optional and must be a positive number; if it is
omitted, Analytica uses increments of 1. start, end, and stepSize must be deterministic
scalar numbers, not arrays.

Using this function is equivalent to using the Sequence option in the Expression
popup menu, as described in “Create a list with the Sequence option”.

The expression m .. n using the operator ".." is a version of Sequence(m, n, 1), so it
generates a list of sequential numbers from m to n.

Library Array

Examples If end is greater than start, the sequence is increasing:
Sequence(1,5) →

If start is greater than end, the sequence is decreasing:
Sequence(5, 1) → [5, 4, 3, 2, 1]

If start and end are not integers, and if stepSize is not specified, it rounds them first:
Sequence(1.2, 4.8) → [1, 2, 3, 4, 5]

List view Expression view
[1,2,3,4,5]

Chapter Arrays and Indexes

166 Analytica User Guide

11 Functions that create indexes

If stepSize is specified, it can create non-integer values from start to end by step-
Size:

Sequence(0.5, 2.5, 0.5) → [0.5, 1, 1.5, 2, 2.5]

Subset (d)
Returns a list containing all the elements of d’s index for which d’s values are true (that
is, non-zero). d must be a one-dimensional array.

When to use Use Subset() to create a new index that is a subset of an existing index.

Library Array

Example Subset(Years < 1987) → [1985, 1986]

Note:See “Example data” for the definition of example variables.

CopyIndex(i)
Makes a copy of the values of index i, to be assigned to a new index variable (global or
local). For example, suppose you want to create a matrix of distances between a set of
origins and destinations, where the destinations are the same set of cities as the ori-
gins:

Index Origins

Definition:[’London’, ’New York’, ’Tokyo’,

’Paris’, ’Delhi’, ’Lagos’]

Index Destinations

Definition: CopyIndex(Origins)

Variable Flight_times := Table(Origins, Destinations)

If Destinations was the same Origins, rather than a copy, the resulting table would
have only one dimension. By defining Destinations with CopyIndex(), it becomes an
independent dimension.

Sortindex (d, i)
d is an array indexed by i. SortIndex() returns the elements of i, rearranged to indicate
the ordering of the values in d (from smallest to largest value). The result is indexed by
i. If d is indexed by dimensions other than i, each “column” is individually sorted, with
the resulting sort order being indexed by the extra dimensions. To obtain the sorted
array d, use the following :

d[i=Sortindex(d,i)]

When d is a one-dimensional array, the second parameter is optional. When the second
parameter is omitted, the result is an unindexed list. The one-parameter form should be
used only when it is necessary to obtain an unindexed result, such as when the result is
being assigned to an index variable. The one-parameter form cannot array abstract if a
new dimension is added to d.

Library Array

Examples Maint_costs →

 Analytica User Guide 167

Chapter Arrays and Indexes11 Creating an array with an edit table

Car_type

SortIndex(Maint_costs,Car_type) →
SortIndex: Car_type

SortIndex (Maint_costs) →
SortIndex

Define Index_new as an index node:
INDEX Index_new := Sortindex(Maint_costs)

Subscript(Maint_costs, Car_type, Index_new) →

Note:See “Example data” for the definition of example variables.

Unique(a, i)
Returns a maximal subset of i such that each indicated slice of a along i is unique.

When to use Use Unique() to remove duplicate slices from an array, or to identify a single member of
each equivalence class.

Library Array
DataSet→

PersonNum , Field

Unique(DataSet, PersonNum) → [1, 2, 3]

Unique(DataSet[Field=’Company’], PersonNum) → [1, 3]

Creating an array with an edit table
To define a variable as an edit table, you choose table from the expression menu above
its definition:

1. Select the variable and open its definition by either:

VW Honda BMW
1950 1800 2210

VW Honda BMW
Honda VW BMW

Honda VW BMW

Honda VW BMW
1800 1950 2210

LastName FirstName Company
1 Smith Bob Acme
2 Jones John Acme
3 Johnson Bob Floorworks
4 Smith Bob Acme

Chapter Arrays and Indexes

168 Analytica User Guide

11 Creating an array with an edit table

• The variable’s Object window.

• The Attribute panel of the Diagram window (see “Creating or editing a definition”),
and select Definition from the Attribute popup menu (see “Creating or editing a
definition” on page 116), or

• Just press Control-e.

To create a table:

2. Press the Expression popup menu above the definition field and select Table:

If it already has a definition, click OK to confirms that you wish to replace it:

3. It opens the Indexes dialog so you can select the table’s indexes (dimensions). It will
already list under Selected indexes any index variables from which you have drawn
an arrow to this variable. You may keep them, remove them, or add more indexes:

4. Select a variable from the Indexes list and click the move button , or double-click
the variable, to select it as an index of the table. Repeat for each index you want.

Description of selected
variable

Check to show all variables

Selected variable Move button

Indexes for the table

Values of the
selected
variable

 Analytica User Guide 169

Chapter Arrays and Indexes11 Creating an array with an edit table

5. Click OK to create the table and open the Edit Table window for editing the table’s
values (see “Editing a table” on page 171).

Indexes dialog box
The Indexes dialog box contains these features (see figure above):

To create an index You can create an index variable in the course of creating a table, in the following way:

1. Select new index from the variables list in the Indexes dialog box.

2. Enter a title for the index.

3. Click the Create button.

4. To make the new index an index of the table, click the button.

Enter the values of the Index in the Edit Table window (see the following section).

To remove an index
from an array

1. Select the index from the Selected Indexes list.

2. Click the button.

Removing an index leaves the subarray for the first item in that index as the value of the
entire array.

System index
variables Run and

Time

Analytica includes two system index variables: Run and Time. You can generally treat
these index variables like any other index variable.

Run is the index for the array of sample values for probabilistic simulation. You can
examine the array with the sample uncertainty mode (see “Sample”) or the Sample()
function (see “Sample(x)”).

Time is the index for dynamic simulation. It is the only index permitted for cyclically
dependent modeling (see “Dynamic Simulation”).

Preview A list of the values of the selected index variable. If the selected
variable is not a list, it says "Can’t use as index."

All Variables
checkbox

If checked, the Indexes list includes all variables in the model. If
not checked, it lists only variables of the class Index and Deci-
sion, plus the variable being defined (Self) and Time. If you
select this variable (Self) as an index, the variable itself holds
the alternative index values.

Selected indexes A list of all indexes already selected for this variable.

New index Select to create a new index.

Select new
index

Enter index title

Chapter Arrays and Indexes

170 Analytica User Guide

11 Editing a table

Editing a table
To open the Edit Table window, click the Edit Table button in either:

• The Object window (see “The Object window” on page 22)

• The Attribute panel of the diagram (see “The Attribute panel” on page 23)

In the Attribute panel, select Definition from the Attribute popup menu (see
“Creating or editing a definition” on page 116).

The Edit Table
window

The Edit Table window looks much like the Result window Table view (see “Viewing a
result as a table” on page 30). The difference is that you can add indexes and edit the
values in cells:

Edit a cell Click the cell, and start typing to replace what’s in it. To add to what’s there, click three
times to get a cursor in the cell, and type. You can use left-arrow and right-arrow keys to
move the cursor. See “Shortcuts to navigate and edit a table” on page 174 for more.
Press Enter to accept the value and to select the next cell, or click in another cell.

Tip You may enter an expression into a table cell with operations, function calls, and so on.
But, if the expression is complex, it’s easier to enter it as the definition of a new variable,
and then just type the name of the variable into the table.

Select a cell Click the cell once.

Select a range of cells Drag cursor from a cell at one corner of a rectangular region to the cell at the opposite
corner.

Copy and paste
a cell or region

You can copy a cell or a range (two-dimensional rectangular region) of cells from a table
or paste a cell into a region, just as with a spreadsheet:

1. Select the source cell or region as above, and choose Copy from the Edit menu or
press Control+c.

2. Select the destination cell (or top-left cell of the destination region), and choose
Paste from the Edit menu or press Control+v.

If you select a destination region that is n times larger (width, height, or both) than the
source cell or region, it repeats the source n times in the destination.

Accept Click to accept all the changes you have made to the table. If you close a table, it
will also accept the changes, unless you click .

Cancel Click to cancel all the changes you have made to the table since you opened it or
last clicked .

 Analytica User Guide 171

Chapter Arrays and Indexes11 Editing a table

Copy and paste to or
from a spreadsheet

Copy and paste of a cell or region works much the same from a spreadsheet to an Ana-
lytica table or vice versa. If necessary, you can easily pivot the Analytica table so its
rows and columns correspond with those in the spreadsheet. It copies numbers in
exponential format with full precision, no matter what number format is used in the
table, so that other applications can receive them with no problems.

Copy an entire table To copy a table, including its row and column headers, click the top left cell to select the
whole table. You can also copy a table with more than two dimensions: Select Copy
table from the Edit menu. When you paste into a spreadsheet, it includes the name of
the table, and all indexes, including the slicer index(es) for the third and higher dimen-
sions.

Editing or extending indexes in an edit table
One convenient aspect of Intelligent Arrays is that you can edit and extend the indexes
of an array right in the edit table, to change index values, insert or remove rows or col-
umns, or, more generally, subarrays.

This works for an index defined as a list of numbers or list of labels. If an index is
defined in another way — for example as m .. n or Sequence(x1, x2, dx) — you
must edit the original index. Either way, all edit tables that use the changed index are
automatically modified accordingly. ([#xref See “Splicing” for details.)

To edit or extend an index, either you must be in edit mode or the index variable
you want to modify must have an input node. See “Creating an input node”.

Edit a cell in a row
or column index

Click the cell once to select its row or column. Then double-click the cell to select its
contents. Start typing to replace the text or number. Remember, the same change will
happen to all tables that use that index.

Append
a row

Click the bottom element of the row index to select the bottom row, and press the down-
arrow key.

Append
a column

Click the rightmost element of the column index to select the right column, and press
the right-arrow key.

Insert a row
or column

1. Click the row or column header to select the row or column before which you wish to
insert a new one.

2. Select Insert Rows (or Insert Columns) from the Edit menu, or press or Control+i.

Normally, the new row or column contains zeros, but see [#xref Splicing] for more.

Delete a row
or column

1. Click the row or column header to select the row or column you wish to delete.

2. Choose Delete Rows or Delete Columns from the Edit menu, or press Control+k.

Tip When you try to change an index that is used by more than one edit table, it warns you
that “Changing the size of this index will affect table definitions of other variables.” and
gives the option of whether to continue.

Tip If you intend your model to be used by end users with the Player or Power Player editions
(that are fixed in browse mode) or intend to save your model as browse-only (if you have
the Enterprise Edition), you can decide whether you want to allow your end users to be
able to edit indexes as described above: Create an input node for each index that you
want to let them change. Or don’t, if you want to prevent them changing an index.

Chapter Arrays and Indexes

172 Analytica User Guide

11 Choice menus in an edit table

Add an index To add an index, use one of these two methods:

• Draw an arrow from the index to the node containing the table. When it asks if you
want to add the index as a new dimension of the table, answer Yes.

• Click in the edit table to open the Indexes dialog (see “Indexes dialog box”).
Double-click the index you want to add, and click OK.

When adding a new dimension to an edit table, it copies the values of the table to each
new subarray over the new index. Thus, the expanded table has the same values for
every element of the new index. This has no effect on other edit tables.

Remove an index To remove an index, use one of these two methods:

• Draw an arrow from the index to the node containing the table. When it asks if you
want to remove the index as a dimension of the table, answer Yes

• Click in the edit table to open the Indexes dialog (see “Indexes dialog box”).
Double-click the index you want to remove, and click OK.

Tip When removing a dimension from an edit table, it replaces the entire table by its subarray
for the first value of the index you are removing. It deletes all the rest. Be careful,
because you will lose all the data in the rest of the table! This has no effect on other edit
tables.

Choice menus in an edit table
You can include a dropdown (pulldown) menu in any cell of an edit table to let end users
select an option for each cell. Here is an example, in browse mode:

You use the Choice() function in the edit table cells, similar to using Choice to specify a
single menu for a variable (see “Choice(i, n, inclAll)”):

1. Create a variable X as an edit table, in the usual way, selecting Table from the expr
menu above its definition.

2. Create an Index variable, e.g., K, containing the list of options you want to make
available from the menu(s), usually as a list of numbers or a list of labels.

3. In the edit table of X, in edit mode, enter Choice(K, 1, 0) into the first cell that you
want to contain a menu. The second parameter 1 means that the first element of k
is the default option. The third parameter 0 means that it does not show All as an
option, normally what you want.

 Analytica User Guide 173

Chapter Arrays and Indexes11 Shortcuts to navigate and edit a table

4. Copy and paste Choice(K, 1, 0) from the first cell to any others you want also to
contain the menu. You can also use other indexes than K if you want to include
menus with other options. Here is an example viewed in edit mode, with dropdown
menus in some but not all cells:

5. Select X, then select Make Input from the Object menu to make an input node for
it. Move the input node to a good location.

Tip The variable containing the edit table with menus must have an input node — otherwise,
you won’t be able to select from the menus or edit other cells in browse mode.

Shortcuts to navigate and edit a table
These mouse operations and keyboard shortcuts let you navigate around a table, select
a region, and search for text. They are the same as in Microsoft Excel, wherever this
makes sense. Control-PgUp and Control-PgDn are exceptions.

The current cell is highlighted, or the first cell you selected in a highlighted rectangular
region. In a region, the anchor cell is the corner opposite the current cell. If you select
only one cell, the Anchor and Current are the same cell.

Mouse operations

Shortcuts to
edit a table

These shortcut keys speed up editing a table. Inserting and deleting rows and columns
works only if the index(es) are defined as an explicit list, not if it is computed or a
sequence:

Mouse Click Click in a cell to make it the current cell.

Mouse Shift+Click Select the region from the previous anchor to this cell.

Mouse drag Select the region from the cell in which you depress the left mouse button
to the cell in which you release the button.

Mouse wheel Scroll vertically without changing the selection.

Control+mouse wheel Scroll horizontally without changing the selection.

Downarrow If you have selected the last row, add a row.

Leftarrow If you have selected the right column, add a column.

Control-i If you have selected a row header, insert a row. If you have selected a
column header, insert a column.

Control+k Delete a selected row or column.

Chapter Arrays and Indexes

174 Analytica User Guide

11 Shortcuts to navigate and edit a table

Search a table

Arrow keys

Home key

Page key

Control-v Paste copied cells from the clipboard into the table into the selected region.
If you copy a region and have selected a single cell, it pastes into the region
with the current cell as the top left, if it fits. If you paste a cell or region into a
larger region, it repeats the copied material to fill out the destination region.

Control+f Open the Find dialog to search for text in the table. It searches from the
current cell and selects the first matching cell, if any.

Control+g Repeat the previous Find, starting in the next cell.

arrow (right, left, up,
down)

Move one cell in the given direction. At the end of row, right arrow wraps to
the start of the next row. At the end of the last row, it wraps to top-left cell.
Similarly, for the other keys.

Shift+arrow Move the current cell one cell in the given direction. The Anchor cell stays
put, causing the selected region to grow or shrink. It does not wrap.

Control+arrow Move to the end of row or column in the given direction.

Shift+Control+arrow Move current cell to the end of row or column in the given direction, leaving
the Anchor where it is, causing the selected region to grow (or flip).

End, arrow Two key sequence. Same as Control+arrow.

End, Shift+arrow Two key sequence. Same as Shift+Control+arrow.

Home Move the anchor to the first column, and sets the current cell to be the
anchor (so only one cell is selected). If you are in the row headers, moves
the anchor and current to the first row.

Control+Home Select the top-left cell in the table. (Selects one cell.)

Control+End Select the bottom-right cell in the table. (Selects one cell.)

Shift+Control+Home Select the region between the anchor and the top left cell. (Leaves current
as top left.)

Page Up, Page Down Move the current cell up or down by the number of rows visible in the
window, and scrolls up or down to show that cell. (Selects one cell.)

Control+Page Up,
Control+Page Down

Move the current cell left or right by the number of columns visible in the
window, scrolling horizontally to show the new current cell. (This is not the
same as Excel, in which Control+PgUp, Control+PgDown toggle between
worksheets. Since we don't have worksheets, these do something else
useful.)

Shift+Page Up,
Shift+Page Down

Move the Current cell by the number of rows or columns that currently
display on the screen, and scroll vertically by one page. Anchor stays the
same, so that the currently selected region expands or shrinks by one page
length.

Shift+Control+Page
Up,
Shift+Control+Page
Down

Same as Shift+Page Up, but horizontally rather than vertically.

 Analytica User Guide 175

Chapter Arrays and Indexes11 Shortcuts to navigate and edit a table

Other keys

Tab Move one cell right. Same as right arrow.

Shift+Tab Move one cell left. Same as left arrow.

Enter, Shift+Enter If editing, accept change, selection remains on cell just edited. If not editing,
but in edit mode, current cell becomes anchor cell and begin editing that
cell.

Return If editing, accept changes. Move anchor down one cell, wrapping to top of
next column if anchor is at the bottom. Set current cell to anchor (so only
one cell is selected). If not editing, just move, do not start editing.

Shift+Return If editing, accept changes. Move anchor cell up one cell, wrapping to bottom
of previous column if at top. Set current to anchor, so only one cell is
selected.

Control+a Select all (body) cells. If a row/col header is selected, selects all rows/cols.

Chapter Arrays and Indexes

176 Analytica User Guide

11 Shortcuts to navigate and edit a table

Chapter 12 More Array Functions

Analytica provides a large collection of built-in functions for per-
forming common mathematical, financial, statistical, and array
computations.

This chapter explains the nature and benefits of Intelligent
Arrays™, and describes a variety of more advanced array func-
tions that enable you to make the best use of them, including
functions for reducing, transforming, selecting, flattening, interpo-
lating arrays; matrix functions and financial functions.

Functions for uncertainty and sensitivity analysis are covered in
later chapters.

Chapter More Array Functions

178 Analytica User Guide

12 Intelligent Arrays™

This chapter describes Analytica’s advanced built-in functions for dealing with arrays. It
is organized by the type of function:

• Functions that create arrays (“Functions that create arrays”).

• Functions that reduce an array to another array with one fewer dimension (“Array-
reducing functions”).

• Functions that return an array with the same number of dimensions as the input
array (“Transforming functions”).

• Functions that select part or a slice of an array (“Selecting, slicing, and subscripting
arrays”).

• Functions that interpolate values between array elements (“Interpolation
functions”).

• Other array functions (“Other array functions”).

• Matrix functions for two-dimensional arrays (“Matrix functions”).

• Functions commonly used for financial computations (“Financial functions”).

Intelligent Arrays™
Intelligent Arrays™ are one of the most useful and powerful features of Analytica, yet
their full implications are easy to miss. Consider this definition in Analytica:

Variable Profit := Revenues - Expenses

It works equally well if Profits, Revenues, and Expenses are each scalars (single
numbers), or arrays of one or more dimensions. If Revenues and Expenses are both
indexed by Year, it computes the Profits for each Year, using the corresponding Rev-
enues and Expenses for that Year, as in this example:

 Analytica User Guide 179

Chapter More Array Functions12 Intelligent Arrays™

The figure below shows an influence diagram above and corresponding array values
below.

The definition of Profit remains the same, no matter what the dimensions of Revenues
and Profits. If Revenues is a scalar (a single number), Profit treats it as if it is the
same each Year.

Or if Revenues are specified for three different Scenarios — Low, Medium, and High
— it computes the corresponding Profit for each Scenario, whether or not Expenses
vary by Scenario.

Now Revenues is indexed by Scenario as well as Year:

The value of flexibility This flexibility is very convenient for the modeler. Changing dimensions is much more
complicated in a spreadsheet or standard programming language. In a spreadsheet,
you would have to explicitly create each of the three variables as a table with the
required number of dimensions. And you would have to craft carefully the formula with

Chapter More Array Functions

180 Analytica User Guide

12 Intelligent Arrays™

the requisite relative cell references, and copy it into each cell of Profit. In a program-
ming language, such as Fortran, C++, Java, or Visual Basic, you would have to put the
formula inside loops to iterate over the dimensions. A simple one-dimensional case
might look something like this:

Dim Profit[2000..2010], Revenues[2000..2010], Expenses[2000..2010]

For Years := 2000 To 2010 DO

Profit[Years]:=Revenues[Years]- Expenses[Years]

If you decide to add a dimension, such as Scenario to Revenues and Profit, you
would need to redimension both variables, add another For loop over Scenario, and
add a second subscript to Profit and Revenues, nearly doubling the complexity of the
program.

To do the same thing in a spreadsheet would require adding two extra rows to the tables
of Revenues and Profit, copying the name Scenario and its three values, Low,
Medium, and High as row headers into both tables, rewriting the base cell formula in
Profit, and finally stretching the cell formula across the columns and then down the
two new rows. The effort to create the two-dimensional model is more than double the
effort to create original one-dimensional model, which is itself more than double the sca-
lar model.

Now consider extending the time horizon from 2007 to 2010, a common need in busi-
ness models. In Analytica, you simply edit the definition of Year, changing the 2007 to
2010. The arrays for all three variables extend automatically over the three extra years.
The input edit tables for Revenues and Expenses are filled out with zeroes for these new
years. You just need to open up those tables and fill in the numbers you want. In a
spreadsheet, you would need to extend each table by hand, including copying the Year
column headers 2008, 2009, and 2010 for each table, and stretching the formulas for
Revenue over nine new cells.

Array abstraction and
Intelligent Arrays

All this work to expand the tables and the formulas for Revenue is distracting and quite
unnecessary — the relationship between Profit, Revenues and Expenses should be
entirely separate from whatever dimensions they happen to have. The principle of
abstracting the representation of the relationships between the variables from the
dimensions of those variables is sometimes known as array abstraction. Few com-
puter languages offer support for array abstraction. Analytica offers a unique and exten-
sive approach to array abstraction, which is the basis of its Intelligent Arrays. Once you
have mastered the basics of Intelligent Arrays, you may find it hard to imagine going
back to a modeling environment (such as a spreadsheet or standard programming lan-
guage) without array abstraction.

Choosing the right
level of detail

Intelligent Arrays provides a flexibility that greatly simplifies the process of developing a
model. When starting a model, it is rarely obvious how large and how detailed to make
each dimension. Should time be modeled as years, quarters, or months? Should the
time horizon be 5 years, 10 years, or 20 years? Is it necessary to treat each geographic
region separately, and if so, by continent, nation, or state (province)? How you answer
these questions has a large effect not only the accuracy of the model, but also on the
quantity of data you will need, the effort to build and verify the model, and the computer
resources (time and memory) needed to calculate them.

Ideally, you specify the essential relationships between the variables first, and decide
their dimensions later. You may want to try different levels of detail, starting out with few
and simple dimensions, then refining the model by expanding or adding dimensions.
You should be able to experiment with the level of detail and computational effort until
you get a good balance between effort and precision. With spreadsheets and conven-

 Analytica User Guide 181

Chapter More Array Functions12 Functions that create arrays

tional languages, this kind of experimentation requires so much rebuilding and testing at
each stage, that it is usually completely impractical. The result is that models are often
too simple or too complicated — or, often, both, with too much detail in areas that do not
much matter and not enough detail in areas that do. This kind of stepwise refinement is
much easier with Intelligent Arrays, encouraging you to create models with a good bal-
ance of accuracy and effort.

Errors, testing, and
reliability

Array abstraction also promotes reliability by reducing errors and making any errors
easier to detect. In a spreadsheet, there are several easy ways to make errors when
copying cell references, resulting in frequent bugs that are hard to detect. For example,
mistakes in absolute versus relative cell references, or accidentally stretching a sum
over only part rather than all of a row or column. In programming languages, it is also
easy to make errors in handling dimensions, such as confusing rows and columns in the
sequence of subscripts. With Analytica, the relationships are much simpler: There is a
single expression defining each variable, rather than one for each cell in the result.
Expressions are uncluttered by looping constructs. You define a Sum over an identified
Index, no matter what other dimensions an array may have. This simplicity makes
expressions easier to write in the beginning and easier to review for correctness later.
Furthermore, provided the formulas support array abstraction, there is no need to mod-
ify formulas as you extend or add dimensions — in those variables, or elsewhere in the
model. You can have justifiable confidence that the model remains correct as you
extend or add dimensions.

Intelligent Arrays enable several other important capabilities of Analytica. One key fea-
ture is support for representing and propagating uncertainty. An uncertain variable is
represented as a random sample of values from its underlying probability distribution,
over a dimension indexed by Run. The Run index has values from 1 to the sample size.
Each expression containing one or more uncertain variables automatically computes its
result over all the random samples, generating a result indexed by Run (as well as any
other dimensions). Array abstraction means that this works, without you (the modeler)
having to worry about this extra dimension. Similarly, in parametric analysis, you can set
one (or more) input variables (parameters) each to a number of alternative values to
explore the effects of this variation. These values create an array indexed by the input
parameters, which is automatically propagated through the model to generate a corre-
sponding table of values for each output, indexed by the alternative values of its para-
metric inputs.

Exceptions to array
abstraction

The vast majority of Analytica functions and constructs fully support Intelligent Arrays —
that is, they automatically generalize from atomic values to multidimensional array —
but a few do not. When you use these latter, you need to take special care to ensure
that your models will array abstract conveniently when you add or modify dimensions.
See “Ensuring array abstraction” on page 359 for details.

Functions that create arrays
Use the Table option in the Expression popup menu to define a variable as an array
(see “Creating an array with an edit table”).

For more flexibility and control, you can define a variable as an array by entering the
Array() or Table() function as an expression.

Chapter More Array Functions

182 Analytica User Guide

12 Functions that create arrays

An array viewed as an expression appears in the Table() function syntax:

Array(i1, i2, … in, a)
Assigns a set of indexes, i1, i2, … in, as the indexes of the array a, with i1 as the index
of the outermost dimension (changing least rapidly), i2 as the second outermost, and so
on. a must have at least n dimensions. The elements of a are listed in square brackets
as the last parameter, or a is a previously defined array.

Use Array() to specify an array directly as an expression. Array() is similar to Table() ;
in addition, it lets you define an array with repeated values (see Example 3), and
change indexes of a previously defined array (see Example 4).

Library Array

Example 1 Definition viewed as an expression:
Array(Car_type, [32, 34, 18])

Definition viewed as a table:

Car_type

An array
viewed as a
table

Table

An array
viewed as an
expression

Expression

VW Honda BMW
32 34 18

 Analytica User Guide 183

Chapter More Array Functions12 Functions that create arrays

Note:Example variables are defined in “Creating an array with an edit table”.

Example 2 If an array has multiple dimensions, then the elements are listed in nested brackets, fol-
lowing the structure of the array as an array of arrays (of arrays..., and so on, according
to the number of dimensions).

Definition viewed as an expression:
Array(Car_type, Years, [[8K, 9K, 9.5K, 10K],
[12K, 13K, 14K, 14.5K], [18K, 20K, 21K, 22K]])

Definition viewed as a table:

Car_type , Years

The size of each array in square brackets must match the size of the corresponding
index. In this case, there is an array of three elements (for the three car types), and
each element is an array of four elements (for the four years). An error message dis-
plays if these sizes don’t match. See also “Size(u)”.

Example 3 If an element is a scalar where an array is expected, Array() expands it to create an
array with the scalar value repeated across a dimension.

Definition viewed as an expression:
Array(Car_type, Years, [[8K, 9K, 9.5K, 10K], 13K, [18K, 20K, 21K, 22K]])

Definition viewed as a table:

Car_type , Years

Example 4 Use Array() to change an index of a previously defined array.

Car_model:

Table_a: Table(Car_type) (32, 34, 18)

Table_b: Array(Car_model, Table_a) →
Car_model

Table (i1, i2, … in) (u1, u2, u3, … um)
Creates an n-dimensional array of m elements, indexed by the indexes i1, i2, … in. In
the set of indexes, I1 is the index of the outermost dimension, varying the least rapidly.

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 13K 13K 13K 13K
BMW 18K 20K 21K 22K

Jetta Accord 320

Jetta Accord 320
32 34 18

Chapter More Array Functions

184 Analytica User Guide

12 Functions that create arrays

The second set of parameters, u1, u2 … um, specifies the values in the array. The
number of values, m, must equal the product of the sizes of all of the dimensions.

Each u is an expression that evaluates to a number, text value or probability distribu-
tion. It can also evaluate to an array, causing the dimensions of the entire table to
increase. u cannot be a literal list.

Both sets of parameters are enclosed in parentheses; the separating commas are
optional except if the table values are negative.

Use Table() to specify an array directly as an expression. Table() is similar to Array() ;
Table() requires m numeric or text values.

A definition created as a table from the Expressions popup menu uses Table() in
expression view.

Library Array

Example 1 Definition viewed as an expression:
Table(Car_type) (32, 34, 18)

Definition viewed as a table:

Car_type

Example 2 Definition viewed as an expression:
Table(Car_type, Years)
(8K, 9K, 9.5K, 10K, 12K, 13K, 14K, 14.5K, 18K, 20K, 21K, 22K)

Definition viewed as a table:

Car_type , Years

Example 3 A table created with blank (zero) cells appears in expression view without the second
set of parameters.

Definition viewed as a table:

Car_type , Years

Definition viewed as an expression:
Table(Car_type, Years)

VW Honda BMW
32 34 18

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

1985 1986 1987 1988
VW 0 0 0 0
Honda 0 0 0 0
BMW 0 0 0 0

 Analytica User Guide 185

Chapter More Array Functions12 Array-reducing functions

Array-reducing functions
An array-reducing function operates across a dimension of an array and returns a
result that has one dimension less than the number of dimensions of its input array.
When applied to an array of n dimensions, a reducing function produces an array that
contains n-1 dimensions.

The function Sum(x, i) illustrates some properties of reducing functions.

Examples Sum(Car_prices, Car_type) →

Years

Sum(Car_prices, Years) →
Car_type

Sum(Sum(Car_prices, Years), Car_type) → 171K

Tip The second parameter, i, specifying the dimension over which to sum, is optional. But if
the array, x, has more than one dimension, Analytica may not sum over the dimension
you expect. For this reason, it is safer always to specify the dimension index explicitly in
Sum() or any other array-reducing function.

If the index, i, is not a dimension of x, Sum(x, i) returns x unreduced, but multiplied by
the size (number of elements) of i. The reason is that if x is not indexed by i, it means
that it has the same value for all values of i. This is true even if x is an atom with no
dimensions:

Variable x := 5

Sum(x, Car_type) → 15

because Car_type has three elements. In this way, if we later decide to change the
value for x for each value of i, we can redefine x as an edit table indexed by i. Any
expression containing a sum or other reducing function on x will work correctly as the
number of dimensions changes.

Sum(x, i)
Returns the sum of array x over the dimension indexed by variable i.

Library Array

Examples Sum(Mpg) → 91

Sum(Car_prices, Years) →
Car_type

1985 1986 1987 1988
38K 42K 44.5K 46.5K

VW Honda BMW
36.5K 53.5K 81K

VW Honda BMW
36.5K 53.5K 81K

Chapter More Array Functions

186 Analytica User Guide

12 Array-reducing functions

Product(x, i)

Returns the product of all of the elements of x, along the dimension indexed by i.

Library Array

Examples Product(Mpg) → 27.3K

Product(Cost, Mpg) →
Car_type

Average(x, i)
Returns the mean value of all of the elements of array x, averaged over index i.

Library Array

Examples Average(Mpg) → 30.33

Average(Car_prices, Car_type)→
Years

Max(x, i)
Returns the highest valued element of x along index i.

Library Array

Examples Max(Years) → 1988

Max(Car_prices, Years) →
Car_type

To obtain the maximum of two numbers, first turn them into an array:

Max([10,5]) → 10

Min(x, i)
Returns the lowest valued element of x along index i.

Library Array

Examples Min(Years) → 1985

Min(Car_prices, Years) →
Car_type

VW Honda BMW
5.905G 14.47G 28.78G

1985 1986 1987 1988
12.67K 14K 14.83K 15.5K

VW Honda BMW
10K 14.5K 22K

VW Honda BMW
8000 12K 18K

 Analytica User Guide 187

Chapter More Array Functions12 Array-reducing functions

To obtain the minimum of two numbers, first turn them into an array:

Min([10, 5]) → 5

Argmax(a, i)
Returns the item of index i for which array a is the maximum. If a has more than one
value equal to the maximum, it returns the index of the last one.

Library Array

Example Argmax(Car_prices, Car_type) →
Years

Argmin(a, i)
Returns the corresponding value in index i for which array a is the minimum. If more
than one value equals the minimum, returns the index of the last occurrence.

Library Array

Example Argmin(Car_prices, Car_type) →
Years

CondMin(X : Array[I], cond : Boolean[I] ; i : IndexType)
CondMax(X : Array[I], cond : Boolean[I] ; i : IndexType)

Conditional Min and Max. CondMin() returns the smallest, and CondMax() returns the
largest values along a given index, i, that satisfies condition cond.

Tip These functions do not support named parameter syntax.

Library Array

Syntax CondMin(X : Array[i], cond : Boolean[i] ; i : IndexType)
CondMax(X : Array[i], cond : Boolean[i] ; i : IndexType)

Subindex(a, u, i)
Returns the value of i corresponding to value u in array a. If more than one value cor-
responds, returns the index value of the last occurrence. For the values that do not cor-
respond, returns undefined (shows as blank; see also “Isundef(x)”).

Argmax() uses Subindex(a, Max(a, i), i) to return the index value corresponding
to the maximum value in a. See “Transforming functions”.

Library Special

1985 1986 1987 1988
BMW BMW BMW BMW

1985 1986 1987 1988
VW VW VW VW

Chapter More Array Functions

188 Analytica User Guide

12 Array-reducing functions

Examples Subindex(Car_prices, 12K, Car_type) →
Years

Subindex(Car_prices, 12K, Years) →
Car_type

If U is an array of values, an array of index values is returned.

Subindex(Car_prices, [12K, 21K], Car_type) →
Subindex , Years

PositionInIndex(a, x, i)
Returns the position in index i — that is, a number from 1 to the size of index i — of the
last element of array a equal to x; if no element is equal, it returns 0.

When array a is multidimensional, the result will be reduced by one dimension, dimen-
sion i.

Library Array

Examples When the array is one-dimensional.
Index I := ['A', 'B', 'C']

Variable A := Array(I, [1, 2, 2])

PositionInIndex(A, 1, I) → 1

PositionInIndex(A, 2, I) → 3

PositionInIndex(A, 5, I) → 0

Tip PositionInIndex() is the positional equivalent of SubIndex(). It is useful when i contains
duplicate values, in which case SubIndex() is insufficient.

More examples
and tips

When the array is multidimensional:
PositionInIndex(Car_prices, 14K, Car_type) →
Years

Tip Parameter a is optional. When omitted, it returns the position of x in the index i, or 0 if
not found. The syntax @[i=x] (see returns the same result as PositionInIndex(,x,i):

PositionInIndex(,’B’,I) → 2@[I = 'B'] → 2
PositionInIndex(,’D’,I) → 0@[I = 'D'] → 0

When the array parameter is omitted:

1985 1986 1987 1988
Honda

VW Honda BMW
1985

1985 1986 1987 1988
12K Honda
21K BMW

1985 1986 1987 1988
0 0 2 0

 Analytica User Guide 189

Chapter More Array Functions12 Array-reducing functions

PositionInIndex(, ’Honda’, Car_type) → 2

PositionInIndex(, 'VW', Car_type) → 1

@: Index Position Operator
The position of value x in an index i is the integer n where x is the nth element of i. n is
a number between 1 and Size(i). The first element of i is at position 1; the last element
of i is at position Size(i). The position operator @ offers three ways to work with posi-
tions:

• @i → an array of integers from 1 to Size(i) indexed by i.

• @[i=x] → the position of value x in index i, or 0 if x is not an element of i.

• e[@i=n] → the nth Slice of the value of expression e over index i.

Examples Car_type:

@[Car_type='Honda'] →
Car_type

@Car_type → 2

Car_type[@Car_type=2] → 'Honda'

More examples
and tips

Assume Time:

and Years := Time+2007:

@Time →
Time

@[Time=2] → 3

@Time=3 →
Time

Time[@Time=3] → 2

(Time+2007)[@Time=3] → 2009

Years[@Time=3] → 2009

Tip You can use the slice variation to re-index an array by another array having the same
length but different elements. For example, Suppose Revenue is indexed by Time, then

VW Honda BMW

VW Honda BMW
1 2 3

0 1 2 3 4

2007 2008 2009 2010 2011

0 1 2 3 4
1 2 3 4 5

0 1 2 3 4
0 0 1 0 0

Chapter More Array Functions

190 Analytica User Guide

12 Transforming functions

the following expression returns the same array indexed by Years:
Revenue[@Time=@Years]

For additional information consult the Analytica wiki:
http://lumina.com/wiki/index.php/Ana:Alphabetical_Function_List

Area(r, I, x1, x2)
Returns the area (sum of trapezoids) under array r across index i between x1 and x2.
i must contain increasing numbers. x1 and x2 are optional; if they are not specified,
the area is calculated across all of i.

If x1 or x2 fall outside the range of values in i, the first value (for x1) or last value (for x1)
are used. Area() computes the total integral across i, returning a value with one less
dimension than r. Compare Area() to Integrate() (see “Integrate(r, i)”).

Library Array

Example Area(Cost_in_time, Time, 0, 5000) →
Car_type , Mpg

Transforming functions
A transforming function operates across a dimension of an array and returns a result
that has the same dimensions as its input array.

The function Cumulate(x,i) illustrates some properties of transforming functions.

Example Cumulate(Car_prices,Years) →
Car_type , Years

The second parameter, i, specifying the dimension over which to cumulate, is optional.
But if the array, x, has more than one dimension, Analytica may not cumulate over the
dimension you expect. For this reason, it is safer always to specify the dimension index
explicitly in any transforming function.

Cumulate(x, i)
Returns an array with each element being the sum of all of the elements of x along
dimension i up to, and including, the corresponding element of x.

26 30 35
VW 9653 12.42K 15.18K
Honda 10.11K 12.84K 15.86K
BMW 13.65K 16.42K 19.18K

1985 1986 1987 1988
VW 8000 17K 26.5K 36.5K
Honda 12K 25K 39K 53.5K
BMW 18K 38K 59K 81K

 Analytica User Guide 191

Chapter More Array Functions12 Transforming functions

If x is not indexed by i, Cumulate(X,I) operates as if x were indexed by i, but constant
across i. Using this, a convenient trick for numbering the elements of an index is to use
Cumulate(1,i).

Library Array

Example Cumulate(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

Cumulate(1,Car_type) →
Years

Uncumulate (x, i, firstElement)
Uncumulate(x, i) returns an array whose first element (along i) is the first element of x,
and each other element is the difference between the corresponding element of x and
the previous element of x. Uncumulate(x, i, firstElement) returns an array with the first
element along i equal to firstElement, and each other element equal to the difference
between the corresponding element of x and the previous element of x.

Uncumulate(x, i) is the inverse of Cumulate(x, i). Uncumulate(x, i, 0) is similar to a
discrete differential operator.

Library Array

Example Uncumulate(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

Uncumulate(Cost_in_time, Time,0) →
Mpg , Time , Car_type = VW

Cumproduct(x, i)
Returns an array with each element being the product of all of the elements of x along
dimension i up to, and including, the corresponding element of x.

Library Array

0 1 2 3 4
26 2185 4479 6888 9417 12.07K
30 2810 5761 8859 12.11K 15.53K
35 3435 7042 10.83K 14.8K 18.98K

VW Honda BMW
1 2 3

´

0 1 2 3 4
26 2185 109 115 120 127
30 2810 141 147 155 163
35 3435 172 180 189 199

0 1 2 3 4
26 0 109 115 120 127
30 0 141 147 155 163
35 0 172 180 189 199

´
´

Chapter More Array Functions

192 Analytica User Guide

12 Transforming functions

Example Cumproduct(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

Rank(x, i)
Returns an array of the rank values of x across index i. The lowest value in x has a
rank value of 1, the next-lowest has a rank value of 2, and so on. i is optional if x is one-
dimensional. If i is omitted when x is more than one-dimensional, the innermost dimen-
sion is ranked.

If two values are equal, they receive the same rank and the next higher value receives a
rank 2 higher.

Library Array

Examples Rank(Mpg) →
Mpg

Rank(Car_prices, Car_type) →
Car_type , Years

Integrate(r, i)
Returns the result of applying the trapezoidal rule of integration of array r over index i.
Integrate() computes the cumulative integral across i, returning a value with the same
number of dimensions as r. Compare Integrate() to Area() (see page 186).

An alternative syntax is Integrate(R1, R2, I), which returns the integral of array R1
over array R2. If R2 has one dimension, its index must also be an index of R1 and I is
optional. If R2 has more than one dimension, then I is required and must be an index
of both R1 and R2.

Library Array

Example Integrate(Cost_in_time, Time) →
Mpg , Time , Car_type = VW

0 1 2 3 4
26 2185 5.012M 12.07G 30.54T 81.11Q
30 2810 8.292M 25.69G 83.57T 285.5Q
35 3435 12.39M 46.92G 186.6T 778.9Q

´

26 30 35
1 2 3

1985 1986 1987 1988
VW 1 1 1 1
Honda 2 2 2 2
BMW 3 3 3 3

0 1 2 3 4
26 0 2240 4591 7060 9653
30 0 2881 5905 9081 12.42K
35 0 3521 7218 11.1K 15.18K

´

 Analytica User Guide 193

Chapter More Array Functions12 Selecting, slicing, and subscripting arrays

Normalize(r, i)
Returns an array that is normalized array r, so the area across index i is 1.

Normalize() does not force the values along index i to sum to 1; to make the values
sum to 1, divide r by Sum(R, I).

An alternative syntax is Normalize(r1, r2, i), which returns the normalized array of array
r1 over array r2. If r2 has one dimension, its index must also be an index of r1 and i
need not be stated. If r2 has more than one dimension, then i is required and must be
an index of r1 and r2.

Library Array

Example Normalize(Cost_in_Time, Time) →
Mpg , Time , Car_type = VW

Selecting, slicing, and subscripting arrays
These constructs and functions select a slice or subarray of an array. The result may be
a single cell, or a subarray, with (usually) one less dimension than the array from which
it was sliced.

X[I=V]: Subscript construct
The most commonly used method to extract a subarray is the subscript construct:

X[I = V]

This returns the subarray of X for which index I has value V. If V is not a value of index I,
it returns NULL, and usually gives a warning.

If X does not have I as a index, it just returns X. The rationale is that array X gives the
value of X for each combination of indexes that it is indexed by. It if is not indexed by I,
that means X has the same value for all values of I.

You can apply the subscript construct to an expression:
(Revenue - Cost)[Time = 2010]

Indexing by name
not position

You may subscript over multiple dimensions, for example:
X[I=V, J=U]

You get the same result from:
X[J=U, I=V]

You can specify the indexes in any sequence. Unlike most computer languages, with
Analytica you identify the dimension you want to subscript over by naming each index
— so you don’t need to remember which index refers to rows, to columns, or higher
dimensions. Rows and columns are not intrinsic to the array representation — they are
they are just a matter of how you choose to display the array in a table.

0 1 2 3 4
26 0.2264 0.2377 0.2496 0.2620 0.2752
30 0.2263 0.2377 0.2495 0.2620 0.2752
35 0.2264 0.2377 0.2496 0.2620 0.2751

´

Chapter More Array Functions

194 Analytica User Guide

12 Selecting, slicing, and subscripting arrays

The value V can be an array with some index other than I of values from the index I. For
example, V might be a subset of I. In that case, the result is an array with the index(es)
of V containing the corresponding elements of X. See the description in “Subscript(u1, i,
u2)” for an example. The Subscript(x, i,v) function is the same as the subscript con-
struct x[i=v], just using different syntax.

X[@I=n]: Slice construct
The slice construct has an @ sign before the index. It is different from the subscript con-
struct in that it refers to the numerical position rather than the value of index I. It returns
the nth slice of X over index I:

X[@I=n]

The number n should be an integer between 1 (for the first element of index I) and
Size(I) for the last element of I. If n is not an integer in this range, it returns NULL, and
returns a warning (unless warnings have been turned off). Like the subscript construct ,
it can slice over multiple indexes, for example:

X[@I=n, @J=m]

You can mix slice and subscript operations in one expression:
X[@I=1, J=2, K=3]

The slice construct does just the same as the Slice(X, I, V) function (see “Slice(u, i, n)”),
but with different syntax.

x[time-n]: Preceding time slice
x[Time-n] returns the value of variable x for the time period that is n time periods prior
to the current time period. This function is only valid inside the Dynamic() function. See
“Dynamic(initial1, initial2..., initialn, expr)” on page 298.

Subscript(u1, i, u2)
Returns the element or slice of array u1, for which index i has value u2. i must be an
index of u1, and u2 must be value(s) of i.

If u2 is a single value, the result of Subscript() is an array indexed by all indexes of u1
except i. If u2 is an array, the result of Subscript() is also indexed by the indexes of u2.

If u1 is a single value, Subscript(u1, i, u2) returns u1.

Subscript(u1, i, u2) is equivalent to x[i = u2] when x is a variable identifier that evalu-
ates to u1. Subscript() allows u1 to be an arbitrary expression.

Library Array

Examples To see the values in Cost corresponding to Mpg = 26:

Subscript(Cost, Mpg, 26) →
Car_type

Here U2 is an array of values:

VW Honda BMW
2185 2810 3435

 Analytica User Guide 195

Chapter More Array Functions12 Selecting, slicing, and subscripting arrays

Subscript(Cost, Car_type, [’VW’, ’Honda’]) →
Car_type , Mpg

Example of an arbitrary expression as the first parameter:

Subscript(Cost/12, Mpg, 26) →
Car_type

Slice(u, i, n)
Returns the element or cross-section of array u, for which index i has position n. i must
be an index of u, and n must be an integer or array of integers between 1 and the length
of i.

If n is an integer, the result of Slice() is an array indexed by all indexes of u except i. If
n is an array, the result of Slice() is also indexed by the indexes of n.

If u is a scalar, Slice(u, i, n) returns u.

Slice(u, n)
If Slice has only two parameters, and u has a single dimension, it returns the nth ele-
ment of u. For example:

Index Quarters := ’Q’ & 1..4

Slice(Quarters, 2) → ’Q2’

This method is the only way to extract an element from an unindexed array, for exam-
ple:

Slice(2000..2003, 4) → 2003

It also works to get the nth slice of a multidimensional array over an unindexed dimen-
sion, for example:

Slice(Quarters & ’ ’ & 2000..2003, 4) → Array(Quarters, [’Q1 2003’,

’Q2 2003’, ’Q3 2003’, ’Q4 2003’])

Tip If a is a scalar, or if a is an array with two or more indexed dimensions and no unindexed
dimensions, Slice(a, n) simply returns a.

Library Array

Examples Here, Analytica returns the values in Cost corresponding to the first element in
Car_type, that is, the values of VW:

26 30 35
VW 2185 1705 1585
Honda 2810 2330 2210

VW Honda BMW
182.1 234.2 286.2

Chapter More Array Functions

196 Analytica User Guide

12 Selecting, slicing, and subscripting arrays

Slice(Cost, Car_type, 1) →
Mpg

Here, n is an array of positions:

Slice(Cost, Car_type, [1, 2]) →
Mpg

x[i = u]
Returns a specific element or slice of an array, where x is the identifier of an array vari-
able, i is an index variable, and u is one or more elements of index i that corresponds to
the desired array element. x[i = u2] is equivalent to Subscript(u1, i, u2) when x is a
variable identifier that evaluates to u1.

Subscript(x, i, u1) and x[i=u1] just two ways to do the same thing.

Library Special

Examples Car_prices[Car_type = ’VW’] →
Years

Car_prices[Car_type = [’VW’, ’Honda’]] →
Years

You can specify more than one index when each index is given a single value.

Car_prices[Car_type = ’Honda’, Years = 1986] → 13K

Choice(i, n, inclAll)
Appears as a popup menu in the definition field, allowing selection of the nth item from i
(see “Creating a choice menu” on page 123). Choice() must appear at the topmost
level of a definition. It cannot be used inside another expression. The optional inclAll
parameter controls whether the "All" option (n=0) appears on nucleoli popup (inclAll
defaults to True).

Library Array

Examples Choice(Years, 2) → 1986

If n=0, all values of I are returned:

26 30 35
2185 1705 1585

26 30 35
1 2185 1705 1585
2 2810 2330 2210

1985 1986 1987 1988
8000 9000 9500 10K

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K

 Analytica User Guide 197

Chapter More Array Functions12 Converting between multiD and relational tables

Choice(Years, 0) →
Years

Converting between multiD and relational tables
The MDArrayToTable() function "flattens" a multi-dimensional array into a two-dimen-
sional relational table. The MDTable() function does the inverse, creating a multi-dimen-
sional array from a table of values. Viewing tabular results in a multi-dimensional form
via MDTable() often provides informative new perspective on existing data.

Many external application programs, including spreadsheets and relational databases,
are limited to two-dimensional tables. Thus, when transferring multi-dimensional data
between these applications and Analytica, it may be necessary to convert multi-dimen-
sional data into two-dimensional tables before transferring.

MDArrayToTable(a, i, l)
Transforms a multi-dimensional array, a, into a two-dimensional array (i.e., a table)
indexed by i and l. The result contains one row along i for each element of a. l must
contain a list of names of the indexes of a, followed by one final element. All elements of
l must be text values. The column corresponding to the final element of l contains the
cell value. If l does not contain all the indexes of a, array abstraction will create a set of
tables indexed by the dimensions not listed in l.

Before using MDArrayToTable(), you must define the index i with the appropriate num-
ber of elements. The number of elements in i may be either size(a), or the number of
non-zero elements of a (in which case the resulting table will contain only the nonzero
elements), otherwise an error results.

If the number of elements in i is equal to the number of non-zero elements of a,
MDArrayToTable() acts like the inverse of MDTable() on a table that contains a row for
only the nonzero elements of the array.

Library Array

Example Rows := sequence(1,size(Cost_in_time))

Cols := [’Mpg’,’Time’,’Car_type’,’Cost’]

MDArrayToTable(Cost_in_time,Rows,Cols) →
Rows , Cols

1985 1986 1987 1988

Mpg Time Car_type Cost
1 26 0 VW 2185
2 26 0 Honda 2385
3 26 0 BMW 3185
4 26 1 VW 2294
5 26 1 Honda 2314
6 26 1 BMW 3294
7 26 2 VW 2409
. . .
45 35 4 BMW 5175

Chapter More Array Functions

198 Analytica User Guide

12 Converting between multiD and relational tables

MDTable(t, rows, cols, vars, conglomFn, missingVal)
Returns a multi-dimensional array from a two-dimensional table of values. t is a two-
dimensional array (i.e., a table) indexed by rows and cols. Each row of t specifies the
coordinates of a cell in a multi-dimensional array, along with the value for that cell.

The dimensions of the final result are given by the optional parameter vars. vars must
be a list of index identifiers or index names. The length of cols must be one greater
than the length of vars.

If vars is omitted, the dimensions of the final result are specified by the first n-1 ele-
ments of cols, where(n=size(cols)). In this case, the elements of cols must be index
identifiers or index names.

The first n-1 columns of t specify the coordinates of a cell in the result. The final column
of t specifies the value for the indicated cell.

Before using MDTable(), you must define all of the indexes for the result. Each index
must include all values that occur in the corresponding column of t or an error will result.
The Unique() function is useful for defining the necessary indexes.

It is possible that two or more rows of t specify identical coordinates. In this case, a con-
glomeration function is used combine the values for the given cell. The conglomFn
parameter is a text value specifying which conglomeration function is to be used. Possi-
ble values are: "sum" (default), "min", "max", "average", or "product".

It is also possible that no row in t corresponds to a particular cell. In this case, the cell
value is set to missingVal, or if the missingVal parameter is omitted, the cell value is
set to undefined. Undefined values can be detected using the IsUndef() function.

Library Array

Example Suppose T, Rows, and Cols are defined as indicated by the following table:

Rows , Cols

MDTable(T,Rows,Cols,[Car_type,Mpg],

average’,’n/a’) →

Car_type , Mpg

Notice that in the example, Rows 6 and 7 both specified values for Car_type=BMW,
Mpg=35. The ’average’ conglomeration function was used to combine these.

Car_type Mpg X
1 VW 26 2185
2 VW 30 1705
3 Honda 26 2330
4 Honda 35 2210
5 BMW 30 2955
6 BMW 35 2800
7 BMW 35 2870

26 30 35
VW 2185 1705 n/a
Hond
a 2330 n/a 2210

BMW n/a 2955 2835

 Analytica User Guide 199

Chapter More Array Functions12 Interpolation functions

Interpolation functions
Analytica includes three functions that interpolate across arrays. The graph below is a
simple comparison of the three.

The first two examples use the following variables:

Index_a:

Index_b:

Array_a:

Index_a , Index_b

Cubicinterp(d, r, x, i)
Returns the natural cubic spline interpolated values of r along d, interpolating for val-
ues of x. d and r must both be indexed by i, and d must be increasing along i.

For each value of x, Cubicinterp() finds the nearest values from d, and using a natural
cubic spline between the corresponding values of r, computes the interpolated value. If
x is less than the minimum value in d, it returns the first value in r; if x is greater than the
maximum value in d, it returns the last value for r.

Library Special

Example Cubicinterp(Index_b, Array_a, 1.5, Index_b) →
Index_a

a b c

1 2 3

1 2 3
a 7 -3 1
b -4 -1 6
c 5 0 -2

Cubicinterp*

♦

*

Δ

♦

D

R

X

Stepinterp

Linearinterp

Δ

a b c
0.6875 -2.875 2.219

Chapter More Array Functions

200 Analytica User Guide

12 Interpolation functions

Linearinterp(d, r, x, i)
Returns linearly interpolated values of x, given r representing an arbitrary piecewise lin-
ear function. d and r must both be indexed by i, and d must be increasing along i. r is
an array of the corresponding output values for the function (not necessarily increasing
and may be more than one dimension). x may be probabilistic and/or an array.

For each value of x, Linearinterp() finds the nearest two values from d and interpo-
lates linearly between the corresponding values from r. If x is less than the minimum
value in d, it returns the first value in r. If x is greater than the maximum value in d, it
returns the last value in r.

Library Special

Example Linearinterp(Index_b, Array_a, 1.5, Index_b) →
Index_a

Stepinterp(d, a, x, i)
Returns the element or slice of array a for which d has the smallest value that is greater
than or equal to x. d and a must both be indexed by i, and d must be increasing along
index i. If x is greater than all values of d, it returns the element for which d has the
largest value.

When an optional parameter, LeftLookup, is specified as True, it returns the element or
slice of a corresponding to the largest value in d that is less than or equal to x.

If x is a single value, the result of Stepinterp() is an array indexed by all indexes of a
except d’s index. If x is an array, the result of Stepinterp() is also indexed by the
indexes of x.

Stepinterp() is similar to Subscript(u1, i, u2); however, Subscript() selects based on
the index value being equal to x, while Stepinterp() selects based on the array value
being greater than or equal to x.

Stepinterp() can be used to perform table lookup.

Library Special

Examples To see the values in Cost corresponding to Mpg >= 33:

Stepinterp(MPG, Cost, 33, MPG) →
Car_type

Here X is an array of values:

Stepinterp(MPG, Cost, [28,33], MPG) →

a b c
2 -2.5 2.5

VW Honda BMW
1585 2210 2835

VW Honda BMW
28 1705 2330 2955
33 1585 2210 2935

 Analytica User Guide 201

Chapter More Array Functions12 Other array functions

Other array functions

Concat(a1, a2, i, j, k)
Appends array a2 to array a1. i and j are indexes of a1 and a2, respectively. k is the
index of the resulting dimension, and usually consists of the list created by concatenat-
ing i and j.

a1 and a2 must have the same number of dimensions. If they are one-dimensional, the
parameters i, j, and k are optional. If they are not specified, the resulting array is unin-
dexed.

If a1 and a2 are multidimensional, they must have the same non-concatenated
indexes.

Library Array

Examples In addition to the variables defined in “Example data”, these examples use the follow-
ing:

More_years:

All_years:

More_prices: Car_type , More_years

Concat(Years, More_years) →
Concat

Sequence2: Sequence(1,7)

Concat(Years, More_years, Years, More_years, Sequence2) →
Sequence2

Concat(Car_prices, More_prices, Years, More_years, All_years) →
All_years , Car_type

1989 1990 1991

1985 1986 1987 1988 1989 1990 1991

1989 1990 1991
VW 11K 12K 12.5K
Honda 15K 15.5K 16.5K
BMW 23.5K 25K 27K

1985 1986 1987 1988 1989 1990 1991

1 2 3 4 5 6 7
1985 1986 1987 1988 1989 1990 1991

VW Honda BMW
1985 8000 12K 18K
1986 9000 13K 20K

Chapter More Array Functions

202 Analytica User Guide

12 Other array functions

ConcatRows(A : Array[I,J] ; I,J,K : Index)
Takes an array, A indexed by I and J, and concatenates each row, flattening the array
by one dimension. The result is indexed by ResultIndex, which must be an index with
size(I) * size(J) elements.

Library Concatenation.ana

To use this function, you must add the library to your model.

IndexNames(a)
Returns a list of the names of the indexes of the array a.

Library Array

Example IndexNames(Car_prices) → [’Car_type’,’Years’]

IndexesOf(A : Array)
Returns a list of handles, each one serving as a handle to the indexes of array A.

This is similar to IndexNames(A), except that IndexesOf returns actual handles, while
IndexNames returns the index identifiers (as text strings).

It is possible for an array to have more than one local index having identical names.
Obviously, this is not recommended, but in the unusual case where this occurs, the
index handles returned by IndexesOf are unambiguous.

Library Array

Example IndexesOf(Car_prices) → [’Car_type’,’Years’]

IndexValue(I)
Returns the index value for the given variable or index I. Some variables have both an
index value and a result value. Examples include a self-indexed array; a variable or
index defined as a list of identifiers or list of expressions; and a Choice list with a self-
domain. IndexValue(I) returns the index value of I, where (I) alone would return its
result value.

Library Array Functions

Details The IndexValue function, if it weren't built-in, could easily be defined within Analytica
4.0 as:

Function IndexValue(I : IndexType) := I

This definition, however, requires Analytica 4.0 or later.

1987 9500 14K 21K
1988 10K 14.5K 22K
1989 11K 15K 23.5K
1990 12K 15.5K 25K
1991 12.5K 16.5K 27K

VW Honda BMW

 Analytica User Guide 203

Chapter More Array Functions12 SubTable

Example Index L := [I,J,K,"value"]

Index rows := 1..Size(A)

Variable Flat_A := MdArrayToTable(A, rows, IndexValue(L))

Size(u)
Returns the number of array elements of u.

Library Array

Examples Size(Years) → 4

Size(Car_prices) → 12

Size(10) → 1

SubTable
The SubTable function allows a subset of another edit table to be edited by the user as
a different view. To the user, it appears as if he is editing any other edit table; however,
the changes are stored in the original edit table. The rows and columns can be trans-
formed to other dimensions in the SubTable, with different index element orders, based
on Subset indexes, and with different number formats.

SubTable(v[i = x]) SubTable lets you treat a slice of table a as an edit table, where variable v is defined as
an edit table, probability table, determtable, or another subtable. It lets a model offer
alternative editable views of the same input data.

SubTable must appear as the top-level function in an expression. It must contain a slice
or subscript operator. For example, in the simplest form:

SubTable(A[I=J])

where J is an index containing a subset of the elements of I, and A is a variable contain-
ing an edit table, probability table, or determtable. Many other variations are also useful
including:

SubTable(A[I=x])

SubTable(A[I1=J1,I2=J2])

SubTable(A[I=B])

SubTable(A[@I=C])

where x is a scalar, and B and C are an array indexed by J.

ADE and Analytica
Web Player

At present, ADE and AWP do not recognize subtables. Thus, in ADE you cannot (yet)
obtain a DefTable for a variable defined using SubTable. This enhancement may be
added in the future. In the Analytica Web Player, SubTable definitions do not allow edit-
ing in table mode.

Matrix functions
Matrix functions perform matrix operations. In Analytica, a matrix is defined as a two-
dimensional array of numbers.

Chapter More Array Functions

204 Analytica User Guide

12 Matrix functions

Dot product of two matrices
The dot product (i.e., matrix multiplication) of MatrixA and MatrixB is equal to

Sum(MatrixA * MatrixB, i)

where i is the common index.

Example MatrixA:

j , i

MatrixB:

k , i

Sum(MatrixA * MatrixB, i) →
k , j

MatrixMultiply(a:Numeric all[aRow,aCol]; aRow, aCol:Index; b:Numeric
all[bRow,bCol]; bRow, bCol:Index)

Performs a matrix multiplication on matrix a, having indexes aRow and aCol, and
matrix b, having indexes bRow and bCol. The result is indexed by aRow and bCol. a
and b must have the specified two indexes, and may also have other indexes. bCol and
bRow must have the same length or it flags an error. If bRow and bCol are the same
index, it returns only the diagonal of the result.

Library Matrix

Example Matrices

C x D
index1 , index2 index2 , index3

MatrixMultiply(C,index1,index2,D,index2,index3) →

1 2 3
a 4 1 2
b 2 5 3
c 3 2 7

1 2 3
l 3 2 1
m 2 5 3
n 4 1 2

a b c
l 16 19 20
m 19 38 37
n 21 19 28

1 2 a b c
1 1 2 1 3 0 1
2 1 0 2 0 1 1

 Analytica User Guide 205

Chapter More Array Functions12 Matrix functions

index1 , index3

When the inner index is shared by C and D, the expression Sum(C*D,index2) is equiv-
alent to their dot product (see “Dot product of two matrices”).

Tip The way to multiply a matrix by its transpose is:
MatrixMultiply(A, I, J, Transpose(A,I,J), I, J)

It does not work to use MatrixMultiply(A,I,J,A,J,I) because the result would have
to be doubly indexed by I.

Transpose(c, i, j)
Returns the transpose of matrix c along dimensions i and j.

Library Matrix

Example Transpose(MatrixA, i, j) →
j , i

Invert(c, i, j)
Returns the inversion of matrix c along dimensions i and j.

Library Matrix

Example Set number format to fixed point, 3 decimal digits.

Invert(MatrixA, i, j) →
j , i

Determinant(c, i, j)
Returns the determinant of matrix c along dimensions i and j.

Library Matrix

1 2 3
1 3 2 3
2 3 0 1

1 2 3
a 4 2 3
b 1 5 2
c 2 3 7

1 2 3
a 0.326 -0.034 -0.079
b -0.056 0.247 -0.090
c -0.124 -0.056 0.202

Chapter More Array Functions

206 Analytica User Guide

12 Matrix functions

Example MatrixA:

j , i

Determinant(MatrixA, i, j) → 89

Decompose(c, i, j)
Returns the Cholesky decomposition (square root) matrix of matrix c along dimensions
i and j. Matrix c must be symmetric and positive-definite. (Positive-definite means that
v * C * v > 0, for all vectors v.)

Cholesky decomposition computes a lower diagonal matrix L such that L * L' = C,
where L' is the transpose of L.

Library Matrix

Example Matrix

l , m

Decompose(MatrixS,l,m) →
l , m

EigenDecomp(a:Numeric[i, j]; i, j:Index)
Computes the Eigenvalues and Eigenvectors of a square, symmetric matrix a indexed
by i and j. EigenDecomp() returns a result indexed by j and .item (where .item is a tem-
porary index with two elements: ['value','vector']). Each column of the result contains
one Eigenvalue/Eigenvector pair. The Eigenvalue is a number, the Eigenvector is a ref-
erence to a rows-indexed Eigenvector. If result is the result of evaluating EigenDe-
comp(), then the Eigenvalues are given by result[.item='value'], and the
Eigenvectors are given by #result[.item='vector']. Each Eigenvector is indexed by
i.

Given a square matrix a, a non-zero number (λ) is called an Eigenvalue of a, and a non-
zero vector x the corresponding Eigenvector of a when

1 2 3
a 4 1 2
b 2 5 3
c 3 2 7

1 2 3 4 5
1 6 2 6 3 1
2 2 4 3 1 3
3 6 3 9 3 4
4 3 1 3 8 4
5 1 3 4 4 7

1 2 3 4 5
1 2.4495 0 0 0 0
2 0.8165 1.8257 0 0 0
3 2.4495 0.5477 1.6432 0 0
4 1.2247 0 0 2.5495 0
5 0.4082 1.4606 1.3389 1.3728 1.0113

 Analytica User Guide 207

Chapter More Array Functions12 Matrix functions

a x = λ x

An NxN matrix will have N (not-necessarily unique) Eigenvalue-Eigenvector pairs.
When A is a symmetric matrix, the Eigenvalues and Eigenvectors are real-valued.
Eigen-analysis is widely used in Engineering and statistics.

Tip The matrix a must be square and symmetric. Mathematically, Eigen decompositions do
exist for square non-symmetric matrices, but the algorithm used here is limited only to
symmetric matrices, since symmetric decompositions are guaranteed to be real-valued,
while, in general, Eigen decompositions may be complex.

Library Matrix

Example Covariance Matrix

stock1 , stock2

EigenDecomp(Covariance, Stock1, Stock2) →
.item , stock2

SingularValueDecomp(a, i, j, j2)
SingularValueDecomp() (Singular Value Decomposition) is often used with sets of
equations or matrices that are singular or ill-conditioned (that is, very close to singular).
It factors a matrix a, indexed by i and j, with Size(i)>=Size(i), into three matrices, U,
W, and V, such that

a = U . W . V (1)

where U and V are orthogonal matrices and W is a diagonal matrix. U is dimensioned by i
and j, W by j and j2, and V by j and j2. In Analytica notation:

Variable A :=

Sum(Sum(U*W,J) * Transpose(V,J,J2), J2)

The index j2 must be the same size as j and is used to index the resulting W and V
arrays.

INTC MOT AMD
INTC 30.47 13.26 18.9
MOT 13.26 16.58 14.67
AMD 18.9 14.67 17.11

INTC MOT AMD
value 1.025 9.232 53.9
vector <<ref1>> <<ref2>> <<ref3>>

<<ref1>>
stock1

<<ref1>>
stock1

<<ref1>>
stock1

INTC 0.2845 INTC 0.6548 INTC -0.7002
MOT 0.518 MOT -0.7196 MOT -0.4625
AMD -0.8067 AMD -0.2312 AMD -0.5439

Chapter More Array Functions

208 Analytica User Guide

12 Matrix functions

SingularValueDecomp() returns an array of three elements indexed by a special sys-
tem index named SvdIndex with each element, U, W, and V, being a reference to the cor-
responding array. Use the ’#’ (dereference) operator to obtain the matrix value from
each reference, as in:

Index J2

Definition: CopyIndex(J)

Variable SvdResult

Definition: SingularValueDecomp(A, I, J, J2)

Variable U

Definition: #SvdResult[SvdIndex='U']

Variable W

Definition: #SvdResult[SvdIndex='W']

Variable V

Definition: #SvdResult[SvdIndex='V']

Tip Like most other matrix functions, SingularValueDecomp() requires its main parameter
to be square, and will not work if indexes i and j are not the same size.

Chapter 13 Other Functions

This chapter describes a variety of useful functions from built-in
and added libraries:

• Text functions that work with text values, to transform,
search, split, and join them; see “Text functions”.

• Date functions for working with date numbers; see “Date
functions”.

• Advanced math functions; see “Advanced math functions”.

• Built-in financial functions; see “Financial functions”.

• A library of extra financial functions, including functions for
valuing options; see “Financial library functions”.

• Advanced probability functions; see “Advanced probability
functions”.

Chapter Other Functions

210 Analytica User Guide

13 Text functions

Text functions
These functions work with text values (sometimes known as strings), available in the
built-in Text library. See “Text values”.

Asc(t) Returns the ASCII code (a number between 0 and 255) of the first character in text
value t. This is occasionally useful, for example to understand the alphabetic ordering of
text values.

Chr(n) Returns the character corresponding to the numeric ASCII code n (a number between 0
and 255). Chr() and Asc() are inverses of each other, for example:

Chr(65) Æ ’A’, Asc(Chr(65)) Æ 65

Asc(’A’) Æ 65, Chr(Asc(’A’)) Æ ’A’

Chr() is useful for creating characters that cannot easily be typed, such as Tab, which
is Chr(9) and carriage return (CR), which is Chr(13). For example, if you read in a text
file, x, you can use SplitText(x, Chr(13)) to generate an array of lines from a multi-
line text file.

TextLength(t) Returns the number of characters in text t.
TextLength(’supercalifragilisticexpialidocious’) → 34

SelectText(t, m, n) Returns text containing the mth through the nth character of text t (where the first char-
acter is m=1). If n is omitted it returns characters from the mth through the end of t.

SelectText(’One or two’, 1, 3) → ’One’

SelectText(’One or two’, 8) → ’two’

FindinText(t1, t2,
start)

Returns the position of the first occurrence of the text t1 within the text t2, as the num-
ber of characters to the first character of t1. If t1 does not occur in t2, it returns 0.
FindinText() is case-sensitive. For example:

Variable People := ’Amy, Betty, Carla’

FindinText(’Amy’, People) → 1

FindinText(’amy’, People) → 0

FindinText(’Betty’, People) → 6

FindinText(’Fred’, People) → 0

The optional third parameter, start, specifies the position to start searching at, for exam-
ple, if you want to find a second occurrence of t1 after you have found the first one.

FindinText('i','Supercalifragilisticexpialidocious') → 9

FindinText('i','Supercalifragilisticexpialidocious',10) → 14

TextReplace(t, t1, t2,
all)

If all is omitted or false, it returns text t with the first occurrence of text t1 replaced by
t2. If all is true, it returns text t with all occurrences of text t1 replaced by t2.

TextReplace(’StringReplace, StringLength’, ’String’, ’Text’)

→ ’TextReplace, StringLength’

TextReplace(’StringReplace, StringLength’, ’String’, ’Text’, True)

→ ’TextReplace, TextLength’

Joining Text: a & b The "&" operator joins (concatenates) two text values to form a single text value, for
example:

’What is the’ & ’ number’ & ’?’

→ ’What is the number?’

 Analytica User Guide 211

Chapter Other Functions13 Text functions

If one or both operands are numbers, it converts them to text using the number format
of the variable whose definition contains this function call (or the default suffix format if
none is set), for example:

’The number is ’ & 10^8 → ’The number is 100M’

This is also useful for converting (or "coercing") numbers to text.

JoinText(a, i,
separator,

finalSeparator)

Returns the elements of array a joined together into a single text value over index i. If
elements of a are numeric, they are first converted to text using the number format set-
tings for the variable whose definition contains this function call. For example:

I : [’A’, ’B’, ’C’]

JoinText(I, I) → ’ABC’

A: Array(I, [’VW’, ’Honda’, ’BMW’])

JoinText(A, I) → ’VWHondaBMW’

If the optional parameter separator is specified, it is inserted as a separator between
successive elements, for example:

JoinText(A, I, ’, ’) → ’VW, Honda, BMW’

The optional parameter finalSeparator, if present, specifies a different separator
between the second-to-last and last elements of a.

JoinText(A, I, ’; ’, ’; and’) → ’VW; Honda; and BMW’

SplitText(t, separator) Returns a list of text values formed by splitting the elements of text value t at each
occurrence of separator separator. For example:

SplitText(’VW, Honda, BMW’, ’, ’) → [’VW’, ’Honda’, ’BMW’]

SplitText() is the inverse of JoinText(), if you use the same separators. For example:
Var x:=SplitText(’Humpty Dumpty sat on a wall.’, ’ ’)

→ [’Humpty’, ’Dumpty’, ’sat’, ’on’, ’a’, ’wall.’]

JoinText(x, , ' ') → ’Humpty Dumpty sat on a wall.’

Tip With SplitText(), t must be a single text value, not an array. Otherwise, it might generate
an array of arrays of different length. See “Functions expecting atomic parameters” on
what to do if you want apply it to an array.

TextLowerCase(t) Returns the text t with all letters as lowercase. For example:
TextLowerCase(’What does XML mean?’)

→ ’what does xml mean?’

TextUpperCase(t) Returns the text t with all letters as uppercase. For example:
TextUpperCase(’What does XML mean?’)

→ ’WHAT DOES XML MEAN?’

TextSentenceCase
(Text ; preserveUC :

optional)

Returns the text t with the first character (if a letter) as uppercase, and any other letters
as lowercase. For example:

TextSentenceCase(’mary ann FRED Maylene’)

→ ’Mary ann fred maylene’

TextSentenceCase(SplitText(’mary ann FRED Maylene’, ’ ’))

→ [’Mary’, ’Ann’, ’Fred’, ’Maylene’]

Chapter Other Functions

212 Analytica User Guide

13 Date functions

TextSentenceCase('they are Fred and Maylene', true)

→ 'They are Fred and Maylene'

Date functions
These functions work with date numbers — that is, the number of days since the date
origin, usually Jan 1, 1904. See “Date numbers and the date origin”. Date numbers dis-
play as dates if you select a date number format. MakeDate() generates a date number
from the year, month, and day. DatePart extracts the year, month, or day from a date
number. DateAdd() adds a number of days, weeks, months, or years to a date. And
Today() returns today’s date.

MakeDate(year, month, day)
Gives the date value for the date with given year, month, and day. If omitted, month
and day default to 1. Parameters must be positive integers.

Examples MakeDate(2007,5,15) → 15-May-2007

MakeDate(2000) → 1-Jan-2000

Library Special Functions

DatePart(date, part)
Given a date value date, it returns the year, month, or day as a number, according to
the value of part, which must be an uppercase character:

'Y' gives the four digit year as a number, such as 2006.

'M' gives the month as a number between 1 and 12.

'D' gives the day as number between 1 and 31.

'W' gives the day of the week as a number from 1 (Sunday) to 7 (Saturday).

Other options for part are: 'MMM' → 'Jan', 'MMMM' → 'January', 'ddd' → '1st', 'dddd' →
first', 'Dddd' → 'First', 'www' → 'Mon', 'wwww' → 'Monday', 'q' → 1 to 4 for number of
quarter of the year.

Examples DatePart(MakeDate(2006, 2, 28), 'D') → 28

This makes a sequence of all weekdays between Date1 and Date2:
Index J:= Date1 .. Date2;

Subset(DatePart(J, "W")>=2 AND DatePart(J, "W")<=6)

Library Special Functions

DateAdd(date, n, unit)
Given a date value date, it returns a date value offset by n years, months, days, or
weekdays according to whether unit is ‘Y’, ‘M’, ‘D’, or ‘WD’. If n is negative, it subtracts
units from the date.

Examples DateAdd is especially useful for generating a sequence of dates, e.g., weeks, months,
or quarters, for a time index:

 Analytica User Guide 213

Chapter Other Functions13 Advanced math functions

DateAdd(MakeDate(2006,1,1), 0..12, "M")

→ ["1 Jan 2006", "1 Feb 2006", "1 Mar 2006", ... "1 Jan 2007"]

If an offset would appear to go past the end of a month, it returns the last day of the
month:

DateAdd(MakeDate(2004, 2, 29), 1, 'Y') → 2005-Feb-28

DateAdd(MakeDate(2006, 10, 31), 1, 'M') → 2006-Nov-30

Since the dates 2005-Feb-29 and 2006-Nov-31 don't exist, it gives the last day of the
preceding month.

Adding a day offset, DateAdd(date, n,"D"), is equivalent to date+n.
DateAdd(date,n,"WD") adds the specified number of weekdays to the first weekday
equal to or falling after date.

Library: Special Functions

Today()
Returns the date number for the day on which the function is evaluated. Thus, it gives a
different value when the same model is evaluated on a different day.

Library Special Functions

Advanced math functions
These functions can be accessed under the Definition menu Advanced Math com-
mand, or in the Object Finder dialog box, Advanced Math library. Functions in this sec-
tion are generally for more advanced mathematical users than those found in “Math
functions”. There are additional advanced math functions covered in “Importance
weighting”.

Arccos(x), Arcsin(x),
Arctan2(y, x)

The inverse trigonometric functions. For each the parameter x is between 0 and 1, and
the result is in degrees. Arccos returns a result between 0 and 180 degrees:

Arccos(1) → 0

Arccos(Cos(45)) → 45

Arcsin returns a result between -90 and 90 degrees:
Arcsin(1) → 90

Arcsin(Sin(45)) → 45

Arctan2 gives the arctangent of y/x without losing information about which quadrant the
point is in. The result is the angle in degrees between the X axis and the point (x,y) in
the two dimensional plane, in the range (-180,180):

Arctan2(-1,1) → -45

Arctan2(0,-1) → 180

Arctan2(0, 0) → 0

Cosh(x), Sinh(x),
Tanh(x)

The hyperbolic cosine, sine, and tangent of x, x assumed to be in degrees.
Cosh(0) → 1

Sinh(0) → 0

Tanh(INF) → 1

Chapter Other Functions

214 Analytica User Guide

13 Financial functions

Lgamma(x) Returns the Log Gamma function of x. Without numeric overflow, this function is equiv-
alent to ln(GammaFn(X)). Because the gamma function grows so rapidly, it is often
much more convenient to use LGamma() to avoid numeric overflow.

LGamma(10) → 12.8

Financial functions
These functions can be accessed under the Definition menu Financial command, or in
the Object Finder dialog box, Financial library. The function names and parameters
match those in Microsoft Excel, where they are equivalent. Of course, the Analytica ver-
sions support array abstraction, which makes them more flexible.

Parameters The same parameters occur in many of the financial functions. These parameters are
described here. Dollar amounts for both parameters and return values of functions are
expressed as the amount you receive. If you make a payment, the amount is negative.
If you receive a payment, the amount is positive.

Cumipmt(rate, nPer, pv, startPeriod, endPeriod, type)
Returns the cumulative interest paid on an annuity between, and including, startPeriod
(shown as sp in equation below) and endPeriod (shown as ep in equation
below). The annuity is assumed to have a constant interest rate and periodic payments.
This is equal to:

rate The interest rate per period. For example, if periods are months, the rate should be
adjusted to the monthly rate, not the annual rate (e.g., 8%/12, or 1.08^(1/12)-1
with monthly compounding).

nPer Number of periods in the lifetime of an annuity.

per The period (between 1 and nPer) being computed.

pv The present value of the annuity. For example, for a loan this is the loan amount
(positive if you receive the loan, negative if you are the lender).

fv The future value of the annuity. This is the remaining value of the annuity after the
final payment. In the case of a loan, for example, this is the balloon payment at the
end (positive if you are the lender, negative if you pay the balloon amount). This
parameter is usually optional with a default value of zero.

pmt The total payment per period (interest + principal). If you receive payments, this is
positive. If you make payments, this is negative.

type Indicates whether payments are due at the beginning or end of each period.

True Payments are due at the beginning of each period, with the first payment due
immediately.

False (default) Payments are due at the end of each period.

 Analytica User Guide 215

Chapter Other Functions13 Financial functions

Example Interest payments during the first year on a $100,000 loan at 8% is:
CumIPmt(8%/12,360,100K,1,12) → -7,969.81

The result is negative since these are payments.

Cumprinc(rate, nPer, pv, startPeriod, endPeriod, type)
Returns the cumulative principal paid on an annuity between, and including, startPe-
riod (shown as sp in equation below) and endPeriod (shown as ep in equation
below). The annuity is assumed to have a constant interest rate and periodic payments.
The result is equal to:

Example The total principal paid during the first year on a $100,000 loan at 8% is:
CumPrinc(8%/12,360,100K,1,12) → -835.36

The result is negative since these are payments.

Fv(rate, nPer, pmt, pv, type)
Returns the future value of an annuity investment with constant periodic payments and
fixed interest rate. The result is positive if you receive money at the end of the annuity’s
lifetime, and negative if you must make a payment at the end of the annuity’s lifetime.

Examples You invest $1000 in an annuity that pays 6% annual interest, compounded monthly
(0.5% per month), that pays out $50 at the end of each month for 12 months, and then
refunds whatever is left after 12 months. The amount refunded is:

Fv(0.5%, 12, 50, -1000) → $444.90

You borrow $50,000 at a fixed annual rate of 12% (1% per month). You make monthly
payments of $550 for 15 years, and then pay off the remaining balance in a single bal-
loon payment. That final balloon payment is (the negative is because it is a payment for
you):

-Fv(1%, 15*12, -550, 50000) → $25,020.99

You open a fixed-rate bank account that pays 0.5% per month in interest. At the begin-
ning of each month (including when you open the account) you deposit $100. The
amount in the account at the end of the each of the first three years is:

Fv(0.5%,[12,24,36],-100,0,True) →

Ipmt rate n nPer Pv 0 Type,,,,,()
n sp=

ep

∑

PPmt Rate n Nper Pv 0 Type,,,,,()
n sp=

ep

∑

Chapter Other Functions

216 Analytica User Guide

13 Financial functions

[$1239.72, $2555.91, $3953.28]

Ipmt(rate, per, nPer, pv, fv, type)
Returns the interest portion of a payment on an annuity, assuming constant period pay-
ments and fixed interest rate.

Example The interest you pay in the 24th month on a 30-year fixed $100K loan at an 8%/12
monthly interest rate is (the result of IPmt is negative since this is a payment for you):

-IPmt(8%/12, 24, 12*30, 100K) → $655.59

Irr(values, i, guess)
Returns the internal rate of return (IRR) of a series of periodic payments (negative val-
ues) and inflows (positive values). The IRR is the discount rate at which the net present
value (NPV) of the flows is zero. The array values must be indexed by i.

If the cash flow never changes sign, Irr() will have no solution and returns NaN (not a
number). If a cash flow changes sign more than once, Irr() may have multiple solutions,
and will return the first solution found. The implementation uses an iterative gradient-
descent search to locate a solution. The optional argument, guess, can be provided as
a starting value for the search (default is 10%). When there are multiple solutions, the
one closest to guess will usually be returned. If no solution is found within 30 iterations,
Irr() returns NaN.

To compute the IRR for a non-periodic cash flow, use XIRR().

Example Earnings: Time

Irr(Earnings, Time) → 17.15%

Nper(rate, pmt, pv, fv, type)
Returns the number of periods of an annuity with constant periodic payments and fixed
interest rate.

Example You invest $10,000 in an annuity that pays 8% annually. Each year you withdraw
$1,000. Your annuity will last for:

NPer(8%,1000,-10K) → 20.91 (years)

Npv(discountRate, values, i)
Returns the net-present value of a cash flow with equally spaced periods. The values
parameter contains a series of periodic payments (negative values) and inflows (posi-
tive values), indexed by i. Future values are discounted by discountRate per period.
The NPV is given by:

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M

Values I j=[]
1 DiscountRate+()j

--
j 1=

n

∑

 Analytica User Guide 217

Chapter Other Functions13 Financial functions

Tip The first value is discounted as if it is one step in the future. To compute the NPV for a
non-periodic cash flow, use Xnpv().

Example Earnings: Time

At a discount rate of 5%, the net present value of this cash flow is:

Npv(5%, Earnings, Time) → $865,947.76

Pmt(rate, nPer, pv, fv, type)
Returns the total payment per period (interest + principal) for an annuity with constant
periodic payments and fixed interest rate.

Example You obtain a 30-year fixed mortgage at 8%/12 per month for $100K. Your monthly pay-
ment will be (note that the result of Pmt() is negative since this is a payment for you):

-Pmt(8%/12, 30*12, 100K) → $733.76

Ppmt(rate, per, nPer, pv, fv, type)
Returns the principal portion of a payment on an annuity with constant period payments
and fixed interest rate.

Example You have a 30-year fixed $100K loan at a rate of 8%/12 monthly. On your 24th payment,
the amount of your payment that goes towards principal is (note that the result of
PPmt() is negative since this is a payment for you):

-PPmt(8%/12, 24, 12*30, 100K) → $78.18

Pv(rate, nPer, pmt, fv, type)
Returns the present value of an annuity. The annuity is assumed to have constant peri-
odic payments to you of pmt per period for nPer periods, with a return of rate per
period.

Example To receive $100 per month from an annuity that returns 6%/12 per month for the next 10
years, you would need to invest (note that the result from Pv() is negative since you are
paying to make the investment):

-Pv(6%/12, 10*12, 100) → $9,007.35

Rate(nPer, pmt, pv, fv, type, guess)
Returns the interest rate (per period) for an annuity. The value returned is the interest
rate that results in equal payments of pmt per period over the nPer periods of the annu-
ity.

In general, Rate() may have zero or multiple solutions. The implementation uses an
interactive search algorithm. The optional guess may be provided as a starting point for
the search, which will usually result in the solution closest to guess being returned. If no
solution is found in 30 iterations, Rate() returns NaN.

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M

Chapter Other Functions

218 Analytica User Guide

13 Financial functions

Example You obtain a 30-year mortgage at a supposed 7% annual percentage rate for $100K. To
do so, you pay $2,000 up front in “points”, and another $1,500 in fees. Assuming you
hold the loan for its full term, the effective interest rate of your loan (for you) is

Rate(30,Pmt(7%,30,100K),100K-3500) → 7.36%

Xirr(values, dates, i, guess)
Returns the annual internal rate of return (IRR) for a series of payments (negative val-
ues) and inflows (positive values) that occur at non-periodic intervals. Both values and
dates must be indexed by i. The values array constrains the cash flow amounts, the
dates array contains the date of each payment or inflow, where each date is Analytica’s
expressed as the number of days since Jan. 1, 1904. The rate is based on a 365 day
year.

If the cash flow never changes sign, there is no solution and Xirr() returns NaN. If the
cash flow changes sign more than once, Xirr() may have multiple solutions, but will
return only the first solution found. The optional parameter, guess, may be provided as
a starting point for the iterative search, and Xirr() will generally find the solution closest
to guess. If not provided, guess defaults to 10%. If no solution is found within 30 itera-
tions, Xirr() returns NaN.

To compute the IRR for a series of period payments, use Irr().

Example EarningAmt: J

EarningDate: J

XIrr(EarningAmt,EarningDate,J) → 9.31%

Tip EarningDate can be entered by selecting Number Format from the Result menu while
editing the table for EarningDate. From the Number format dialog, select a date format,
then enter the dates.

Xnpv(rate, values, dates, i)
Returns the net present value (NPV) of a non-periodic cash flow with a constant dis-
count rate. rate is the annual discount rate for a 365 day year. Both values, the cash-
flow amounts, and dates, the date of each payment (negative value) or inflow (positive
value), must be indexed by i.

See also Npv().

Example Using the cash flow shown in the example for XIrr() above, the net present value at a
5% discount rate is:

XNpv(5%,EarningAmt,EarningDate,J) → $42,838.71

1 2 3 4
-400K -200K 100K 600K

1 2 3 4
July 5,

1999
Dec 1,

1999
Jan 21,

2000
Aug 10,

2001

 Analytica User Guide 219

Chapter Other Functions13 Financial library functions

Financial library functions
The following functions are not built-in to Analytica, but are located in the Financial
library that comes with Analytica.

Calloption (S, X, T, r, theta)
This function calculates the value of a call option using the Black-Scholes formula.
For further information on the Black-Scholes model for option pricing see Basic Black-
Scholes: Option Pricing and Trading by Timothy Falcon Crack.

Parameters • S = price of security now

• X = exercise price

• T = time in years to exercise

• r = risk-free interest rate

• theta = volatility of security

Library Financial (add-in library)

Example Calloption(50,50,0.25,0.05,0.3) → 3.292

Syntax Calloption (S,X,T,r,theta:Numeric)

Putoption (S,X,T,r,theta)
This function calculates the value of a put option using the Black-Scholes formula.
For further information on the Black-Scholes model for option pricing see Basic Black-
Scholes: Option Pricing and Trading by Timothy Falcon Crack.

Parameters • S = price of security now

• X = exercise price

• T = time in years to exercise

• r = risk-free interest rate

• theta = volatility of security

Library Financial (add-in library)

Example Putoption(50,50,0.25,0.05,0.3) → 2.67

Syntax Putoption (S,X,T,r,theta:Numeric)

Capm (Rf,Rm,Beta)
CAPM calculates the expected stock return under the Capital Asset Pricing Model.
For further information on the Capital Asset Pricing Model see Black, F., Jensen, M.,
and Scholes, M. "The Capital Asset Pricing Model: Some Empirical Tests", in M. Jensen
ed., Studies in the Theory of Capital Markets. (1972).

Parameters • Rf = risk free rate

• Rm = market return

Chapter Other Functions

220 Analytica User Guide

13 Financial library functions

• Beta = beta of individual stock. Beta is the relative marginal contribution of the stock
to the market return, defined as the ratio of the covariance between the stock return
and market return, to the variance in the market return.

Library Financial (add-in library)

Example Capm(8%,12%,1.5) → 0.14

Syntax Capm (Rf,Rm,Beta:Numeric)

CostCapme (rOpp,rD,Tc,L)
This function calculates Miles and Ezzell's (M/E) formula for adjusting the weighted
average cost of capital for financial leverage. The M/E formula works when the firm
adjusts its future borrowing to keep debt proportions constant.

Parameters • rOpp = opportunity cost of capital

• rD = expected return on debt

• Tc = net tax saving per dollar of interest paid. This is difficult to pin down in practice
and is usually taken as the corporate tax rate.

• L = debt-to-value ratio

Library Financial (add-in library)

Example CostCapme(14%,8%,35%,0.5) → 0.1252

Syntax CostCapme (rOpp,rD,Tc,L:Numeric)

CostCapmm (rAllEq, Tc, L)
This function calculates Modigliani and Miller's (M/M) formula for adjusting the weighted
average cost of capital for financial leverage. The M/M formula works for any project
that is expected to

1. Generate a level, perpetual cash flow.

2. Support fixed permanent debt.

Parameters • rAllEq = cost of capital under all-equity financing

• Tc = net tax saving per dollar of interest paid. This is difficult to pin down in practice
and is usually taken as the corporate tax rate.

• L = debt-to-value ratio

Library Financial (add-in library)

Example CostCapmm(20%,35%,0.4) → 0.172

Syntax CostCapmm (rAllEq, Tc, L:Numeric)

Implied_volatility_c (S,X,T,r,p)
This function calculates the implied volatility of a call option, based on using the Black-
Scholes formula for options

Parameters • S = price of security now

 Analytica User Guide 221

Chapter Other Functions13 Financial library functions

• X = exercise price

• T = time in years to exercise

• r = risk-free interest rate

• p = option price

Library Financial (add-in library)

Example Implied_volatility_c(50, 35, 4, 6%, 15) → 3.052e-005

Syntax Implied_volatility_c (S,X,T,r,p : atomic numeric)

Implied_volatility_p (S,X,T,r,p)
This function calculates the implied volatility of a put option, based on using the Black-
Scholes formula for options.

Parameters • S = price of security now

• X = exercise price

• T = time in years to exercise

• r = risk-free interest rate

• p = option price

Library Financial (add-in library)

Example Implied_volatility_p(50, 35, 4, 6%, 15) → 9.416e-001

Syntax Implied_volatility_p (S,X,T,r,p : atomic numeric)

Pvperp (C,rate)
Pvperp() calculates the present value of a perpetuity (a bond that pays a constant
amount in perpetuity).

Parameters • C = constant payment amount

• rate = interest rate per period

Library Financial (add-in library)

Example Pvperp(200,8%) → 2500

Syntax Pvperp(C,rate:Numeric)

Pvgperp (C1, rate, growth)
Pvgperp() calculates the present value of a growing perpetuity (a bond that pays an
amount growing at a constant rate in perpetuity).

Parameters • C1 = payment amount in year 1

• rate = interest rate per period

• growth = growth rate per period

Library Financial (add-in library)

Chapter Other Functions

222 Analytica User Guide

13 Advanced probability functions

Example Pvgperp(200,8%,6%) → 10K

Syntax Pvgperp (C1, rate, growth : Numeric)

Wacc (Debt,Equity,rD,rE,Tc)
Wacc() calculates the after-tax weighted average cost of capital, based on the expected
return on a portfolio of all the firm's securities. Used as a hurdle rate for capital invest-
ment.

Parameters • Debt = market value of debt

• Equity = market value of equity

• rD = expected return on debt

• rE = expected return on equity

• Tc = corporate tax rate

Library Financial (add-in library)

Example Wacc(1M,3M,8%,16%,35%) → 0.133

Syntax Wacc (Debt,Equity,rD,rE,Tc : Numeric)

Advanced probability functions
The following functions are not actual probability distributions, but they are useful for
various probabilistic analyses, including building other probability distributions. You can
find them in the Advanced math library from the Definition menu.

BetaFn(a, b) The beta function, defined as:

BetaI(x, a, b) The incomplete beta function, defined as:

The incomplete beta function is equal to the cumulative probability of the beta distribu-
tion at x. It is useful in a number of mathematical and statistical applications.

The cumulative binomial distribution, defined as the probability that an event with prob-
ability p occurs k or more times in n trials, is given by:

BetaFn a b,() xa 1– 1 x–()b 1– xd
0

1

∫=

BetaI x a b, ,() 1
Beta a b,()
-------------------------- xa 1– 1 x–()b 1– xd

0

X

∫=

Pr BetaI p k n k– 1+, ,()=

 Analytica User Guide 223

Chapter Other Functions13 Advanced probability functions

The student’s distribution with n degrees of freedom, used to test whether two observed
distributions have the same mean, is readily available from the beta distribution as:

The F-distribution, used to test whether two observed samples with and degrees
of freedom have the same variance, is readily obtained from BetaI as:

Combinations(k, n) "n choose k." The number of unique ways that k items can be chosen from a set of n
elements (without replacement and ignoring the order).

Combinations(2,4) → 6

They are: {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

Permutations(k, n) The number of possible permutations of k items taken from a bucket of n items.
Permutations(2,4) → 12

They are: {1,2}, {1,3}, {1,4}, {2,1}, {2,3}, {2,4}, {3,1}, {3,2}, {3,4}, {4,1}, {4,2}, {4,3}

CumNormal(x, mean,
stddev)

Returns the cumulative probability:

for a normal distribution with a given mean and standard deviation. mean and stddev
are optional and default to mean = 0, stddev = 1.

CumNormal(1) - CumNormal(-1) → .683

That is, 68.3% of the area under a normal distribution is contained within one standard
deviation of the mean.

CumNormalInv(p, m,
s)

The inverse cumulative probability function for a normal distribution with mean m and
standard deviation s. Returns the value X where:

mean and stddev are optional and default to mean = 0, stddev = 1.

Erf(x) The error function, defined as:

ErfInv(y) The inverse error function. Returns the value X such that Erf(X)=y.
ErfInv(Erf(2)) → 2

GammaFn(x) Returns the gamma function of x, defined as:

The gamma function grows very quickly. For example, when n is an integer, Gam-
maFn(n+1) = n!. For this reason, it is often preferable to use the LGamma() function.

GammaI(x, a, b) Returns the incomplete gamma function, defined as:

Student x n() 1 BetaI n n x2+()⁄ n 2⁄ 1 2⁄, ,()–=

n1 n2

F x n1 n2, ,() BetaI n2 n1x n2+()⁄()=

p Pr x X≤[]=

p Pr x X≤[]=

Erf x() 2
π

------- e t
2– td

0

x

∫=

Γ x() tx 1– e t– td
0

∞

∫=

Chapter Other Functions

224 Analytica User Guide

13 Advanced probability functions

a is the shape parameter, b is an optional scale factor (default b=1). Some textbooks
use as the scale factor. The incomplete gamma function is defined
for .

The incomplete gamma function returns the cumulative area from zero to x under the
gamma distribution.

The incomplete gamma function is useful in a number of mathematical and statistical
contexts.

The cumulative Poisson distribution function, which encodes the probability that the
number of Poisson random events (x) occurring will be less than k (where k is an inte-
ger) where the expected mean number is a, is given by (recall that parameter b is
optional):

GammaIInv(y, a, b) The inverse of the incomplete gamma function. Returns the value X such that
GammaI(X, a, b) = y. b is optional and defaults to 1.

GammaI x a b, ,() 1
Γ a()
----------- e t– tb 1– td

0

x b⁄

∫=

λ 1 a⁄=
x 0≥

P x k<() GammaI k a,()=

Chapter 14 Expressing Uncertainty

This chapter shows you how to:

• Choose a distribution

• Define a variable as a distribution

• Use Analytica’s built-in probability distributions

Chapter Expressing Uncertainty

226 Analytica User Guide

14 Choosing an appropriate distribution

Analytica makes it easy to model and analyze uncertainties even if you have minimal
background in probability and statistics. The graphs below review several key concepts
from probability and statistics that will help you understand the probabilistic modeling
facilities in Analytica. This chapter assumes that you have encountered most of these
concepts before, but possibly in the distant past. If you need more information, see
“Glossary” on page 421 or refer to an introductory text on probability and statistics.

Choosing an appropriate distribution
With Analytica you can express uncertainty about any variable by using a probability
distribution. You may base the distribution on available relevant data, on the judgment
of a knowledgeable individual, or on some combination of data and judgment.

Answer the following questions about the uncertain quantity to select the most appropri-
ate kind of distribution:

• Is it discrete or continuous?

• If continuous, is it bounded?

• Does it have one mode or more than one?

• Is it symmetric or skewed?

• Should you use a standard or a custom distribution?

We will discuss how to answer each of these in turn.

Mode Median

Mean

Lower
Tail

P
ro

ba
bi

lit
y

D
en

si
ty

Lower
Bound

1.0

25%ile 50%ile 75%ile Upper
Bound

.5

.75

0.0

.25

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Upper
Tail

Uncertain quantity X

 Analytica User Guide 227

Chapter Expressing Uncertainty14 Choosing an appropriate distribution

Is the quantity
discrete or

continuous?

When trying to express uncertainty about a quantity, the first technical question is
whether the quantity is discrete or continuous.

A discrete quantity has a finite number of possible values — for example, the gender of
a person or the country of a person’s birth. Logical or Boolean variables are a type of
discrete variable with only two values, true or false, sometimes coded as yes or no,
present or absent, or 1 or 0 — for example, whether a person was born before January
1, 1950, or whether a person has ever resided in California.

A continuous quantity can be represented by a real number, and has infinitely many
possible values between any two values in its domain. Examples are the quantity of an
air pollutant released during a given period of time, the distance in miles of a residence
from a source of air pollution, and the volume of air breathed by a specified individual
during one year.

For a large discrete quantity, such as the number of humans residing within 50 miles of
Disneyland on December 25, 1980, it is often convenient to treat it as continuous. Even
though you know that the number of live people must be an integer, you may want to
represent uncertainty about the number with a continuous probability distribution.

Conversely, it is often convenient to treat continuous quantities as discrete by partition-
ing the set of possible values into a small finite set of partitions. For example, instead of
modeling human age by a continuous quantity between 0 and 120, it is often convenient
to partition people into infants (age < 2 years), children (3 to 12), teenagers (13 to 19),
young adults (20 to 40), middle-aged (41 to 65), and seniors (over 65 years). This pro-
cess is termed discretizing. It is often convenient to discretize continuous quantities
before assessing probability distributions.

Does the quantity
have bounds?

If the quantity is continuous, it is useful to know if it is bounded before choosing a distri-
bution — that is, does it have a minimum and/or maximum value?

Some continuous quantities have exact lower bounds. For example, a river flow cannot
be less than zero (assuming the river cannot reverse direction). Some quantities also
have exact upper bounds. For example, the percentage of a population that is exposed
to an air pollutant cannot be greater than 100%.

Most real world quantities have de facto bounds — that is, you can comfortably assert
that there is zero probability that the quantity would be smaller than some lower bound,
or larger than some upper bound, even though there is no precise way to determine the
bound. For example, you can be sure that no human could weigh more than 5000
pounds; you might be less sure whether 500 pounds is an absolute upper bound.

Many standard continuous probability distributions, such as the normal distribution, are
unbounded. In other words, there is some probability that a normally distributed quantity

Discrete Continuous

Exact Lower Bounds Exact Upper Bounds

Chapter Expressing Uncertainty

228 Analytica User Guide

14 Choosing an appropriate distribution

is below any finite value, no matter how small, and above any finite value, no matter
how large.

Nevertheless, the probability density drops off quite rapidly for extreme values, with
near exponential decay, in fact, for the normal distribution. Accordingly, people often
use such unbounded distributions to represent real world quantities that actually have
finite bounds. For example, the normal distribution generally provides a good fit for the
distribution of heights in a human population, even though you may be certain that no
person's height is less than zero or greater than 12 feet.

How many modes
does it have?

The mode of a distribution is its most probable value. The mode of an uncertain quantity
is the value at the highest peak of the density function, or, equivalently, at the steepest
slope on the cumulative probability distribution.

Important questions to ask about a distribution are how many modes it has, and approx-
imately where it, or they, are? Most distributions have a single mode, but some have
several and are known as multimodal distributions.

If a quantity has two or more modes, you can usually view it as a combination of two or
more populations. For example, the distribution of ages in a daycare center at leaving
time might include one mode at age 3 for the children and another mode at age 27 for
the parents and caretakers. There is obviously a population of children and a population
of parents. It is generally easier to decompose a multimodal quantity into its separate
components and assess them separately than to assess a multimodal distribution. You
can then assess a unimodal (single mode) probability distribution for each component,
and combine them to get the aggregate distribution. This approach is often more conve-
nient, because it lets you assess single-mode distributions, which are easier to under-
stand and evaluate than multimodal distributions.

Is the quantity
symmetric or

skewed?

A symmetrical distribution is symmetrical about its mean. A skewed distribution is asym-
metric. A positively skewed distribution has a thicker upper tail than lower tail; and vice
versa, for a negatively skewed distribution.

Probability distributions in environmental risk analysis are often positively skewed.
Quantities such as source terms, transfer factors, and dose-response factors, are typi-
cally bounded below by zero. There is more uncertainty about how large they might be
than about how small they might be.

A standard or custom
distribution?

The next question is whether to use a standard parametric distribution — for example,
normal, lognormal, or beta — or a custom distribution, where the assessor specifies
points on the cumulative probability or density function.

mode modes

Symmetric

Positive Skew Negative Skew

 Analytica User Guide 229

Chapter Expressing Uncertainty14 Defining a variable as a distribution

Considering the physical processes that generate the uncertainty in the quantity may
suggest that a particular standard distribution is appropriate. More often, however, there
is no obvious standard distribution to apply.

It is generally much faster to assess a standard distribution than a full custom distribu-
tion, because standard distributions have fewer parameters, typically from two to four.
You should usually start by assigning a simple standard distribution to each uncertain
quantity using a quick judgment based on a brief perusal of the literature or telephone
conversation with a knowledgeable person. You should assess a custom distribution
only for those few uncertain inputs that turn out to be critical to the results. Therefore, it
is important to be able to select an appropriate standard distribution quickly for each
quantity.

Defining a variable as a distribution
To define a variable as an Analytica probability distribution, first select the variable and
open either the variable’s Object window or the Attribute panel of the diagram (see
“The Attribute panel” on page 23) with Definition selected from the Attribute popup
menu (see “Creating or editing a definition” on page 116).

To define the distribution:

1. Click the Expression popup menu above the definition field and select Distribution.

The Object Finder opens, showing the Distribution library.

Chapter Expressing Uncertainty

230 Analytica User Guide

14 Defining a variable as a distribution

2. Select the distribution you wish to use.

3. Enter the values for the parameters. You can use an expression or refer to other
variables by name in the parameter fields.

4. Click OK to accept the distribution.

If the parameters of the distribution are single numbers, a button appears with the name
of the distribution, indicating that the variable is defined as a distribution. To edit the
parameters, click this button.

If the parameters of the distribution are complex expressions, the distribution displays
as an expression. For example,

Normal((Price/Mpy) * Mpg, Mpg/10)

Entering a
distribution as an

expression

Alternatively, you can directly enter a distribution as an expression:

1. Set the cursor in the definition field and type in the distribution name and parameters,
for example:
Normal(.105,0.015)

2. Press Alt-Enter or click the button.

You can also paste a distribution from the Distribution library in the Definition menu
(see “Using a library” on page 346).

You can edit a distribution as an expression, whether it was entered as a distribution
from the Distribution library or as an expression, by selecting expr from the Expression
popup menu.

Library popup menu: Distribution
library is selected

Parameters to the
distribution

Example probability density,
indicating parameters

Button with the name of the
distribution Parameters of the distribution

 Analytica User Guide 231

Chapter Expressing Uncertainty14 Including a distribution in a definition

Including a distribution in a definition
You can enter a distribution anywhere in a definition, including in a cell of an edit table.
Thus, you can have arrays of distributions.

To enter a distribution:

1. Set the insertion point where you wish to enter the distribution in the definition field
or edit table cell.

2. Enter the distribution in any of the following ways:

• Type in the name of the distribution.

• Paste it from the Distribution library under the Definition menu.

• Select Paste Identifier from the Definition menu to paste it from the Object
Finder.

3. Type in missing parameters, or replace parameters enclosed as <<x>>.

Probabilistic calculation
Analytica performs probabilistic evaluation of probability distributions through simulation
— by computing a random sample of values from the actual probability distribution for
each uncertain quantity. The result of evaluating a distribution is represented internally
as an array of the sample values, indexed by Run. Run is an index variable that identifies
each sample iteration by an integer from 1 to Samplesize.

You can display a probabilistic value using a variety of uncertainty view options — the
mean, statistics, probability bands, probability density (or mass function), and cumula-
tive distribution function (see “Uncertainty views” on page 32). All these views are
derived or estimated from the underlying sample array, which you can inspect using the
last uncertainty view, Sample.

Example A: Normal(10,2) →

Iteration (Run)

1 2 3 4 5 6
10.74 13.2 9.092 11.44 9.519 13.03

Chapter Expressing Uncertainty

232 Analytica User Guide

14 Uncertainty Setup dialog box

Tip The values in a sample are generated at random from the distribution; if you try this
example and display the result as a table, you may see values different from those shown
here. To reproduce this example, reset the random number seed to 99 and use the
default sampling method and random number method (see “Uncertainty Setup dialog
box” on page 232).

For each sample run, a random value is generated from each probability distribution in
the model. Output variables of uncertain variables are calculated by calculating a value
for each value of Run.

Example B: Normal(5,1) →

Iteration (Run)

C: A + B →

Iteration (Run)

Notice that each sample value of C is equal to the sum of the corresponding values of A
and B.

To control the probabilistic simulation, as well as views of probabilistic results, use the
Uncertainty Setup dialog box (see “Uncertainty Setup dialog box” on page 232).

Tip If you try to apply an array reducing function (see “Array-reducing functions”) to a
probability distribution across Run, Analytica returns the distribution's mid value.

Example:
X: Beta(2,3)
Mid(X) → 0.3857 and Max(X,Run) → 0.3857

To evaluate the input parameters probabilistically and reduce across Run, use Sample()
(see page 280).

Example:
Max(Sample(X),Run) → 0.8892

Uncertainty Setup dialog box
Use the Uncertainty Setup dialog box to inspect and change the sample size, sam-
pling method, statistics, probability bands, and samples per plot point for probability dis-
tributions. All settings are saved with your model.

To open the Uncertainty Setup dialog box, select Uncertainty Options from the
Result menu or Control+u. To set values for a specific variable, select the variable
before opening the dialog box.

The five options for viewing and changing information in the Uncertainty Setup dialog
box can be accessed using the Analysis option popup menu.

1 2 3 4 5 6
5.09 4.94 4.65 6.60 5.24 6.96

1 2 3 4 5 6
15.83 18.13 13.75 18.04 14.76 19.99

 Analytica User Guide 233

Chapter Expressing Uncertainty14 Uncertainty Setup dialog box

Uncertainty sample To change the sample size or sampling method for the model, select the Uncertainty
Sample option from the Analysis option popup menu.

The default dialog box shows only a field for sample size. To view and change the sam-
pling method, random number method, or random seed, press the More Options but-
ton.

Sample size This number specifies how many runs or iterations Analytica performs to estimate prob-
ability distributions. Larger sample sizes take more time and memory to compute, and
produce smoother distributions and more precise statistics. See “Selecting the Sample
Size” for guidelines on selecting a sample size. The sample size must be between 2
and 32,000. You can access this number in expressions in your models as the system
variable Samplesize.

Sampling method The sampling method is used to determine how to generate a random sample of the
specified sample size, m, for each uncertain quantity, X. Analytica provides three
options:

Press here to see
additional uncertainty

sample parameters.

Chapter Expressing Uncertainty

234 Analytica User Guide

14 Uncertainty Setup dialog box

• Simple Monte Carlo

The simplest sampling method is known as Monte Carlo, named after the
randomness prevalent in games of chance, such as at the famous casino in Monte
Carlo. In this method, each of the m sample points for each uncertainty quantity, X, is
generated at random from X with probability proportional to the probability density
(or probability mass for discrete quantities) for X. Analytica uses the inverse
cumulative method; it generates m uniform random values, ui for i=1,2,...m, between
0 and 1, using the specified random number method (see below). It then uses the
inverse of the cumulative probability distribution to generate the corresponding
values of X,

Xi where P() = ui for i=1,2,...m.

With the simple Monte Carlo method, each value of every random variable X in the
model, including those computed from other random quantities, is a sample of m
independent random values from the true probability distribution for X. You can
therefore use standard statistical methods to estimate the accuracy of statistics,
such as the estimated mean or fractiles of the distribution, as for example described
in “Selecting the Sample Size”.

• Median Latin hypercube (the default method)

With median Latin hypercube sampling, Analytica divides each uncertain quantity X
into m equiprobable intervals, where m is the sample size. The sample points are the
medians of the m intervals, that is, the fractiles

Xi where P() = (i-0.5)/m, for i=1,2,...m.

These points are then randomly shuffled so that they are no longer in ascending
order, to avoid nonrandom correlations among different quantities.

• Random Latin hypercube

The random Latin hypercube method is similar to the median Latin hypercube
method, except that instead of using the median of each of the m equiprobable
intervals, Analytica samples at random from each interval. With random Latin
hypercube sampling, each sample is a true random sample from the distribution.
However, the samples are not totally independent.

Choosing a sampling
method

The advantage of Latin hypercube methods is that they provide more even distributions
of samples for each distribution than simple Monte Carlo sampling. Median Latin hyper-
cube is still more evenly distributed than random Latin hypercube. If you display the
PDF of a variable that is defined as a single continuous distribution, or is dependent on
a single continuous uncertain variable, using median Latin hypercube sampling, the dis-
tribution will usually look fairly smooth even with a small sample size (such as 20),
whereas the result using simple Monte Carlo will look quite noisy.

If the variable depends on two or more uncertain quantities, the relative noise-reduction
of Latin hypercube methods is reduced. If the result depends on many uncertain quanti-
ties, the performance of the Latin hypercube methods may not be discernibly better
than simple Monte Carlo. Since the median Latin hypercube method is sometimes
much better, and almost never worse than the others, Analytica uses it as the default
method.

Very rarely, median Latin hypercube can produce incorrect results, specifically when the
model has a periodic function with a period similar to the size of the equiprobable inter-
vals. For example, with
X: Uniform(1, Samplesize)

x Xi≤

x Xi≤

 Analytica User Guide 235

Chapter Expressing Uncertainty14 Uncertainty Setup dialog box

Y: Sin(2*Pi*X)

median Latin hypercube method will give very poor results. In such cases, you should
use random Latin hypercube or simple Monte Carlo. If your model has no periodic func-
tion of this kind, you do not need to worry about the reliability of median Latin hypercube
sampling.

Random number
method

The random number method is used to determine how random numbers are generated
for the probability distributions. Analytica provides three different methods for calculat-
ing a series of pseudorandom numbers.

• Minimal Standard (the default method)

The Minimal Standard random number generator is an implementation of Park and
Miller’s Minimal Standard (based on a multiplicative congruential method) with a
Bays-Durham shuffle. It gives satisfactory results for less than 100,000,000
samples.

• L’Ecuyer

The L’Ecuyer random number generator is an implementation of L’Ecuyer’s
algorithm, based on a multiplicative congruential method, which gives a series of
random numbers with a much longer period (sequence of numbers that repeat).
Thus, it provides good random numbers even with more than 100,000,000
samples. It is slightly slower than the Minimal Standard generator.

• Knuth

Knuth’s algorithm is based on a subtractive method rather than a multiplicative
congruential method. It is slightly faster than the Minimal Standard generator.

Random seed This value must be a number between 0 and 100,000,000 (108). The series of random
numbers starts from this seed value when:

• A model is opened

• The value in this field is changed

• The Reset once box is checked, and the Uncertainty Setup dialog box is closed
by clicking the Accept or Set Default button.

Reset once Check the Reset once box to produce the exact same series of random numbers.

Statistics option To change the statistics reported when you select Statistics as the uncertainty view for
a result, select the Statistics option from the Analysis option popup menu.

Chapter Expressing Uncertainty

236 Analytica User Guide

14 Uncertainty Setup dialog box

Probability Bands
option

To change the probability bands displayed when you select Probability Bands as the
uncertainty view for a result, select the Probability Bands option from the Analysis
option popup menu.

Probability density
and cumulative

probability options

To change how probability density or the cumulative probability values are drawn or to
change their resolution, select the respective option from the Analysis option popup
menu.

 Analytica User Guide 237

Chapter Expressing Uncertainty14 Uncertainty Setup dialog box

Analytica estimates the probability density function and cumulative distribution function,
like other uncertainty views, from the underlying array of sample values for each uncer-
tain quantity. As with any simulation-based method, each estimated distribution will
have some noise and variability from one evaluation to the next.

Samples per plot
point

This number controls the average number of sample values used to estimate each point
on the probability density function (PDF) or cumulative distribution function (CDF)
curves.

For a small number of samples per plot point (less than or equal to 10), more points are
each estimated from fewer sample values and so are more susceptible to random
noise. If the quantity is defined by a single probability distribution, and if you use median
Latin hypercube method (the default), this noise will be slight and the curve will look
smooth. In other cases, the noise may have a large effect, and using a larger number of
samples per plot point will produce a smoother curve. There is a trade-off; with larger
numbers the smoothing may miss details of the shape of the curve. PDFs may be much
more susceptible to random noise than CDFs, so you may wish to use larger numbers
for PDFs than CDFs. Ultimately, to reduce the noise, use a larger sample size (for
details on selecting the sample size, see “Selecting the Sample Size” on page 398).

Equal probability
steps

With this option, Analytica uses the sample to estimate a set of m+! fractiles (quantiles),
Xp, at equal probability intervals, where p=0, q, 2q, ... 1, and q = 1/m. The cumulative
probability is plotted at each of the points Xp, increasing in equal steps along the vertical
axis. Points are plotted closer together along the horizontal axis in the regions where
the density is the greatest. In the probability density graph view, the areas under the
density function between successive fractiles are equal because they each represent
the same probability, q. The density between two successive fractiles is plotted at the
mid point (on the horizontal axis) of the two fractiles.

Equal X axis steps With this option, Analytica estimates cumulative probability using equally spaced points
along the X axis. In the probability density graph view, it shows a histogram where the
height of each horizontal is estimated as the fraction of the sample values that fall within
that X interval.

Chapter Expressing Uncertainty

238 Analytica User Guide

14 Uncertainty Setup dialog box

Chapter 15 Probability Distributions

This chapter describes how to define uncertain quantities using
probability distributions, discrete or continuous. You can use stan-
dard parametric distributions, such as a Normal, Uniform, Ber-
noulli, or binomial, or custom distributions, where you specify
points in tables or arrays. You can also create multivariate distri-
butions over an array of uncertain quantities.

Chapter Probability Distributions

240 Analytica User Guide

15 Probability distributions

Probability distributions
The built-in Distribution library (available from the Definition menu) offers a wide range
of distributions for discrete and continuous variables. (See “Is the quantity discrete or
continuous?” and “Glossary” on page 421 for an explanation of this distinction.) Some
are standard or parametric distributions with just a few parameters, such as Normal
and Uniform, which are continuos, and Bernoulli and Binomial, which are discrete.
Others are custom distributions, such as CumDist, which lets you specify an array of
points on a cumulative probability distribution, and Probtable (page 248), which lets
you edit a table of probabilities for a discrete variable conditional on other discrete vari-
ables.

There are a variety of ways to create arrays of uncertain quantities, or multivariate distri-
butions (see “Multivariate distributions”). You may set parameters to array values, spec-
ify an index to the optional Over parameter, or use functions from the Multivariate
library.

Parametric Discrete Parametric Continuous Multivariate

• Bernouli() • Uniform() • Normal_correl()

• Binomial() • Triangular() • Correlate_with()

• Poisson() • Normal() • Dist_reshape()

• Geometric() • Lognormal() • Correlate_dists()

• Hypergeometric() • Beta() • Gaussian()

• Uniform() • Exponential() • Multinormal()

• Gamma() • BiNormal()

Custom Discrete • Logistic() • Dirichlet()

• Probtable() • StudentT() • Multinomial()

• Determtable() • Weibull() • UniformSpherical()

• Chancedist() • Chisquared() • MultiUniform()

• Normal_serial_correl()

Special Probabilistic • Dist_serial_correl()

• Certain() Custom Continuous • Normal_additive_gro()

• Shuffle() page 263 • Cumdist() • Dist_additive_growth()

• Truncate() • Probdist() • Normal_compound_gro()

• Random() • Dist_compound_growth()

 Analytica User Guide 241

Chapter Probability Distributions15 Parametric discrete distributions

Parametric discrete distributions

Bernoulli (p)
Defines a discrete probability distribution with probability p of result 1 and probability
(1 - p) of result 0. It generates a sample containing 0s and 1s, with the proportion of 1s
is approximately p. p is a probability between 0 and 1, inclusive, or an array of such
probabilities. The Bernoulli distribution is equivalent to:

If Uniform(0, 1) < P Then 1 Else 0

Library Distribution

Example The domain, List of numbers, is [0, 1].

Bernoulli_ex: Bernoulli (0.3) →

Binomial(n, p)
An event that can be true or false in each trial, such as a coin coming down heads or
tails on each toss, with probability p has a Bernoulli distribution. A binomial distribution
describes the number of times an event is true, e.g., the coin is heads in n independent
trials or tosses where the event occurs with probability p on each trial.

The relationship between the Bernoulli and binomial distributions means that an equiva-
lent, if less efficient, way to define a Binomial distribution function would be:

Function Binomial2(n, p)

Parameters: (n: Atom; p)

Definition: Index i := 1..n;

Sum(FOR J := I DO Bernoulli(p), i)

Chapter Probability Distributions

242 Analytica User Guide

15 Parametric discrete distributions

The parameter n is qualified as an Atom to ensure that the sequence 1..n is a valid
one-dimensional index value. It allows Binomial2 to array abstract if its parameters n or
p are arrays.

Poisson(m)
A Poisson process generates random independent events with a uniform distribution
over time and a mean of m events per unit time. Poisson(m) generates the distribution
of the number of events that occur in one unit of time. You might use the Poisson distri-
bution to model the number of sales per month of a low-volume product, or the number
of airplane crashes per year.

Geometric(p)
The geometric distribution describes the number of independent Bernoulli trials until the
first successful outcome occurs, for example, the number of coin tosses until the first
heads. The parameter p is the probability of success on any given trial.

Hypergeometric(s, m, n)
The hypergeometric distribution describes the number of times an event occurs in a
fixed number of trials without replacement, e.g., the number of red balls in a sample of s
balls drawn without replacement from an urn containing n balls of which m are red.
Thus, the parameters are:

Uniform(min, max, Integer:True)
The Uniform distribution with the optional integer parameter set to True returns discrete
distribution over the integers with all integers between and including min and max hav-
ing equal probability.

Uniform(5,14,Integer:True) →

s The sample size, e.g., the number of balls drawn from an urn without replace-
ment. Cannot be larger than n.

m The total number of successful events in the population, e.g, the number of
red balls in the urn.

n The population size, e.g., the total number of balls in the urn, red and non-red.

 Analytica User Guide 243

Chapter Probability Distributions15 Probability density and mass graphs

Probability density and mass graphs
When you select the Probability density as the Uncertainty view (see “Uncertainty
views” on page 32) for a continuous variable, it graphs the distribution as a Probability
Density function. The height of the density shows the relative likelihood the variable
will have that value:

Technically, the probability density of variable X, means the probability per unit incre-
ment of X. The units of probability density are the reciprocal of the units of X — if the
units of X are dollars, the units of probability density are probability per dollar increment

If you select Probability density as the Uncertainty view for a discrete variable, it actu-
ally graphs the Probability Mass function — using a bar graph style to display the
probability of each discrete value as the height of each bar:

Chapter Probability Distributions

244 Analytica User Guide

15 Probability density and mass graphs

Similarly, if you choose the cumulative probability Uncertainty view for a discrete vari-
able, it actually displays the cumulative probability mass distribution as a bar graph.
Each bar shows the cumulative probability that X will have that value or any lower value:

Is a distribution
discrete or

continuous?

Almost always, Analytica can figure out whether a variable is discrete or continuous,
and so choose the probability density or probability mass view as appropriate — so you
don’t need to worry about it. If the values are text, it knows it must be discrete. If the
numbers are integers, such as generated by Bernoulli, Poisson, binomial, and other dis-
crete parametric distributions, it also assumes it is discrete.

Infrequently, a discrete distribution may contain numbers that are not integers, which it
may not recognize as discrete, for example,

Chance Indiscrete := Poisson(4)*0.5

In this case, you can make sure it does what you want by specifying the domain
attribute of the variable as discrete (or continuous). The next section on the domain
attribute explains how.

 Analytica User Guide 245

Chapter Probability Distributions15 The domain attribute and discrete variables

The domain attribute and discrete variables
The domain attribute specifies the set of possible values for a variable. You rarely need
to view or change a domain attribute explicitly. The most common reason to set the
domain is for a variable defined as a custom discrete distribution, especially ProbTable.
You can do this by editing it directly as an index in the probtable view (see “Probtable():
Probability Tables”), so you can usually ignore the information below. The rare case you
will need it is to specify a distribution as discrete, when Analytica would not otherwise
figure it out — because it has non-integer numerical value.

By default, the domain type is Automatic, meaning Analytica figures it out when it
needs to. Usually, this is obvious (see previous section). For a discrete quantity, the
domain may be a list of numbers or a list of labels. If the domain is continuous, it
means that any number is valid.

Editing the domain You can view and edit the domain like any other attribute of a variable, in the Attribute
panel:

1. Select the variable.

2. Open the Attribute panel, and select Domain from the Attribute menu.

3. Select the domain type from the popup menu:

The domain type Automatic: The default, meaning Analytica should figure it out.

Continuous: Any number. All other types are discrete.

Discrete Numeric and Categorical: Discrete but its values are unspecified.

List of Numbers: You specify a list of numbers.

List of Labels: You specify a list of label (text) values, as illustrated.

Index: You enter the name of an index variable, to use its values as the domain, or
another variable to copy its domain values.

4. If you choose List of Numbers or List of Labels, you enter the list values in the
usual way (see).

Chapter Probability Distributions

246 Analytica User Guide

15 Custom discrete probabilities

Domain in the Object
window

You can also view and edit the domain attribute in the Object window if you set it to do
so in the Attributes dialog (see “Managing attributes”):

Tip The domain of a discrete variable should include all its possible values. If not, its
probability mass function may sum to less than 1.

Custom discrete probabilities
These functions let you specify a discrete probability distribution using a custom set of
values, text (label) values, or numbers.

Probtable(): Probability Tables
To describe a probability distribution on a discrete variable whose domain is a list of
numbers or list of labels, you use special kind of edit table called a probability table (or
probtable) (see “Arrays and Indexes” on page 151).

Create a
probability table

To define a variable using a probability table:

1. Determine the variable’s domain — number or labels for its possible values.

2. Select the variable and view its definition attribute in the Object window or Attribute
panel of the Diagram window (see “The Attribute panel” on page 23).

3. Press the Expression menu above the definition field and select Probability Table.

 Analytica User Guide 247

Chapter Probability Distributions15 Custom discrete probabilities

If the variable already has a definition, it confirms that you wish to replace it.

Tip If the definition of a variable is already a probability table, a ProbTable button appears
in the definition. Click it to open the Edit Table window (see “Viewing an array as an edit
table” on page 155).

4. The Indexes dialog opens to confirm your choices for the indexes of the table. It
already includes the selected variable (self) among the selected indexes. Other
options are variables with a domain that is a list of numbers or list of labels. Add or
remove any other variables that you want to condition this variable on.

Tip Self is required as an index of a probability table. It refers to the domain (possible
values) of this variable.

5. Click the OK button. An Edit Table window appears.

6. Enter the possible values for the domain in the left column. As in any edit table, press
Enter or down-arrow in the last row to add a row. Select Insert row (Control+i) or
Delete row (Control+k) from the Edit menu. If they are numbers, they must be in
increasing order.

7. Enter the probability of each possible outcome in the second column. The
probabilities should sum to 1. You may enter literal numbers or expressions.

Example If P is a variable whose value is a probability (between 0 and 1) and the possible
weather outcomes are sunny and rainy, you might define a probability table for weather
thus:

Chapter Probability Distributions

248 Analytica User Guide

15 Custom discrete probabilities

Expression view of
probability table

The Weather probability table when viewed as an expression, looks like this:
Probtable(Self)(P, (1-P))

The domain values do not appear in the expression view, and it is not very convenient
for defining a probability table. More generally, the expression view of a multidimen-
sional probability table looks like this:

Probtable(i1, i2, … in) (p1, p2, p3, … pm)

This example is an n-dimensional conditional probability table, indexed by the indexes
i1, i2, … in. One index must be Self. p1, p2, p3, … pm are the probabilities in the array.
m is the product of the sizes of the indexes i1, i2, … in.

Add a conditioning
variable

You may wish to add one or more conditioning variables to a probability table, to create
conditional dependency. Each discrete conditioning variable adds a dimension to the
table. For example, in the Weather probability table (see page 247), the probability of
rain may depend on the season. So you might have Season as a conditioning variable,
defined as a list of labels:

Variable Season := [’Winter’, ’Spring’, ’Summer’, ’Fall’]

1. Open the Edit Table window by clicking the ProbTable button.

2. Click the indexes button to open the Indexes dialog box.

3. Click the All Variables check box above the left hand list.

4. Move the desired variable, e.g., Season, to add it as an index.

5. Click the OK button to accept the changes.

The resulting table is indexed by both the domain of your variable and the domains of
the conditionally dependent variables. You need to enter a probability for each cell. The
probabilities must sum to one over the domain of the variable (sunny and rainy in the
example), not over the conditioning index(es).

Tip You must have already specified the variables as probability tables, before adding them
with the Indexes dialog box.

Determtable(): Deterministic conditional table
Determtable() defines the value of a variable as a deterministic (not uncertain) function
of one or more discrete variables. It gives a value conditional on the value of one or
more discrete variables, often including a probabilistic discrete variable and a discrete
decision variable defined as a list. We include it in this section on discrete probability
distributions, even though it is not probabilistic, because you will usually use it in con-

Domain

 Analytica User Guide 249

Chapter Probability Distributions15 Custom discrete probabilities

junction with Probtable and other discrete distributions. It is an editable table, like
Probtable, but with a single (deterministic) value, number, or text, in each cell.

The Determtable() function looks like an edit table or a probability table, with an index
(dimension) from each discrete variable on which it depends. Unlike Probtable, it does
not need a self index. Its result is probabilistic if any of its conditioning variables are
probabilistic.

Creating a
determtable

To define a variable as a determtable:

1. Determine the variable’s domain — the list of possible outcomes.

2. Press the Expression popup menu above the definition field and select Other.

Analytica opens the Object Finder dialog box (see “Object Finder dialog” on
page 121).

3. Select Array from the Library popup menu and select Determtable from the
function list:

4. Click the Indexes button to open the Indexes dialog, which lets you choose discrete
conditioning variables:

Chapter Probability Distributions

250 Analytica User Guide

15 Custom discrete probabilities

5. Click OK to accept the indexes and open an Edit Table window.

6. Enter the outcomes corresponding to each outcome of your discrete inputs.

Expression view of a
determtable

When you select the expression view of a definition that was created as a determtable,
it looks like this: You cannot initially create a determtable as an expression.

Determtable(i1, i2, … in) (r1, r2, r3, … rm)

This describes an n-dimensional conditional deterministic table, indexed by the indexes
i1, i2, … in. The last index, in, is the innermost index, varying the most rapidly. r1, r2,
… rm are the outcomes in the array.

Example In “Create a probability table”, Weather is defined as a probability table. If P, the proba-
bility of "sunny", is 0.4, then the probability of "rainy" is 0.6. Party_location is a deci-
sion variable with values ['outdoors', 'porch','indoors']. value_to_me is a
determtable, containing utility values (or "payoffs") for each combination of
Party_location and Weather:

Evaluating value_to_me gives the value of each party location, considering the uncer-
tain distribution of Weather. The mean value of value_to_me is the expected utility.

 Analytica User Guide 251

Chapter Probability Distributions15 Custom discrete probabilities

Chancedist (p, a, i)
Creates a discrete probability distribution, where a is an array of outcome values, num-
bers or text, and p is the corresponding array of probabilities. a and p must both be
indexed by i. The values of a must be unique; if a is numeric the values must be
increasing.

When to use Use Chancedist() instead of ProbTable() when:

• The array of outcome a is multidimensional, or

• You want to use other variables or expressions to define the outcomes or probability
arrays.

Library Distribution

Example Index_b:

Array_q:

Index_b

The domain of the variable is a list of labels: ['Red','White','Blue'].
Chancedist(Array_q,Index_b,Index_b) →

Red White Blue

Red White Blue
0.3 0.2 0.5

Chapter Probability Distributions

252 Analytica User Guide

15 Parametric continuous distributions

Parametric continuous distributions
Tip To produce the example graphs of distributions below, we used a sample size of 1000,

equal sample probability steps, samples per PDF of 10, and we set the graph style to
line. Even if you use the same options, your graphs may look slightly different due to
random variation in the Monte Carlo sampling.

Uniform(min, max)
Creates a uniform distribution between values min and max. If omitted, they default to 0
and 1. If you specify optional parameter Integer: True, it returns a discrete distribution
consisting of only the integers between min and max, each with equal probability. See
“Uniform(min, max, Integer:True)”.

When to use If you know nothing about the uncertain quantity other than its bounds, a uniform distri-
bution between the bounds is appealing. However, situations in which this is truly
appropriate are rare. Usually, you know that one end or the middle of the range is more
likely than the rest — that is, the quantity has a mode. In such cases, a beta or triangu-
lar distribution is a better choice.

Library Distribution

Example Uniform(5, 10) →

 Analytica User Guide 253

Chapter Probability Distributions15 Parametric continuous distributions

Triangular(min, mode, max)
Creates a triangular distribution, with minimum min, most likely value mode, and maxi-
mum max. min must not be greater than mode, and mode must not be greater than
max.

When to use Use the triangular distribution when you have the bounds and the mode, but have little
other information about the uncertain quantity.

Library Distribution

Example Triangular(2, 7, 10) →

Chapter Probability Distributions

254 Analytica User Guide

15 Parametric continuous distributions

Normal(mean, stddev)
Creates a normal or Gaussian probability distribution with mean and standard deviation
stddev. The standard deviation must be 0 or greater. The range [mean-stddev,
mean+stddev] encloses about 68% of the probability.

When to use Use a normal distribution if the uncertain quantity is unimodal and symmetric and the
upper and lower bounds are unknown, possibly very large or very small (unbounded).
This distribution is particularly appropriate if you believe that the uncertain quantity is
the sum or average of a large number of independent, random quantities.

Library Distribution

Example Normal(30, 5) →

Lognormal(median, gsdev, mean, stddev)
Creates a lognormal distribution. You can specify its median and geometric standard
deviation gsdev, or its mean and standard deviation stddev, or any two of these four
parameters. The geometric standard deviation, gsdev, must be 1 or greater. It is some-
times also known as the uncertainty factor or error factor. The range [median/gsdev,
median x gsdev] encloses about 68% of the probability — just like the range [mean -
stddev, mean + stddev] for a normal distribution with standard deviation stddev.
median and gsdev must be positive.

If x is lognormal Ln(x) has a normal distribution with mean Ln(median) and standard
deviation Ln(gsdev).

When to use Use the lognormal distribution if you have a sharp lower bound of zero but no sharp
upper bound, a single mode, and a positive skew. The gamma distribution is also an
option in this case. The lognormal is particularly appropriate if you believe that the
uncertain quantity is the product (or ratio) of a large number of independent random
variables. The multiplicative version of the central limit theorem says that the product or
ratio of many independent variables tends to lognormal — just as their sum tends to a
normal distribution.

 Analytica User Guide 255

Chapter Probability Distributions15 Parametric continuous distributions

Library Distribution

Examples Lognormal(5, 2) →
Lognormal(mean: 6.358, Stddev: 5) →

Beta (x, y, min, max)
Creates a beta distribution of numbers between 0 and 1 if you omit optional parameters
min and max. x and y must be positive. If you specify min and/or max, it shifts and
expands the beta distribution to so that they form the lower and upper bounds. The
mean is:

When to use Use a beta distribution to represent uncertainty about a continuous quantity bounded by
0 and 1 (0% or 100%) with a single mode. It is particularly useful for modeling an opin-
ion about the fraction (percentage) of a population that has some characteristic. For
example, suppose you are trying to estimate the long run frequency of heads, h, for a
bent coin about which you know nothing. You could represent your prior opinion about h
as a uniform distribution,

Uniform(0, 1)

or equivalently,
Beta(1, 1)

If you observe r heads in n tosses of the coin, your new (posterior) opinion about h,
should be:

Beta(1 + r, 1 + n - r)

If the uncertain quantity has lower and upper bounds other than 0 and 1, include the
lower and upper bounds parameters to obtain a transformed beta distribution. The
transformed beta is a very flexible distribution for representing a wide variety of
bounded quantities.

x
x y+
---------- max min–()× min+

Chapter Probability Distributions

256 Analytica User Guide

15 Parametric continuous distributions

Library Distribution

Examples Beta (5, 10) →

Beta (5, 10, 2, 4) →

Exponential(r)
Describes the distribution of times between successive independent events in a Pois-
son process with an average rate of r events per unit time. The rate r is the reciprocal of
the mean of the Poisson distribution — the average number of events per unit time. Its
standard deviation is also 1/r.

 Analytica User Guide 257

Chapter Probability Distributions15 Parametric continuous distributions

A model with exponentially distributed times between events is said to be Markov,
implying that knowledge about when the next event occurs does not depend on the sys-
tem's history or how much time has elapsed since the previous event. More general dis-
tributions such as the gamma or Weibull do not exhibit this property.

Gamma(a, b)
Creates a gamma distribution with shape parameter a and scale parameter b. The
scale parameter, b, is optional and defaults to b=1. The gamma distribution is bounded
below by zero (all sample points are positive) and is unbounded from above. It has a
theoretical mean of and a theoretical variance of . When , the distribu-
tion is unimodal with the mode at . An exponential distribution results when

. As , the gamma distribution approaches a normal distribution in shape.

The gamma distribution encodes the time required for a events to occur in a Poisson
process with mean arrival time of b.

Tip Some textbooks use Rate=1/b, instead of b, as the scale parameter.

When to use Use the gamma distribution with a>1 if you have a sharp lower bound of zero but no
sharp upper bound, a single mode, and a positive skew. The Lognormal distribution is
also an option in this case. Gamma() is especially appropriate when encoding arrival
times for sets of events. A gamma distribution with a large value for a is also useful
when you wish to use a bell-shaped curve for a positive-only quantity.

Library Distribution

Examples Gamma distributions with mean=1:

a b⋅ a b2⋅ a b>
a 1–() b⋅

a 1= a ∞→

Chapter Probability Distributions

258 Analytica User Guide

15 Parametric continuous distributions

Logistic(m, s)
The logistic distribution describes a distribution with a cumulative density given by:

The distribution is symmetric and unimodal with tails that are heavier than the normal
distribution. It has a mean and mode of m, variance of:

and kurtosis of 6/5 and no skew. The scale parameter, s, is optional and defaults to 1.

The logistic distribution is particularly convenient for determining dependent probabili-
ties using linear regression techniques, where the probability of a binomial event
depends monotonically on a continuous variable x. For example, in a toxicology assay,
x may be the dosage of a toxin, and p(x) the probability of death for an animal exposed
to that dosage. Using p(x) = F(x), the logit of p, given by

Logit(p(x)) = Ln(p(x) / (1-p(x))) = x/s - m/s

has a simple linear form. This linear form lends itself to linear regression techniques for
estimating the distribution — for example, from clinical trial data.

Example Logistic(10, 10)

StudentT(d)
The StudentT describes the distribution of the deviation of a sample mean from the true
mean when the samples are generated by a normally distributed process centered on
the true mean. The T statistic is:

T = (m - x)/(s Sqrt(n))

F x() 1

1 e
x m–()–
s

+

---------------------------=

π2 s2×
3

 Analytica User Guide 259

Chapter Probability Distributions15 Parametric continuous distributions

where x is the sample mean, m is the actual mean, s is the sample standard deviation,
and n is the sample size. T is distributed according to StudentT with d = n-1 degrees of
freedom.

The StudentT distribution is often used to test the statistical hypothesis that a sample
mean is significantly different from zero. If x1..xn measurements are taken to test the
hypothesis m>0,

GetFract(StudentT(n-1),0.95)

is the acceptance threshold for the T statistic. If T is greater than this fractile, we can
reject the null hypothesis (that m<=0) at 95% confidence. When using GetFract for
hypothesis testing, be sure to use a large sample size, since the precision of this com-
putation improves with sample size.

The StudentT can also be useful for modeling the power of hypothetical experiments as
a function of the sample size n, without having to model the outcomes of individual tri-
als.

Samples from the StudentT distribution are generated using the Monte Carlo sampling
method only, regardless of the uncertainty settings. Latin Hypercube methods for sam-
ple generation are not available.

Example StudentT(8)

Weibull(n, s)
The Weibull distribution has a cumulative density given by:

for t >= 0. It is similar in shape to the gamma distribution, but tends to be less skewed
and tail-heavy. It is often used to represent failure time in reliability models. In such
models, may represent the proportion of devices that experience a failure within

f x() 1 e

t
s
--⎝ ⎠
⎛ ⎞–

n

–=

f x()

Chapter Probability Distributions

260 Analytica User Guide

15 Parametric continuous distributions

the first x time units of operation, the number of insurance policy holders that file a claim
within x days.

Example Weibull(10, 4) →

ChiSquared(d)
The ChiSquared() distribution with d degrees of freedom describes the distribution of a
Chi-Squared metric defined as:

where each yi is independently sampled from a standard normal distribution and d = n -
1. The distribution is defined over non-negative values.

The Chi-squared distribution is commonly used for analyses of second moments, such
as analyses of variance and contingency table analyses. It can also be used to gener-
ate the F distribution. Suppose

Variable V := ChiSquared(k)

Variable W := ChiSquared(m)

Variable S := (V/k)*(W/m)

S is distributed as an F distribution with k and m degrees of freedom. The F distribution
is useful for the analysis of ratios of variance, such as a one-factor between-subjects
analysis of variance.

Chi2 yi
2

i 1=

n
∑=

 Analytica User Guide 261

Chapter Probability Distributions15 Custom continuous distributions

Custom continuous distributions
These functions let you specify a continuous probability distribution by specifying any
number of points on its cumulative or density function.

Cumdist(p, r, i)
Specifies a continuous probability distribution as an array of cumulative probabilities, p,
and an array of corresponding outcome values, r. The values of p must be non-
decreasing, start with 0, and end with 1. The values of r must be increasing. Either r
must be an index of p, in which case you can omit i, or p and r must both be indexed by
i. If p or r have more than one index, you must specify the common index i to link p and
r.

By default, it fits the cumulative distribution using piecewise cubic monotonic interpola-
tion between the specified points, so that the PDF is also continuous. If you set the
optional parameter Smooth to False, it uses piecewise linear interpolation for the CDF,
so that the PDF is piecewise uniform.

Library Distribution

Example Array_b →
Index_a

Array_x →
Index_a

CumDist(Array_b, Array_x) →

1 2 3
0 0.6 1.0

1 2 3
10 20 30

Chapter Probability Distributions

262 Analytica User Guide

15 Custom continuous distributions

Probdist(p, r, i)
Specifies a continuous probability distribution as an array of probability densities, p, for
an array of corresponding values, r. The values of r must be increasing. The probability
densities p must be non-negative. It normalizes the densities so that the total probability
integrates to 1.

Usually the first and last values of p should be 0. If not, it assumes zero at 2r1 - Rr (or
2rn - rn-1).

Either r must be an index of p, or p and r must have an index in common. If p or r have
more than one index, you must specify the index i to link p and r.

It produces the density function using linear interpolation between the points on the
density function (quadratic on CDF).

Library Distribution
Array_p →
Index_a

Array_r →
Index_a

Probdist(Array_p, Array_r) →

1 2 3 4 5 6
0 0.4 0.2 0.5 0.2 0

1 2 3 4 5 6
10 15 20 25 30 35

 Analytica User Guide 263

Chapter Probability Distributions15 Special probabilistic functions

Special probabilistic functions

Certain(u)
Returns the mid (deterministic) value of u even if u is uncertain and evaluated in a prob
(probabilistic) context. It is not strictly a probability distribution. It is sometimes useful in
browse mode, when you want to replace an existing probability distribution defined for
an input (see “Using input nodes”) with a non-probabilistic value.

Library Distribution

Shuffle(a , i)
Shuffle returns a random reordering (permutation) of the values in array a over index i.
If you omit i, it evaluates a in prob mode, and shuffles the resulting sample over Run.
You can use it to generate an independent random sample from an existing probability
distribution a.

If a contains dimensions other than i, it shuffles each slice over those other dimensions
independently over i. If you want to shuffle the slices of a multidimensional array over
index i, without shuffling the values within each slice, use this method:

A[@I = Shuffle(@I,I)]

This shuffles A over index I, without shuffling each slice over its other indexes.

Truncate(u, min, max)
Truncates an uncertain quantity u so that it has no values below min or above max.
You must specify one or both min and max.

It does not discard sample values below min or above max: It generates a new sample
that has approximately same probability distribution as u between min and max, and
no values outside them. The values of the result sample have the same rank order as
the input u, so the result retains the same rank-correlation that u had with any prede-
cessor.

It gives an error if u is not uncertain, or if min is greater than max. It gives a warning if
no sample values of u are in the range min to max. In mid mode, it returns an estimate
of the median of the truncated distribution. Unlike other distribution functions, even in
mid mode, it evaluates its parameter u (and therefore any of its predecessors) in prob
mode. It always evaluates min and max in mid mode.

Examples We define a normal distribution, X, and variables A, B, and C that truncate X below,
above, and on both sides. Then we define a variable to compare A, B, and C and display
its result in the probability density view:

Chance X := Normal(10, 2)

Chance A := Truncate(X, 7)

Chance B := Truncate(X, , 10)

Chance C := Truncate(X, 8, 12)

Variable Compare_truncated_x := [A, B, C]

Chapter Probability Distributions

264 Analytica User Guide

15 Special probabilistic functions

Library Distribution

Random(expr)
Generates a single value randomly sampled from expr, which, if given, must be a call to
a probability distribution with all needed parameters, for example:

Random(Uniform(-100,100))

returns a single real-valued random number uniformly selected between -100 and 100.
If you omit parameter expr, it generates one sample from the uniform distribution 0 to 1,
for example:

Random(Uniform(-100,100)) → 74.4213148

Random() → 0.265569265

Random is not a true distribution function, since it generates only a single value from
the distribution, whether in mid or prob context. It generates each single sample using
Monte Carlo, not Latin hypercube sampling, no matter what the global setting in the
uncertainty setup. It is often useful when you need a random number generator stream,
such as for rejection sampling, Metropolis-Hastings simulation, and so on.

Random has these parameters, all optional:

Parameters dist: If specified, must be a call to a distribution function that supports single-sample
generation (see below). Defaults to Uniform(0,1).

Method: Selects the random number generator: 0=default, 1=Minimal standard,
2=L'Ecuyer, 3=Knuth.

Over: A convenient way to list index(es) so that the result is an array of independent
random numbers with this index or indexes. For example:

Random(Over: I)

returns an array of independent uniform random numbers between 0 and 1 indexed by
I. It is equivalent to:

 Analytica User Guide 265

Chapter Probability Distributions15 Multivariate distributions

Random(Uniform(0, 1, Over: I))

Supported
distributions

Random supports all built-in probability distribution functions with the exception of Frac-
tiles, ProbDist, and Truncate. It supports Bernoulli, Beta, Binomial, Certain, ChiSquared,
CumDist, Exponential, Gamma, Geometric, HyperGeometric, Logistic, LogNormal, Nor-
mal, Poisson, StudentT, Triangular, Uniform, Weibull. It supports these distributions in
the Distribution Variations library: Beta_m_sd, Chancedist, Erlang, Gamma_m_sd,
InverseGaussian, Lorenzian, NegBinomial, Pareto, Pert, Rayleigh, Smooth_Fractile,
and Wald, and these distributions from the Multivariate Distributions library: BiNormal,
Dirichlet, Dist_additive_growth, Dist_compound_growth, Dist_serial_correl, Gaussian,
Multinomial, MultiNormal, MultiUniform, Normal_additive_gro, Normal_compound_gro,
Normal_correl, Normal_serial_correl, UniformSpherical, Wishart, and InvertedWishart.

User-defined functions can be used as a parameter to Random, if they are given an
optional parameter declared as:

singleSampleMethod: Optional Atom Number

If the parameter is provided, the distribution function must return a single random vari-
ate from the distribution indicated by the other parameters. The value specifies the ran-
dom number generator to use: 0=default, 1=Minimal standard, 2=L'Ecuyer, 3=Knuth.

Multivariate distributions
A multivariate distribution is a distribution over an array of quantities — or, equivalently,
an array of distributions. Analytica’s Intelligent Array features make it relatively easy to
generate multivariate distributions. There are three main ways: To create an array of
identical independent distributions, use the Over parameter. To create an array of inde-
pendent distributions with different parameters, pass array(s) of parameter values to the
function. To create an array of dependent distributions, use a function from the Multi-
variate Distributions library, which lets you specify a dependence as a correlation, corre-
lation matrix, or covariance matrix. See the following sections for details.

Over indexes as parameters to probability distributions
If you want to generate an array of identical, independent distributions, the simplest
method is to specify the index(es) in the Over parameter, for example:

Normal(10, 2, Over: K)

generates an array of independent normal distributions, each with mean 10 and stan-
dard deviation 2, over index K. All parametric distributions accept Over: as an optional
parameter. Over allows multiple indexes if you want to create a multidimensional array
of identically distributed quantities. For example, this will generate a three-dimensional
array of independent, identically distributed uniform distributions:

Uniform(0, 10, Over: I, J, K)

Probability distributions with array parameters
Probability distribution functions fully support Intelligent Arrays. If a parameter is an
array, the function will generate an array of independent distributions over any index(es)
of the array. For example,

Chapter Probability Distributions

266 Analytica User Guide

15 Multivariate distributions

Index K := [’A’, ’B’, C’]

Variable Xmean := Table(K)(10, 11, 12)

Variable X := Normal(Xmean, 2)

X will be an array of normal distributions over index K, each with the corresponding
mean. If you define a normal distribution with two parameters (mean and standard devi-
ation) with the same Index(es) — in this case, Xmean and Ysd are both indexed by k:

Variable Ysd := Table(K)(2, 3, 4)

Variable Y := Normal(Xmean, Ysdeviation)

it generates an array of normal distributions over index K, each with corresponding
mean and standard deviation. More generally, the result is an array with the union of the
indexes of all its parameters — just the same as all other functions and operations that
support Intelligent Arrays.

The custom probability distributions, including ProbTable, ProbDist, and CumDist,
expect their parameters to be arrays of probabilities, probability densities, or values,
with a common index. In this case, the common index is used in generating the random
sample and does not appear in the result. But, if those array parameters have any other
indexes, those indexes will also appear in the result, following the usual rules of Intelli-
gent Arrays.

Multivariate Distribution library
This library offers a variety of functions for generating probability distributions that are
dependent or correlated. It is distributed with Analytica. To add this library to your model
see “Adding library to a model” on page 331.

Many of these functions specify dependence among distributions using a rank correla-
tion number or matrix, also known as the Spearman correlation. Unlike the Pearson or
product-moment correlation, rank correlation is a non-parametric measure of correla-
tion. It is equivalent to the Pearson correlation on the ranks of the same. It does not
assume that the relationship is linear, and applies to ordinal as well as interval-scale
variables. It is therefore a more robust statistic. For example, it is a more stable way to
estimate the relationship between two random samples when one or both has a long tail
— such as a lognormal distribution. In such cases, Pearson correlation may be mislead-
ingly large (or small) when an extreme sample in the tail of one sample does (or does
not) correspond with an extreme value in the other sample.

The methods provided to generate general multivariate distributions with specified rank
correlation, first generate multivariate normal (Gaussian) distributions with specified
rank correlation, and then transform them to the desired marginal distributions. The
rank correlations are not changed by such transformation.

The method for generating the correlated distribution (based on Iman & Conover) works
for median and random Latin Hypercube as well as simple Monte Carlo simulation
methods. The rank-correlations of the results are approximately, but not exactly, equal
to the specified rank-correlations. The accuracy of the approximation increases with the
sample size.

 Analytica User Guide 267

Chapter Probability Distributions15 Multivariate distributions

Create one distribution dependent on another

Normal_correl(m, s, r, y)
Generates a normal distribution with mean m, standard deviation s, and correlation r
with uncertain quantity y. In mid mode, it returns m. If y is not normally distributed, the
result will also not be normal, and the correlation will be approximate. It generalizes
appropriately if any of the parameters are arrays. The result array will have the union of
the indexes of the parameters.

Correlate_with(s, ref, rc)
Reorders the samples of s so that the result has the identical values to s, and a rank
correlation close to rc with the reference sample, ref.

Example: To generate a lognormal distribution with a 0.8 rank correlation with Z, use:
Correlate_with(LogNormal(2, 3), Z, 0.8)

Note: If you have a non-default SampleWeighting of points, the weighted rank
correlation may differ from rc.

Dist_reshape(x, newdist)
Reshapes the probability distribution of uncertain quantity x, so that it has the same
marginal probability distribution (i.e., same set of sample values) as newdist, but
retains the same ranks as x over Run. Thus:

Rank(Sample(x), Run)

= Rank(Sample(Dist_reshape(x, y)), Run)

In a Mid context, it simply returns Mid(newdist), with any indexes of x.

The result retains any rank correlations that x may have with other predecessor vari-
ables. So, the rank-order correlation between a third variable z and x is the same as the
rank-order correlation between z and a reshaped version of x, like this:

RankCorrel(x, z) = RankCorrel(Dist_reshape(x, y), z)

The operation may optionally be applied along an index r other than Run.

An array of distributions with correlation or covariance matrix

Correlate_dists(x, rcm, m, i, j)
Given an array x indexed by i of uncertain quantities, it reorders the samples so as to
match the desired rank correlation matrix, rcm between the x[i] as closely as possible.
rcm is indexed by i and j, which must be the same length. It must be positive definite,
and the diagonal should be all ones. The result has the same marginal distributions as
x[i], and rank correlations close to those specified in rcm. In mid mode, it returns
Mid(x).

Chapter Probability Distributions

268 Analytica User Guide

15 Multivariate distributions

Gaussian(m, cvm, i, j)
Generates a multivariate Gaussian (i.e., normal) distribution with mean vector, m, and
covariance matrix, cvm. m is indexed by i. cvm must be a symmetric and positive-defi-
nite matrix, indexed by i and j, which must be the same length. It is similar to Multinor-
mal() except that it takes a covariance matrix instead of a rank correlation matrix.

Multinormal(m, s, cm, i, j)
Generates a multivariate normal (or Gaussian) distribution with mean m, standard devi-
ation s, and correlation matrix cm. m and s may be scalar or indexed by i. cm must be
a symmetric, positive-definite matrix, indexed by i and j, which must be the same
length. It is similar to Gaussian, except that it takes a correlation matrix instead of a
covariance matrix.

BiNormal(m, s, i, c)
A 2-D Normal (or bivariate Gaussian) distribution with means m, standard deviations s
(>0) and correlation c between the two variables. The index i must have exactly two ele-
ments. s must be indexed by i.

Other parametric multivariate distributions

Dirichlet(alpha, i)
A Dirichlet distribution with parameters alpha>0 indexed by i. Each sample of a
Dirichlet distribution produces a random vector indexed by i whose elements sum to 1.
It is commonly used to represent second order probability information.

The Dirichlet distribution has a density given by:
k * Product(x^(alpha-1), i)

where k is a normalization factor equal to:
GammaFn(Sum(alpha, i))/Sum(GammaFn(alpha), i)

The alpha parameters can be interpreted as observation counts. The mean is given by
the relative values of alpha (normalized to 1), but the variance narrows as the alphas
get larger, just as your confidence in a distribution would narrow as you get more sam-
ples.

The Dirichlet lends itself to easy Bayesian updating, if you have a prior of alpha = 0,
and you have N observations.

Multinomial(n, theta, i)
Returns the multinomial distribution, a generalization of the binomial distribution to n
possible outcomes. For example, if you were to roll a fair die n times, the outcome
would be the number of times each of the six numbers appears. theta would be the
probability of each outcome, where Sum(theta, i)=1, and index i is the list of possible
outcomes. If theta doesn’t sum to 1, it is normalized.

Each sample is a vector indexed by i indicating the number of times the corresponding
outcome (die number) occurred during that sample point. Each sample has the property

Sum(result, I) = n

 Analytica User Guide 269

Chapter Probability Distributions15 Multivariate distributions

UniformSpherical(i, r)
Generates points uniformly on a sphere (or circle or hypersphere). Each sample gener-
ated is indexed by i, so if i has three elements, the points lie on a sphere.

The mid value is a bit strange here since there isn’t really a median that lies on the
sphere. Obviously the center of the sphere is the middle value, but that isn’t in the
allowed range. So, it returns an arbitrary point on the sphere.

MultiUniform(cm, i, j, lb, ub)
The multi-variate uniform distribution.

Generates vector samples (indexed by i) such that each component has a uniform mar-
ginal distribution, and each component has the pair-wise correlation matrix cm, indexed
by i and j, which must have the same number of elements. cm needs to be symmetric
and must obey a certain semidefinite condition, namely that the transformed matrix
[2*sin(30*cov)] is positive semidefinite. (In most cases, this roughly the same as cm
being positive semidefinite.) lb and ub can be used to specify upper and lower bounds,
either for all components, or individually if these bounds are indexed by i. If lb and ub
are omitted, each component has marginal Uniform(0, 1).

Note: cm is the true sample correlation, not rank correlation.

The transformation is based on:

* Falk, M. (1999), "A simple approach to the generation of uniformly distributed random
variables with prescribed correlations," Comm. in Stats - Simulation and Computation
28: 785-791.

Arrays with serial correlation
These six functions each generate an array of distributions over an index t such that
each distribution has a specified serial correlation with the preceding element over t.
They are especially useful for modeling dynamic processes or Markov processes over
time, where the value at each time step depends probabilistically on the value at the
preceding time. Normal_serial_correl() and Dist_serial_correl() generate arrays of
serially correlated distributions that are normal and arbitrary, respectively.
Normal_additive_gro() and Dist_additive_growth() produce arrays with uncertain
additive growth with serial correlation. Normal_compound_gro() and
Dist_compound_growth() produce arrays with uncertain compound growth with
serial correlation.

Normal_serial_correl(m, s, r, t)
Generates an array of normal distributions over index t with mean m, standard deviation
s, and serial correlation r between successive values over index t. You can give each
distribution a different mean and/or standard deviation if m and/or s are arrays indexed
by t. If r is indexed by t, r[t=k] specifies the correlation between result[t=k] and
result[t=k-1]. (Then it ignores the first correlation, r[@t=1].)

Dist_serial_correl(x, r, t)
Generates an array y over time index t where each y[t] has a marginal distribution iden-
tical to x, and serial rank correlation of rc with y[t-1]. If x is indexed by t, each y[t] has

Chapter Probability Distributions

270 Analytica User Guide

15 Importance weighting

the same marginal distribution as x[t], but with samples reordered to have the specified
rank correlation r between successive values. If r is indexed by t, r[@t=k] specifies the
rank correlation between y[@t=k] and y[@t=k-1]. Then the first correlation, r[@t=1], is
ignored.

Normal_additive_gro(x, m, s, r, t)
Generates an array of values over index t, with the first equal to x, and successive val-
ues adding an uncertain growth, normally distributed with mean m and standard devia-
tion s. If we denote the result by g, r specifies a serial correlation between g[@t = k]
and g[@t=k-1]. x, m, s, and r each may be indexed by t if you want them to vary over t.

Dist_additive_growth(x, g, rc, t)
Generates an array of values over index t, with the first equal to x, and successive val-
ues adding an uncertain growth g, and serial correlation rc between g[@t = k] and
g[@t=k-1]. x, g, and rc each may be indexed by t if you want them to vary over t.

Normal_compound_gro(x, m, s, r, t)
Generates an array of values over index t, with the first equal to x, and successive val-
ues multiplied by compound growth 1+g, where g is normally distributed with mean m
and standard deviation s. It applies serial correlation r between g[@t = k] and g[@t=k-
1]. x, g, and rc each may be indexed by t if you want them to vary over t.

Dist_compound_growth(x, g, rc, t)
Generates an array of values over index t, with the first equal to x, and successive val-
ues multiplying by an uncertain compound growth g, and serial rank correlation rc
between g[@t = k] and g[@t=k-1]. x, g, and rc each may be indexed by t if you want
them to vary over t.

Uncertainty over regression coefficients
For a description of RegressionDist(), RegressionNoise(), and RegressionFitProb(),
see “Uncertainty in regression results”.

Importance weighting
Importance weighting is a powerful enhancement to Monte Carlo and Latin hypercube
simulation that lets you get more useful information from fewer samples; it is especially
valuable for risky situations with a small probability of an extremely good or bad out-
come. By default, all simulation samples are equally likely. With importance weighting,
you set SampleWeighting to generate more samples in the most important areas.
Thus, you can get more detail where it matters and less where it matters less. Results
showing probability distributions with uncertainty views and statistical functions reweight
sample values using SampleWeighting so that the results are unbiased.

You can also modify SampleWeighting interactively to reflect different input distribu-
tions and so rapidly see the effects the effects on results without having to rerun the

 Analytica User Guide 271

Chapter Probability Distributions15 Importance weighting

simulation. In the default mode, it uses equal weights, so you don't have to worry about
importance sampling unless you want to use it.

SampleWeighting To set up importance weighting, you set weights to each sample point in the built-in vari-
able SampleWeighting. Here is how to open its Object window:

1. De-select all nodes, e.g., by clicking in the background of the diagram.

2. From the Definition menu, select System Variables, and then SampleWeighting.
Its Object window opens:

Initially, its definition is 1, meaning it has an equal weight of 1 for every sample. (1 is
equivalent to an array of 1s, e.g., Array(Run, 1)). For importance weighting, you
assign a different weighting array indexed by Run. It automatically normalizes the
weighting to sum to one, so you need only supply relative weights.

Suppose you have a distribution on variable X, with density function f(x), which has a
small critical region in cr(x) — in which x causes a large loss or gain. To generate the
distribution on x, we use a mixture of f(x) and cr(x) with probability p for cr(x) and (1-p)
for f(x). Then use the sampleWeighting function to adjust the results back to what they
should be is:

f(x) / ((p f(x) + (1 - p) cr(x)) (3)

For example, suppose you are selecting the design Capacity in Megawatts for an elec-
trical power generation system for a critical facility to meet an uncertain Demand in
Megawatts which has a lognormal distribution:

Chance Demand := Lognormal(100, 1.5)

Decision Capacity := 240

Probability(Demand) → 0.015

In other words, the probability of failing to meet demand is about 1.5%, according to the
probabilistic simulation of the lognormal distribution. Suppose the operator receives
Price of 20 dollars per Megawatt-hour delivered, but must pay Penalty of 200 dollars
per megawatt-hour of demand that it fails to supply to its customers:

Variable Price := 100

Variable Penalty := 1000

Chapter Probability Distributions

272 Analytica User Guide

15 Importance weighting

Variable Revenue := IF Demand <= Capacity THEN Price*Demand

ELSE Price*Capacity - (Demand - Capacity)*Penalty

Mean (Revenue) → $2309

The estimated mean revenue of $2309 is imprecise because there is a small (1.5%)
probability of a large penalty ($200 per Mwh that it cannot supply), and only a few sam-
ple points will be in this region. You can use Importance sampling to increase the num-
ber of samples in the critical region, where Demand > Capacity).

Chance Excess_demand := Truncate(Demand, 150)

Variable Mix_prob := 0.6

Variable Weighted_demand := If Bernoulli(Mix_prob)

THEN Excess_demand ELSE Demand

SampleWeighting := Density(Demand) /

((1 - Mix_prob)*Density(Demand) +

Mix_prob*Density(Excess_demand))

Thus, we compute a Weighted_demand as a mixture between the original distribution on
Demand and the distribution in the critical region, Excess_demand. We assign weights to
SampleWeighting, using the Object window for SampleWeighting opened as
described above. See the Analytica Wiki at http://www.lumina.com/wiki for more.

For more on weighted statistics and conditional statistics, see “Weighted statistics and
w parameter”.

http://www.lumina.com/wiki

Chapter 16 Statistics, Sensitivity,
and Uncertainty Analysis

This chapter describes:

• Statistical functions that compute statistics, such as mean,
variance, or correlation over a probabilistic value (or for
arrays with other indexes).

• Tornado charts and importance analysis to see how to
apportion credit or blame for the uncertainty in an output to its
uncertain inputs.

• XY plots and scatter plots to visualize the effect of an input on
an output.

• Functions that show the sensitivity of a variable to one or
more variables that affect it, including WhatIf and Tornado
analysis.

• Functions to perform regression analysis.

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

274 Analytica User Guide

16 Statistical functions

Statistical functions
Statistical functions compute a statistic from a probability distribution. More precisely,
they estimate the statistic from a random sample of values representing a probabilistic
value. Common examples are Mean, Variance, Correlation, and Getfract (which
returns a fractile or percentile). The uncertainty view options available in the Result win-
dow (see “Uncertainty views”) use these functions.

Statistical functions
force prob mode

evaluation

Unlike other functions, statistical function usually force their main parameter(s) to be
evaluated in prob mode (probabilistically) and they return a nonprobabilistic value —
whether they are evaluated in a mid mode or prob mode. For example:

Chance X := Normal(0, 1)

Variable X90 := Getfract(X, .9)

X90 → 1.259

Evaluating variable X90 causes variable X to be evaluated in prob mode, so that Get-
fract(X, 90%) can estimate the 90th percentile (0.9 fractile) of the distribution for X.
X90 itself has only a mid value, and no probabilistic value. The exception is the Mid(x)
function that forces X to be evaluated in mid mode, no matter the evaluation context.

Statistics from non-
probabilistic arrays

The default usage of statistical functions is over a probability distribution, represented
as a random sample indexed by Run. You can also use these functions to compute sta-
tistics over an array with a different index by specifying that index explicitly. This is often
useful for computing statistics from data tables — including if you want to fit a probability
distribution to a set of data. For example, suppose Data is an array of imported mea-
surements:

Index K := 1..1000

Variable Data:= Table(K)(123.4, 252.9, 221.4, ...)

Variable Xfitted := Normal(Mean(Data,K), Sdeviation(Data,K)

Xfitted is a normal distribution fitted to Data with the same mean and standard devia-
tion.

Tip All statistical functions produce estimates from the underlying random sample for each
probabilistic quantity. These estimates are not exact, but will vary from one evaluation to
the next due to the variability inherent in random sampling. Hence, your results may not
exactly match the results shown in the examples here. For greater precision, use a larger
sample size (see “Selecting the Sample Size” on how to select a sample size).

Notation in formulas The formulas used to define statistics use this notation:

Statistics and text-
valued distributions

Most statistical functions require their parameters to be numerical. A few statistical func-
tions, those that only requiring ordinal (ordered) values, also work on distributions with
text values (whose domain is a list of labels), namely: Frequency (use Frequency(X,
X)), Mid, Min, Max, Probability_bands, and Sample. These functions assume the values
are ordered as specified in the domain list of labels, e.g. Low, Mid, High.

xi the ith sample value of probabilistic variable x

the mean of probabilistic variable x (see Mean())
s standard deviation (see Sdeviation())
m sample size (see Appendix A, “Selecting the Sample Size”).

x

 Analytica User Guide 275

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Statistical functions

Example model The examples in this section use the following variables:
Variable Alt_ fuel_ price := Normal(1.25, 0.1)

Variable Fuel_price := Normal(1.19, 0.1)

Variable Skfuel_price := Beta(4,2,1,1.5)

Mean(x)
Returns an estimate of the mean of x if x is probabilistic. Otherwise, returns x.

Mean(x) uses the formula:

Library Statistical

Examples Mean(Fuel_price) → 1.19

Mean(Skfuel_price) → 1.33

Sdeviation(x)
Returns an estimate of the standard deviation of x from its sample if x is probabilistic. If
x is non-probabilistic, returns 0.

Sdeviation(x) uses the formula:

Library Statistical

Example Sdeviation(Fuel_price) → 0.10

Variance(x)
Returns an estimate of the variance of x if x is probabilistic. If x is non-probabilistic,
returns 0.

Variance() uses the formula:

1
m
---- xi
i 1=

m

∑ x=

1
m 1–
------------- xi x–()2

i 1=

m

∑ σ=

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

276 Analytica User Guide

16 Statistical functions

Library Statistical

Example Variance(Fuel_price) → 0.01

Skewness(x)
Returns an estimate of the skewness of x. x must be probabilistic.

Skewness is a measure of the asymmetry of the distribution. A positively skewed distri-
bution has a thicker upper tail than lower tail, while a negatively skewed distribution has
a thicker lower tail than upper tail. A normal distribution has a skewness of zero.

Skewness() uses the formula:

Library Statistical

Example Skewness(Skfuel_price) → -0.45

Kurtosis(x)
Returns an estimate of the kurtosis of x. x must be probabilistic.

Kurtosis is a measure of the peakedness of a distribution. A distribution with long thin
tails has a positive kurtosis. A distribution with short tails and high shoulders, such as
the uniform distribution, has a negative kurtosis. A normal distribution has zero kurtosis.

Kurtosis(x) uses the formula:

1
m 1–
------------- xi x–()2

i 1=

m

∑ σ2
=

1
m

xi x–

σ-------------
3

i 1=

m

∑

1
m---

xi x–

σ

4

i 1=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–

 Analytica User Guide 277

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Statistical functions

Probability(b)
Returns an estimate of the probability or array of probabilities that the Boolean value b
is True.

Library Statistical

Example Probability(Fuel_price < 1.19) → 0.5

Getfract(x, p)
Returns an estimate of the pth fractile (also known as quantile or percentile) of x. This is
the value of x such that x has a probability p of being less than that value. If x is non-
probabilistic, all fractiles are equal to x.

The value of p must be a number or array of numbers between 0 and 1, inclusive.

Library Statistical

Examples Getfract(x,0.5)returns an estimate of the median of x.
Getfract(Fuel_price, 0.5) → 1.19

The following returns a table containing estimates of the 10%ile and 90%ile values, that
is, an 80% confidence interval.

Index Fract := [0.1,0.9]

Getfract(Fuel_price, Fract) →

Fract

Library Statistical

Example Kurtosis(Skfuel_prices) → -0.48

Probbands(x)
Returns an estimate of probability or "confidence" bands for x if x is probabilistic. Other-
wise returns x for every band. The probabilities are specified in the Uncertainty Setup
dialog box, Probability Bands option (see “Uncertainty Setup dialog box”).

Library Statistical

Example Probbands(Fuel_price) →
Probability

Covariance(x, y)
Returns an estimate of the covariance of uncertain variables x and y. If x or y are non-
probabilistic, it returns 0. The covariance is a measure of the degree to which x and y
both tend to be in the upper (or lower) end of their ranges at the same time. Specifically,
it is defined as:

0.10 0.90
1.06 1.32

0.05 0.25 0.5 0.75 0.95
1.025 1.123 1.19 1.257 1.355

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

278 Analytica User Guide

16 Statistical functions

Library Statistical

Suppose you have an array X of uncertain quantities indexed by I,
Index I := 1..5

Variable X := Array(I, […])

you can compute the covariance matrix of each element of X against each other’s ele-
ment (over I), thus:

INDEX J := CopyIndex(I)

Covariance(X, X[I=J])

We create index J as a copy of index I and then create a copy of X that replaces I by J
so that the covariance is computed for each slice of X over I against each slice over J.
The result is the covariance matrix indexed by I and J. Each diagonal element contains
the variance of the variable, since Variance(X) = Covariance(X, X). You can use
this same method to generate a correlation matrix using the Correlation() or
Rank_correl() functions described below.

Correlation(x, y)
Returns an estimate of the correlation between the probabilistic expressions x and y,
where -1 means perfectly negatively correlated, 0 means no correlation, and 1 means
perfectly positively correlated.

Correlation(x, y), a measure of probabilistic dependency between uncertain variables,
is sometimes known as the Pearson product moment coefficient of correlation, r. It mea-
sures the strength of the linear relationship between x and y, using the formula:

Library Statistical

Example With sampleSize set to 100 and number format set to two decimal digits:
Correlation(Alt_fuel_price + Fuel_price, Fuel_price) → 0.71

Correlation of two independent, uncorrelated distributions approaches 0 as the sample
size approaches infinity.

Example With sampleSize = 20:
Correlation(Normal(1.19,0.1), Normal(1.19,0.1))→ -.28

With sampleSize = 1000:

xi x–() yi y–()
i 1=

n
∑

xi x–() yi y–()

i
∑

xi x–()2

i
∑ yi y–()2

i
∑×

--

 Analytica User Guide 279

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Statistical functions

Correlation(Normal(1.19,0.1),Normal(1.19,0.1))→ 0.03

Rankcorrel(x, y)
Returns an estimate of the rank-order correlation coefficient between the distributions x
and y. x and y must be probabilistic.

Rankcorrel(x,y), a measure of the dependence between x and y, is sometimes known
as Spearman’s rank correlation coefficient, rs.

Rank-order correlation is measured by computing the ranks of the probability samples,
and then computing their correlation. By using the rank order of the samples, the mea-
sure of correlation is not affected by skewed distributions or extreme values, and is,
therefore, more robust than simple correlation. Rank-order correlation is used for impor-
tance analysis (see “Importance analysis”).

Library Statistical

Example With sampleSize = 100:
Rankcorrel(Fuel_price, Alt_fuel_price) → .02

Frequency(x, i)
If x is a discrete uncertain variable, returns an array indexed by i, giving the frequency,
or number of occurrences of discrete values i. i must contain unique values; if numeric,
the values must be increasing.

If x is a continuous uncertain variable and i is an index of numbers in increasing order, it
returns an array indexed by i, with the count of values in the sample x that are equal to
or less than each value of i and greater than the previous value of i.

If x is non-probabilistic, Frequency() returns sampleSize for each value of i equal to x.

Since Frequency() is computed by counting occurrences in the probabilistic sample, it
is a function of sampleSize (see “Uncertainty Setup dialog box”). If you want the rela-
tive frequency rather than the count of each value, divide the result by sampleSize.

Library Statistical

Example (continuous) Index Index_a := [1.2,1.25]

Frequency(Fuel_price, Index_a) →
Index_a

Example (discrete) Bern_out: [0,1]

(Possible outcomes of the Bernoulli Distribution)
With Samplesize = 100:

Frequency(Bernoulli (0.3), Bern_out) →
Bern_out

With Samplesize = 25:

1.2 1.25
54 19

0 1
70 30

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

280 Analytica User Guide

16 Statistical functions

Frequency(Bernoulli (0.3), Bern_out) →
Bern_out

Mid(x)
Returns the mid value of x. Unlike other statistical functions, Mid() forces deterministic
evaluation in contexts where x would otherwise be evaluated probabilistically.

The mid value is calculated by substituting the median for most full probability distribu-
tions in the definition of a variable or expression, and using the mid value of any inputs.
The mid value of a variable or expression is not necessarily equal to its true median, but
is usually close to it.

Library Statistical

Example Mid(Fuel_price) → 1.19

Sample(x)
Forces x to be evaluated probabilistically and returns a sample of values from the distri-
bution of x in an array indexed by the system variable Run. If x is not probabilistic, it just
returns its mid value. The system variable sampleSize specifies the size of this sample.
You can set sampleSize in the Uncertainty Setup dialog box (see “Uncertainty Setup
dialog box”).

Library Statistical

When to use Use when you want to force probabilistic evaluation.

Example Here are the first six values of a sample:

Sample(Fuel_price) →
Iteration(Run)

Statistics(x)
Returns an array of statistics of x. Select the statistics to display in the Uncertainty
Setup dialog box, Statistics option (see “Uncertainty Setup dialog box”).

Library Statistical

Example Statistics(Fuel_price) →
Statistics

0 1
18 7

1 2 3 4 5 6
1.191 1.32 1.19 1.164 1.191 0.962

Min Median Mean Max Std. Dev.
0.93 1.19 1.19 1.45 0.10

 Analytica User Guide 281

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Statistical functions

PDF(X) and CDF(X)
These functions generate histograms from a sample X. They are similar to the methods
used to generate the probability density function (PDF) and cumulative probability distri-
bution function (CDF) as uncertainty views in a result window as graph or table. But, as
functions, they return the resulting histogram as an arrays available for further process-
ing, display, or export. For example,

PDF(X)

CDF(X)

evaluate x in prob mode, and returns an array of points on the density or cumulative dis-
tribution respectively.

You can also use PDF and CDF to generate a histograms (direct or cumulative) of data
that is not uncertain, but indexed by something other than Run. For example, to gener-
ate a histogram of Y over index J, specify the index explicitly:

PDF(Y, J)

If it decides that X is discrete rather than continuous, PDF generates a probability mass
distribution and CDF generates a cumulative mass distribution, with a probability for
each discrete value of X. It uses the same method as the uncertainty views in results to
decide if X is discrete — if it has text values, if it has many repeated numerical values,
or if X has a Domain attribute that is discrete (see #xref Continuous or Discrete). Alter-
natively, you may control the result by setting the optional parameter discrete as true or
false. For example:

Variable X := Poisson(20)

PDF(X, Discrete: True)

generates a discrete histogram over X. If X contains text values, i.e., categorical data,
you may want to control the order of the categories, e.g., ["Low", "Medium",
"High"]. You can do this by specifying the Domain attribute of X as a List of Labels
with these values, or as an Index, referring to an Index using them. Alternatively, you
can provide PDF or CDF with the optional Domain parameter provided as the list of
labels. If X is an expression rather than a variable, this is your only choice.

PDF and CDF have one required parameter:

and several optional parameters:

X The sample data points, indexed by i.

i The index over which they generate the histogram. By default this is Run
(i.e., a Monte Carlo sample) but you can also specify another index to
generate a histogram over another dimension.

w The sample weights. Can be used to weight each sample point differently.
Defaults to system variable SampleWeights.

discrete Set true or false to force discrete or continuous treatment. By default, it
guesses, usually correctly.

binMethod Selects the histogramming method used. Otherwise it uses the system
default set in the Uncertainty Setup dialog from the Result menu.
Options are:
0 "equal-X": Equal steps along the X axis (values of X).
1 "equal-sample-P": Equal numbers of sample values in each step.
2 "equal-weighted-P": Equal sum of weights of samples, weighted by w.

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

282 Analytica User Guide

16 Weighted statistics and w parameter

Weighted statistics and w parameter
Normally, each statistical function gives an equal weight to each sample value in its
parameters. You can use the optional parameter w for any statistical function to specify
unequal weights for its samples. This lets you estimate conditional statistics. For exam-
ple:

Mean(X, w: X>0)

computes the mean of X for those samples of X that are positive. In this case, the weight
vector contains only zeros and ones. The expression X>0 gives a weight of 1 (True) for
each sample that satisfies the relationship and 0 (False) to those that do not.

By default, this method works over uncertain samples, indexed by Run. You can also
use it to compute weighted statistics over other indexes. For example, if Y is an array
indexed by J, you could compute:

Mean(Y, I, W : Y>0)

If you set the system variable SampleWeighting to something other than 1 (see “Impor-
tance weighting”, all statistical functions use SampleWeighting as the default weights,
unless you specify parameter w with some other weighting array. So, when using impor-
tance weighting, all statistics (and uncertainty views) automatically use the correct
weighting.

Importance analysis
In a model with uncertain variables, you may want to know how much each uncertain
input contributes to the uncertainty in the output. Typically, a few uncertain inputs are
responsible for the lion's share of the uncertainty in the output, while the rest have little
impact. You can then concentrate on getting better estimates or building a more detailed
model for the one or two most important inputs without spending considerable time
investigating issues that turn out not to matter very much.

The importance analysis features in Analytica can help you quickly learn which inputs
contribute the most uncertainty to the output.

What is importance? This analysis uses as a metric of the "importance" of each uncertain input to a selected
output, the absolute rank-order correlation between each input sample and the output
sample. It is a robust measure of the uncertain contribution because it is insensitive to
extreme values and skewed distributions. Unlike commonly used deterministic mea-
sures of sensitivity, such as used in the Tornado analysis, it averages over the entire
joint probability distribution. Therefore, it works well even for models where there are
strong interactions, where the sensitivity to one input depends on the value of another.

samplesPerStep An integer specifying the number of samples per bin. Otherwise, it uses
the default samplesize set in the Uncertainty Setup dialog from the
Result menu.

domain A list of numbers or labels, or the identifier of a variable whose Domain
attribute should be used to specify the sequence of possible values for
discrete distribution. If omitted, it uses the domain from the sample values.

 Analytica User Guide 283

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Importance analysis

Create an importance
variable

1. Be sure you are in edit mode, viewing a Diagram window. Select an output variable,
U, that depends on two or more uncertain inputs — possibly, an objective.

2. Select Make Importance from the Object menu.

If the selected output is U, it creates an index U_Inputs, a list of the uncertain inputs,
and a general variable, U Importance, containing the importance of those inputs to the
output.

Example Variable Miles_per_year := Triangular(1,12K,30K)

Variable Fuelcost_per_gallon := Lognormal(3)

Variable Miles_per_gallon := Normal(33,2)

Variable Fuel_cost_per_year :=

(Fuel_cost_per_gallon*Miles_per_year)/Miles_per_gallon

After you select Fuel_cost_per_year and then Make Importance from the Object
menu, the diagram contains two new variables.

Fuel_cost_per_year Inputs is a one-dimensional edit table of the chance variables.
Its index contains the titles of the chance nodes, and its values are the identifiers of
those nodes.

Fuel cost per year inputs evaluates to a set of probability distributions, one for each
chance variable.

Fuel cost per year Importance is defined as
Abs(Rankcorrel(Fuel_cost_per_year_inputs, Fuel_cost_per_year))

The Rankcorrel() function computes the rank-order correlation of each input to the out-
put, and then the Abs() function computes the absolute value, yielding a positive rela-
tive importance.

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

284 Analytica User Guide

16 Sensitivity analysis functions

As expected, Fuelcost_per_gallon contributes considerably more uncertainty to
Fuel_cost_per_year than Miles_per_gallon.

Tip Importance, like every other statistical measure, is estimated from the random sample.
The estimates may vary slightly from one computation to another due to random noise.
For a sample size of 100, an importance of 0.1 may not be significantly different from
zero. But an importance of 0.5 is significantly different from zero. The main goal is to
identify two or three that are the primary contributors to the uncertainty in the output. For
greater precision, use a larger sample size.

Updating inputs to
importance analysis

If you create an importance analysis variable for U, and later add or remove uncertain
variables that affect U, the uncertainty analysis is not automatically updated to reflect
those changes. You may update the analysis either by:

• Select U and then select Make Importance from the Object menu. It will
automatically update the importance analysis to reflect any new or removed
uncertain inputs.

• Draw an arrow from any new uncertain input into index U inputs. It will add the
new variable as an uncertain input. Similarly, you can remove a variable from U
inputs by redrawing an arrow from that variable into U inputs.

Sensitivity analysis functions
Sensitivity analysis enables you to examine the effect of a change in the value of an
input variable on the values of its output variables. They do not require their parameters
to be uncertain.

Examples The examples in this section refer to the following variables:

gasPrice Normal(1.3, .3) Cost of gasoline per gallon within market fluctuations

mpy: 12K The average number of miles driven per year

 Analytica User Guide 285

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Sensitivity analysis functions

Probability density of fuelCost:

Dydx(y, x)
Returns the derivative of expression y with respect to variable x, evaluated at mid val-
ues. This function returns the ratio of the change in y to a small change in x that affects
y. The "small change" is , or 1.0E-6 if x= 0.

Library Special

Examples Because fuelCost depends on mpg, a small change in mpg seems to have a modest
negative effect on fuelCost:

Dydx(fuelCost, mpg) → -19.7

The reverse is not true, because mpg is not dependent on fuelCost. That is, fuelCost
does not cause any change in mpg:

Dydx(Mpg, Fuelcost) → 0

In this model of fuelCost, a small change in gasPrice has by far the largest effect of
all its inputs:

Dydx(fuelCost, gasPrice) → 428.6

Dydx(fuelCost, mpy) → 0.04643

Tip When you evaluate DyDx() in mid mode, the mid value for x is varied and the mid value
of y is evaluated. In prob mode, the sample of x is varied and the sample for y is
computed in prob mode. Therefore, when y is a statistical function of x, care must be
taken to ensure that the evaluation modes for x and y correspond. So, for example,

Y := DyDx(Kurtosis(Normal(0,X)), X)

mpg: Normal(28, 5) Fuel consumption averaged over driving conditions

fuelCost: gasPrice * mpy / mpg Annual cost of fuel

x 10000⁄

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

286 Analytica User Guide

16 Sensitivity analysis functions

would not produce the expected result. In this case, when evaluating y in determ mode,
Kurtosis evaluates its parameter, and thus x, in prob mode, resulting in a mis-match in
computation modes. To get the desired result, you should explicitly use the mid value of
x:

Y := DyDx(Kurtosis(Normal(0,Mid(X))), X)

Elasticity(y, x)
Returns the percent change in variable y caused by a 1 percent change in a dependent
variable x.

Elasticity() is related to Dydx() in the following manner:
Elasticity(y,x) = Dydx(y,x)*(x/y)

Library Special

Examples Elasticity(fuelCost, mpg) → -0.9901

Elasticity(fuelCost, gasprice) → 1

A 1% change in variables mpg and gasPrice cause about the same degree of change in
fuelcost, although in opposite directions.

mpg is inversely proportional to the value of fuelCost, while gasPrice is proportional to
it.

Tip When you evaluate Elasticity() in determ (mid) mode, the mid value for x is varied and
the mid value of y is evaluated. In prob mode, the sample of x is varied and the sample
for y is computed in prob mode. Therefore, when y is a statistical function of x, care must
be taken to ensure that the evaluation modes for x and y correspond.

Whatif(e, v, vNew)
Returns the value of expression e when variable v is set to the value of vNew. v must
be a variable. It lets you explore the effect of a change to a value without changing it
permanently. It restores the original definition of v after evaluating Whatif() expression,
so that there is no permanent change (and so causes no side effects).

Library Special

Example Fuelcost → 557.1

Whatif(Fuelcost, Mpy, 14K) → 650

WhatIfAll(e, vList, vNew)
Like Whatif, but it lets you examine a set of changes to a list of variables, vList. It
returns the mid value of e when each of variables in vList is assigned the value in x one
at a time, with the remaining variables remaining at their nominal values. The result is
indexed by vList. If vNew is indexed by vList, it assigns the corresponding value of
vNew to each variable, letting you assign a different value to each variable in vList.
WhatIfAll() is useful for performing ceteris paribus style sensitivity analysis, which var-
ies one variable at a time, leaving the others at their initial value, such as in Tornado
charts (see next section for an example).

 Analytica User Guide 287

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Tornado charts

Suppose Z is a function of A, B, and C, and we wish to examine the effect on Z when
each input is varied, one at a time, by 10% from its nominal value. Define:

Variable Z := 10*A + B^2 + 5*C

Index L := [90%,110%]

Variable V := [A, B,C]

MyTornado := WhatIfAll(Z, V, L*V)

Library Special

Tornado charts
A tornado diagram is a common tool used to depict the sensitivity of a result to changes
in selected variables. It shows the effect on the output of varying each input variable at
a time, keeping all the other input variables at their initial (nominal) values. Typically,
you choose a "low" and a "high" value for each input. The result is then displayed as a
special type of bar graph, with bars for each input variable displaying the variation from
the nominal value. It is standard practice to plot the bars horizontally, sorted so that the
widest bar is placed at the top. When drawn in this fashion, the diagram takes on the
appearance of a tornado, hence its name. The figure below shows a typical tornado dia-
gram.

Create a tornado
analysis

To perform a tornado analysis, you must:

1. Select the result or output variable to perform the analysis on.

2. Select the input variables which may affect the output.

3. Decide what the low and high values are to be for each input variable.

Note:The input variables do not need to be chance variables. In fact, tornado analysis
is often applied to models with no chance variables.

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

288 Analytica User Guide

16 Tornado charts

There are several options for selecting low and high values, including:

• Selecting the same absolute low and high levels for every input. This usually only
makes sense if inputs are very homogeneous with identical nominal values.

• Selecting absolute low and high values separately for each input variable.

• Varying all inputs by the same relative amount, e.g., low=90% of nominal,
high=110% of nominal.

• Varying all inputs between two given fractiles. This only makes sense if your inputs
are uncertain variables. Example: Low=10% fractile, High=90% fractile,
nominal=50% fractile.

Implementing a tornado analysis
For this example, assume we vary all inputs by the same amount.

1. Create an index variable containing a list of input variable identifiers. Suppose this is
called Vars.

2. Create a variable, L, and define it as a self-indexed table. (To do this, select Table
from the Expression pulldown, and select self as an index.) From the edit table, set
the self-index labels to read low and high. Set the value corresponding to low to 90%,
and set the value corresponding to high to 110%.

3. Create a node, Tornado_Analysis. Assume that the output variable is X. Define
Tornado_Analysis as:

WhatIfAll(X, Vars, L * Vars)

4. Create a node, Sorted_Tornado_Inputs, defined as:
sortIndex(abs(Tornado_Analysis[L='high'] -

Tornado_Analysis[L='low']))

5. Create a node, Sorted_Tornado, defined as:
Tornado_Analysis[Vars=Sorted_Tornado_Inputs]

Steps 4 & 5 are not necessary if you do not require your bars to be displayed from larg-
est to smallest. If you do include steps 4 & 5, Sorted_Tornado will contain the results of
the tornado analysis, otherwise the result is Tornado_Analysis.

It is possible in Analytica to use array abstraction to produce a set of tornado diagrams,
with each tornado itself indexed by an additional dimension. Additional dimensions are
already included if your output variable is itself an array result, in which case you will
have a tornado diagram for each element in the output value's array value. This flexibil-
ity is unique to Analytica; however, you should note that having multiple tornados in a
single result complicates the problem of sorting the bars, since the sort order will, in
general, be different for the different bars. If you have extra indexes in your tornado

 Analytica User Guide 289

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 X-Y plots

analysis, you will need to either skip steps 4 & 5 above, and display non-sorted Torna-
dos, or select a single sort order based on whatever criteria fits your needs, realizing
that not all tornados will display in sorted order. To display a tornado using Excel graph,
your output variable must be a scalar.

The WhatIfAll() function typically provides the easiest method for implementing a tor-
nado analysis in Analytica. Note that the third parameter to WhatIfAll() controls the
method by which inputs are varied for the analysis. For example:

• For the case where you select the same absolute low and high levels for every
input, L would be set to the absolute low and high values, and the third parameter to
WhatIfAll() would be simply l.

• For the case where you select absolute low and high values separately for each
input variable, you would index L by Vars, fill in L's table appropriately, then set the
third parameter to be just L.

• And for the case where you vary all inputs between two given fractiles, you would
set L to the desired fractiles, and use as the third parameter the expression:
getFract(X,L).

Graphing a tornado It’s usually best to graph a tornado switching X and Y axis, so that the names of the
input variables are listed down the vertical axis, and the effect on the output along the
horizontal axis:

1. Select Show Result for the Tornado_Analysis or Sorted_Tornado variable. Press
the Graph button if necessary.

2. Pivot the index order (if necessary) so that Vars is on the X-axis and L is the Key.

3. Select Graph Setup and then Graph Style.

4. Set the Line Style to the filled bar setting. Set Overlap=100%, Origin=X. (Where X
is your output variable of interest). Press Apply.

X-Y plots
When evaluating a variable, you can specify another variable to view it against, for Mid,
Mean, Statistics, Probability Bands, and Sample.

To graph one variable against another:

1. Open a Result window for the y- (vertical axis) variable.

2. Click the XY button located in the top right corner of the window to open the
Object Finder dialog box.

3. In the Object Finder, select the x- (horizontal axis) variable

The two variables in an XY window must share at least one index, and all indexes of X
must also be indexes of Y. The popup menu in the index selection area becomes Com-
mon Index — only indexes of both X and Y may be selected.

Variable Degrees := Sequence(0,360,10)

Variable SinX := Sin(Degrees)

Cosine: Cos(Degrees) →

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

290 Analytica User Guide

16 X-Y plots

Click the XY button. In the Object Finder dialog under Current Module select the vari-
able Sine to display:

 Analytica User Guide 291

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Scatter plots

Click the Table View button to display:

To return to the graph or table of Cosine vs. Degrees, click in the XY check box.

Scatter plots
A scatter plot graphs the samples of two probabilistic variables against each other, and
provides insight into their probabilistic relationship.

To generate a scatter plot for two variables, X and Y:

1. Open a Result window for Y.

2. Click the XY button located in the top right corner of the window to open the Object
Finder dialog box.

3. In the Object Finder, select the X variable.

4. In the Uncertainty View popup menu (at the top left of the Result window), select
the Sample view.

If the variables are independent, the scatter plot points will fall randomly on the graph. If
the variables are totally dependent, the scatter plot points will fall along a single line.
The strength of the relationship is indicated by the degree to which the points are close
to a line. If the line is straight, the relationship is linear; if the line is curved, the relation-
ship is nonlinear.

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

292 Analytica User Guide

16 Regression analysis

You can superimpose several scatter plots of Y in an array of uncertain quantities
depending on X. The different quantities will be represented by differently colored dots
or symbols.

Example X: Uniform(1,2)

Y: Normal(10,3)

The resulting scatter plot, of two independent variables, is:

Regression analysis
Regression is a widely used statistical method to estimate the effects of a set of inputs
(independent variables) on an output (the dependent variable). It is a powerful method
to estimate the sensitivity of the output to a set of uncertain inputs. Like the rank-corre-
lation used in importance analysis (see “Importance analysis”), it is a global measure of
sensitivity in that it averages the sensitivity over the joint distribution of the inputs, unlike
Tornado analysis that is local, meaning it varies each variable one at a time, leaving all
others fixed at a nominal value.

Regression() is in the built-in Statistics library, and works with all editions of Analytica.
The logit and probit regression functions are in an add-in library, Generalized Regres-
sion.ana, and require Analytica Optimizer.

Regression(y, b, i, k)
Generalized linear regression. Finds the best-fit (least squared error) curve to a set of
data points. Regression() finds the parameters in an equation of the form:ak

y akbk x()
k
∑=

 Analytica User Guide 293

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Regression analysis

The data points are contained in y (the dependent variable) and b (the independent
variables), both of which must be indexed by i. b is the basis set and is indexed by i and
k. The function returns the set of parameters indexed by k.

With the generalized form of linear regression, it is possible to have several indepen-
dent variables, and your basis set may even contain non-linear transformations of your
independent variables. Regression() can be used to find the best-fit planes or hyper-
planes, best-fit polynomials, and more complicated functions.

Regression() uses a state-of-the-art algorithm based on singular-value decomposition
that is numerically stable, even if the basis set contains redundant terms.

Example 1 Suppose a set of (x,y) points are contained in X and Y, both indexed by I, and we wish
to find the parameters m and b of the best-fit line . We first define an index K
as a list of labels:

Index K := [’m’,’b’]

Next, define B as a table indexed by K:

Variable B := K

Regression(Y, B, I, K) returns the coefficients m and b as an array indexed by k.

Example 2 We wish to fit the following polynomial to (x, y) data:

Define k to be the list:
Variable B := [X^5,X^4,X^3,X^2,X,1]

Regression(Y, B, I, B) returns the best-fit coefficients of the polynomial indexed by
B.

Logistic_Regression(Y, B, I, K)
Logistic regression is a technique for predicting a Bernoulli (i.e., 0,1-valued) random
variable from a set of continuous dependent variables. See the Wikipedia article on
Logistic regression for a simple description. Another generalized logistic model that can
be used for this purpose is the Probit_Regression model. These differ in functional
form, with the logistic regression using a logit function to link the linear predictor to the
predicted probability, while the probit model uses a cumulative normal for the same.

This function requires Analytica Optimizer.

The Logistic_regression function returns the best-fit coefficients, c, for a model of the
form:

ak

m b

X 1

y mx b+=

y a5x5 a4x4 a3x3 a2x2 a1x a0+ + + + +=

1n
pi

1 pi–
-------------⎝ ⎠
⎛ ⎞ ckbi k,

k
∑=

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

294 Analytica User Guide

16 Uncertainty in regression results

given a data set basis B, with each sample classified as y_i, having a classification of 0
or 1.

The syntax is the same as for the Regression function. The basis may be of a general-
ized linear form, that is, each term in the basis may be an arbitrary non-linear function of
your data; however, the logit of the prediction is a linear combination of these.

When you have used the Logistic_Regression function to compute the coefficients for
your model, the predictive model that results returns the probability that a given data
point is classified as 1.

Probit_regression(Y, B, I, K)
A probit model relates a continuous vector of dependent measurements to the probabil-
ity of a binomial (i.e., 0,1-valued) outcome. In econometrics, this model is sometimes
called the Harvard model. The Probit_regression function infers the coefficients of the
model from a data set, where each point in the training set is classified as 0 or 1.

Probit regression is very similar to Logistic_regression. Both are used to fit a binomial
outcome based on a vector of continuous dependent quantities. They differ in their use
of the link function.

Given a set of data points, indexed by I, with each point classified as 0,1 in the Y param-
eter, and a set of basis terms, B, containing the dependent variables (where the vector
of dependent variables is indexed by K), the Probit_regression function finds and
returns the set of coefficients for the probit model:

where is the inverse cumulative normal distribution function.

The basis, B, is a function of the dependent variables in your data. Each element along
K of the basis vector may be an arbitrary, even non-linear, combination of the data in
your data set. However, the number of terms in the basis should be kept small relative
to the number of data point in your data set.

Library Generalized Regression.ana

This function requires Analytica Optimizer.

Uncertainty in regression results
These functions help estimate the uncertainty in the results from a regression analysis,
including uncertainty in the regression coefficients and the noise. Together they are use-
ful for generating a probability distribution that represents the uncertainty in the predic-
tions from a regression model. When applying regression to make projections into the
future based on historical data, there may be additional sources of uncertainty because
the future may be different from the past. These functions estimate uncertainty due to
noise and imperfect fit to the historical data. You may wish to add further uncertainty for
projections into the future to reflect these additional differences.

pi Φ= ckbk
k
∑⎝ ⎠
⎛ ⎞

 Analytica User Guide 295

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

16 Uncertainty in regression results

RegressionDist(y, b, i, k)
RegressionDist estimates the uncertainty in linear regression coefficients, returning
probability distributions on them. Suppose you have data where Y was produced as:

Y = Sum(C*B, K) + Normal(0, S)

S is the measurement noise. You have the data B[I,K] and Y[I]. You might or might not
know the measurement noise S. So you perform a linear regression to obtain an esti-
mate of C. Because your estimate is obtained from a finite amount of data, your esti-
mate of C is itself uncertain. This function returns the coefficients C as a distribution
(i.e., in sample mode, it returns a sampling of coefficients indexed by Run and K),
reflecting the uncertainty in the estimation of these parameters.

Library Multivariate Distributions.ana

Examples If you know the noise level S in advance, then you can use historical data as a starting
point for building a predictive model of Y, as follows:

{ Your model of the dependent variables: }

Variable Y := your historical dependent data, indexed by I

Variable B := your historical independent data, indexed by I,K

Variable X := { indexed by K. Maybe others. Possibly uncertain }

Variable S := { the known noise level }

Chance C := RegressionDist(Y,B,I,K)

Variable Predicted_Y := Sum(C*X,K) + Normal(0,S)

If you don’t know the noise level, then you need to estimate it. You’ll need it for the nor-
mal term of Predicted_Y anyway, and you’ll need to do a regression to find it. So you
can pass these optional parameters into RegressionDist. The last three lines above
become:

Variable E_C := Regression(Y,B,I,K)

Variable S := RegressionNoise(Y,B,I,K,E_C)

Chance C := RegressionDist(Y,B,I,K,E_C)

Variable Predicted_Y := Sum(C*X,K) + Normal(0,S)

If you use RegressionNoise to compute S, you should use Mid(RegressionNoise(...))
for the S parameter. However, when computing S for your prediction, don’t use Regres-
sionNoise in context. Better is if you don't know the measurement noise in advance,
don’t supply it as a parameter.

RegressionFitProb(y, b, i, k, c)
When you’ve obtained regression coefficients C (indexed by K) by calling the Regres-
sion function, this function returns the probability that a fit this poor would occur by
chance, given the assumption that the data was generated by a process of the form:

Y = Sum(C*B,K) + Normal(0,S)

If this result is very close to zero, it probably indicates that the assumption of linearity is
bad. If it is very close to one, then it validates the assumption of linearity.

Library Multivariate Distributions.ana

This is not a distribution function — it does not return a sample when evaluated in sam-
ple mode. However, it does complement the multivariate RegressionDist function also
included in this library.

Chapter Statistics, Sensitivity, and Uncertainty
Analysis

296 Analytica User Guide

16 Uncertainty in regression results

Example To use, first call the Regression function, then you must either know the measurement
knows a priori, or obtain it using the RegressionNoise function.

Var E_C := Regression(Y,B,I,K);

Var S := RegressionNoise(Y,B,I,K,C);

Var PrThisPoor := RegressionFitProb(Y,B,I,K,E_C,S)

RegressionNoise(y, b, i, k, c)
When you have data, Y[I] and B[I,K], generated from an underlying model with
unknown coefficients C[k] and S of the form:

Y = Sum(C*B, I) + Normal(0,S)

This function computes an estimate for S by assuming that the sample noise is the
same for each point in the data set.

When using in conjunction with RegressionDist, it is most efficient to provide the
optional parameter C to both routines, where C is the expected value of the regression
coefficients, obtained from calling Regression(Y,B,I,K). Doing so avoids an unneces-
sary call to the built-in Regression function.

Library Multivariate Distributions.ana

These functions express uncertainty in the coefficients of a linear regression. If you are
using results form a linear regression, you can use these functions to estimate uncer-
tainty in predictive distributions.

These uncertainties reflect only the degree to which the regression model fits the obser-
vations to which it was fit. They do not reflect any possible systematic differences
between the past process that generated those observations and the process generat-
ing the results being predicted, usually in the future. In this way, they are lower bounds
on the true uncertainty.

Chapter 17 Dynamic Simulation

This chapter shows you how to use the system function
Dynamic() and the system variable Time.

Chapter Dynamic Simulation

298 Analytica User Guide

17 The Time index

A dynamic variable is a quantity that changes over time — for example, the effect of
inflation on car prices over a ten-year period. The system function Dynamic() and sys-
tem variable Time enable you to model changes over time.

Tip Read Chapter 11, “Arrays and Indexes,” before using these features.

The term dynamic is used in this chapter to refer to the Dynamic() function.

The Time index
Dynamic simulation time periods are specified in the system variable Time. To perform
dynamic simulation, you must provide a definition for Time.

To edit the definition of Time, select Edit Time from the Definition menu to open the
Object window for Time.

Time is defined by default as a list of three numbers 0, 1, and 2. You may want to define
Time as a list of years, as in the following example:

Time becomes the index for the array that results from the Dynamic() function.

Tip A model can have only one definition Time — that is, one set of time periods for
Dynamic() functions. Any number of variables in the model can be defined using
Dynamic().

Using the Dynamic() function

Dynamic(initial1, initial2..., initialn, expr)
Performs dynamic simulation, calculating the value of its defined variable at each ele-
ment of Time. The result of Dynamic() is an array, indexed by Time.

 Analytica User Guide 299

Chapter Dynamic Simulation17 Using the Dynamic() function

Initial1, ...initialn are the values of the variable for the first n time periods. expr is an
expression giving the value of the variable for each subsequent time period. expr can
refer to the variable in earlier time periods, that is, contain its own identifier in its defini-
tion. If variable Var is defined using Dynamic(), expr can be a function of Var[Time-k]
or Self[Time-k], where k is an expression that evaluates to an integer between 1 and
t, and t is the time step at which expr is being evaluated.

Tip Square brackets ([]) are necessary around Time-t.

The Dynamic() function must appear at the topmost level of a definition. It cannot be
used inside another expression.

When a dynamic variable refers to itself, it appears in its own list of inputs and outputs,
with a symbol for cyclic dependency: .

Library Special

When to use Use Dynamic() for defining variables that are cyclically dependent. This is the only
function in Analytica that permits reference to the same variable, or other dynamic vari-
ables, at earlier time periods.

Example Dynamic() can be used to calculate the effect of inflation on the price of gasoline in the
years 1990 to 1994.

If the initial value is $1.20 per gallon and the rate of inflation is 5% per year, then
Gasprice can be defined as: Dynamic(1.2, Gasprice[Time-1] * 1.05)
or Dynamic(1.2, Self[Time-1] * 1.05).

Clicking the Result button and viewing the mid value as a table displays the following
results:

Chapter Dynamic Simulation

300 Analytica User Guide

17 More about the Time index

For 1990, Analytica uses the initial value of Gasprice (1.2). For each subsequent
year, Analytica multiplies the value of Gasprice at [Time-1] by 1.05 (the 5 percent
inflation rate).

x [Time-k]
Given a variable x and brackets enclosing Time minus an integer k, returns the value for
x, k time periods back from the current time period. This function is only valid for vari-
ables defined using the Dynamic() function.

Library Special

More about the Time index

Reference to earlier time
Time-k in the expression var[Time-k] refers to the position of the elements in the Time
index, not values of Time.

For example, if Time equals [1990,1994,1998,2002,2006], then the value of
Gasprice[Time-3] in year 2006 would refer to the price of gasoline in 1994, not 2003.
When you refer to the Time variable directly, not as an index, the expression refers to
the values of Time. For example, the expression (Time-3) in 2006 is 2003.

The offset, k, may be an expression, and may even be indexed by Time. When k is
indexed by Time, then the offset varies at different points in Time. However,
Slice(k,Time,t) must be between 1 and t-1. It must be positive since the expression
is not allowed to depend on values in the future (that have not yet been computed). It
must be less than t-1 since the expression cannot depend on values "before the begin-
ning of time."

Defining time
There are three ways to define the Time index, each of which has different advantages:

 Analytica User Guide 301

Chapter Dynamic Simulation17 More about the Time index

• Sequence (the preferred method)

• List (numeric)

• List of labels (text)

Time as a sequence
Using the Sequence() function is the easiest way to define Time with equal intervals
(see “List vs. list of labels” and “Creating an array with an edit table”). The numeric val-
ues for Time can be used in other expressions.

Example

Time as a list (numeric)
When Time is defined as a numeric list, it will usually consist of increasing numbers.
The intervals between entries can be unequal, and the values for Time can be used in
other expressions.

Example Time:

When you use time periods that differ by a value other than 1, typing (Time-1) won’t
provide the value of the previous time period. You can use the syntax x[Time-1] if you
want to utilize a variable indexed by Time, but if you want to perform an operation that
depends on the difference in time between the current time period and the last one, you
must first create a node that uncumulates the Time index:

YearsPassed: Uncumulate(Time)

Now you can include this node in a dynamic expression that depends on the time
between time periods. The following definition is equivalent to the Dynamic() definition
but allows for changes in time period increments:

Chapter Dynamic Simulation

302 Analytica User Guide

17 More about the Time index

Gasprice: Dynamic(1.2, Gasprice[Time - 1] *

1.05 ^ YearsPassed) →

Time as a list of labels (text)
When Time is defined as a list of labels, Time values cannot be used in other expres-
sions as numbers.

The resulting graph of any Dynamic() function, with the x-axis set to Time, will show the
labels at equal x-axis intervals.

Example Time:

Gasprice: Dynamic(1.2, Gasprice[Time-1] * 1.05) →

 Analytica User Guide 303

Chapter Dynamic Simulation17 Initial values for Dynamic

Using Time in a model
You can use Time like any index variable; you can change only its title and definition. To
include the Time node on a diagram:

1. Open the Object window for Time by selecting Edit Time from the Definition menu.

2. Select Make Alias from the Object menu (see “An alias is like its original”).

When the Time node displays on a diagram, arrows from Time to all dynamic variables
display by default.

Initial values for Dynamic
A dynamic definition of var usually includes the expression Self[Time-k] or
var[Time-k], where k is the number of time periods to subtract from the current Time
value. You must supply at least 1 initial value.

As an example, when k in [Time-k] is greater than 1, suppose your car insurance pol-
icy depends on the premium you paid two years ago. To calculate your payments in
1992, you must refer to the amount paid in 1990. A dynamic variable representing such
a rate for insurance needs two initial values for Time, such as:

Insurance:
Dynamic(600, 700, Insurance[Time - 2] * 1.05) →

Chapter Dynamic Simulation

304 Analytica User Guide

17 Using arrays in Dynamic()

Using arrays in Dynamic()
The initial value of a dynamic variable — that is, the first parameter to the Dynamic()
function — can be a number, variable identifier, or other expression that evaluates to a
single number, list, or array. Analytica evaluates a dynamic variable starting from each
initial value, in each time period, so the result is a correctly dimensioned array.

Example Expanding the example (see “Using the Dynamic() function”), suppose the inflation rate
of gasoline is uncertain. Instead of providing a single numerical value, you could define
the inflation rate as a list:

Using the new Inflation variable in the definition for Gasprice, the results show three
different rates of increases in gasoline prices from 1990 to 1994:

Gasprice:
Dynamic(1.2,Gasprice[Time - 1] * (1 + Inflation)) →

 Analytica User Guide 305

Chapter Dynamic Simulation17 Dependencies with Dynamic

Dependencies with Dynamic
All variables with dynamic inputs are evaluated dynamically — that is, their results are
arrays indexed by Time.

Example A series of dynamic definitions produce equations for distance, velocity, and accelera-
tion:
Acceleration: -9.8

Dt: 0.5

Time: Sequence(0, 6, Dt)

Velocity:
Dynamic(0, Self[Time-1] + Acceleration * Dt)

Distance:
Dynamic(100, Self[Time-1] + Velocity * Dt) →

Chapter Dynamic Simulation

306 Analytica User Guide

17 Uncertainty and Dynamic

Dynamic dependency arrows
If a variable is dynamically dependent on another variable, a gray arrow is drawn
between the variables.

To show or hide dynamic dependency arrows:

1. Select Set Diagram Style from the Diagram menu to open the Diagram Style
dialog box (see “Diagram Style dialog”).

2. Click in the Dynamic checkbox to show dynamic arrows (or uncheck it to hide the
arrows).

3. Click OK to accept the change.

Expressions inside dynamic loops
A dynamic loop is a sequence of variables beginning and ending at the same variable,
with each consecutive variable dependent on the previous one. At least one variable in
a dynamic loop is defined using the dynamic function.

When the definition of a variable in a dynamic loop is evaluated, the definition is repeat-
edly evaluated in the context of Time=t (as t increments through the values of Time).
The value for any identifier that appears in an expression is implicitly sliced at Time=t
(unless it is explicitly offset in Time). As an example, suppose A is indexed by Time, and
X is defined as:

Dynamic(0, self[Time-1] + Max(A,Time))

During evaluation, A would be an atom at any given time point since it is implicitly sliced
across Time. When A is not indexed by Time, Max(A,Time) simply returns A, so that
the above expression is equivalent to

Dynamic(0, self[Time-1] + A)

To add the greatest value of A along Time in this expression, you must introduce an
extra variable to hold the maximum value, defined simply as Max(A,Time), and ensure
that the two variables do not occur in the same dynamic loop.

If you attempt to operate over the Time dimension from within a dynamic loop, Analytica
issues the warning: "Encountered application of an array function over the Time index
from within a dynamic loop. The semantics of this operation may be different than you
expect."

Uncertainty and Dynamic
Uncertain variables propagate uncertainty samples during dynamic simulation. If an
uncertain variable is used in a dynamic simulation, its uncertainty sample is calculated
only once, in the initial time period.

Example The following definitions model population changes over time:
Variable Population := Normal(30, 2)

Variable Birthrate := Normal(1.2, .3)

Time := 1 ..10

Variable Pop_by_year := Dynamic(Population,Self[Time-1] + Birthrate)

 Analytica User Guide 307

Chapter Dynamic Simulation17 Uncertainty and Dynamic

The uncertainty samples for Population and Birthrate are each calculated once, at
the initial time period. The same samples are then used for each subsequent time
period.

Resampling
If you want to create a new uncertainty sample for each time period (that is, resample
for each time period), place the distribution in the last parameter of the Dynamic() func-
tion. For example, replace Birthrate with its definition in Pop_by_year:

Pop_by_year: Dynamic(Population, Self[Time - 1] +
Normal(1.2, .3))

An alternative way to create a new uncertainty sample for each time period is to make
Birthrate a dynamic variable.

Birthrate: Dynamic(Normal(1.2, .3), Normal(1.2, .3))

Pop_by_year: Dynamic(Population, Self[Time-1] +
Birthrate)

Chapter Dynamic Simulation

308 Analytica User Guide

17 Uncertainty and Dynamic

Chapter 18 Importing, Exporting,
and OLE Linking Data

OLE linking makes it possible to link data to and from external
applications. With OLE linking, changes to inputs or results are
automatically and instantaneously propagated between applica-
tions.

This chapter describes how to exchange data between Analytica
and other applications. The primary methods are:

• Using the standard Copy and Paste commands

• Using OLE linking

• Using the Import and Export commands

Chapter Importing, Exporting, and OLE Linking Data

310 Analytica User Guide

18 Copying and pasting

Copying and pasting
You can use the standard Copy and Paste commands with any modifiable attribute of a
variable, module, or function.

Pasting data from a
spreadsheet

To paste tabular data from a spreadsheet into an Analytica table:

1. Select a group of cells in a spreadsheet.

2. Select Copy from that program's Edit menu, to copy the data to the clipboard.

3. Bring the Analytica model to the front and open the Edit Table window you want to
paste the data into.

4. Select a top-left cell or the same number of cells that you originally copied.

5. Select Paste from the Edit menu (Control+v).

Tip When copying a row of data from a spreadsheet into a one-dimensional table, transpose
the data first so that you are copying it as a column of cells, not a row of cells.

Pasting data from
another program

To paste data from a program other than a spreadsheet:

• Use tab characters to separate items, and return characters to separate lines.

• Use numbers in floating point or exponential format. You can use the suffixes that
Analytica recognizes (including K, M, and m; see Character Suffixes for a
comprehensive list). Dollar signs ($) and commas (thousands separators) are not
permitted.

Copying a diagram To copy an influence diagram, including the objects represented by the nodes:

1. Select the group of nodes you wish to copy.

2. Select Copy from the Edit menu (Control+c). The objects that the nodes represent,
as well as a picture of the selected nodes with all of the relevant arrows between the
selected nodes, are copied to the clipboard.

To copy an entire Influence Diagram window, select Copy Diagram from the Edit
menu. The entire influence diagram is copied as a picture representation without copy-
ing the objects that the nodes represent.

Copying an edit table
or result table

To copy data from an edit table or result table:

1. Open the window containing the table.

2. Select cells and choose Copy from the Edit menu (Control+c).

To copy all the elements of a table in addition to the index elements, select Copy Table
from the Edit menu. The entire multidimensional array is copied as a graphic and as a
list of two-dimensional tables in a special text format (see “Edit table data import/export
format”).

Copying a result
graph

To copy or export a result graph:

1. Open the Result window containing the graph.

2. Select Copy from the Edit (Control+c) menu to copy a PICT representation of the
graph.

 Analytica User Guide 311

Chapter Importing, Exporting, and OLE Linking Data18 Using OLE to link results to other applications

Using OLE to link results to other applications
Object Linking and Embedding (OLE) is a widely used Microsoft technology that
enables objects in two applications to be hotlinked, so that changes to the object in one
application cause the same changes in the other application. For example, by linking an
array in Analytica to a table in a Microsoft Excel spreadsheet, any change to the array in
the Analytica model is automatically reflected in the spreadsheet.

By using OLE linking, results from Analytica models can be linked into OLE compliant
applications like Word and Excel. Linking data can save a great deal of work because it
saves you from performing repeated copy and paste operations between Analytica and
other applications whenever your model results change. Without OLE, if you copied
result tables from Analytica, pasted them into a Word document, and later you tweak
your model results, you would need to re-copy and re-paste all those result tables. How-
ever, if you link those tables using OLE, all the data in the Word document will update
either automatically, or if you prefer, when you explicitly decide to update the data.

You may link any of the result table views (i.e., Mid, Mean, Statistics, Probability Den-
sity, Cumulative Probability, and Sample table views). You may link any two-dimen-
sional slice of a multi-dimensional table with the regular Copy command. For result
tables with more than two dimensions, you may decide to link the entire table as a
series of two-dimensional tables using the Copy table option from the Edit menu. You
may also link a rectangular region of cells that are a subset of a a two-dimensional
table. However, you cannot link non-table data such as the information that is contained
in the Object window or Attribute panel.

Linking procedure Steps for linking result data from your Analytica model to an external OLE-compliant
application are as follows. For concreteness, we’ll assume here that the other applica-
tion is Microsoft Excel.

1. In the Analytica Result window, select the cells you want to link and choose Copy
from the Edit menu.

2. From Excel, select the cells where you would like the Analytica data linked.

3. From Excel, choose Paste Special from the Edit menu.

4. The Paste Special dialog box will appear.

5. In this box, choose the option Paste Link, select Text from the As list, and click the
OK button.

You’re done. Any changes to the source result table will be propagated to the linked
data in Excel. The procedure for linking Analytica model results to other OLE-compliant
applications will be similar to the above steps.

Tip The external application must support OLE-linking of tab-delimited text data.
Applications that do not support this format will not display "Text" as an option in Step 5
above, or will disable the Paste Special menu item in Step 3.

Chapter Importing, Exporting, and OLE Linking Data

312 Analytica User Guide

18 Using OLE to link results to other applications

Detailed example of
linking Analytica

results

This example itemizes detailed steps for linking an Analytica result table into an Excel
spreadsheet. Suppose you would like to link the model results displayed above into an
Excel spreadsheet. You can start by linking the column and row headers. Go to the
node titled Cashflow Category and evaluate its result. Notice the result of node Cash-
flow Category is displayed as a column of cells, but you would like to have them linked
into Excel as a row. Unfortunately you may not link this data as a row with a single
Copy/Paste Special operation since Excel will not let you transpose the linked data from
a column to a row. However, you can easily work around this limitation. Link the values
into an unused portion of your spreadsheet or to a blank sheet using the linking proce-
dure described in the previous section. In the cells where you actually would like the
labels to appear as a row, simply reference the linked cells. In other words, define the
cells that will comprise the column headers for the linked table you are creating using
the names of the corresponding linked cells.

Now it's time to link the values of Time as the row headers in your linked table. Time is
an Analytica system variable and one of the elementary ways to copy its values for link-
ing is to create a node called Time and give it the definition time. Evaluate this node and
then link the values displayed in the result table using the linking procedure described in
the previous section.

Linking the body of the table is just a straightforward application of the linking proce-
dure. The number format of the cells will be preserved in fixed point format, but you may
want to use Excel formatting to get the dollar sign and thousand separator displayed.
Excel may switch to the exponential number format or display '########' if your columns
are not wide enough.

The body of the table and its indexes (the row and column headers) are linked. For
instance, if your Analytica model results change and you decide also to change the
value of cost to expense, these changes will be reflected in your linked table in Excel
(see the figure below).

 Analytica User Guide 313

Chapter Importing, Exporting, and OLE Linking Data18 Using OLE to link results to other applications

Important notes about linking to Analytica results
Changing file

locations
When moving linked files from one drive partition to another on the same machine or
between two different computers, keep the relative paths the same. The simplest way to
do this is to keep the linked model files and the other application files to which they are
linked in the same folder.

Automatic vs. manual
updating

OLE links are set for automatic updating by default, but you may change this setting to
manual. We recommend this if the data is linked from an Analytica model with a lengthy
re-computation time or to an application with a lengthy re-computation time.

To change a link’s setting to manual in Word:

1. On Word’s Edit menu, select Links.

2. In the Links box that appears select the link(s) you’re interested in adjusting.

3. Click the radio button labeled manual and click the OK button.

In other OLE-compliant applications the steps for switching from automatic to manual
updating should be very similar to the ones listed above.

You may also decide to set all your OLE links to be updated manually using a prefer-
ence setting in Analytica. From the Edit menu, select Preferences, then in the Prefer-
ences dialog box, uncheck the check box located on the bottom right labeled Auto
recompute outgoing OLE links.

Using Indexes Array-valued results that are to be linked should not have local indexes (created using
the Index..Do construct). All indexes should correspond to index nodes in your dia-
gram.

Number formatting When linking data into OLE compliant applications, the number format will be the same
as Analytica’s format at the time of link creation. However, if the linked Analytica data
uses the default Suffix number format, the linking will convert the format to Exponential,
which is more universally recognizable in other applications. In programs that have their
own number formatting settings such as Excel, the number format will likely be adjusted
according to the settings for the cells you are pasting into. However you must still be
careful about losing significant digits (see next paragraph).

Precision is another important issue in number formatting. Before linking from Analytica,
you should first adjust the number format so that it displays all the significant digits you
would like to have in the other OLE-savvy application to which you are linking.

Chapter Importing, Exporting, and OLE Linking Data

314 Analytica User Guide

18 Linking data from other applications into Analytica

Refreshing links
when Analytica model

is not running

If you refresh the links between an Analytica model and another OLE-savvy application
when the Analytica model is not running, the following events will occur:

1. A new instance of Analytica is launched

2. It automatically loads the Analytica model

3. It evaluates the variables upon which the links are dependent,

4. It reactivates the links, and

5. It updates the linked data.

There are two ways to refresh the links this way. The first case occurs when a file with
links is opened while the model file to which it is linked is closed, and you answer ’Yes’
to the dialog box prompting you to update the linked data. The other way is if you are
working with a file containing links to a model that is not running and you explicitly
update the links. To explicitly update the links in Excel, you would select Links from the
Edit menu. Then in the Links dialog box, select the links you would like to refresh and
click the Update button.

Linking data from other applications into Analytica
Using OLE linking, you may incorporate data originating in OLE-compliant applications
as the input for nodes in your Analytica model. You accomplish this by linking the exter-
nal data to edit tables in Analytica. Once again, this removes the need to perform
numerous copy and paste operations each time the source data in the other application
changes.

When linking data into Analytica, you may link data into any edit table with less than
three dimensions. When linking data in edit tables you must link all the contents of the
table; linking a subset of an edit table is not supported. You may not link data from other
applications to anywhere else than an edit table in Analytica including the diagram win-
dows, Object windows, and the Attribute panel.

Linking procedure Steps for creating a linked edit table in Analytica with data from an Excel spreadsheet:

1. In Excel, select the cells you want to link to Analytica and choose Copy from the Edit
menu.

2. In Analytica, make the edit table where you want the Excel data linked the front most
window.

3. From the Edit menu or the right mouse button pop-up menu, choose Paste Special
and the Paste Special dialog box will appear.

4. In this box, choose the option Paste Link, select Text from the As list, and click the
OK button.

The process for linking data from Word or other OLE compliant applications will be anal-
ogous to the steps just outlined.

Example of linking a table into Analytica
This section itemizes detailed steps for linking a table from Excel into Analytica by creat-
ing a node with a "Linked Table" definition. Specifically, suppose you desire to link the
Excel table displayed in the following figure into Analytica.

 Analytica User Guide 315

Chapter Importing, Exporting, and OLE Linking Data18 Linking data from other applications into Analytica

Start by creating two indexes in Analytica to store the row and column headers. Title the
first index Items and the second Status. Select the node Items and then click the Show
definition button on the toolbar (this is the button with the pencil icon) or right mouse
menu. In the Attribute panel or Object window that appears, click the expr popup
menu and choose List of Labels. Press the down arrow or Return key three times. This
will give you three cells — item 1, item 2 and item 3. In Excel, copy the three cells used
as the row headers (i.e., Red Widgets, Blue Widgets, and Green Widgets); return to
Analytica and do a regular paste into the three cells of the definition for the Index node
Items.

Now you need to copy the values of the column headers (i.e., In Stock and Ordered)
into the definition for the index node Status. Since Analytica enforces strict dimension
checking (i.e., you cannot paste a 3 x 1 array of cells into a 1 x 3 array of cells), you are
required to first convert the row into a column. You can accomplish this easily by copy-
ing the row, moving to an unused portion of the spreadsheet or onto a blank sheet, and
choosing Paste special from Excel's Edit menu. The Paste Special dialog box will
appear and you need only select the Transpose check box on the bottom right. Click
the OK button and you have converted the column header cells from a row into a col-
umn. Now copy this column, go back to Analytica, select the Status node, and click the
Show definition toolbar button. Select the first cell 'item 1' and choose Paste from the
Analytica's Edit menu.

Since you've finished creating the indexes, you're ready to start on the node that will
contain the linked table. Create a variable node in Analytica and title it Inventory. With
this node selected, click the Show definition button on the toolbar. In the Attribute
panel or Object window that appears, click the expr popup menu and choose Table.
The Indexes dialog appears. In this dialog, select Items and click the button. This
will move Items to the Selected Indexes section. You also want to select Status and
then click the button to make it a selected index as well. Click the OK button and an
edit table will appear as follows.

Chapter Importing, Exporting, and OLE Linking Data

316 Analytica User Guide

18 Linking data from other applications into Analytica

Go to Excel and select the numerical values displayed in the table and choose Copy
from the Edit menu. Return to Analytica (while in edit mode) and click anywhere in the
edit table grid. Choose Paste Special from the Edit menu and the Paste Special dialog
box comes into view. You want the settings in the box to be Paste Link and Text which
are the default settings (see below). Click OK.

The caption for the table changes from Edit Table to Linked Table and you're done. If
you arrange the application windows so that you can see the source table in Excel and
the linked table in Analytica, you can readily demonstrate that the link is activated.
Change the value for Green Widgets Ordered from 2 to say 17. The corresponding
value in Analytica's linked table will change accordingly.

 Analytica User Guide 317

Chapter Importing, Exporting, and OLE Linking Data18 Linking data from other applications into Analytica

Tip The data within the table is linked and will be updated automatically when altered, but
the row and column headers are not linked and any changes to their values will have to
be propagated using the standard cut and paste operations. Perform this by copying to
the indexes used by the table, not to the table itself.

Important notes about linking into Analytica edit tables
Changing file

locations
When moving linked files on the same machine or between two different computers,
keep the relative paths the same so that the files can locate each other. The simplest
way to do this is to keep the linked model file(s) and the other application file(s) to which
it is linked in the same folder.

Automatic vs. manual
updating

OLE links are set for ’automatic’ updating by default, but you may change this setting to
’manual’. This may be desirable if the linked data is used in a model with a lengthy com-
putation time. To change a link’s setting to ’manual’ updating:

1. On Analytica’s Edit menu, select OLE Links.

2. In the Edit Analytica Links box that appears select the link(s).

3. Click the radio button labeled manual and click the OK button.

Terminating links You may want to terminate a link to a source file for a number of reason including if you
do not have the source file or if you would like to edit the values in a linked table. To
break a link, bring up the Edit Analytica Links dialog, by choosing OLE Links from the
Edit menu. Select the link you would like to terminate and click the Break Link button.

Activating the other
application

If you have linked data from an external application into Analytica, after loading Analyt-
ica you can make the other application visible using the Open Source button on the
OLE Links dialog, accessed through the Edit menu. If you implement a portion of your
model in Analytica and a portion in an external application, with OLE links in both direc-
tions, you can make both applications simultaneously visible on the screen by loading
the Analytica model first, then pressing the Open Source button to open the external
application.

Chapter Importing, Exporting, and OLE Linking Data

318 Analytica User Guide

18 Importing and exporting

Importing and exporting
Importing a definition To import a definition from a text file into expression format:

1. Select the definition field of the variable in either the Object window or Attribute
panel definition view.

If the variable is defined as a List, List of Labels, or Edit Table, select the cell(s) in
which to import.

2. Select Import from the File menu. A dialog box prompts you for the file name from
which to import.

Importing into an edit
table

To import data from a tab-delimited text file into an edit table:

1. Open the window containing the table.

2. Select cells and choose Import from the File menu.

A dialog box prompts you for the file name from which to import.

To import all the elements of a multidimensional table including the index elements, a
special text format is required (see “Edit table data import/export format” on page 319).
This is also the format in which an edit table or result table is exported. The indexes of
the table must have been previously created as nodes.

Exporting To export a variable’s definition or result table to a text file, first be certain that the text
file is closed.

1. Select the variable to be exported from and open either the Object window, definition
in the Attribute panel or Result window.

2. Select the definition field, list cell(s), or table cell(s) for exporting.

3. Select Export from the File menu. A dialog box prompts you for the file name to
export to.

 Analytica User Guide 319

Chapter Importing, Exporting, and OLE Linking Data18 Printing to a file

Printing to a file
Another way of exporting any Diagram window, Object window, or Result window to a
file is to print to a file:

1. Select Print from the File menu.

2. Select Print to File and press Enter or click OK.

3. Enter the name of the file and the format for the file in the dialog box that appears.

Edit table data import/export format
Multidimensional data being imported or copied into an edit table must be in a text file
with the special format described in this section. This is also the format in which an edit
table or result table is exported.

• TextTable is a keyword.

• Attribute is the name of the attribute into which the data is to be pasted (usually
definition).

• Variable identifier is the identifier of the variable node into which the data is to
be pasted.

• Index identifier is the identifier of the index for this variable. This node must
already exist in the model.

• Each index value and array value pair must be separated by tab characters.

Chapter Importing, Exporting, and OLE Linking Data

320 Analytica User Guide

18 Edit table data import/export format

One-dimensional array
The format for a one-dimensional array is:
TextTable <Attribute> <Variable identifier>
<line break>

<tab><Index identifier><line break>

<Index value><tab><Array value><line break>

Example

Two-dimensional array
The format for a two-dimensional array is:
TextTable <Attribute> <Variable identifier>
<line break>

<Index1 identifier>< tab><Index1 values separated by tabs><line break>

<Index2 identifier><line break>

<Index2 value1><tab><Array values separated by
tabs><line break>

<Index2 value2><tab><Array values separated by
tabs><line break>

<Index2 valueN><tab><Array values separated by
tabs><line break>

Keyword Attribute Variable identifier

TextTable Definition House_cost_inputs

House_inputs

PropTax 3400

Tax rate 0.44

Maintenance 4000

Interest 0.105

Appreciation 0.08

Index identifier

Index values Array values

 Analytica User Guide 321

Chapter Importing, Exporting, and OLE Linking Data18 Edit table data import/export format

Example

Three-dimensional array
The format for a three-dimensional array is:
TextTable <Attribute> <Variable identifier> <line break>

<Index1 identifier><tab><Index1 Value1><line break>

<Index2 identifier><tab><Index2 values separated by tabs><line break>

<Index3 identifier><line break>

<Index3 value1><tab><Array values separated by tabs><line break>

<Index3 value2><tab><Array values separated by tabs><line break>

<Index3 valueN><tab><Array values separated by tabs><line break>

<Index1 identifier><tab><Index1 Value2><line break>

<Index2 identifier><tab><Index2 values separated by tabs><line break>

<Index3 identifier><line break>

<Index3 value1><tab><Array values separated by tabs><line break>

<Index3 value2><tab><Array values separated by tabs><line break>

<Index3 valueN><tab><Array values separated by tabs><line break>

and so on for each value of Index1.

TextTable Definition Mortgage

Down payment 20000 45000 60000

Buying price

200000 180000 155000 140000

400000 380000 355000 340000

600000 580000 555000 540000

Keyword Attribute Variable identifier

Index1

Index1 valuesArray values

Index2

Index2 values

Chapter Importing, Exporting, and OLE Linking Data

322 Analytica User Guide

18 Edit table data import/export format

Example

Number format
Numerical data can be imported in any format recognized by Analytica (see “Number
formats”).

Numerical data will be exported in the format set for the table, with these exceptions:

• Suffix format numbers will be exported in scientific exponential format.

• Fixed decimal point numbers of more than 9 digits will be exported in scientific
exponential format.

• If a date format begins with the day of the week, e.g., "Saturday, January 1, 2000",
the weekday is suppressed: "January 1, 2000".

TextTable Definition Net_diff

Buying price 200000

Years owned 5 10 15

Down payment

20000 10112 12160 13525

45000 10093 12158 13540

60000 10073 12157 13555

Buying price 400000

Years owned 5 10 15

Down payment

20000 10180. 14201. 16867.

45000 10160. 14199. 16882.

65000 10141. 14198. 16897.

Buying price 60000

Years owned 5 10 15

Down payment

20000 10248 16242 20209

45000 10228 16241 20224

60000 10208 16239 20239

Keyword Attribute Variable identifier

Index1

Index2
Index1 Value1

Index3

Index3 values

Index2 values

Index1 Index1 Value2

Array values

Index1 Index1 Value3

Chapter 19 Working with Large
Models

This chapter shows you how to:

• Navigate large models

• Combine existing models into an integrated model

Chapter Working with Large Models

324 Analytica User Guide

19 Show module hierarchy preference

Working with Large Models
Large models, which include many variables organized into multiple modules at several
levels of hierarchy, can be challenging to find your way around. The first part of this
chapter describes how to navigate larger models, using the hierarchy preference, the
Outline window, and variable input and output attributes. The second part of this chap-
ter describes how to combine existing models into an integrated model.

Show module hierarchy preference
Often a large model has many layers of hierarchy. You can see the hierarchy depth of
each module at the top of its Diagram window by setting a preference. Select Prefer-
ences from the Edit menu to display the Preferences dialog box.

If you check the Show module hierarchy box, the top of the active Diagram window dis-
plays one or more module node shapes to indicate its hierarchy depth.

Show module
hierarchy
option

Indicates that this module has a parent in the model

 Analytica User Guide 325

Chapter Working with Large Models19 The Outline window

The Outline window
The Outline window displays a listing of the nodes inside a model. It can also show the
module hierarchy as an indented list of modules. It provides an easy way to orient your-
self in a large model and to navigate within it.

Opening the Outline
window

To open the Outline window, click the Outline button in the toolbar .

The Outline window highlights the entry for the selected module or variable.

Opening details from
an outline

To display a module’s Diagram window, double-click its entry in the outline.

To display a variable’s Object window, double-click its entry in the outline.

Expanding and
contracting the

outline

By default, the outline lists all nodes in the model. Check the Modules Only box to list
only the modules (exclude variables and functions).

In the outline, each module entry has a triangle icon (or) to let you display or hide
the module’s contents.

Indicates that the module’s contents are not shown in the Outline window. Click this
icon to display the module’s contents.

Indicates that the module’s contents are shown as an indented list. Click this icon to
hide the module’s contents.

Viewing and editing
attributes

The Attribute panel at the bottom of the Outline window works just like the Attribute
panel available at the bottom of a Diagram window (see “Diagram window” on
page 17).

Check to display only
modules

Attribute popup menu

Attribute panel

List of variables,
modules, and functions

Selected object is
highlighted

Click here to see
modules only

Chapter Working with Large Models

326 Analytica User Guide

19 Finding variables

To view the attributes of a listed node:

1. Select the node by clicking it.

2. Choose the attribute to examine from the Attribute popup menu (see “Creating or
editing a definition” on page 116).

If you edit attributes in this panel, the changes are propagated to any other Attribute
panels and Object windows.

Viewing values To see the Outline window with mid values, select Show With Values from the Object
menu. Each variable whose mid value has been evaluated and is an atom will display in
the window (see “Showing values in the Object window” on page 24).

Finding variables
To locate a variable in its diagram, by identifier or by title, use the Find dialog box.

Find dialog box To display the Find dialog box:

1. Select Find (Control+f) from the Object menu.

2. Choose the attribute to search by: Identifier or Title.

3. In the text field, enter the identifier or title for the Analytica object for which you want
to search. You can enter an incomplete identifier or title, such as "down" for "Down
payment."

4. Click the Find button to initiate the search.

 Analytica User Guide 327

Chapter Working with Large Models19 Managing attributes

The Diagram window containing the object found is displayed, with the node of the
object selected.

If the name you type does not match completely any existing identifier or title (depend-
ing on which attribute you are searching), the first identifier or title that is a partial match
will be displayed.

To find the next object that is a partial match to the last identifier or title that you entered,
select Find Next (Control+g) from the Object menu.

To find an object whose identifier matches the selected text in an attribute field (such as
a definition field), select Find Selection (Control+h) from the Object menu.

Managing attributes
Every node in an Analytica model is described by a collection of attributes. For some
models, you may want to control the display of attributes or create new attributes. Some
attributes apply to all classes (variable, module, and function). Others apply to specific
classes, as listed in the following table.

Key:

Attribute Function Module Variable

Author *

Check ÷ ÷

Class * * *

Created *

Definition * *

Description * * *

Domain ÷

File Info *

Help ÷ ÷ ÷

Identifier * * *

Inputs ÷ ÷

Last Saved *

Outputs ÷ ÷

Parameters *

Probvalue ÷

Title * * *

Units * *

Value ÷

User-created (up to 5) ÷ ÷ ÷

plain = modifiable by user * = always displayed

Chapter Working with Large Models

328 Analytica User Guide

19 Managing attributes

For descriptions of the attributes, see “Glossary”.

Attributes dialog box Use the Attributes dialog box to control the display of optional attributes in the Object
window and Attribute panel and to define new attributes.

To open the Attributes dialog box, select Attributes from the Object menu.

• Class popup menu

Use this menu to select the Attribute list for variables, modules, or functions.

• Attribute list

This list shows attributes for the selected class. Attributes with an asterisk (*) are
always displayed in the Object window and Attribute panel. Attributes with a check
mark (√) are displayed optionally.

Displaying optional
attributes

To display an optional attribute in the Object window and Attribute panel, click it once
to select it, then click it again to show a check mark.

To hide an optional attribute, click it once to select it, then click it again to remove the
check mark.

Creating new
attributes

You can create up to five additional attributes. For example, you could use a reference
attribute to include the bibliographic reference for a module or variable.

To create a new attribute in the Attributes dialog box:

1. Select new Attribute from the attribute list to show the new Attribute Title field and
the Create button.

2. Enter the title for the new attribute in the Title field. The title can contain a maximum
of 14 characters; 10 characters are the maximum recommended for visibility with all
screen fonts.

3. Click the Create button to define the new attribute.

A newly created attribute is displayed for modules, variables, and functions. To control
whether or not it is displayed for modules, variables, or functions, select the Class
popup menu in the Attributes dialog box, and turn the check mark on or off.

Renaming an
attribute

To rename a created attribute:

1. Select it in the Attribute list. The Title field and the Rename button appear.

italic = set by Analytica √ = optionally displayed

Class popup menu

Check mark indicates optional
attribute is displayed

Attribute list

 Analytica User Guide 329

Chapter Working with Large Models19 Invalid variables

2. Edit the name of the attribute in the Title field.

3. Click the Rename button.

Referring to the value of an attribute
Analytica includes the following function for referring to the value of an attribute in a
variable’s definition:

Attrib Of x
Returns the value of attribute attrib of object x, where x may be a variable, function, or
module. For most attributes, including Identifier, Title, Description, Units, Definition, and
user-defined attributes the result is a text value. For Value and Probvalue, the result is
the value of the variable (deterministic or probabilistic, respectively). For Inputs, Out-
puts, and Contains (an attribute of a module), the result is a vector of variables.

You cannot refer to an attribute of a variable by naming the variable in the definition of
that variable. Instead, refer to it as Self, for example:

Variable Boiling_point

Units: F

Definition: If (Units of Self) = ’C’

THEN 100 ELSE 212

Boiling_point → 212

Library Special

Example Units of Time → 'Years'

Tip Changes to attributes other than Definition do not automatically cause recomputation of
the variables whose definitions refer to those attributes. So, if you change Units of
Boiling_point to C, the value of Boiling_point will not change until Boiling_point
is recomputed for some other reason.

Invalid variables
To locate all variables in a model with syntactically incorrect or missing definitions,
select Show Invalid Variables from the Definition menu.

Chapter Working with Large Models

330 Analytica User Guide

19 Using filed modules and libraries

Double-click a variable to open its Object window. From the Object window, you can
edit the definition, or click the Parent Diagram button to see the variable in its dia-
gram.

Using filed modules and libraries
Modules and libraries can be components of a model. If you are building several similar
models, or if you are building a large model composed of similar components, you can
create modules and libraries for reuse. (See Chapter 20, “Building Functions and
Libraries” for details about libraries.)

To use a module or library in more than one model, create a filed module or filed
library.

Creating a filed
module or library

To create a filed module or library:

1. Create a module by dragging the module icon from the node palette onto the
diagram, and give it a title.

2. Create functions and/or variables in the module, or create them elsewhere and move
them into the module.

3. Change the class of the module to Module or Library (see “To change the
class of an object” on page 58).

4. The Save As dialog box appears. Give the filed module or library a name and save it.

5. If you want the original model to load the new filed module or library the next time it
is opened, save the model using the Save command.

Locking a filed
module or library

To prevent a filed module or library from being modified, lock it:

1. Close the filed module or library, or close Analytica.

2. In Windows Explorer, select the filed module or library.

3. Select Properties from the File menu.

 Analytica User Guide 331

Chapter Working with Large Models19 Using filed modules and libraries

4. Check the Read-only check box.

5. Close the Properties window.

Adding a module to a
model

To add a filed module to the active model, use the Add Module dialog box (see “Adding
a module or library”). You can either embed a copy of the module or link to the original
of the filed module.

Adding library to a
model

To add a filed library to the active model, use the Add Module dialog box (see “Adding
a module or library”). You can either embed a copy of the library or link to the original of
the filed library.

When you select Add Library from the File menu, the Open File dialog box always
opens up to fixed directory, regardless of the current directory settings or previous
changes of directories. The directory is determined by a registry setting: /Lumina
Decision Systems/Analytica/3.0/AddLibraryDir, which is set by the Analytica
installer to INSTALLDIR/Libraries.

Removing a module
or library from a

model

To remove a filed module or library from a model, first select it. Then, select Cut or
Clear from the Edit menu. An embedded copy will be deleted; a linked original will still
exist as a separate file.

Warning:Any definitions that use a function in a deleted library or that have an input
from a deleted module or library will have the deleted object removed and
will be changed to FunctionOf(remaining variables).

Check this option to
lock a library or module
file

Chapter Working with Large Models

332 Analytica User Guide

19 Adding a module or library

Saving changes After you have linked to a filed module or library, the Save command saves every filed
module and library that has changed, as well as the model containing them, in their cor-
responding files.

The Save As and Save A Copy In commands save only the active (topmost window’s)
model, filed module or filed library.

Adding a module or library
Use the Add Module dialog box to add a filed module or library to the active model.

If you are adding a module, you open the Add Module dialog box by selecting Add
Module from the File menu (Control+l). If you are adding a library, you open the Add
Module dialog box by selecting Add Library from the File menu.

The standard Open Model dialog box appears. Select the desired module in that dialog
box. The following dialog box then appears:

Tip Be sure that the selected model or module was saved with a class of filed module or
filed library. If it was saved with a class of model, when it is linked to the root model, its
preferences and uncertainty settings will overwrite the preferences and uncertainty
settings of the root model.

An added module or library may be either embedded or linked. You can optionally over-
write any nodes with the same identifiers.

Embed a copy Embeds a copy of the selected module or library in the active model, making it a part of,
and saving it with, the model. Any changes to the copy will not affect the original filed
module or library.

Link to original Creates a link to the selected module or library, which can be separately opened and
saved. If you make changes to a linked module or library from one model, the changes
are saved in the original’s file and any other models linked to the original will be affected
by the changes.

A linked module or linked library has a bold arrow pointing into it on the diagram.

 Analytica User Guide 333

Chapter Working with Large Models19 Combining models into an integrated model

Merge contents
(overwrite)

Select this check box to overwrite existing objects in the active model with objects with
the same identifiers from the added module or library. This is useful if the file being
added contains updates from a previous version.

If you do not select this check box, and an object in the file being added has the same
identifier as one in the active model, Analytica will point that out and ask if you want to
rename the variable. If you click Yes, it will rename the variable in the existing model,
and update all definitions in the existing model to use the changed identifier. It will
leave unchanged the identifier of the variable in the module it is adding (which may
contain definitions referencing that identifier that it has yet to read.) Hence, all the def-
initions in the existing model and added module will continue to reference the correct
(original) variables.

Combining models into an integrated model
Large models introduce a unique set of modeling issues. Modelers may want to work on
different parts of a model simultaneously, or at remote locations. During construction, a
large model may be more tractable when broken into modular pieces (modules), but all
modules should use a common set of indexes and functions. Analytica provides the
functionality required to support large-scale, distributed modeling efforts.

This section describes how to best use Analytica for large modeling projects and con-
tains suggestions for planning a large model where responsibility for each module is
assigned to different people (or teams).

Define public
variables

The first step to creating an integrated model is to define public variables for use by all
modules and agree on module linkages.

Every integrated model will have variables that are used by two or more projects (for
example, geographical, organizational, or other indexes, modeling parameters, and uni-
versal constants). These public variables should be defined in a separate module, and
distributed to all project teams. Each team uses Add Module (see “Adding a module or
library”) to add the public variables module to its model at the outset of modeling. Using
a common module for public variables avoids duplication of variables and facilitates the
modules’ integration.

Source control over the public variable module must be established at the outset so that
all teams are always working with the same public variables module. Modelers should
not add, delete, or change variables in the public variables module unless they inform
the source controller, who can then distribute a new version to all modelers.

If multiple teams will be working on separate projects, it is essential that the teams
agree upon inputs and outputs. Modelers must specify the input variables, units, and
dimensions that they are expecting as well as the output variables, units, and dimen-
sions that they will be providing. The indexes of these inputs and outputs should be con-
tained in the public variables module.

Bold arrow indicates that this is a
linked module

Chapter Working with Large Models

334 Analytica User Guide

19 Combining models into an integrated model

Create a modular
model

By keeping large pieces of a model in separate, or filed modules, modelers can work on
different parts of a model simultaneously. You can break an existing model into mod-
ules, or combine modules into an integrated model. In both cases, the result is a top-
level model, into which the modules are added.

To save pieces of a large model as a set of filed modules, see “Using filed modules and
libraries”.

To combine existing models into a new, integrated model:

1. Create or open the model that will be the top level of the hierarchy. This is the model
to which all sub-models will be added.

2. Using Add Module (see “Adding a module or library”), add in the sub-models. Be
sure to check the Merge option in the Add Module dialog box. Add the modules in
the following sequence:

• Any public variable modules

• All remaining modules in order of back to front; that is:

• first, the module(s) whose outputs are not used by any other module, and

• last, the module(s) which take no inputs from any other module.

3. Save the entire integrated model, using the Save command.

The two alternative methods of controlling each module’s input and output nodes so the
modules can be easily integrated, are:

• Identical identifiers

• Redundant nodes

Identical identifiers Assign the input nodes in each module the exact same identifiers as the output nodes in
other modules that will be feeding into them. When you add the modules beginning with
the last modules first (that is, those at the end of model flow diagram), the input nodes
will be overwritten by the output nodes, thus linking the modules and avoiding duplica-
tion.

With identical identifiers, the individual modules cannot be evaluated alone because
they are missing their input data. They can be evaluated only as part of the integrated
model.

Redundant nodes Place the output node identifiers in the definition fields of their respective input nodes.
Due to the node redundancy, this method requires more memory than using identical
identifiers, and it is therefore less desirable when large tables of data are passed
between modules. However, since no nodes are overwritten and lost upon integration,
this method preserves the modules’ structural integrity, with both input and output
nodes visible in each module’s diagram.

With redundant nodes, each module can be opened and evaluated alone, using stand
alone shells.

Stand alone shells With redundant nodes, you can create a top-level model that contains one or more
modules and the public variables module plus dummy inputs and outputs. Such a top-
level model is called a stand alone shell because it allows you to open and evaluate a
single module "standing alone" from the rest of the integrated model. Stand alone shells
are useful when modelers want to examine or refine a particular module without the
overhead of opening and running the entire model.

To create a stand alone shell for module Mod1, which is a filed module:

 Analytica User Guide 335

Chapter Working with Large Models19 Managing windows

1. Open the integrated model and evaluate all nodes that feed inputs to Mod1.

2. Use the Export command (see “Importing and exporting”) to save the value of each
feeding node in a separate file. Make a note of:

• The identifier of each node and the indexes by which its results are
dimensioned,

• The identifiers of Mod1’s output nodes, if you want to include their dummies in
the stand alone shell.

3. Close the integrated model.

4. Create a new model, to be the stand alone shell.

5. Use Add Module to add the public variables module.

6. For each input node, create a node containing an edit table, using the identifier and
dimensions of the feeding nodes you noted from the integrated model.

7. Use the Import command (see “Importing and exporting”) to load the appropriate
data into each node's edit table.

8. Use Add Module to add Mod1 into the stand alone shell.

9. To include output nodes at the top level of the hierarchy, create nodes there and
define them as the identifiers of Mod1’s outputs.

10. Save the shell.

The shell now has all the components necessary to open and evaluate Mod1, without
loading the entire model. As long as modelers do not make changes to the dimensions
or identifiers of module inputs and outputs, they can modify a module while using the
stand alone shell, and the resulting module will be usable within the integrated model.

Cautions in combining models
Identifiers Every object in a model must have a unique identifier. The identifiers of filed libraries

and filed modules that you add to a model, as well as their variables and functions, can-
not duplicate identifiers in the root model. See “Merge contents (overwrite)”.

Created attributes When you combine models with created attributes, the maximum number of defined
attributes is five (see “Managing attributes”).

Location of linked
modules and libraries

If the model will eventually be distributed to other computers, all modules and libraries
should be on the same drive as the root model prior to being added to the root model.
When the model is distributed, distribute it with all linked modules and libraries.

Managing windows
An Analytica model can potentially display thousands of Diagram, Object, and Result
windows. To prevent your screen from becoming cluttered, Analytica limits the number
of windows of each type that can be open at once. The default limits are:

• The top-level Diagram window and not more than one Diagram window for each
lower level in the hierarchy

• One Object window

Chapter Working with Large Models

336 Analytica User Guide

19 Optimization and speed-up

• Two Result windows

The oldest window of the same type is deleted whenever you display a new window that
would otherwise exceed these limits.

Overriding the limits
on the number of

windows

To display more windows of the same type, override the default limits in one of the fol-
lowing ways:

• Open a second Object window, or open a Diagram window without closing an
existing Diagram window at the same level, by pressing the Control key (Control)
while you click or double-click to open the new window.

• Use the Preferences dialog box (see “Preferences dialog”) to change the limits.
Select Preferences from the Edit menu.

.

In the Windows of each Kind area, select Any number instead of One only.

To display more Result windows and keep the limit on Diagram and Object
windows, enter the maximum number of Result windows.

Optimization and speed-up
Numerous optimizations in the Analytica 3.1 engine result in a substantial increase in
speed over Analytica 2.0. We have found a factor of between 1.5 and 4 reduction in the
time to evaluate a model, depending on the functions and dimensionality of the model.

One example improvement is in Subscript(). For example, the evaluation of A[I=J], or
equivalently Subscript(A,I,J), is now approximately linear in the size of J, rather
than proportional to the product of the sizes of I and J, as it used to be.

Rectangularization of
intermediate results

In the most general case, intelligent array abstraction requires an extra internal, but
somewhat costly, step during evaluation to make sure all intermediate arrays are fully
rectangular. Skipping this step seldom has an impact on the final result, but can speed
things up dramatically for certain models, especially those using dynamic simulation
extensively. Unfortunately, in the very rare cases where it does make a difference, skip-
ping the step can lead in incorrect results. By default, Analytica 3.1 uses the safe but
slower setting, for the system variable, Rectangularize_inter, that controls this. You
can clear this setting in the Preferences window for faster execution. See “Safe Inter-
mediates”.

Click here to allow an unlimited
number of windows on the

screen at once

Enter the maximum number
of Result windows

Chapter 20 Building Functions and
Libraries

This chapter shows you how to:

• Create your own functions

• Create your own function libraries

Chapter Building Functions and Libraries

338 Analytica User Guide

20 Example function

Building Functions and Libraries
You can create your own functions to perform calculations you use frequently. A func-
tion has one or more parameters; its definition is an expression that uses these param-
eters. You can specify that the function check the type or dimensions of its parameters,
and control their evaluation by using various parameter qualifiers.

A library is a collection of functions grouped in a library file to extend Analytica’s built-in
functions for use for particular types of application. more than one model. Analytica is
distributed with an initial set of libraries, available in the Libraries folder inside the Ana-
lytica folder on your hard disk. If you add a library to a model, it will appear with its func-
tions in the Definition menu, and these functions will appear almost the same as the
built-in functions.

You may want to look at these libraries to see if they provide functions useful for your
applications. You may also look at library functions as a starting point or inspiration for
writing your own functions.

Analytica experts may create their own function libraries for particular domains. Other
Analytica users can benefit from these libraries.

Example function
The following function, Capm(), computes the expected return for a stock under the
capital asset pricing model.

Parameters The three parameters, Rf, Rm, and Beta, are qualified to be numbers.

Definition The definition is a simple expression using Rf, Rm, and Beta.

Sample usage You use the Capm() function in a definition in the same way you would use Analytica’s
built-in functions. For example, if the risk free rate is 5%, the expected market return is
8%, and StockBeta is defined as the beta value for a given stock, we can find the
expected return according to the capital asset pricing model as:

 Analytica User Guide 339

Chapter Building Functions and Libraries20 Using a function

Stock_return: Capm(5%,8%,StockBeta)

This definition functions equally well when StockBeta is an array of beta values. In this
case, the result will be an array of expected returns.

Using a function
Position-based

calling syntax
Analytica uses the standard position-based syntax for using, or calling, a function. You
simply list the actual parameters after the function name, within parentheses, and sepa-
rated by commas, in the same sequence in which they are defined. For example,

Capm(5%,8%,StockBeta)

evaluates function Capm(Rf, Rm, Beta) with Rf set to 5%, Rm set to 8%, and Beta set
to Stockbeta.

Name-based calling
syntax

Analytica also supports a much more flexible name-based calling syntax, using the
names of the parameters:

Capm(beta: StockBeta, rf: 5%, rm: 8%)

In this case, we name each parameter, and put its actual value after a colon ":" after the
parameter name. The name-value pairs are separated by commas ",". The parameters
can be specified in any order, provided all the required parameters are mentioned. This
method is much easier to read when the function has many parameters. It is especially
useful when there are many parameters and some are optional. See “Optional parame-
ters” for how to qualify parameters as optional.

You can mix positional and named parameters, as in:
Fu1(1, 2, D:4, C:3)

But, you may not list a positional parameter after a named parameter:
Fu1(1, D:4, 2, 3)

will display an error message.

This name-based calling syntax is analogous to Analytica’s name-based subscripting
for arrays to obtain selected elements of an array. In each case, you do not need to
remember the particular sequence of parameters or indexes to understand how the
model works.

Tip Name-based calling syntax works for all user-defined functions. It also works for some
of the built-in functions, including the Financial library, text functions, Optimizer functions,
EigenDecomp, and MatrixMultiply. We recommend that you do not use it for other
built-in functions.

Creating a function
To define a function:

1. Make sure the edit tool is selected and you can see the node palette.

2. Drag the Function node icon from the node palette into the diagram area.

Chapter Building Functions and Libraries

340 Analytica User Guide

20 Attributes of a function

3. Title the node, and double-click it to open its Object window.

4. Enter the new function’s attributes (described in the next section).

Attributes of a function
Like other objects, a function is defined by a set of attributes. Many of these attributes
are the same as the attributes of variables, including identifier, title, units, description,
and definition, inputs, and outputs. It possesses one unique attribute, Parameters,
which specifies the parameters available to the function.

Identifier If you are creating a library of functions, make a descriptive identifier. This identifier
appears in the function list for the library under the Definition menu, and is used to call
the function. Analytica makes all characters except the first one lower case.

Title If you are creating a library of functions, limit the title to 22 characters. This title appears
in the Object Finder dialog box to the right of the function.

Units If desired, use the units field to document the units of the function’s result. The units are
not used in any calculation.

Parameters The parameters to be passed to the function must be enclosed in parentheses, sepa-
rated by commas. For example: (x,y,z)

The parameters may have type qualifiers (see the next section).

If you are creating a library of functions, use descriptive abbreviations for the parame-
ters and give them a logical sequence. The parameters will appear in the Object Finder
dialog box and they will be pasted when the function is pasted from its library in the Def-
inition menu.

Description The description should first document what the function returns, and explain each of its
parameters. If the definition is not immediately obvious, the second part of the descrip-
tion should explain how it works. The description text for a function in a library also
appears in a scrolling box in the bottom half of the Object Finder dialog.

Definition The definition of a function is an expression or compound list of expressions. It should
use all of its parameters. When you select the definition field of a function in edit mode,
it shows the Inputs pull-down menu that lists the parameters as well as any other vari-
ables or functions that have been specified as inputs to the function. You can specify
the inputs to a function in the same way as for a variable, by drawing arrows from each
input node into the function node.

Parameter qualifiers
Parameter qualifiers are keywords you may use in parameters to specify for each
parameter how, or whether, it should be evaluated when the function is used (called),
and whether it should have a particular type of value, such as number, text value, or
other. Other qualifiers specify whether a parameter should be an array, and if so, which
indexes it expects.You can also specify whether a parameter is optional. By using qual-
ifiers properly, you can help make functions easier to use, more flexible, and more reli-
able.

For example, consider this parameters attribute:

 Analytica User Guide 341

Chapter Building Functions and Libraries20 Parameter qualifiers

(A: Number Array[I,J]; I, J: Index; C; D: Optional Atom Text)

It defines five parameters, A, I, J, C, and D. A should be an array of numbers, indexed by
parameters I and J. I and J, being separated by commas "," rather than semicolons ";"
are subject to the same qualifier, Index. C has no qualifiers, and so can be of any type,
or dimensions. The semicolon ";" between C and D means that the qualifiers following D
do not apply to C. D has three qualifiers, specifying that it is Optional, Atom, and a text
value. See below for details.

Evaluation mode qualifiers
Evaluation modes control how, or whether, Analytica evaluates each parameter when a
function is used (called). The evaluation mode qualifiers are:

Context Evaluates the parameter deterministically or probabilistically according to the current
context. For example, consider
Function Fn1(x)

Parameters: (x: Context)

Mean(Fn1(x))

Mean() is a statistical function that always evaluates its parameter probabilistically.
Hence, the evaluation context for x is probabilistic, and so Fn1 will evaluate x probabilis-
tically.

Context is the default evaluation mode used when no evaluation mode qualifier is men-
tioned. So, strictly, Context is redundant, and you can omit it. But, it is sometimes use-
ful to specify it explicitly to make clear that the function should be able to handle the
parameter whether it is deterministic or probabilistic.

ContextSample Causes the qualified parameter to be evaluated in prob mode if any of the other param-
eters to the function are Run. If not, it evaluates in context mode — i.e., prob or mid fol-
lowing the context in which the function is called.

This qualifier is used for the main parameter of most built-in statistical functions. For
example, Mean has these parameters:

Mean(x: ContextSample[i]; i: Index = Run)

Thus, Mean(X, Run) evaluates X in prob mode. So does Mean(X), because the index i
defaults to Run. But, Mean(X, J) evaluates X in mid mode, because J is not Run.

When the parameter declaration contains more than one dimension, prob mode is used
if any of the indexes is Run.

Mid Evaluates the parameter determinstically, or in mid mode, using the mid (usually
median) of any explicit probability distribution.

Prob Evaluates the parameter probabilistically, i.e., in prob mode, if it can. If you declare the
dimension of the parameter, include the dimension Run in the declaration if you want the
variable to hold the full sample, or omit Run from the list if you want the variable to hold
individual samples. For example:

(A : Prob [In1, Run])

Sample Evaluates the parameter probabilistically, i.e., in prob mode, if it can. If you declare the
dimension of the parameter, include the dimension Run in the declaration if you want the

Chapter Building Functions and Libraries

342 Analytica User Guide

20 Parameter qualifiers

variable to hold the full sample, or omit Run from the list if you want the variable to hold
individual samples. For example:

(A : Sample[In1, Run])

Index The parameter must be an index variable, or a dot-operator expression, such as A.I.
You can then use the parameter as a local index within the function definition. This is
useful if you want to use the index in a function that requires an index, for example
Sum(X, I) within the function.

Variable The parameter must be a variable, or the identifier of some other object. You can then
treat the parameter name as equivalent to the variable, or other object name, within the
function definition. This is useful if you want to use the variable in one of the few expres-
sions or built-in functions that require a variable as a parameter, for example, WhatIf,
DyDx, and Elasticity.

Array qualifiers
An array qualifier can specify that a parameter is an array with specified index(es) or no
indexes, in the case of Scalar.

Scalar The parameter expects a single number, not an array. Means the same as Number Atom.

Atom If the actual parameter is an array, the function is called separately on each atomic ele-
ment of the array. The results of all the calls to the function are reassembled into an
array with the same indexes as the original parameter, which is returned as the overall
result.

You might be tempted to use Atom to qualify parameters of every function, just in case.
Functions with Atom parameters may take longer to execute because they have to do all
that disassembly of the array-valued parameters, multiple evaluations, and reassembly
of the results. So, avoid using it in time-consuming functions except when really neces-
sary.

Array Dimensionality declaration, when present, forces Analytica to perform horizontal array
abstraction over the parameters when additional dimensions are present. For example,
if Fu1 has the parameter declaration:

(A: Array[Time])

and if A, when evaluated, contains dimensions other than Time, Analytica will loop over
the other dimensions, ensuring that within the function A contains no dimension other
than Time.

A dimensionality declaration usually the following the form:
Array [In1, In2, ...]

Zero or more indexes can be specified between the square brackets. A zero-index dec-
laration means that the value will be an atom when the function body is evaluated, and
in this case the keyword Atom may be used. Array is also optional (e.g., one could
write Number [In1] rather than Number Array [In1].

Each index identifier listed inside the brackets may be either a global index variable or
another parameter explicitly qualified as an Index. For example the Parameters
attribute:

(A: [Time, J]; J: Index)

 Analytica User Guide 343

Chapter Building Functions and Libraries20 Parameter qualifiers

specifies that parameter A must be an array indexed by Time (a built-in index variable)
and by the index variable passed to parameter J.

In the absence of an array qualifier, Analytica accepts an array-valued parameter for the
function, and passes it into the function Definition for evaluation with all its dimensions
(indexes). This kind of vertical array abstraction is usually more efficient for those func-
tions that can handle array-valued parameters.

All Forces the parameter to have or be expanded to have all the Indexes listed. For exam-
ple, in

X: All [I, J]

the All qualifier forces the value of X to be an array indexed by the specified index vari-
ables, I and J. If X is a single number, not an array, All forces Analytica to convert it
into an array with indexes, I and J, repeating the value of X in each element. Without
All Analytica would simply pass the scalar value X into the function definition.

Type checking qualifiers
Type checking qualifiers make Analytica check whether the value of a parameter
(each element of an array-valued parameter) has the expected type — such as, numer-
ical, text, or reference. If any values do not have the expected type, Analytica gives an
evaluation error at the time it tries to use (call) the function. The type checking qualifiers
are:

If the conversion cannot occur, an error is issued. The following coercions are allowed:

Number A number, including +INF, -INF, or NaN.

Positive A number greater than zero, or INF.

Nonnegative Zero, or a number greater than zero or INF.

Text A text value.

Reference A reference to a value, created with the \ operator.

Unevaluated

Coerce If you accompany a Type checking qualifier by the Coerce qualifier, it will
try to convert, or coerce, the value of the parameter to the specified type.
For example:
A : Coerce Text [I]

will try to convert the value of A to an array of text values. It will give an
error message if any of the coercions are unsuccessful.

Undef to text (blank)

Null to text ("Null")

Number to text (uses number format for caller)

Text to Positive (date vs. number based on number format)

Text to Number (date vs. number based on number format)

Undef to Reference (\Undefined)

Null to Reference (\Null)

Number to
Reference

(\X)

Text to Reference (\Text)

Chapter Building Functions and Libraries

344 Analytica User Guide

20 Parameter qualifiers

Other coercions, including Undef or Null to Number or Positive will result in an error
that the coercion is not possible.

Ordering qualifiers
The ordering qualifiers, Ascending or Descending, check that the parameter value con-
sists of numbers in the specified order. Ordering also works for text values. Ascending
means alphabetical order, and Descending means the reverse.

Ordering is not strict: That is, it allows successive elements to be the same. For exam-
ple, [1,2,3,3,4] and [’Anne’, ’Bob’, ’Bob’, ’Carmen’] are both considered
ascending.

If the value of the parameter does not have the specified ordering, or it is an atom (not
array) value, Analytica will issue an evaluation error when trying to evaluate the function
call.

If the parameter has more than one dimension (other than Run), you should specify the
index of the dimension over which to check the order, thus:

A : Ascending [I]

Optional parameters
Any parameter may be optional if declared as optional by including the keyword
Optional, within the declaration. Optional parameters may appear anywhere within the
declaration — they are not limited to the final parameters. So, for example, one could
declare the parameters for Fu1 as

(A: Optional; B; C: Optional; D; E: Optional)

To call Fu1, you could use any of these examples:
Fu1(1,2,3,4,5)

Fu1(1,2,,4)

Fu1(,2,,4)

Fu1(,2,3,4,5)

Or you could use named-based calling syntax:
Fu1(B:2, D:4)

which is clearer and simpler.

When a middle parameter is omitted, an empty space between commas must be
included when the function is called. If all parameters following the last parameter pro-
vided are optional, placeholder commas are not necessary.

When a parameter is omitted, the value will have a special internal value such as undef
(or a different internal value if a variable is omitted). You can detect this inside the func-
tion definition using function IsNotSpecified. For example, the first line of the body of
the function might read:

If IsNotSpecified(A) then A := 0;

Take care with omitted variable and Index parameters. Some built-in functions may
crash if passed an unspecified Index or Variable parameter.

If a function with an omitted parameter value passes it as a parameter to a second func-
tion whose parameter is not optional, it displays a warning message. For example:

 Analytica User Guide 345

Chapter Building Functions and Libraries20 Libraries

Fu1(A : optional) := Fu2(A)

Fu2(B) := B

Va1 := Fu1()

will display the message
Error: Parameter B is not optional in function Fu2.

Deprecated synonyms for parameter qualifiers
Most parameter qualifiers have several synonyms. For example, Atomic, AtomType,
and AtomicType are synonyms for Atom. We recommend that you use only the words
listed above. If you encounter other synonyms in older models, consult the Analytica
wiki "Deprecated qualifiers" to see what they mean (http://lumina.com/wiki/).

Libraries
When you place functions and variables in a library, the library becomes available as an
extension to the system libraries. Its functions and variables also become available. Up
to eight user libraries can be used in a model.

There are two types of user libraries (see also “To change the class of an object” on
page 58):

• A library is a module within the current model.

• A filed library is saved in a separate file, and can be shared among several
models.

Creating a library
To create a library of functions and/or variables:

1. Create a module by dragging the module icon from the node palette onto the
diagram, and give it a title.

2. Change the class of the module to library or filed library (see “To change the class
of an object” on page 58).

3. Create functions and/or variables in the new library or create them elsewhere in the
model and then move them into the library.

Functions and variables in the top level of the library can be accessed from the Defini-
tion menu or Object Finder. Use modules within the library to hold functions and vari-
ables (such as test cases) that will not be accessible to models using the library.

Adding a filed library to a model
Add a filed library to a model using the Add Module dialog box (see “Adding a module
or library”).

http://lumina.com/wiki/index.php/Function_Parameter_Qualifiers

Chapter Building Functions and Libraries

346 Analytica User Guide

20 Libraries

Using a library
When defining a variable, you can use a function or variable from a library in any of the
following ways:

• Type it in.

• Select Paste Identifier from the Definition menu to open the Object Finder.

• Select Other from the Expression popup menu to open the Object Finder.

• Paste from the library under the Definition menu.

Example Compare the way the Capm() function is displayed in the Object window (page 345) to
the way it is displayed in the Object Finder:

Chapter 21 Procedural Programming

This chapter shows you how to use the procedural features of the
Analytica modeling language.

Chapter Procedural Programming

348 Analytica User Guide

21 An example of procedural programming

A procedural program is sequence of instructions to a computer. Each instruction tells
the computer what to do, or in what sequence to execute the instructions. Most Analyt-
ica models are non-procedural — that is, they consist of an unsequenced set of defini-
tions of variables. Each definition is a simple expression that contain functions,
operators, constants, and other variables, but no procedural constructs controlling the
sequence of execution. In this way, Analytica is like a standard spreadsheet application,
in which each cell contains a simple formula with no procedural constructs. Analytica
determines the sequence in which to evaluate variables based on the dependencies
among them, somewhat in the same way spreadsheets determine the sequence to
evaluate their cells. Non-procedural languages free you from having to think about it.
Non-procedural models or programs are easier to write and understand because you
can understand each definition (or formula) without worrying about the sequence of
execution. Procedural programs, such as most programs in Fortran, Visual Basic, or
C++, are much harder to write and understand.

However, procedural languages enable you to write more powerful functions that are
hard or impossible without their procedural constructs. For this reason, Analytica 3.0
introduced a set of such constructs, providing a general procedural programming lan-
guage for those who want it. Together, these constructs provide much greater power
and flexibility for creating definitions, and especially, for defining new functions in Ana-
lytica.

These constructs may only be used within the definition of a variable or function to con-
trol the flow of execution within that variable or function. They cannot affect other vari-
ables or functions directly, and do not affect the flow of execution in other variables or
functions. Thus, the availability of these constructs does not affect the simple nonproce-
dural relationship among variables and functions.

An example of procedural programming
The following function, Factors(), computes the prime factors of an integer x. It illus-
trates many of the key constructs of procedural programming.

 Analytica User Guide 349

Chapter Procedural Programming21 An example of procedural programming

See below for an explanation of each of these constructs, and cross-reference to where
they are.

Numbers identify
features below:

Function Factors(x)

Definition:

1. VAR result := [1];

2. VAR n := 2;

3. WHILE n <= x DO

4. BEGIN

2. VAR r := Floor(x/n);

IF r*n = x THEN

5. (result := Concat(result, [n]);

6. x := r)

ELSE n := n + 1

4, 7. END; /* End While loop */

7, 8. result /* End Definition */

This definition illustrates these features:

1. VAR x := e construct defines a local variable x, and sets an initial value e. See
page 351 for more.

2. You can group several expressions (statements) into a definition by separating them
by ’;’ (semicolons). Expressions can be on the same line or successive lines. See
page 350.

3. While test Do body construct tests condition Test, and, if True, evaluates Body,
and repeats until condition Test is False. See page 355.

4. Begin e1 ; e2; … End groups several expressions separated by ’;’s — in this case as
the body of a While loop. See page 350.

5. (e1 ; e2; …) is another way to group expressions — in this case, as the action to be
taken in the Then case. See page 350.

6. x := e lets you assign the value of an expression e to a local variable x or, as in the
first case, to a parameter of a function. See page 351.

7. A comment is enclosed between /* and */ as an alternative to { and }.

8. A group of expressions returns the value of the last expression — here the function
Factors returns the value of result — whether the group is delimited by Begin and
End, by ’(’ and ’)’, or, as here, by nothing.

Chapter Procedural Programming

350 Analytica User Guide

21 Summary of programming constructs

Summary of programming constructs

Begin-End, (), and ’;’ for grouping expressions
As illustrated above, you can group several expressions (statements) as the definition
of a variable or function simply by separating them by ’;’s (semicolons). To group sev-
eral expressions as a condition or action of If a Then b Else c or While a Do b, or,
indeed, anywhere a single expression is valid, you should enclose the expressions
between Begin and End, or between ’(’ and ’)’.

The overall value of the group of statements is the value from evaluating the last
expression. For example:

(VAR x := 10; x := x/2; x - 2) → 3

Construct Meaning For more
see:

e1 ; e2; … ei Semicolons join a group of expressions to be evaluated in
sequence.

page 350

BEGIN e1 ; e2; …
ei END

A group of expressions to be evaluated in sequence. page 350

(e1 ; e2; … ei) Another way to group expressions. page 350

m .. n Generates a list of successive integers from m to n. page 360

Var x := e Define local variable x and assign initial value e. page 351

Index i := e Define local index i and assign initial value e. page 358

x := e Assigns value from evaluating e to local variable x. Returns
value e.

page 351

While Test Do
Body

While Test is True, evaluate Body and repeat. Returns last
value of Body.

page 355

{ comments }
/* comments */

Curly brackets { } and /* */ are alternative ways to enclose
comments to be ignored by the parser.

page 349

’text’
"text"

You may use single or double quotes to enclose a literal text
value, but they must match.

page 142

For x := a DO e Assigns to loop variable x, successive atoms from array a
and repeats evaluation expression e for each value of x.
Returns an array of values of e with the same indexes as a.

page 363

For x[i, j…] := a DO
e

Same, but it assigns to x successive subarrays of a, each
indexed by the indices, [i, j …].

page 363

\ e Creates a reference to the value of expression e. page 364

\ [i, j …] e Creates an array indexed by any indexes of e other than i, j
… of references to subarrays of e each indexed by i, j ….

page 366

r Returns the value referred to by reference r. page 364

 Analytica User Guide 351

Chapter Procedural Programming21 Declaring local variables and assigning to them

Analytica will also tolerate a ’;’ after the last expression in a group. It still returns the
value of the last expression. For example:

(VAR x := 10; x := x/2; x/2;) → 2.5

The statements can be grouped on one line, or over several lines. In fact, Analytica
does not care where new-lines, spaces, or tabs occur within an expression or sequence
of expressions — as long as they are not within a number or identifier.

Declaring local variables and assigning to them

Defining a local variable: Var v := e
This construct creates a local variable v and initializes it with the value from evaluating
expression e. You can then use v in subsequent expressions within this context — that
is, in following expressions in this group, or nested within expressions in this group. You
cannot refer to a local variable outside its context — for example, in the definition of
another variable or function.

If v has the same identifier (name) as a global variable, any subsequent mention of v in
this context refers to the just-defined local variable, not the global.

Examples Instead of defining a variable as:
Sum(Array_a*Array_b,N)/(1+Sum(Array_a*Array_b,N))

define it as:
VAR t := Sum(Array_a*Array*b, N); t/(1+t)

To compute a correlation between Xdata and Ydata, instead of:
Sum((Xdata-Sum(Xdata,Data_index)/Nopts)*(Ydata-

Sum(Ydata,Data_index)/Nopts),Data_index)/

Sqrt(Sum((Xdata-Sum(Xdata,Data_index)/

Nopts)^2, Data_index) * Sum((Ydata -

Sum(Ydata,Data_index)/Nopts)^2,Data_index))

define the correlation as:
VAR mx := Sum(Xdata, Data_index)/Nopts;

VAR my := Sum(Ydata, Data_index)/Nopts;

VAR dx := Xdata - mx;

VAR dy := Ydata - my;

Sum(dx*dy,Data_index)/Sqrt(Sum(dx^2, Data_index)*Sum(dy^2,

Data_index))

The latter expression is faster to execute and easier to read.

The correlation expression in this example is an alternative to Analytica’s built-in Corre-
lation() function (see “Correlation(x, y)” on page 278) when data is dimensioned by an
index other than the system index Run.

Assigning to a local variable: v := e
The ’:=’ (assignment operator) sets the local variable v to the value of expression e.

Chapter Procedural Programming

352 Analytica User Guide

21 Declaring local variables and assigning to them

The assignment expression also returns the value of e, although it is usually the effect
of the assignment that is of primary interest.

The equal sign, ’=’, does not do assignment. It tests for equality between two values.

Within the definition of a function, you can also assign a new value to any parameter.
This will change only the parameter and will not affect any global variables used as
actual parameters in the call to the function.

Tip Usually, you cannot assign to a global variable — that is, to a variable created as a
diagram node. You can assign only to a local variable, declared in this definition using
Var or Index, in the current context — that is, at the same or enclosing level in this
definition. In a function definition, you may also assign to a parameter.This prevents side
effects — i.e., where evaluating a global variable or function changes a global variable,
other than one that mentions this variable or function in its definition. Analytica’s lack of
side effects makes models much easier to write, understand, and debug than normal
computer languages that allow side effects: You can tell how a variable is computed just
by looking at its definition, without having to worry about parts of the model not
mentioned in the definition. There is an exception to this rule of no assignments to
globals: You may assign to globals in button scripts or functions called from button
scripts. See “Creating buttons and scripts” for details.

Assigning to a slice of a local variable
Slice assignment means assigning a value into an element or slice of an array con-
tained by a local variable, for example:

x[I = n] := e

x must be a local variable, I is an index (local or global), n is a single value of I, and e
is any expression. If x was not array or was an array not indexed by I, the slice assign-
ment adds I as a dimension of x.

You can write some algorithms much more easily and efficiently using slice assignment.
For example:

Function Fibonacci_series(f1, f2, n: Number Atom) :=

INDEX m := 1..n;

VAR result := 0;

result[m = 1] := f1;

result[m = 2] := f2;

FOR I := 3..n DO result[m = I] := result[m = I -1] + result[m = I

- 2];

result

In the first slice assignment:
result[m = 1] := f1;

result was not previously indexed by m. So the assignment adds the index m to result,
making it into an array with value f1 for m=1 and its original value, 0, for all other values
of m.

More generally, in a slice assignment:
x[I = n] := e

 Analytica User Guide 353

Chapter Procedural Programming21 For and While loops and recursion

If x was already indexed by I, it sets x[I=n] to the value of e. For other values of I, v
retains its previous value. If x was not already indexed by I, the assignment adds I as a
dimension of x, and sets the slice x[I=n] to e. All other slices of x over I retain their
previous values. If x was indexed by other indexes, say j, the result is indexed by I and
j. The assigned slice x[I=n] has the value e for all values of the other index(es) j.
Again, slices for other values of I retain their original values of x.

You may index by position as well as name in a slice assignment, for example:
x[@I = 2] := e

assigns the value of e as the second slice of x over index I.

Slice assignment, e.g., x[I = A] := e, has three limitations:

• x must be a local variable.

• n must be an atom, not an array.

• You may use only one index. For example, you may not use an expression like x[I
= A, J=B] := e, with two index expressions. If x has two (or more) dimensions,
you can create and assign a slice (e.g., a row) to x.

For and While loops and recursion
Tip Analytica’s Intelligent Array features means that you rarely need explicit iteration using

FOR loops to repeat operations over each dimensions of an array, often used in
conventional computer language. If you find yourself using FOR loops a lot in Analytica,
this may be a sign that you are not using the Intelligent Arrays effectively. If so, please
(re)read the section on Intelligent Arrays (see).

For i := a Do expr
The For loop successively assigns the next atom from array a to local index i, and eval-
uates expression expr. expr may refer to i, for example to slice out a particular element
of an array. a may be a list of values defined by m..n or Sequence(m, n, dx) or it may
be a multidimensional array. Normally, it evaluates the body expr once for each atom in
a.

The result of the For is an array with all the indexes of a containing the values of each
evaluation of expr. If any or all evaluations of expr have any additional index(es), they
will also be indexes of the result.

Usually, the Intelligent Array features take care of iterating over indexes of arrays with-
out the need for explicit looping. For is sometimes useful in these specialized cases:

• To avoid selected evaluations of expr that may be invalid or out of range, and can
be prevented by nesting an If-Then-Else inside a For.

• To apply an Analytica function that requires an atom or one- or two-dimensional
array input to a higher-dimensioned array.

• To reduce the memory needed for calculations with very large arrays by reducing
the memory requirement for intermediate results.

See below for an example of each of these three cases.

Chapter Procedural Programming

354 Analytica User Guide

21 For and While loops and recursion

Library Special

Avoiding out-of-range
errors

Consider the following expression:
If X<0 Then 0 Else Sqrt(X)

The If-Then-Else is included in this expression to avoid the warning "Square root of a
negative number." However, if X is an array of values, this expression may not avoid the
warning since Sqrt(X) is evaluated before If-Then-Else selects which elements of
Sqrt(X) to include. To avoid the warning (assuming X is indexed by I) the expression
can be rewritten as

For j:=I do

If X[I=j]<0 then 0 else Sqrt(X[I=j])

or as (see next section):
Using y:=X in I do

If y<0 Then 0 else Sqrt(y)

Situations like this can often occur during slicing operations. For example, to shift X one
position to the right along I, the following expression would encounter an error:

if I<2 then X[I=1] else X[I=I-1]

The error occurs when X[I=I-1] is evaluated since the value corresponding to I-1=0 is
out-of-range. The avoid the error, the expression can be rewritten as:

For j:=I do

If j<2 then X[I=1] else X[I=j-1]

Out-of-range errors can also be avoided without using For by placing the conditional
inside an argument. For example, the two examples above can be written without For
as follows:

Sqrt(if X<0 then 0 else X)

X[I=(if I<2 then 1 else I-1)]

Dimensionality
reduction

For can be used to apply a function that requires an atom, one- or two- dimensional
input to a multi-dimensional result. This usage is rare in Analytica since array abstrac-
tion normally does this automatically; however, the need occasionally arises in some
circumstances.

Suppose you have an array A indexed by I, and you wish to apply a function f(x) to each
element of A along I. In a conventional programming language, this would require a
loop over the elements of A; however, in almost all cases, Analytica’s array abstraction
does this automatically — the expression is simply: f(A), the result remains indexed by
I. However, there are a few cases where Analytica does not automatically array
abstract, or it is possible to write a user-defined function that does not automatically
array abstract (e.g., by declaring a parameter to be of type Atom, see page 340). For
example, Analytica does not array abstract over functions such as Sequence, Split,
Subset, or Unique, since these return unindexed lists of varying lengths that are
unknown until the function evaluates. Suppose we have the following variables defined
(note: A is an array of text values):

 Analytica User Guide 355

Chapter Procedural Programming21 For and While loops and recursion

A: Index_1

Index_2:

We wish to split the text values in A and obtain a two dimensional array of letters
indexed by Index_1 and Index_2. Since Split does not array abstract, we must do
each row separately and re-index by Index_2 before the result rows are recombined
into a single array. This is accomplished by the following loop.

FOR Row := Index_1 DO Array(Index_2, SplitText(A[Index_1=Row], ’,’))

resulting in

Index_1 , Index_2

Reducing memory
requirements

In some cases, it is possible to reduce the amount of memory required for intermediate
results during the evaluation of expressions involving large arrays. For example, con-
sider the following expression:

MatrixA: A two dimensional array indexed by M and N.
MatrixB: A two dimensional array indexed by N and P.

Average(MatrixA * MatrixB, N)

During the calculation, Analytica needs memory to compute MatrixA * MatrixB, an
array indexed by M, N, and P. If these indexes have sizes 100, 200, and 300 respectively,
then MatrixA * MatrixB contains 6,000,000 numbers, requiring over 60 megabytes of
memory at 10 bytes per number.

To reduce the memory required, use the following expression instead:
For L := M Do Average(MatrixA[M=L]*MatrixB, N)

Each element MatrixA[M=L]*MatrixB has dimensions N and P, needing only
200x300x10= 600 kilobytes of memory at a time.

For the special case of a dot product (see “Dot product of two matrices”), for an
expression of the form Sum(A*B,I), it performs a similar transformation internally.

While (Test) Do Body
While evaluates Body repeatedly as long as Test <> 0. For While ... to terminate,
Body must produce a side-effect on a local variable that is used by Test, causing Test
eventually to equal 0. If Test never becomes False, While will continue to loop indefi-

1 A,B,C

2 D,E,F

3 G,H,I

1 2 3

1 2 3
1 A B C
2 D E F
3 G H I

Chapter Procedural Programming

356 Analytica User Guide

21 For and While loops and recursion

nitely. If you suspect that may be happening, type Control+. (Control+period) to interrupt
execution.

Test must evaluate to an atomic (non-array) value; therefore, it is a good idea to force
any local variable used in Test to be atomic valued. While is one of the few constructs
in Analytica that does not generalize completely to handle arrays. But, there are ways to
ensure that variables and functions using While support Intelligent Arrays and probabi-
listic evaluation. See page 361 for details.

While returns the final value found in the last iteration of Body or Null if no iterations
occur. For example:

(Var x := 1; While x < 10 Do x := x+1) → 10

(Var x := 1; While x > 10 Do x := x+1) → Null

Using While often follows the following pattern:
Var x[]:= ...;

While (FunctionOf(x)) Do (

...

x := expr;

...

);

returnValue

Iterate(x1, xi, bstop, maxIter, warn)
Suppose the definition of variable X contains a call to Iterate: Iterate initializes X to the
value of x1. While stopping condition bstop is False (zero), it evaluates expression xi,
and assigns the result to X. Given the optional parameter maxIter, it will stop after max-
Iter iterations and, if warn is True, issues a warning — unless it has already been
stopped by bstop becoming True. If bstop is an array, it only stops when all elements
of bstop are True.

Iterate is designed for convergence algorithms where an expression must be recom-
puted an unknown number of iterations. Iterate (like Dynamic) must be the main
expression in a definition — it cannot be nested within another expression. But it may,
and usually will, contain nested expressions as some of its parameters. Iterate (again
like Dynamic and unlike other functions) may, and usually will, mention the variable X
that it defines within the expressions for x1 and bstop. These expressions may also
refer to variables that depend on X.

If you use Iterate in more than one node in your model, you should be careful that the
two functions don't interact adversely. In general, two nodes containing Iterate should
never be mutual ancestors of each other. Doing so makes the nesting order ambiguous
and can result in inconsistent computations. Likewise, care must be taken to avoid sim-
ilar ambiguities when using interacting Iterate and Dynamic loops.

Tip You can usually write convergence algorithms more cleanly using While. One difference
is that While requires its stopping condition Test to be an atom, where Iterate allows an
array-valued stopping condition bstop. Nevertheless, it is usually better to use While
because you want it to do an appropriate number of iterations for each element of bstop,
rather than continue until all its elements are True. But, with While you will need to use
one of the tricks described on and after page 361 to ensure the expression fully supports
array abstraction.

 Analytica User Guide 357

Chapter Procedural Programming21 For and While loops and recursion

Recursive functions
A recursive function is a function that calls itself within its definition. This is often a con-
venient way to define a function, and sometimes the only way. As an example, consider
this definition of factorial:

Function Factorial2(n: Positive Atom)

Definition: IF n > 1 THEN N*Factorial2(n-1) ELSE 1

If its parameter, n, is greater than 1, Factorial2 calls itself if with the actual parameter
value n-1. Otherwise, it simply returns 1. Like any normal recursive function, it has a
termination condition under which the recursion stops — when n <= 1.

Tip The built-in function Factorial does the same, and is fully abstractable, to boot. We
define Factorial2 here as a simple example to demonstrate key ideas.

Normally, if you try to use a function in its own definition, it will complain about a cyclic
dependency loop. To enable recursion, you must display and set the Recursive
attribute:

1. Select the Attributes dialog from the Object menu:

2. Select Functions from the Class menu in this dialog.

3. Scroll down the list of attributes and click Recursive twice, so that it shows √,
meaning that the recursive attribute will be displayed for each function in its Object
window and the Attribute panel.

4. Check OK to close Attributes dialog.

For each function for which you wish to enable recursion:

5. Open the Object Window for the function by double-clicking its node (or select the
node and click the Object button)

6. Type 1 into its Recursive field, thus:

Chapter Procedural Programming

358 Analytica User Guide

21 Local indexes

As another example, consider this recursive function to compute a list of the prime fac-
tors of an integer, x, equal to or greater than y:

Function Prime_factors(x, y: Positive Atom)

Definition:

Var n := Floor(x/y);

IF n<y THEN [x]

ELSE IF x = n*y THEN Concat([y], Factors(n, y))

ELSE Prime_factors(x, y+1)

Factors(60, 2) → [2, 2, 3, 5]

In essence, Prime_factors says: Compute n as x divided by y, rounded down. If y is
greater than n, then x is the last factor, so return x as a list. If x is an exact factor of y,
then concatenate x with any factors of n, equal or greater than n. Otherwise, try y+1 as
a factor.

Tip To prevent accidental infinite recursion, it will stop and give a warning if the stack reaches
a depth of 256 function calls.

Local indexes
You can declare a local index in the definition of a variable or function. It is possible that
the value of the variable or value returned by the function is an array using this index.
This is handy because it lets you define a variable or function that creates an array with-
out relying on an externally defined index.

The construct, Index i := indexExpr defines an index local to the definition in which it is
used. The expression indexExpr may be a sequence, literal list, or other expression
that generates an unindexed array, as used to define a global index. For example:

Variable PowersOf2 := Index j := 0..5; 2^j

The new variable PowersOf2 is an array of powers of two, indexed by the local index J,
with values from 0 to 5:

 Analytica User Guide 359

Chapter Procedural Programming21 Ensuring array abstraction

PowersOf2 →

Dot operator: a . i The dot operator in a . i lets you access a local index i via an array a that it dimensions.
If a local index identifies a dimension of an array that becomes the value of a global
variable, it may persist long after evaluation of the expression — unlike other local vari-
ables which disappear after the expression is evaluated.

Even though local index J has no global identifier, you can access it via its parent vari-
able with the dot operator, ’.’, for example:

PowersOf2.J → [0,1,2,3,4,5]

When using the subscript operation on a variable with a local index, you need to include
the ’.’ operator, but do not need to repeat the name of the variable:

PowersOf2[.J=5] → 32

Any other variables depending on PowersOf2 may inherit J as a local index — for
example:

Variable P2 := PowersOf2/2

P2[.J=5] → 16

Example using
a local index

In this example, MatSqr is a user-defined function that returns the square of a matrix —
i.e., A x A', where A' is the transpose of A. The result is a square matrix. Rather than
require a third index as a parameter, MatSqr creates the local index, I2, as a copy of
index i.

Function MatSqr(a: Array; i, j: Index)

Definition := Index I2:=CopyIndex(i); Sum(a*a[i=I2], j)

The local variable, I2, in MatSqr is not within lexical scope in the definition of Z, so we
must use the dot operator ’.’ to access this dimension. We underline the dot operator for
clarity:

Variable Z := Var XX := MatSqr(X, Rows, Cols);

Sum(XX * Y[I=XX.I2], XX.I2)

Ensuring array abstraction
The vast majority of the elements of the Analytica language (operators, functions, and
control constructs) fully support Intelligent Arrays — that is, they can handle operands
or parameters that are arrays with any number of indexes, and generate a result with

Chapter Procedural Programming

360 Analytica User Guide

21 Ensuring array abstraction

the appropriate dimensions. Thus, most models automatically obtain the benefits of
array abstraction with no special care.

There are just a few elements that do not inherently enable Intelligent Arrays — i.e.,
support array abstraction. They fall into these main types:

• Functions whose parameters must be atoms (not arrays), including Sequence,
m..n, SplitText. See page 360.

• Functions whose parameter must be a vector (an array with just one index), such as
CopyIndex, SortIndex, Subset, Unique, and Concat when called with two
parameters.

• The While loop, which requires its termination condition to be an atom.

• If b Then c Else d, when condition b is an array, and c or d may give an evaluation
error.

• Functions with an optional index parameter that is omitted, such as Sum(x),
Product, Max, Min, Average, Argmax, SubIndex, ChanceDist, CumDist, and
ProbDist. See page 363.

When using these constructs, you must take special care to ensure that your model is
fully array-abstractable. Here we explain how to do this for each of these five types.

Functions expecting
atomic parameters

Consider this example:
Variable N := 1..3

Variable B := 1..N

B → Evaluation error:

One or both parameters to Sequence(m, n) or m .. n are not scalars.

The expression 1..N, or equivalently, Sequence(1, N), cannot work if N is an array,
because it would have to create a nonrectangular array containing slices with 1, 2, and
3 elements. Analytica does not allow nonrectangular arrays, and so requires the param-
eters of Sequence to be atoms (single elements).

Most functions and expressions that, like Sequence, are used to generate the definition
of an index require atomic (or in some cases, vector) parameters, and so are not fully
array abstractable. These include Sequence, Subset, SplitText, SortIndex (if the sec-
ond parameter is omitted), Concat, CopyIndex, and Unique.

Why would you want array abstraction using such a function? Consider this approach to
writing a function to compute a factorial:

Function Factorial2

Parameters: (n)

Definition: Product(1..n)

It works if n is an atom, but not if it is an array, because 1..n requires atom operands.
However, in this version, using a For loop, will work fine:

Function Factorial3

Parameters: (n)

Definition: FOR m := n DO Product(1..m)

The For loop repeats with the loop variable m set to each atom of n, and evaluates the
body Product(1..m) for each value. Because m is guaranteed to be an atom, this
works fine. The For loop reassembles the result of each evaluation of Product(1..m)
to create an array with all the same dimensions as n.

 Analytica User Guide 361

Chapter Procedural Programming21 Ensuring array abstraction

Atom parameters and
array abstraction

 — —
Function Factorial3

Parameters: (n: Atom)

Definition: Product(1..n)

Index K := 1 .. 6

Factorial3(K) →

Notice that Atom does not require the actual parameter K to be an atom when the func-
tion is called. If K is an array, as in this case, it repeatedly evaluates the function
Factorial3(n) with n set to each atom of array K. It then reassembles the results back
into an array with the same indexes as parameter K, like the For loop above. This
scheme works fine even if you qualify several parameters of the function as Atom.

In some cases, a function may require a parameter to be an vector (have only one
index), or have multiple dimensions with specified indexes. You may use “Array qualifi-
ers” on page 342 to specify this. With this approach, you can ensure your function will
array abstract when new dimensions are added to your model, or if parameters are
probabilistic.

While and array
abstraction

The While b Do e construct requires its termination condition b to evaluate to be an
atom — that is, a single Boolean value, True (1) or False (0). Otherwise, it would be
ambiguous about whether to continue. Again, Atom is useful to ensure that a function
using a While loop array abstracts, as it was for the Sequence function. Here’s a way to
write a Factorial function using a While loop:

Function Factorial4

Parameters: (n: Atom)

Definition:

VAR fact := 1; VAR a := 1;

WHILE a < n DO (a := a + 1; fact := fact * a)

Chapter Procedural Programming

362 Analytica User Guide

21 Ensuring array abstraction

In this example, the Atom qualifier assures that n and hence the While termination con-
dition a < n is an atom during each evaluation of Factorial4.

If b Then c Else d and
array abstraction

Consider this example:
Variable X =: -2..2

Sqrt(X) → [NAN, NAN, 0, 1, 1.414]

The square root of negative numbers -2 and -1 returns NAN (not a number) after issuing
a warning. Now consider the definition of A:

Variable Y := (IF X>0 THEN Sqrt(X) ELSE 0)

Y → [0, 0, 0, 1 1.414]

For the construct IF a THEN b ELSE c, a is an array of truth values, as in this case, so it
evaluates both b and c. It returns the corresponding elements of b or c, according to
the value of condition a for each index value. Thus, it still ends up evaluating Sqrt(X)
even for negative values of X. In this case, it returns 0 for those values, rather than
NAN, and so it generates no error message.

A similar problem remains with text processing functions that require a parameter to be
a text value. Consider this array:

Variable Z := [1000, ’10,000’, ’100,000’]

This kind of array containing true numbers, e.g., 1000, and numbers with commas
turned into text values, often arises when copying arrays of numbers from spread-
sheets. The following function would seem helpful to remove the commas and convert
the text values into numbers:

Function RemoveCommas(t)

Parameters: (t)

Definition: Evaluate(TextReplace(t, ’,’, ’’))

RemoveCommas(Z) →

Evaluation Error: The parameter of Pluginfunction TextReplace must

be a text while evaluating function RemoveCommas.

TextReplace doesn’t like the first value of z, which is a number, where it’s expecting a
text value. What if we test if t is Text and only apply TextReplace when it is?

Function RemoveCommas(t)

Parameters: (t)

Definition: IF IsText(t)

THEN Evaluate(TextReplace(t, ’,’, ’’)) ELSE t

RemoveCommas(Z) → (same error message)

It still doesn’t work because the IF construct still applies ReplaceText to all elements of
t. Now, let’s add the parameter qualifier Atom to t:

Function RemoveCommas(t)

Parameters: (t: Atom)

Definition: IF IsText(t)

THEN Evaluate(TextReplace(t, ’,’, ’’)) ELSE t

RemoveCommas(Z) →

 Analytica User Guide 363

Chapter Procedural Programming21 Ensuring array abstraction

This works fine because the Atom qualifier means that RemoveCommas breaks its
parameter t down into atomic elements before evaluating the function. During each
evaluation of RemoveCommas, t, and hence IsText(t), is atomic, either True or False.
When False, the If construct evaluates the Else part but not the Then part, and so calls
TextReplace when t is truly a text value. After calling TextReplace separately for each
element, it reassembles the results into the array shown above with the same index as
Z.

Omitted index
parameters and array

abstraction

Several functions have index parameters that are optional, including Sum, Product,
Max, Min, Average, Argmax, SubIndex, ChanceDist, CumDist, and ProbDist. For
example, with Sum(x, i), you can omit index i, and call it as Sum(x). But, if x has more
than one index, it is hard to predict which index it will sum over. Even if x has only one
dimension now, you might add other dimensions later, for example for parametric anal-
ysis. This ambiguity makes the use of functions with omitted index parameters array
abstractable.

There is a simple way to avoid this problem and maintain reliable array abstraction:
When using functions with optional index parameters, never omit the index!
Almost always, you know what you want to sum over, so mention it explicitly. If you add
dimensions later, you’ll be glad you did.

Tip When the optional index parameter is omitted, and the parameter has more than one
dimension, these functions choose the outer index, by default. Usually, the outer index
is the index created most recently when the model was built. But, this is often not
obvious. We designed Intelligent Arrays specifically to shield you from having to worry
about this detail of the internal representation.

Selecting indexes
for iterating with

For and Var

To provide detailed control over array abstraction, the For loop can specify exactly
which indexes to use in the iterator x. The old edition of For still works. It requires that
the expression a assigned to iterator x generate an index — that is, it must be a defined
index variable, Sequence(m, n), or m..n. The new forms of For are more flexible. They
work for any array (or even atomic) value a. The loop iterates by assigning to x succes-
sive subarrays of a, dimensioned by the indexes listed in square brackets. If the square
brackets are empty, as in the second line of the table, the successive values of iterator x
are atoms. In the other cases, the indexes mentioned specify the dimensions of x to be
used in each evaluation of e. In all cases, the final result of executing the For loop is a
value with the same dimensions as a.

Chapter Procedural Programming

364 Analytica User Guide

21 References and data structures

The same approach also works using Var to define local variables. By putting square
brackets listing indexes after the new variable, you can specify the exact dimensions of
the variable. These indexes should be a subset (none, one, some, or all) of the indexes
of the assigned value a. Any subsequent expressions in the context are automatically
repeated as each subarray is assigned to the local variable. In this way, a local variable
can act as an implicit iterator, like the For loop.

Var Temp[I1,I2,...] := X;

References and data structures
A reference is an indirect link to a value, an atom or an array. A variable can contain a
single reference to a value, or it can contain an array of references. Variables and
arrays can themselves contain references, nested to any depth. This lets you create
complex data structures, such as linked lists, trees, and non-rectangular structures. Use
of references is provided by two operators:

\e is the reference operation. It creates a reference to the value of expression e.

#e is the dereference operation. It obtains the value referred to by e. If e is not a
reference, it issues a warning and returns Null.

For x := a DO e It assigns to loop variable x successive atoms from index expression
a and repeats evaluation expression e for each value. Returns an
array of values of e indexed by a.

For x := a DO e
For x[] := a DO e

It assigns to loop variable x, successive atomic values from array a.
It repeats evaluation of expression e for each value. It returns an
array of values of e with the same indexes as a.

For x[i] := a DO e It assigns to loop variable x successive subarrays from array a, each
indexed only by i. It repeats evaluation of expression e for each
index value of a other than i. As before, the result has the same
indexes as a.

For x[i, j …] := a DO e It assigns to loop variable x successive subarrays from array a, each
indexed only by i, j …. It repeats evaluation of expression e for each
index value of a other than i, j …. . As before, the result has the
same indexes as a.

An example:
Variable M

Definition: 100

Variable Ref_to_M

Definition: \ M

The result of Ref_to_M looks like this:

 Analytica User Guide 365

Chapter Procedural Programming21 References and data structures

You can double-click the cell contain-
ing «ref» to view the value refer-
enced, in this case:

You can also create an array of refer-
ences. Suppose:

Index K

Definition: 1..5

Variable Ksquare

Definition: K^2

Ksquare →

Variable Ref_to_Ksquare

Definition: \ Ksquare

Ref_to_Ksquare →

If you click the «ref» cell, it opens:

Chapter Procedural Programming

366 Analytica User Guide

21 References and data structures

Managing indexes of
referenced subarrays:

\ [i, j,...] e

More generally, you can list in the square brackets any indexes of e that you want to be
indexes of each subarray referenced by the result. The other indexes of e (if any) will be
used as indexes for the referencing array. Thus, in the example above, since there were
no indexes in square brackets, the index K was used as an index of the reference array.
If instead we write:

\ [K] Ksquare →

It creates a similar result to \ Ksquare, since K is the only index of Ksquare.

You can also create an array of refer-
ences from an array, for example:

Variable Ref_Ksquare_array

Definition: \ [] Ksquare

Ksquare →

The empty square brackets ’[]’
specify that the values referred to
have no indexes, i.e., they are atoms.
You can now click any of these cells
to see what it refers to.

Clicking the third cell, for example,
gives:

 Analytica User Guide 367

Chapter Procedural Programming21 References and data structures

To summarize:

In general, it is better to include the square brackets after the reference operator, and
avoid the unadorned reference operator, as in the first row of the table. Being explicit
about which indexes to include will generally lead to expressions that array abstract as
intended.

IsReference(X) Is a test to see whether its parameter x is a reference. It returns True (1) if x is a refer-
ence, False (0) otherwise.

Using references for
linked lists: Example

functions

Linked lists are a common way for programmers to represent an ordered set of items.
They are more efficient than arrays when you want often to add or remove items,
thereby changing the length of the list (which is more time consuming for arrays). In
Analytica, we can represent a linked list as an element with two elements, the item —
that is, a reference to the value of the item — and a link — that is, a reference, to the
next item:

Index Linked_list

Definition: [’Item’, ’Link’]

Function LL_Put(x, LL)

Description: Puts item x onto linked list LL.

Definition: \Array(Linked_List,[\x,LL])

Function LL_Get_Item(LL)

Description: Gets the value of the first

item from linked list LL.

Definition: # Subscript(#LL, Linked_list, ’Item’)

Function LL_length(LL)

Parameters: (LL: Atom)

Description: Returns the number of items in

linked list LL

Definition: VAR len := 0;

WHILE (IsReference(LL)) BEGIN

LL := subscript(#LL, Linked_List, "Next");

len := len + 1

END;

len

Function LL_from_array(a, i)

Parameters: (a; i: Index)

\ e Creates a reference to the value of expression e, whether it is an atom or an
array.

\ [] e Creates an array indexed by all indexes of e containing references to all
atoms from e.

\ [i] e Creates an array indexed by any indexes of e other than i of references to
subarrays of e each indexed by i.

\ [i, j …] e Creates an array indexed by any indexes of e other than i, j … of references
to subarrays of e each indexed by i, j ….

Chapter Procedural Programming

368 Analytica User Guide

21 Miscellaneous functions

Description: Creates a linked list from the

elements of array a over index i

Definition:

VAR LL := NULL;

Index iRev := Size(i) .. 1;

FOR j := iRev

DO LL := LL_Push(LL, Slice(a, i, j));

LL

See Linked List lib.ANA for these and other functions for working with linked lists.

Miscellaneous functions
These functions include a variety of tools especially useful for advanced applications,
including several (Error, MsgBox) useful for building interactive applications. For
example, you can write wizards to automate certain modeling tasks, asking the user for
options and input values.

Error(message)
Displays an evaluation error, with the specified message, for example:

Variable Xyz :=

Error('There seems to be some kind of problem’)

Xyz →

If you call Error() in a check attribute, it will show the error message you supply it for the
warning dialog, instead of the default message when the check fails, letting you tailor a
message to the application.

Evaluate(t)
Evaluates a text value t as though it were an expression in a definition. It returns the
value resulting from evaluating the expression. For example:

Evaluate(’10M /10’) → 1M

If t contains any syntax errors, it returns Null; it does not flag a syntax error.

One use for Evaluate is to convert (coerce) a text representation of a number into the
number itself, for example:

Evaluate(’100M’) → 100M

 Analytica User Guide 369

Chapter Procedural Programming21 Miscellaneous functions

Like most other functions, it returns the deterministic (mid) or probabilistic value,
according to the context in which it is called.

Context of the
evaluation

The context in which b parses its text parameter t is quite different from the definition of
the variable that calls Evaluate. This creates some subtleties. Consider:

Variable A := 99

Variable B := (VAR A := 0; Evaluate(’A + 1’))

B → 100

Evaluate assumes a global context for evaluating its parameter: Variable A in the evalu-
ated text ’A + 1’ refers to the global A, not the local A declared in B. More generally:

• Evaluate(t) parses the text in t at the time it evaluates it, in a context separate
from the expression in which the Evaluate(t) appears — e.g., the definition of B
above.

• Thus, text t cannot refer to local variables, indexes, or function parameters defined
in the context in which Evaluate(t)appears.

• Text t may itself define and use local variables, but these will not be available
outside t.

• Automatic dependency maintenance does not work for variables mentioned in
evaluated text. For example:

B := A+1

C := Evaluate('A+1')

When A changes, it automatically ensures that B is updated when necessary, but
does not know that C also depends on A.

Text t may itself be an expression that creates a text value to be evaluated by Evaluate.
This text expression appears in the definition of V and is not subject to the above limita-
tions, so, for example:

Variable V :=(Var x:= ’10’; Evaluate(x & x))

V → 1010

IgnoreWarnings(expr)
Evaluates its parameter expr, and returns its value, while suppressing most warnings
that might otherwise be displayed during the evaluation. It is useful when you want to
evaluate an expression that generates warnings, such as divide by zero, that you know
are not important in that context, but you do not want to uncheck the option Show

Result Warnings in the Preferences dialog, because you do want to see warnings
that may appear in other parts of the model. For more on that option, see “Preferences
dialog” on page 59. For more on warnings, see “Warning” on page 413.

MsgBox(message, buttons, title)
Displays a standard popup model dialog box with the user-supplied message, buttons
(see numerical codes below), and title parameters. Analytica pauses until the user
presses a button on the message box. It returns a number, depending on which button
the user presses (see below).

The optional buttons parameter is a number that controls which buttons to display, as
follows:

Chapter Procedural Programming

370 Analytica User Guide

21 Miscellaneous functions

0 = OK only

1 = OK and Cancel (the default if buttons is omitted)

2 = Abort, Retry and Ignore

3 = Yes, No and Cancel

4 = Yes and No

5 = Retry and Cancel

To display an icon, add one of the following numbers to the buttons parameter:

16 = Critical (white X on red circle)

32 = Question

48 = Exclamation

64 = Information

MsgBox returns a number depending on which button the user presses:

1 = OK

2 = Cancel (stops any further evaluation)

3 = Abort

4 = Retry

5 = Ignore

6 = Yes

7 = No

Here are some examples:
Msgbox('OK, I''m done now.',0+64,'Information') →

Msgbox('Uh uh! Looks like trouble!',5+16, 'Disaster') →

Msgbox('Do you really mean that?', 3+32, 'Critical question') →

 Analytica User Guide 371

Chapter Procedural Programming21 Miscellaneous functions

Msgbox('This could be a real problem!', 2+48, 'Critical question') →

ShowProgressBar

Declaration ShowProgressBar(title,text:Text atomic; p:number atomic)

Description Displays or updates a programmable dialog containing a progress bar. The first time it is
called with p<1, the dialog appears. When 0<=p<1, a Cancel button is displayed and the
progress meter is updated to the indicated proportion, allowing computation to continue
while it is visible. If the user presses Cancel, the computation is aborted. When p=1, an
OK button is shown and the dialog waits until OK is pressed to return and then disap-
pears. The dialog is also removed when p>1 or a computation completes.

Example var xOrig := X;

var result :=

for n[] := @Scenario do (

ShowProgressBar("Progress", "Computing Across All Scenarios",

(n-1)/size(scenario));

WhatIf(Y, X, xOrig[@Scenario=n])

);

ShowProgressBar("Progress", "Done", 1);

result

Today()
Returns the current date as the number of days that have elapsed since Jan 1, 1904.

Chapter Procedural Programming

372 Analytica User Guide

21 Miscellaneous functions

Tip When you evaluate this function, your result probably will be cached. The cached result
will become out-of-date if the date changes during the Analytica session.

Chapter 22 Analytica Enterprise

Analytica Enterprise extends the Professional edition with these
features:

• Database access: Functions to read and write data from and
to ODBC databases and external files.

• Creating buttons: Objects that users click to run scripts that
change the model, and assign new values to variables.

• Huge arrays: Expand arrays with indexes of over 30,000
elements, limited only by memory.

• Save models as Browse-only: Models that let end users of
models modify only variables designated as inputs.

• Hide definitions: Prevent end users from viewing data or
algorithms that are confidential or proprietary.

• Performance Profiler: A library to see which variables and
functions take the most CPU time or memory.

• RunConsoleprocess: A function that calls another Windows
application as subprogram from Analytica.

Chapter Analytica Enterprise

374 Analytica User Guide

22 Accessing databases

Tip You need Analytica Enterprise or Optimizer to create models using the features
described in this chapter. You can use the Analytica Power Player or the Analytica
Decision Engine to run models created with Enterprise or Optimizer with these features,
but not to change them. You can use any edition of Analytica to run a model that uses
buttons, or was saved as Browse-only with Hidden definitions.

Accessing databases
Analytica Enterprise provides several functions for querying external databases using
ODBC. ODBC (Open Database Connectivity) is a widely used standard for connecting
to relational databases, on either local or remote computers. It uses queries in Struc-
tured Query Language (SQL), pronounced "sequel", to read from and write to data-
bases.

Overview of ODBC SQL is a widely used language to read data from and write data to a relational data-
base. A relational database organizes data in two-dimensional tables, where the col-
umns of a table serve as fields or labels, and the rows correspond to records, entries,
or instances. In Analytica, it is more natural to refer to the columns as labels and rows
as records. For instance, an address book table might have the columns or labels:
LastName, FirstName, Address, City, State, Zip, Phone, Fax, E-mail, and each individ-
ual would occupy one row or record in that table.

The result of an SQL query is a two-dimensional table, called a result table. The rows
are the records matching the criteria specified by the query. The columns are the
requested fields.

Analytica Enterprise provides functions that accept an SQL query, using standard SQL
syntax, as a text-valued parameter. These functions return the result of the query as an
array with two dimensions: Its rows are indexed by a record index, and the columns
are indexed by a label index. So, the basic structure of an Analytica model for retriev-
ing a result table is:

Each of these three nodes could require the information from the Result_Table. For
example, the definition of the record index would require knowing how many records
(rows) are in the result table; the label index may need to read the names of the col-
umns — although, often they are known in advance; and of course, the Result_Table
needs to read the table. The Database library provides the functions, DBQuery, DBLa-
bels, and DBTable to define these variables. These functions work in concert to per-
form the query only once (when the record index is evaluated), and share the result
table between the nodes.

For the address database example above, we can obtain the record index as Individ-
uals, the label index as Address_fields, and the resulting table as Address_fields,
as follows:

 Analytica User Guide 375

Chapter Analytica Enterprise22 Accessing databases

Index Individuals := DBQuery(Data_source,’SELECT*FROM Addresses’)

Index Address_fields := DBLabels(Individuals)

Variable Address_fields := DBTable(Individuals, Address_fields)

In the above example, the record index is defined using DBQuery(), the label index is
defined using DBLabels(), and the result table is defined using DBTable(). Each func-
tion is described below.

To specify a data source query, two basic pieces of information must always be known:
The data source identifier, and the SQL query text. These two items are the parameters
to the DBQuery() function, and are discussed in the following two subsections.

DSN and data source A data source is described by a text value, which may contain the Domain Service
Name (DSN) of the data source, login names, passwords, etc. Here, we describe the
essentials of how to identify and access a data source. These follow standard ODBC
conventions. For more details, consult one of the many texts on ODBC.

Tip You must have a DSN already configured on your machine. If not, consult with your
Network Administrator. See “Configuring a DSN” below.

The general format of a data source identification text is (the single quotes are Analyt-
ica's text delimiters):

'attr1=value1; attr2=value2; attr3=value3;'

For example, the following data source identifier specifies the database called 'Automo-
bile Data', with a user login 'John' and a password of 'Lightning':

'DSN=Automobile Data; UID=John;PWD=Lightning'

If a database is not password protected, then a data source descriptor may be as sim-
ple as:

'DSN=Automobile Data'

If a default data source is configured on your machine (consult your database adminis-
trator), you may specify it as:

'DSN=DEFAULT'

Some systems may require one login and password for the server, and another login
and password for the DBMS. In this case, both can be specified as:

'DSN=Automobile Data; UID=John;

PWD=Lightning; UIDDBMS=JQR; PWDDBMS=Thunder'

You can use the DRIVER attribute to specify explicitly which driver to use, instead of let-
ting it be determined automatically by the data source type. For example:

'DSN=Automobile Data; DRIVER=SQL Server'

Instead of embedding a long data source connection text inside the DBQuery() state-
ment, you can define a variable in Analytica whose value is the appropriate text value.
The name of this variable can then be provided as the argument to DBQuery(). Another
alternative is to place the connection information in a file data source (a .DSN file). Such
a file would consist of lines such as:

DRIVER = SQL Server

UID = John

PWD = Lightning

DSN = Automobile Data

Chapter Analytica Enterprise

376 Analytica User Guide

22 Accessing databases

Assuming this data is in a file named MyConnect.DSN, the connection text can be spec-
ified as:

'FILEDSN=MyConnect.DSN'

In some applications, you may wish to connect directly to a driver rather than a regis-
tered data source. Some drivers may allow this as a way to access a data file directly,
even when it is not registered. Also, some drivers may provide this as a way of interro-
gating the driver itself. To perform such a connection, use the driver keyword. For exam-
ple, if the Paradox driver accepts the directory of the data files as an argument, you may
specify:

'DRIVER={Paradox Driver};DIRECTORY='D:\CARS'

The specific fields used here (UID, PWD, UIDDBMS, PWDDBMS, DIRECTORY, etc.)
are interpreted by the ODBC driver, and therefore depend on the specific driver used.
Any fields interpreted by your driver are allowed.

If you do not wish to embed the full DSN in the connection text, a series of dialogs will
pop up when the DBQuery() function is evaluated. For example, you can leave the UID
and PWD (user name and password) out of your model. When the model is evaluated,
Analytica will prompt you to enter the required information. Explicitly placing information
in your model eliminates the extra dialog. A blank connection text may even be used, in
which case you will need to choose among the data sources available on your machine
when the model is being evaluated. Although the user can form the DSN via the graphi-
cal interface at that point, the result is not automatically placed in the definitions of your
Analytica model. However, you may be able to store the information in a DSN file
(depending on which drivers and driver manager you are using). You may also be able
to register data sources on your machine from that interface.

Configuring a DSN To access a database using ODBC, you must have a Data Source Name (DSN) already
configured on your machine. In general, configuring a DSN requires substantial data-
base administration expertise as well as the appropriate access permissions on your
computer and network. To configure a data source, you should consult with your Net-
work Administrator and/or your database product documentation. The general task of
configuring a DSN is beyond the scope of this manual.

If you find you must configure a DSN yourself, the process usually involves the following
steps (assuming your database already exists):

1. Select the ODBC icon from the Windows Control Panel.

2. Select the User DSN, System DSN, or File DSN tab depending on your needs. Most
likely, you will want System DSN. Click the Add button.

3. Select the driver. For example, if your database is a Microsoft Access database,
select Microsoft Access Driver and click Finish.

4. You will be led through a series of dialogs specific to the driver you selected. These
will include dialogs that will allow you to specify the location of your database, as well
as the DSN name that you will use from your Analytica model. An example is shown
here:

 Analytica User Guide 377

Chapter Analytica Enterprise22 Accessing databases

Specifying an SQL
query

You may use any SQL query as a text parameter within an Analytica database function.
SQL queries can be very powerful, and may include multiple tables, joins, splits, filters,
sorting, and so on. We give only a few simple examples here. If you are interested in
more demanding applications, please consult one of the many excellent texts on SQL.

The SQL expression to select a complete table in a relational database, where the table
is named VEHICLES, would be:

'SELECT * FROM vehicles'

Tip SQL is case insensitive, but Analytica is case sensitive for labels of Column names.

To select only two columns (make and model) from this same table and sort them by
make:

'SELECT make, model FROM vehicles ORDER BY make'

These examples provide a starting point. When using multiple tables, one detail to be
aware of is that it is possible in SQL to construct a result table with two columns contain-
ing the same label. For example:

'SELECT * FROM vehicles, companies'

where both tables for vehicles and companies contain a column labeled 'Id'. In this
case, you will only be able to access one (the first) of the two columns using DBTable().
Thus, you should take care to ensure that duplicate column labels do not result. This
can be accomplished, for example, using the AS keyword, for example:

'SELECT vehicles.Id AS vid, companies.Id AS

cid, * FROM vehicles, companies'

For users that are unaccustomed to writing SQL statements, products exist that allow
SQL statements to be constructed from a simple graphical user interface. Many data-
bases allow queries to be defined and stored in the database. For example, from
Microsoft Access, one can define a query by running Access and using the Query Wiz-
ard graphical user interface. The query is given a name and stored in the database. The
name of the query can then be used where the name of a table would normally appear,
for example:

The DSN used in your
Analytica queries

The actual location of
the database

Chapter Analytica Enterprise

378 Analytica User Guide

22 Accessing databases

'SELECT * FROM myQuery'

Retrieving an SQL
result table

To retrieve a result table from a data source, you need:

1. The data source connection text.

2. The SQL query. These are discussed in the previous two sections. For illustrative
purposes, suppose the connection text is 'DSN=Automobile Data', and the SQL
statement is 'SELECT * FROM vehicles'. Obtain the relational Result_table thus:
Index Records := DBQuery('DSN=Automobile Data',

'SELECT * FROM vehicles')

Index Labels := DBLabels(Records)

Variable Result_table := DBTable(Records, Labels)

You can now display Result_table to examine the results.

This basic procedure can be repeated for any result table. The structure of the model
stays the same, and just the connection text and SQL query text change.

Separating columns in a model
It is often more convenient for further modeling to create a separate variable for each
column of a database table. Each column variable uses the same record index. For
example, we might create separate variables for Make, Year, and Car model from the
vehicles database table:

In this case, the record index is still defined using DBQuery(), and each column is
defined using DBTable(). The actual SQL query is issued only once when the record
index is evaluated.

Suppose you wished to have Make, Model, Year, MPG, etc., as separate Analytica vari-
ables, each a one-dimensional array with a common index. For example:

Index Records := DBQuery('DSN=Automobile Data',

'SELECT * FROM vehicles')

Variable Make := DBTable(Records, 'make')

Variable Model_Year := DBTable(Records, 'year')

Variable Car_Model := DBTable(Records, 'model')

Since Model is a reserved word in Analytica, we named the variable Car_Model instead
of just Model. But, the second parameter to DBTable() specifies the name of the column
as stored in the database. This does not have to be the same as the name of the vari-
able in Analytica.

 Analytica User Guide 379

Chapter Analytica Enterprise22 Accessing databases

Alternatively, you can construct a table containing a subset of the columns in a result
table. For example, if vehicles has a large number of columns, you might create this
variable with only the three columns you are interested in:

Variable SubCarTable:= DBTable(Records,['make','model','year'])

This table will be indexed by Records and by an implicit index (a.k.a. a null index). The
first argument to DBTable() must always be an indexed defined by DBQuery() —
remember the SQL query is defined in that node, and this is how DBTable() knows
which table is being retrieved.

DBWrite(): Writing to a database
You can use SQL to change the contents of the external data source from within an
Analytica model. Using the appropriate SQL statements, you can add or delete records
from an existing database table. You can also add columns, and create or delete tables,
if your data source driver supports these operations.

DBQuery() cannot alter the data source, because it processes the SQL statement in
read-only mode. Instead, use DBWrite(), which is identical to DBQuery() except that it
processes the SQL statement in read-write mode. DBWrite() can make any change to
the database that can be expressed as an SQL statement, and is supported by the
ODBC driver.

To send data from your model into the database, you must convert that data into a text
value — more precisely, into an SQL statement. Analytica offers some tools to help this
process. Here, we will illustrate a common case — writing a multi-dimensional array to a
table in a database. We use the ODBC_Library.ana library distributed with Analytica.

Suppose you want to write the value of variable A, which is a three dimensional array
indexed by I, J, and K, into a relational table named TableA, so that other applications
can use the data.2-D table
First, we need to convert the 3D array into the correct relational table form. Then we
convert the table into the SQL text to write to the database.

Our approach is to first convert the three-dimensional array A into a two dimensional
table, which we store into TableA. TableA needs two indexes: ARowIndex and ALa-
belIndex. These three variables are defined as follows:

Index ALabelIndex := Concat(IndexNames(A),['A'])

Index ARowIndex := sequence(1, Size(A))

Variable TableA := MDArrayToTable(A, ARowIndex, ALabelIndex)

MDArrayToTable(a, i, l) is described on page 197. ALabelIndex evaluates to
['I','J','K','A'], and ARowIndex sets aside one row for each element of A. TableA
is then a table with one row for each element of A, where the value of each index for that
element is listed in the corresponding column, and the value of that element appears in
the final column.

Next, set up TableA in the database with the same columns. This is most easily done
using the front end provided with your database. For example, if you are using MS
Access, start the MS Access program, and from there, create a new table. Alternatively,
you could issue the statement

DBWrite(DB,'CREATE TABLE TableA(I <text>, J <text>, K <text>, A

<text>)')

Chapter Analytica Enterprise

380 Analytica User Guide

22 Accessing databases

from an Analytica expression (replacing <text> with whatever type is appropriate for
your application). Be sure that the column labels in the database table have the same
names as the labels of ALabelIndex in the Analytica model.

Tip If you want to use column labels in the database that are different from the Analytica
index names: Define ALabelIndex to be a 1-D array, self indexed. Set the Domain of
ALabelIndex to be the database labels, and the values of the array to the index names.
(The last value is arbitrary).

Our data is now in the form of a 2-D table as needed for a database table. Next we con-
struct the SQL text to write the table to the database. You must choose whether you
want to append rows to the existing database table, or replace the table entirely. Or you
can replace only selected entries. Your choice affects how you construct the SQL state-
ment. Here, we totally replace any existing data with the new data: After the operation ,
the database table will be exactly the same as TableA in the Analytica model. The SQL
statements for performing the write is:

DELETE * FROM TableA

INSERT INTO TableA(I,J,K,A) VALUES ('i1','j1','k1','a111')

INSERT INTO TableA(I,J,K,A) VALUES ('i1','j1','k2','a112')

...

The first statement removes existing data, since we are replacing it. We follow this by
one INSERT INTO statement for each row of TableA. The data to the right of the VAL-
UES keyword is replaced by the specific values for indexes I, J, K, and array A (the
example above assumes the values are all text values). If your values are numeric, you
should note that MSAccess will add quotes around them automatically.

Since writing the table requires a series of SQL statements, we have two options: Eval-
uate a series of DBWrite() functions, or lump the series of SQL statements into one
long text value and issue one DBWrite() statement. In Analytica, the second option is
much more efficient for two reasons. First, the overhead of connecting with the data-
base occurs only one time. Second, intermediate result tables do not have to be read
from the ODBC driver, while if you issued separate DBWrite() statements, each one
would go through the effort of acquiring the result table, only to be ignored.

Important feature
(double semi-colon)

To allow multiple SQL statements in a single DBWrite() function (or in a single
DBQuery() function), Analytica provides an extension to the SQL language. The double
semi-colon separates multiple statements. For example,

'DELETE * FROM TableA ;; SELECT * FROM TableA'

first deletes the data from the table, and then reads the (now empty) table. When ;; is
used, only the last SQL statement in the series returns a result table. Most statements
that write to a database return an empty result table.

We are now ready to write the Analytica expression that will construct the SQL state-
ment to write the table to the database. The function to do this already exists in the
ODBC_Library. First, use the Add Module item on the File menu to insert the
ODBC_Library into your model; then use the WriteTableSql() function, which returns
the SQL statement (as a text value) for writing the table to the database. The function
requires that I and L contain no duplicates (which should be the case anyway).

Finally, define:
Variable Write_A_to_DB := DBWrite(DB, WriteTableSql(A, RowIndex,

LabelIndex,'TableA'))

 Analytica User Guide 381

Chapter Analytica Enterprise22 Database functions

Creating an output
node to write to a

database

Write_A_to_DB writes array A to the database whenever it is evaluated. But, this hap-
pens when the model user causes Write_A_to_DB to be evaluated, not necessarily
whenever A changes. To make it easy for the end user to perform the write, we suggest
you make an output node for WriteAtoDB:

1. Select node Write_A_to_DB in its diagram.

2. Select the Make Output Node command on the Edit menu.

3. Move the new output node to a convenient place in the user interface of the model.

Initially, the output node will show the "Calc" button. When you click it, it writes A to the
database. It also displays the result of evaluating DBWrite(), usually an empty window,
not very interesting to the user. To avoid this, append "; ’Done’ " to its definition:

Write_A_to_DB := DBWrite(DB, WriteTableSql(A, RowIndex,

LabelIndex,'TableA'); ’Done’

Now, when you or an end user of the model, clicks Write_A_to_DB, after writing A to
the database, it shows ’Done’ in the output node. It reverts to the "Calc" button, when-
ever A changes.

Database functions
The Database library on the Definition menu contains five functions for working with
ODBC databases:

DBLabels(dbIndex)
Returns a list of the column labels for the result table. This statement may be used to
define an index which can then be used as the second argument to DBTable(). The first
argument, dbIndex, must be defined by a DBQuery() statement.

DBQuery(connectionString, sql)
Used to define an index variable. The definition of the index should contain only one
DBQuery() statement. connectionString specifies a data source (e.g., 'DSN=MyData-
base') and sql defines an SQL query.

When placed as the definition of an index variable, DBQuery() will be evaluated as
soon as the definition is complete. When it is evaluated, the actual query is performed.
The resulting result table is cached inside Analytica, to subsequently be accessed by
DBTable() or DBLabels().

DBQuery() returns a sequence 1..n, where n is the number of records (rows) in the
result table.

DBQuery() should appear only once in a definition, and if it is embedded in an expres-
sion, the expression must return a list with n elements.

DBQuery() processes the sql statement in read-only mode, so that the data source
cannot be altered as a result of executing this statement. To alter the data source, use
DBWrite().

Chapter Analytica Enterprise

382 Analytica User Guide

22 Database functions

DBTable(dbIndex, column)
DBTable(dbIndex, columnList)
DBTable(dbIndex, columnIndex)

DBTable() is used to get at the data within a result table. The first argument, dbIndex,
must be the name of a variable (normally an index) in your Analytica model that is
defined with a DBQuery() statement. If the second argument, column, is a text value, it
identifies the name of a column label in the result table, in which case DBTable()
returns a 1-D array (indexed by dbIndex) with the data for that column. If the second
argument is a list of text values (the columnList form), then DBTable() returns a 2-D
table with records indexed by dbIndex, and columns implicitly indexed (i.e., self-
indexed/null-indexed). If the second argument is the name of an Analytica variable
(usually an index) whose value evaluates to a list of text values, those text values
become the column headings for a 2-D table with columns indexed by columnIndex,
and rows indexed by dbIndex. With this last form, columnIndex may be defined as
DBLabels(dbIndex).

DbTableNames(connectionString, cat, sch, tab, typ)
Connects to an ODBC data source and returns catalog data for the data source. con-
nectionString specifies a data source (e.g., 'DSN=MyDatabase'). cat (catalog
names), sch (schema names), tab (table names), and typ (table types) may be pat-
terns if your ODBC driver manager is ODBC 3 compliant. Use ’%’ as a wildcard in each
field to match zero or more characters. Underscore, ’_’, matches one character. Most
drivers use backslash (’\’) as an escape character, so that the characters ’%’, ’_’, or ’\’
as literals must be entered as ’\%’, ’_’, or ’\\’. typ may be a comma-delimited list of table
types. Your data source and ODBC driver may or may not support this call to varying
degrees.

Examples To get all valid catalog names in My db:
DBTableNames(’DSN=My db’,’%’,’’,’’,’’)

To get all valid schemas in My db:
DBTableNames(’DSN=My db’,’’,’%’,’’,’’)

To get all valid table names in My db:
DbTableNames(’DSN=My db’,’’,’’,’%’,’’)

To get all valid table types:
DbTableNames(’DSN=My db’,’’,’’,’’,’%’)

DBWrite(connectionString, sql)
This function is identical to DBQuery() except that the query is processed in read-write
mode, making it possible to store data in the data source from within Analytica.

SqlDriverInfo(driverName)
Returns a list of attribute-value pairs for the specified driver. If driverName='' (an
empty text value), returns a list of the names of the drivers. driverName must be a text
value — it cannot be a list of text values or an index that is defined as a list of text val-

 Analytica User Guide 383

Chapter Analytica Enterprise22 Reading and writing text files

ues. This statement would not normally be used in a model, but may be helpful in
understanding the SQL drivers that are available.

Reading and writing text files

ReadTextFile (filename)
Reads a file filename and returns its contents as a text value. If filename contains no
directory path, it will try to read from the current folder, usually the folder containing the
current model file. If it doesn’t find the file, it will open a Windows Browser dialog box to
prompt the user. For example,

Function LinesFromFile(filename : Atom Text)

Definition:

VAR r := SplitText(ReadTextFile(filename), Chr(10));

Index lines :=1..Size(r);

Array(lines, r)

This function reads in the file and splits the text up at the end of each line, with the line
feed, Chr(10), character. It then defines a local index lines, to be used as the index of
the array of lines that it returns.

If you set optional parameter showDialog to true (1), it will always prompt for the file,
even if it finds one by that name. Default is not.

WriteTextFile (filename, text:Text; append, warn:Boolean optional;
sep:Text optional)

Writes text to the file filename. The filename is relative to the current data directory. It
returns the full pathname of the file if it is successful in writing or appending to it. By
default, the append flag is False and warn flag is True. If the file doesn't already exist, it
creates the file in the current data directory — and if the file does exist, it asks if you
want to replace it. If append is True (1), and the file already exists, it appends the text to
the end of the file. If warn is False (0), it will not issue a warning before overwriting an
existing file when append is False, or when modifying an existing file when append is
True.

If text is an array, it writes each element to the file, inserting separator sep between ele-
ments, if provided. If text has more than one dimension, you can control the sequence
in which they are written by using function JoinText() to join the text over the index you
want innermost.

You can write or append to multiple files when filename is an array of file names. If text
has the same index(es), it will write the corresponding slice of text to each file — follow-
ing proper array abstraction.

CurrentDataDirectory()
Returns the file path of the data directory — the directory used by ReadTextFile() and
WriteTextFile(), if their filename parameter contains no other path. When starting a
model, it is the directory containing the model. Any call to ReadTextFile() or WriteText-

Chapter Analytica Enterprise

384 Analytica User Guide

22 Making a browse-only model and hiding
definitions

File() that incudes a path in filename parameter, will change the current data directory
to the directory specified.

CurrentModelDirectory()
Returns the file path of the model directory — the directory into which the model is
saved, by default. On starting a model, this is the directory containing the model. You
can change it by selecting a different directly using the directory browser from Save as.

Making a browse-only model and hiding definitions
When you are ready to let others use the models you have created, you may want to
save it as browse-only, so that end users can only change the variables you have desig-
nated as inputs (by making input nodes for them). You may also want to hide definitions
of variables or functions to protect confidential or proprietary data or algorithms. With
Analytica Enterprise, you can save models that are locked as browse-only and with hid-
den definitions, using these steps:

1. Hide selected definitions in your model, for entire model, modules, or by variable.

2. Save your master model file (and any linked submodules) so that you can still view
and modify it yourself.

3. Select Save a copy from the File menu, and check Lock and obfuscate and
optionally Save as a browse-only model copy to save an obfuscated copy — that
is a file scrambled into a non-human-readable form.

4. Distribute the obfuscated copy to your end users.

The third step permanently locks your model so that hidden definitions can never again
be viewed in that copy. It is therefore recommended that you save a protected copy of
your model, and leave your original model as a master (unprotected) copy. Until the
model is stored in an "obfuscated" form (step 3), an end user is not prevented from
unhiding your definitions, or from viewing them by other means (e.g., by loading the
Analytica model file into a text editor).

Tip An obfuscated model file cannot be un-obfuscated, even by the original author. If it is
locked as browse-only, it can never again be edited. If definitions are hidden, they can
never again be viewed or edited. Always place a master copy of your model (and any
submodules) in a safe place before making an obfuscated copy!

Hiding and unhiding
definitions

To hide the definition of a single variable or function, select its node and select Hide
Definition(s) from the Object menu, so it becomes checked. You cannot hide multiple
nodes, except by hiding all nodes in a parent module. To hide the definitions of all
objects in a module:

1. Select the node of the module in its parent diagram, or open the module and select
no nodes inside it.

2. Select Hide Definition(s) from the Object menu, so it becomes checked.

If a variable, function, or module is hidden, when you try to view its definition, it displays:
[Definition is Hidden]

 Analytica User Guide 385

Chapter Analytica Enterprise22 Making a browse-only model and hiding
definitions

Tip The definition of a variable with an input node is always visible regardless of whether it
or its parent module is marked as Hidden.

Unhiding and
inheritance of hiding

Definition hiding is inherited down the module hierarchy: If you hide a module, you hide
the definitions of all the objects that it contains, including its submodules and all the
objects that they contain — unless you explicitly unhide an object or submodule, in
which it or the objects it contains will not be hidden. To unhide a variable, function, or
module:

1. Select its node in its parent diagram.

2. Select Unhide Definition(s) from the Object menu, so it becomes checked.

In the module hierarchy shown below, module Mo1 is hidden, and therefore so are the
objects it contains, module Mo2, Va1, and Va2. But module Mo3 is unhidden, and
therefore so are the objects it contains, Va3 and Mo4. However, object Va4 is itself
explicitly hidden:

Tip The Hide Definition(s) and Unhide Definition(s) menu options are disabled if the
current model, or any of its linked submodules, has been obfuscated. In this case,
obfuscation has locked hiding in place.

After hiding the definitions you want, you can view your model to check everything is as
you want. You can still Unhide items if you want to view or edit them. But, after saving
the model in obfuscated form, no one, even you, can view hidden definitions or edit any
variables that are not inputs, even if they open the model file in a text editor. That’s why
it’s important that you save a master copy for your own use.

Saving an obfuscated
copy of your model

When you are ready to save an obfuscated copy of your model, select Save a Copy In
from the File menu:

Mo3Mo2

Mo4

Mo1

Va1

Va2 Va3

Va4

(hide)

(hide)

(unhide)

Chapter Analytica Enterprise

386 Analytica User Guide

22 Making a browse-only model and hiding
definitions

Enter a filename that is different than the filename of your master copy, to make sure
that you retain an editable version for your self.

Click the Lock and obfuscate the copy checkbox at the bottom of the dialog to save
the model in an encrypted form that will make any Hidden definitions unviewable, even
if you try to edit the file.

Click Save as a browse-only model checkbox if you also want to prevent users from
changing any variables not designated as inputs. In that case, the model will be locked
in browse-only mode, as if it is being run with Analytica Player or Power Player, even if
the user runs the model with an Analytica edition that normally allows editing.

A browse-only model is always obfuscated to prevent anyone from editing the source
Analytica file. Thus, it automatically checks Lock and obfuscate the copy and the
Save in XML format option is not available.

If you want end users to be able to use other Enterprise features, such as Database
access, File reading and writing, Huge Arrays, or Performance Profiling, they will need
the Power Player — or their own Enterprise edition.

When a browse-only model (saved as such from Enterprise) is loaded into Analytica
Professional, Analytica Lite, or Analytica Professional, it runs it in Power Player mode

Warning: Do not obfuscate libraries or linked submodules!
If you want to create an obfuscated version of your model, embed any libraries or sub-
modules into it, rather than linking them, to avoid accidentally obfuscating them.

Tip if you read an obfuscated library or other module into your model, it will result in
obfuscating the parent model, as well as any other separately filed submodules or
libraries it may contain. So, you could accidentally end up obfuscating your entire model
and rendering it uneditable by anyone, including you! Therefore, we strongly recommend
that you do not obfuscate any library or module intended to be used by another model;
and that you do not try to read an obfuscated library or module into any model.

 Analytica User Guide 387

Chapter Analytica Enterprise22 Huge Arrays

Huge Arrays
Analytica Enterprise, Optimizer, Power Player, and ADE can manage Indexes and
Arrays of up to 100 Million elements in any dimension. The only practical limit on model
sizes is the amount of memory. Huge Arrays means they can also handle Sample Size
for probabilistic simulation up to this size. (You can set this in the Uncertainty Setup
dialog from the Result menu.) This also let you read in large datasets from databases,
using the ODBC functions.

Tip Editions of Analytica other than Enterprise, Optimizer, Power Player, and ADE are
limited to index and sample sizes of 32,000 elements.

Creating buttons and scripts
A button is a special kind of object you can add to a diagram. It contains a script that is
executed when you press the button (in browse mode). You need Analytica Enterprise
(or Optimizer) to create new buttons. You can use buttons with any edition of Analytica.

To make a button To create a new button, enter edit mode, and drag from the button icon at the right end
of the new object toolbar onto the diagram (or press Control+0):

Button script The button script is in its script attribute. You can view and edit the script in the
Attribute panel as above, or its Object window, like any user-editable attribute. Any
change to an identifier used in a button script automatically updates the script, just as it
does in a definition of a variable or function.

Script language The script language is similar to the Analytica language used in definitions. Some key
differences are:

• A script consists of one or more statements, each on a separate line, with no ";" or
other separator between them.

• A statement can be an assignment to change the definition of a global variable —
something not allowed in a variable definition.

• A statement in a script can be any expression valid in the Analytica modeling
language, including a call to a built-in or user-defined function, as long as it fits on
one line.

Chapter Analytica Enterprise

388 Analytica User Guide

22 Creating buttons and scripts

• A statement or expression in a script must be all on one line. A new line implies a
new statement. A script does not accept BEGIN END or parentheses around a
sequence of statements.

• A script can call a function that assigns to a global variable. Such a function may be
called directly from a script, or indirectly from another function called from a script,
and so on recursively. Such a function may not be from in an Analytica variable.

• Script statements can use a wide range of script commands, not available in the
normal modeling language. Among other things, these can open or close windows.
See http://lumina.com/wiki/index.php/Commands.

Consult the Scripting Guide on Anawiki for details of syntax of scripts.

Tip If you want a button to perform a complex series of steps, it is usually easiest to define
those steps in a function, and call the function from the script, rather than write the steps
directly into the script. Function definitions offer several advantages over scripts,
including the ability to add inputs by drawing arrows to its node and a more flexible (and
familiar) syntax.

Assigning to global variables
Assigning a definition

in a script
A statement in a button script may assign to a nonlocal (global) variable, for example:

A := 100

This is not permitted in the definition of a variable, which may only assign to local vari-
ables declared within the definition of the variable, to prevent side effects — where eval-
uating one variable changes the value of another. See “Assigning to a local variable: v
:= e” on page 351.

An assignment statement in a script assigns the definition of the variable to the expres-
sion assigned, not to the value of the expression. Consider these three statements in a
button script, assuming A and B are global (i.e., non-local) variables:

A := 1

B := A+1

A := 100

The second assignment changes the definition of B to the expression A+1, not the value
of the expression, which would be 2. After these three statements, the value of B is 101,
because the third line sets A to 100, which propagates to the definition of B is A+1.

Assigning a value
in a script

In the context of an expression rather than a script statement, the assignment
B := A+1

sets variable B to the value of A+1, not the expression A+1. An expression is anything in
the definition of a variable or function. You may also include an expression within a
script statement simply by enclosing it in parentheses:

A := 1

(B := A+1)

A := 100

In this case, after executing this script, the definition of B is 2 — the value of expression
A+1 in the second line. Since the definition of B is now 2, not A+1, the third line, assign-
ing 100 to A has no effect on B.

 Analytica User Guide 389

Chapter Analytica Enterprise22 Creating buttons and scripts

Assigning a value
in a function

There is an important exception to the rule that you may not assign to globals in a defi-
nition: You may assign to a global variable in a function that is called from a button
script. It may be called directly or indirectly — that is, called from a function called from
a script, and so on recursively:

Variable A := 100

Variable B := 2

Function IncrementA

Parameters: (x)

Definition: A := A + x

Button Add_B_to_A

Script: IncrementA(B)

When you press button Add_B_to_A, it calls function IncrementA, which sets the defini-
tion of A to the current value of A+B, i.e., 102. Like any assignment in a function, it
assigns the value not the expression A+B.

This kind of global assignment gives you the ability to create buttons and functions to
make changes to a model, including such things as modifying existing model values
and dependencies.

Save a
computed value

One useful application of assigning to a global variable is to save the results of a long
computation. Normally, the cached result of a computation is stored until you change
any ancestor feeding into the computation, or until you Quit the session. By assigning
the result to a global variable, you can save it so that it remains the same when you
change an input, or even when you quit and later restart the model.

A common case where this is helpful is a model containing two parts: (1) A time-con-
suming statistical estimation, neural network, or optimization that learns a parameter
set, and (2) a model that applies the learned parameters to classify new instances. After
computing the parameters, you can save them into a set of global variables, and then
save and close the model. When you restart the model, you can apply the learned
parameters to many instances without having to waste time recomputing them.

Consider this example:
Variable Saved_A := 0

Function Save_value(x)

Description: Sets Saved_A to be the value of x.

Definition: Saved_A := x

Button Save_A

Script: Save_value(A)

When you click button Save_A, it calls function Save_value(A), which saves the value
of A into global Saved_A. Saved_A will retain this value if you change A or any of its pre-
decessors, or even if you quit the session, saving the model file, and later restart the
model. Thus, you won’t have to wait to recompute Saved_A. Of course, the value of
Saved_A will not update automatically if you change any of its predecessors, the way A
does. You need to click button Save_A again to save a new value of A.

If the value of A is an array with nonlocal indexes, the definition of Saved_A will be an
edit table, using those indexes. Any subsequent change to those indexes will affect,

Chapter Analytica Enterprise

390 Analytica User Guide

22 Creating buttons and scripts

and possibly invalidate the table. If you want to make sure this doesn’t happen, you may
want to save copies of the indexes, and transform the table to use the saved indexes.

Assign to
an attribute

You may assign to any user-editable attribute of a (nonlocal) variable or other object,
subject to the same restrictions as assigning a value — i.e., you may do it only in a func-
tion called from a script, directly or indirectly. You may not assign to an attribute in the
definition of a variable. The syntax is:

<attrib> OF <object> := <text>

where <attrib> is the name of an editable attribute, including Title, Units, Description,
Definition, Check, Domain, and Author; <object> is the identifier of a user-defined,
nonlocal object, variable, function, module, etc.; and <text> is a text value. For exam-
ple:

Function Retitle(o, t)

Description: Sets the title of object o to text t.

Parameters: (o: Object; t: Atom Text)

Definition: Title OF o := t

Variable Gray := 0

Title: Gray

Button Change_title

Script: Retitle(Gray, ’Earl ’&(Title of Gray))

When you click button Change_title, it calls function Retitle applying it to variable
Gray, prefixing the old title of Gray with ’Earl ’ to become ’Earl Gray’. It will do it
again each time you press the button. Notice that the object whose attribute you are
resetting may be passed to the function, provided the parameter is qualified as an
Object in the parameters declaration.

If the text is an array, it flattens the array into a single text value before the assignment
— probably not what you want. So, it is best only to assign atomic text values.

If you want to assign a new definition as text (rather than assigning the value of an
expression), you may assign to the definition thus:

Definition OF X := Y^2

You may use this method to assign new values to various internal attributes, such as
Nodelocation, Nodecolor, Nodesize, and NodeFont, letting you change the way
nodes appear on a diagram. Consult the Scripting Guide on Anawiki for details of syn-
tax.

EvaluateScript(t)
This function evaluates a text value t as if it was a script. This means t can contain
script commands, assignments to globals, and other statements permitted in scripts.

Avoid using EvaluateScript(t) except in script functions — that is, functions called from
button scripts. This will minimize the danger of undermining the no-side-effects rule.

 Analytica User Guide 391

Chapter Analytica Enterprise22 Performance Profiler

Typescript Window
The Typescript window offers an old-fashioned command-line user interface, like the
Windows CMD program or a Unix shell: It shows a prompt — the title of the model or
module — at the start of each line. You can type in a script command. It will print any
results as text, and show another prompt. The typescript is occasionally useful for
advanced users who wish to inspect internal details of a model. You may also use it to
test out commands that you want to use in a button script.

To open the Typescript window, press Control+’ (single apostrophe):

Performance Profiler
The Performance Profiler library shows you the computation time and memory space
used by each variable and function. If you have a large model that takes a long time to
run or uses a lot of memory, you might want to find out which variables or functions are
using the Lion’s share of the time or memory. As experienced programmers know, the
results are often a surprise. With the results from the Performance Profiler, you know
where to focus your efforts to make the model faster or use less RAM.

First add Performance Profiler.ANA from the Libraries folder into your model:

Now display the results (table or graph) for the variables whose performance you
want to profile. Open the library, and click Performance profiles:

Chapter Analytica Enterprise

392 Analytica User Guide

22 Performance Profiler

This table lists the variables and functions by row, with the class of the object, parent
module, Bytes of RAM (random access memory), and CPU msecs (milliseconds of
time used by the central processing unit). The last column, msecs w ancestors, shows
the CPU milliseconds to compute each variable or function including all its ancestors —
i.e., the variables and functions it uses. The Profiler shows all variables and functions
that use more than 24 bytes of RAM (the minimum) or take more than 1 millisecond to
compute. Use Sort objects by to sort the table by any column.

If you want to inspect a variable or function to see why it’s taking so much time or mem-
ory, just click its title in the .Objects index column to open its Object window.

Update profiles After computing more results, click this button to update the performance profile to
reflect the additional time and memory used.

Zero out times If you want to look at the incremental time used by additional results, or another compu-
tation, first click this button to zero out the times already computed.

Understanding
memory usage

For complex definitions, it may use much more RAM while it is computing than it needs
to cache the final result — the Profiler reports only the latter. The Bytes show the RAM
used to store the value of each variable, Mid, Probabilistic, or both, depending on which
it has computed. Typically, an array takes about 12 bytes per number to store. For
example, an uncertain dynamic array of numbers, with an index I of 20 elements, Time
has 30 elements, and Samplesize = 1000, would use about 20 x 30 x 1000 x12 =
7,200,000 bytes or 7.2 Megabytes. Analytica uses an efficient representation for arrays
with many zeroes (sparse arrays) or many repeated values. An array that is an exact or
partial copy of another array may share slices. In such cases, it may actually use less
memory than it reports.

Understanding
computation time

The CPU time listed is the time it took to evaluate the mid and/or prob value of each
variable or function, depending on which type of evaluation it did. It is zero if the results
computed did not cause evaluation of the variable or function. A variable is usually only
computed at most once each for its mid and prob value. Rare exceptions include when
the variable is referenced directly or indirectly in a parameter to Whatif or Whatifall
(page 286), which might cause multiple evaluations. A function may be called many
times. The CPU time reported is the sum over all these evaluations.

Time and virtual
memory

Like most 32-bit applications on Windows, Analytica can use up to 3 Gigabytes of mem-
ory. If your computer doesn’t have that much RAM installed, and it needs more than is
available, it may use virtual memory — that is, it saves data onto the hard disk. Since

 Analytica User Guide 393

Chapter Analytica Enterprise22 RunConsoleProcess(program, cmdline, stdIn,
block)

reading and writing a hard disk is usually much slower than RAM, using virtual memory
often causes the application to slow down substantially. In this case, finding a way to
reduce memory usage below the amount of physical RAM available may speed up the
application considerably. Another approach is to install more RAM, up to 4 Gigabytes.

Performance profiling attributes and function
The Performance Profiler library uses a function, two attributes, and a command, which
are also available for you to write your own functions using memory or time. For an
example of how to use them, you can open up the library.

MemoryInUseBy(v) This function returns the number of bytes in use by the cached result(s) for variable v —
with the same disclaimer that shared memory may be counted more than once. It
includes memory used by mid and prob values if those results have been computed and
cached, but it doesn't force them to be computed if they haven’t been.

These two special read-only attributes:

EvaluationTime This attribute returns the time in seconds to evaluate its variable or function, not includ-
ing the time to evaluate any of its inputs.

EvaluationTimeAll This attribute returns the time in seconds to evaluate its variable or function, including
the time to compute any of its inputs that needed to be evaluated (and their inputs, and
so on.).

ResetElapsedTimings This command sets these attributes back to zero. Like any command, you may use it in
a button script, the Typescript, but not in a regular definition.

Tip These features, including the Performance Profiler are only available for Analytica
Enterprise, Power Player, and ADE editions.

RunConsoleProcess(program, cmdline, stdIn, block)
This function lets an Analytica model run a console process, that is, start another Win-
dows application. The application or program may be a simple one with no graphical
user interface, or it can interact directly with the user. RunConsoleProcess() can pro-
vide data as input to the program and return results generated by the application. The
program parameter contains text to specify the directory path and name of the pro-
gram. It can feed input to the program via command line parameters in cmdLine, via
the stdIn parameter, piped to the StdIn input channel of the program, or via a data file
created with WriteTextFile(). Normally, when the program completes, RunCon-
soleProcess returns a result (as text) any information the program writes to stdOut.
Analytica can also use ReadTextFile() to read any results the program has saved as a
data file.

Required parameter

program Text to specify the directory path and name of the Windows application
(program) to run. A relative path is interpreted relative to Analytica's
CurrentDataDirectory. If it cannot find or launch the application, it
gives an error message.

Optional parameters:

Chapter Analytica Enterprise

394 Analytica User Guide

22 RunConsoleProcess(program, cmdline, stdIn,
block)

RunConsoleProcess() fully supports Intelligent Arrays. If any parameter is passed an
array, it runs a separate process for each element of the array. It runs multiple blocking
processes sequentially. It runs multiple non-blocking processes concurrently.

Examples
Run a VB Script Suppose the Visual Basic program file HelloWorld.vbs is in your model directory and

contains:
WScript.Echo "Hello World"

Your call to RunConsoleProcess might look like:

cmdline Text given input to the program as command line parameters. (It is
separated from the program parameter to protect against a common
type of virus attack.)

stdIn Text to be piped to the StdIn input channel of the program.

block If you omit block or set it to True (1), RunConsoleProcess() blocks —
that is, after calling the process, Analytica stops and waits until the con-
sole process terminates and returns a result before it resumes execu-
tion. While blocked, Analytica still notices Windows events: If you press
Control+Break (or Control+.) before the process terminates, it kills the
process, and ends further computation by Analytica, just as when Ana-
lytica is computing without another process.

If you set block to False (0), RunConsoleProcess() spawns an inde-
pendent process that runs concurrently with Analytica. Within Analyt-
ica, it returns empty text. Analytica and the spawned process each
continues running independently until it terminates. If you press Con-
trol+Break (or Control+.), it interrupts and stops further computations
by Analytica, but has no effect on the spawned process. An unblocking
process may continue running even after you exit Analytica. Unblock-
ing processes are useful when you want to send data to another appli-
cation for display, such as a special graphing package or GIS, or for
saving selected results. It is difficult for Analytica to get any results or
status back from an unblocking process. If you need results back it is
usually best to use a blocking process.

curDir The directory the process should use as its default directory to read
and write files. If omitted, it uses the application’s own directory as the
default.

priority Sets the priority that Windows should give the spawned process rela-
tive to the Analytica process. The default (0) is the same priority as the
Analytica process. Setting it to +1 or +2 raises its priority, taking more
of the CPU for the process. -1 or -2 lowers the priority, letting other pro-
cesses (including Analytica) use more of the CPU.

showErr Controls the display of error messages from a blocking process. By
default, if the process writes anything to stdErr, Analytica displays it as
an error message when the process terminates. If showErr=2 it shows
any text in stdErr as a warning message. If showErr=0, it ignores any-
thing in stdErr. Analytica always ignores any error in an unblocking
process, which is assumed to control the display of its own errors.

 Analytica User Guide 395

Chapter Analytica Enterprise22 RunConsoleProcess(program, cmdline, stdIn,
block)

RunConsoleProcess("C:\Windows\System32\CScript.exe",

"CScript /Nologo HelloWorld.vbs")

The first parameter identifies the program to be launched. You don't need to worry
about quoting any spaces in the path name. The second parameter is the command line
as it might appear on a command prompt. This expression returns the text value "Hello
World".

To send data to the StdIn of the process, include the optional parameter StdIn:
RunConsoleProcess("C:\Windows\System32\CScript.exe",

"CScript /Nologo HelloWorld.vbs", StdIn: MyDataToSend)

where MyDataToSend is an Analytica variable that gives a text value.

To run a batch file Suppose the directory C:\Try contains a data file named data.log and a batch file
named DoIt.bat containing:

DoIt.bat — dump the log

Type data.log

This batch file assumes it is run from the directory C:\Try so does not mention the direc-
tory of data.log. From Analytica, you call:

RunConsoleProcess("C:\Windows\System32\Cmd.exe", "Cmd /C DoIt.bat",

CurDir: "C:\Try")

or you can run it directly:
RunConsoleProcess("DoIt.bat", "DoIt.bat", CurDir: "C:\Try")

To read data
from a URL

If you have the program ReadURL.exe (which you can download from the Anawiki),
you can use it to read the contents of a web page into Analytica:

RunConsoleProcess("ReadURL.exe", "ReadURL " & url)

where url is a text string as would appear in the address bar of your browser. You can
download the ReadURL.exe program by clicking the link and saving. If you save
ReadURL.exe into a directory other than CurrentDataDirectory, you will also need to
specify its directory path in the program parameter above.

Chapter Analytica Enterprise

396 Analytica User Guide

22 RunConsoleProcess(program, cmdline, stdIn,
block)

Appendices

The following appendices shows you:

• How to select an appropriate sample size

• The complete set of Analytica Menus

• The specifications for Analytica

• The list of reserved words and error message types

• Forward and backward compatibility information

• A bibliography

• A list of all the Analytica functions

Appendix

398 Analytica Users Guide

A

Appendix A. Selecting the Sample Size
Each probabilistic value is simulated by computing a random sample of values from the
actual probability distribution.

You can control the sampling method and sample size by using the Uncertainty Setup
dialog box (see “Uncertainty Setup dialog box” on page 232). This appendix briefly dis-
cusses how to select a sample size.

Choosing an
appropriate
sample size

There is a clear trade-off for using a larger sample size in calculating an uncertainty
variable. When you set the sample size to a large value, the result is less noisy, but it
takes a longer time to compute the distribution. For an initial probabilistic calculation, a
sample size of 20 to 50 is usually adequate.

How should you choose the sample size m? It depends both on the cost of each model
run, and what you want the results for. An advantage of the Monte Carlo method is that
you can apply many standard statistical techniques to estimate the precision of esti-
mates of the output distribution. This is because the generated sample of values for
each output variable is a random sample from the true probability distribution for that
variable.

Uncertainty about
the mean

First, suppose you are primarily interested in the precision of the mean of your output
variable y. Assume you have a random sample of m output values generated by Monte
Carlo simulation:

(1)

You can estimate the mean and standard deviation of y using the following equations:

(2)

(3)

This leads to the following confidence interval with confidence α, where c is the devia-
tion for the unit normally enclosing probability α:

(4)

Suppose you wish to obtain an estimate of the mean of y with an α confidence interval
smaller than w units wide. What sample size do you need? You need to make sure that:

(5)

or, rearranging the inequality,

(6)

y1 y2 y3 …ym, , ,()

y
yi
m

i 1=

m

∑=

s2
yi y–()2

m 1–()

i 1=

m

∑=

y c s
m

--------– y c s
m

--------+,⎝ ⎠
⎛ ⎞

w 2c s
m

-------->

m 2cs
w

--------⎝ ⎠
⎛ ⎞

2
>

 Analytica User Guide 399

Appendix A

To use this, first make a small Monte Carlo run with, say, 10 values to get an initial esti-
mate of the variance of y — that is, s2. You can then use Equation (6) to estimate how
many samples will reduce the confidence interval to the requisite width w.

For example, suppose you wish to obtain a 95% confidence interval for the mean that is
less than 20 units wide. Suppose your initial sample of 10 gives s = 40. The deviation c
enclosing a probability of 95% for a unit normal is about 2. Substituting these numbers
into Equation (6), you get:

(7)

So, to get the required precision for the mean, you should set the sample size to about
64.

Estimating
confidence intervals

for fractiles

Another criterion for selecting sample size is the precision of the estimate of the median
and other fractiles, or more generally, the precision of the estimated cumulative distribu-
tion. Assume that the sample m values of y are relabeled so that they are in increasing
order,

and c is the deviation enclosing probability α of the unit normal. Then the following pair
of sample values constitutes the confidence interval:

 where

(8)

(9)

Suppose you want to achieve sufficient precision such that the α confidence interval for
the pth fractile is given by , where is an estimate of , and is an
estimate of . In other words, you want α confidence of being between the
sample values used as estimates of the ()th and ()th fractiles. What sam-
ple size do you need? Ignoring the rounding, you have approximately

, (10)

Thus,

(11)

From Equations (8) and (9) above, you have

(12)

m 2 2× 40×
20

------------------------⎝ ⎠
⎛ ⎞

2
> 82 64= =

y1 y2 …ym≤ ≤

yi yk(,)

i mp c mp 1 p–()–=

k mp c mp 1 p–()+=

Yp yi yk(,) yi Yp Δp– yk
Yp Δp+ Yp

p Δp– p Δp+

i m p Δp–()= k m p Δp+()=

k i– 2mΔp=

k i– 2c mp 1 p–()=

Appendix

400 Analytica Users Guide

A

Equating the two expressions for , you obtain

(13)

(14)

For example, suppose you want to be 95% confident that the estimated fractile Y.90 is
between the estimated fractiles Y.85 and Y.95. So you have , and . Sub-
stituting the numbers into Equation (14), you get:

(15)

On the other hand, suppose you want the credible interval for the least precise esti-
mated percentile (the 50th percentile) to have a 95% confidence interval of plus or
minus one estimated percentile. Then,

(16)

These results are completely independent of the shape of the distribution. If you find
this an appropriate way to state your requirements for the precision of the estimated dis-
tribution, you can determine the sample size before doing any runs to see what sort of
distribution it may be.

k i–

2mΔp 2c mp 1 p–()=

m p 1 p–() c
Δp
-------⎝ ⎠
⎛ ⎞

2
=

Δp 0.05= c 2≈

m 0.90· 1 0.90–()× 2 0.05⁄()2× 144= =

m 0.5 1 0.5–()× 2 0.01⁄()2× 10 000,= =

 Analytica User Guide 401

Appendix B File menu

Appendix B. Menus

File menu

New Model Starts a new model.

Open Model Opens an existing, previously saved model.

Add Module Adds a filed module to the active model.

Add Library Opens file finder at Analytica Libraries folder to add a library
module.

Close Closes the active window.

Close Model Closes the model after prompting you to save the file if it has
changed.

Save Saves the model in its file. If the model has never been saved
before, prompts for a file name and folder. If it has linked
modules that have changed, it also saves them.

Save As Saves the active model, filed module, or filed library as a new
file, after asking for new file name and folder.

Save A Copy In Saves a copy of the active model (or filed module) into a new
file, after prompting for a file name, leaving the original file
name for future saves.

Import Imports the contents of a text or data file into the selected
variable definition. See “Importing and exporting” on page 318.

Export Exports the contents of the selected field or cells into a file. See
“Importing and exporting” on page 318.

Print Setup Opens a dialog for selecting paper size, orientation, and scaling
options for printing.

Print Preview Opens a view showing where page breaks will occur before the
current window is printed.

Print Opens a dialog for selecting the printer, number of copies you
want to print, and other printing options.

Print Report Opens a dialog for printing multiple diagrams, Object windows,
and result windows at the same time. See “Printing” on
page 25.

Recent files Lists the six most recently opened Analytica model files. Select
one to open that model.

Exit Quits the Analytica application, after prompting to save any
model changes to file.

Appendix

402 Analytica Users Guide

B Edit menu

Edit menu

Undo Undoes your last action.

Cut Cuts the selected text, node(s), graph, or table cells into the clipboard
temporarily for pasting.

Copy Copies the selected text, node(s), graph, or table cells into the clipboard
temporarily for pasting. See “Copying and pasting” on page 310.

Paste Pastes the contents of the clipboard at the insertion point in a text, diagram,
or table, or replaces the current selection. See “Copying and pasting” on
page 310.

Paste Special Brings up a dialog to select the format of data to OLE link into an edit table.

Clear Deletes the selected text or node(s).

Select All Selects all the text in an attribute field, nodes in a diagram, or cells in a table.

Duplicate Nodes Duplicates the selected nodes onto the same diagram. See “Duplicate
nodes” on page 51.

Copy Table or
Copy Diagram

When a table window is active, Copy Table copies the entire
multidimensional object as a tab-delimited list of tables. When a Diagram
window is active, Copy Diagram copies a picture of the diagram for pasting
into a graphics application. See “Copying and pasting” on page 310.

Insert Rows or
Insert Columns

Inserts an item into a list, or a row in a table, by copying the current item, or
row. If a column in a table is selected, Insert Columns inserts an item or
column. See “Editing a table” on page 171.

Delete Rows or
Delete Columns

Deletes the selected item or items in a list, or rows or columns in a table. See
“Editing a table” on page 171.

Preferences Opens the Preferences dialog to examine or change various options. See
“Preferences dialog” on page 59.

OLE Links Opens a dialog to let you change properties for OLE links from external
applications into your model. (See “Importing, Exporting, and OLE Linking
Data” on page 309.)

 Analytica User Guide 403

Appendix B Object menu

Object menu

Definition menu
This menu is hierarchical. Each library lists the functions or other constructs it contains.
The middle partition lists built-in libraries. At the bottom, are any libraries you have cre-
ated or added. If you view and select a subitem when editing a definition, it will paste it
into the definition.

Find Opens a Find dialog box to search for an object by its identifier or title.
See “Finding variables” on page 326.

Find Next Finds the next object that partially matches the previously defined text
value. See “Finding variables” on page 326.

Find Selection Finds an object by its identifier that matches the currently selected text.
See “Finding variables” on page 326.

Make Alias Creates an alias for the selected object(s). See “Alias nodes” on
page 55.

Make Importance Creates an importance variable (and index) to compute the importance
(rank correlation) of all uncertain inputs for the selected variable. See
“Importance analysis” on page 282.

Make Input Node Creates an input node for the selected node(s). See “Users of your
model can then easily view and modify input variables, and view the
results, without navigating the details of the model, unless they wish to.”
on page 128.

Make Output
Node

Creates an output node for the selected node(s). See “Using output
nodes” on page 131.

Show By Identifier Show the identifier instead of title of each object in the current diagram,
edit table, Result window, or Outline view. Toggle to show title again.

Show With Values Shows the mid values of the variable and all its inputs in each Object
window. See “Showing values in the Object window” on page 24.

Attributes Opens the Attribute dialog box to set the visibility of attributes and
define new attributes. See “Managing attributes” on page 327.

Hide Definition(s) Marks the currently selected node or module as hidden, so that their
definitions are invisible. (Analytica Enterprise only)

Unhide
Definition(s)

Unhides the currently selected node or module. This overrides any
settings in parent modules to hide definitions. (Analytica Enterprise only)

Appendix

404 Analytica Users Guide

B Definition menu

Edit Definition Opens the appropriate view for editing the definition of the selected
variable. If the variable is defined as a distribution or sequence, the
Object Finder opens. If it is defined as a table or probability table, its
edit table window opens. Otherwise, an Object window or Attribute
panel opens, depending on the Edit attributes setting in the Preferences
dialog box. See “Preferences dialog” on page 59.

Edit Time Opens the Object window for the Time system variable. See “The Time
index” on page 298.

Paste Identifier Opens the Object Finder dialog box for examining functions and
variable identifiers, entering function parameters, and pasting them into
definitions. See “Object Finder dialog” on page 121.

Show Invalid
Variables

Displays a window listing all variables with invalid or missing definitions.
See “Invalid variables” on page 329.

Math See “Math functions” on page 146.

Array See Chapter 11, “Arrays and Indexes,” and Chapter 12, “More Array
Functions.”

Distribution See Chapter 15, “Probability Distributions.”

Special Displays a list of unusual or less commonly used functions in the Special
library.

Statistical See “Statistical functions” on page 274.

Operators Arithmetic, comparison, logical, and conditional operators. See
“Operators” on page 142.

System
Variables

System Variables submenu (see below).

Matrix See “Matrix functions” on page 203.

Text Functions See “Converting a number to text” on page 147.

Financial See “Financial functions” on page 214.

Advanced Math See “Converting a number to text” on page 147.

Optimizer Appears only if you have the Optimizer activated. See Optimizer Guide
for more.

Database Appears only in Analytica Enterprise. See “Database functions” on
page 381.

your libraries It lists the names of any libraries that you have defined or added to the
model, each with a submenu that lists the functions contained in the
library. See Chapter 20, “Building Functions and Libraries.”

 Analytica User Guide 405

Appendix B System Variables submenu

System Variables submenu

Result menu

AnalyticaPlatform In Analytica for Windows, this is ’Windows’. From Analytica for Macintosh,
this is ’Macintosh’, and from the Analytica Decision Engine this is ’ADE’.

AnalyticaVersion An integer encoding the current build number of Analytica being run. In terms
of the major release number, minor release number, and sub-minor release
number, it is equal to

For example, Analytica 3.1 subminor version 1 returns the value 31001.

False The logical (Boolean) constant that evaluates numerically to zero.

Pi The ratio of circumference to the diameter of a circle.

Run The index for uncertainty sampling, defined as
Sequence(1,Samplesize).

Samplesize The number of sample iterations for probabilistic simulation. See
“Uncertainty Setup dialog box” on page 232.

Time The index variable identifying the dimension for dynamic simulation (the
Dynamic() function). See “The Time index” on page 298.

True The logical (Boolean) constant that evaluates numerically to nonzero.

10K Major⋅ 100 Minor⋅ SubMinor+ +

Show Result Opens a Result window for the selected object. See “The result
window” on page 28.

Mid Value Displays the Mid or deterministic value. See “Uncertainty views” on
page 32.

Mean Value Displays the mean of the uncertain value. See “Uncertainty views” on
page 32.

Statistics Displays statistics of the uncertain value in a table as set in the
Uncertainty Setup dialog box. See “Uncertainty views” on page 32.

Probability Bands Shows probability bands (percentiles) as set in the Uncertainty
Setup dialog box. See “Uncertainty views” on page 32.

Probability
Density

Displays a probability density graph for an uncertain value. For a
discrete probability distribution, Probability Mass replaces this
command. See “Uncertainty views” on page 32.

Cumulative
Probability

Displays a cumulative probability graph representing the probability
that a variable's value is less than or equal to each possible
(uncertain) value. See “Uncertainty views” on page 32.

Sample Displays a table of the values determined for each uncertainty sample
iteration. See “Uncertainty views” on page 32.

Graph Setup Displays a dialog box to specify the graphing tool, graph frame, and
graph style. See “Graphing roles” on page 91.

Number Format Displays a dialog box to set the number format for displays of results.
See “Number formats” on page 86.

Appendix

406 Analytica Users Guide

B Diagram menu

Diagram menu

Uncertainty
Options

Displays a dialog box to specify the uncertainty sample size and
sampling method and to set options for statistics, probability bands,
probability density, and cumulative probability. See “Uncertainty
Setup dialog box” on page 232.

Set Diagram Style Displays a Diagram style dialog to set default arrow displays,
node size, and font for this diagram. See “Diagram Style dialog” on
page 81.

Set Node Style Displays Node style dialog to set arrow display and font for the
selected node(s). See “Node Style dialog” on page 82.

Show Color Palette Displays the color palette to set the color of the diagram
background or of selected nodes. See “Recoloring nodes
or background” on page 80.

Align Selection To
Grid

Aligns selected node(s) to the diagram grid. See “Align to the grid”.

Adjust Size Adjusts the selected node’s size to match the default node size, or
to fit the title label. See “Default node size” on page 82.

Move Into Parent Moves the selected object from the current diagram to its parent
diagram. See “The Object window” on page 22.

Resize Centered If checked, when you resize a node, the node’s center stays
unmoved. If unchecked, when you resize a node by dragging a
corner handle, the opposite handle stays unmoved. See “Align
selected nodes” on page 76.

Set Diagram Size Opens a dialog to let you set the are covered by the diagram. The
diagram size increases automatically to show any nodes outside
the original area.

Snap to Grid Turns alignment to the diagram grid on or off in edit mode.See
“Align to the grid”.

Edit Icon Opens a window to draw or edit an icon for the selected node. See
“Adding icons to nodes” on page 133.

Align See description of submenu below.

Make Same Size See description of submenu below.

Space evenly See description of submenu below.

 Analytica User Guide 407

Appendix B Align submenu

Align submenu

Make Same Size submenu

Space evenly submenu

Left Edges Aligns left edges.

Centers Left and
Right

Aligns centers along the same horizontal line.

Right Edges Aligns right edges.

Left and Right
Edges

Moves and changes width so left and right edges are aligned
vertically.

Top Edges Aligns top edges.

Centers Up and
Down

Aligns centers along the same vertical line.

Bottom Edges Aligns bottom edges.

Width Makes all nodes the same width.

Height Makes all nodes the same height.

Both Makes all nodes the same width and height.

Across Spaces nodes evenly horizontally between leftmost and rightmost node.

Down Spaces nodes evenly vertically between top and bottom node.

Appendix

408 Analytica Users Guide

B Window menu

Window menu

Help menu

Tip The options that appear on the help menu will vary depending on your computer setup
and the version of Analytica you have. If you do not have Adobe Acrobat installed on your
computer, the items that appear above the line will change to only:

• User guide
• Optimizer (if you have purchased the Optimizer)
• Tutorial

Bring To Front Displays a list of the current windows;
select one to display on top.

Show Memory
Usage

Opens a window showing memory usage.
See “Numbers and arrays” on page 410.

Show Page Breaks Shows page breaks for the active
diagram.

Cascade Rearranges all open windows using a
standard size, organized so that you can
see the title bar of each one.

Tile Top to Bottom Rearranges all open windows so that they
fill the application window horizontally.

Tile Left to Right Rearranges all open windows so that they
fill the application window vertically.

User guide Opens the User Guide.

Optimizer Opens the Optimizer Manual (only appears in Optimizer-enabled version of
Analytica).

Tutorial Opens the Analytica Tutorial.

Web tech support Opens your default web browser to the Analytica Tech Support page at: http://
www.lumina.com.

Email tech
support

Opens your email system to send an email to Analytica Tech Support.

Register Opens your default web browser to the Analytica software registration page at:
http://www.lumina.com.

Contact Lumina Provides contact information for Lumina.

Update license Displays your current Analytica license information and allow you to update
the license code.

About Analytica Displays useful information such as the application’s edition, release number,
your license code, and contact information.

 Analytica User Guide 409

Appendix B Right mouse button menus

Right mouse button menus
Click the right mouse button on one or more nodes, a diagram background, or in other
windows to get a menu of useful commands. The list of commands depends on the con-
text. This menu is what you get when you right-click a node.

These two menu options appear only when you right-click one or more nodes. This is
the only way to move some nodes in front of others:

Bring to Front Brings the selected object(s) to the front of the drawing order so that if the
object(s) overlap any other elements, the object will be visible.

Send to Back Sends the selected object(s) to the back of the drawing order so that the
selected object(s) are drawn behind any overlapping elements.

Appendix

410 Analytica Users Guide

C Memory usage

Appendix C. Analytica Specifications
Hardware and

software

Objects

Uncertainty

Numbers and arrays

Memory usage
The Memory Usage window displays the amount of memory available on your system,
as well as the memory currently in use by all applications, including Windows itself. The
memory available on your system is the sum of all physical memory installed on your
system and the swapfile on your hard disk, which is used to complement the physical
memory.

CPUs supported Pentium or higher and equivalent AMD proces-
sors recommended

System Software Windows XP, Vista, and Server

Memory requirements 128 MB (512 MB+ recommended)

Application size Approximately 6 MB

Number of system objects 738

Maximum user-defined objects 31,900

Maximum number of local-
variables

No fixed limit

Probability methods Random Latin HyperCube
Median Latin HyperCube
Monte Carlo

Maximum sample size 99,999,999 for Analytica Enterprise, Optimizer,
Power Player and ADE

30,000 (other Editions)
limited by available memory

Random sampling methods Minimal Standard
L’Ecuyer
Knuth

Number precision 15 significant digits for floating-point numbers
9 digits for integers

Maximum elements
in a dimension

99,999,999 (Analytica Enterprise, Optimizer,
Power Player, and ADE)
30,000 (other Editions)

Maximum dimensions
in an array

15

 Analytica User Guide 411

Appendix C Memory usage

To display the Memory Usage window, select Show Memory Usage from the Window
menu.

This window appears automatically when Analytica runs low on memory.

If you require additional memory to run your model at a given sample size, you can take
several steps to increase the amount of memory available to Analytica:

1. Close other open applications.

All applications require a segment of memory to operate, and this reduces the
memory available to Analytica.

2. Increase the size of your computer’s swapfile.

Under Windows 95, the swapfile size is dynamically handled by the system by
default, and is limited only by the free space available on the hard disk where the
swapfile resides. You can manually change swapfile settings in the Memory control
panel.

Under Windows NT, the minimum swapfile size is set through the Hardware control
panel. If your hard disk is full or nearly full, you will need to free space on your hard
disk, or select a different hard disk to hold your swapfile, in order to provide more
memory for Analytica computations.

3. Finally, consider adding more physical memory to your computer.

Memory message on
opening a model

When you save a model, the number of megabytes of peak memory used during the
session is also saved. When you open the model, the saved peak memory is compared
to the amount of memory allocated to Analytica. If the saved peak memory exceeds
95% of Analytica’s memory allocation, a message will recommend either reducing the
sample size (see “Uncertainty Setup dialog box” on page 232) or changing the applica-
tion memory size (see next section).

Number of user-defined variables and other objects

Current sample size (reduce it if
you are having memory

problems); see “Uncertainty
sample” on page 233

Shows proportion of
available memory
currently used

High-water mark indicates
peak memory used

Appendix

412 Analytica Users Guide

D Memory usage

Appendix D. Identifiers Already Used
Each object, whether built-in or created by you, must have a unique identifier. This iden-
tifier must start with a letter, and can be up to 20 characters including letters, digits, and
underscores. If you try to create an identifier already in use, it will warn you and append
a digit to make it unique.

To see all identifiers currently in use:

1. Press Control+’, to open the Typescript Window

2. Type List, followed by Enter.

 Analytica User Guide 413

Appendix E Memory usage

Appendix E. Error Message Types
There are several types of error messages in Analytica. Many messages are designed
to inform you that something in the model needs to be corrected; some messages indi-
cate that Analytica cannot continue or complete your request. Each error message
begins with its message type, one of: warning, lexical, syntax, evaluation, system, and
fatal errors.

In general, Analytica allows you to continue working on your model unless it cannot pro-
ceed until a problem has been corrected. When you are editing a variable definition, you
can request an error message by pressing Alt-Enter or by clicking the definition Warning
icon .

Warning A warning indicates that there is a possible problem. For example:

A warning is reported during result evaluation to inform you that continuing may yield
unexpected results.

You can suppress evaluation warnings for all variables by disabling the Show result
warnings preference (see “Preferences dialog” on page 59). When Show result warn-
ings is unchecked, any warning conditions encountered during result evaluation will be
ignored. You can also suppress warnings during evaluation of a single expression with
the IgnoreWarnings(expr) function. See “IgnoreWarnings(expr)” on page 369 for
details.

If an identifier in a module you are adding to a model has a name conflict with an identi-
fier in the model, you will see a warning similar to the following:

Lexical error A lexical error occurs when a component of an expression was expected and is missing
or is invalid. For example, if you enter a number with an invalid number suffix, you may
get a message similar to the following:

Syntax error A syntax error occurs when an expression contains a syntax mistake. Analytica often
reports the mistake together with the fragment of the expression that contained the
error. For example:

Warning:

Log of non-positive number.

Warning:

Can’t declare Variable Location because the Identifier
is already in use as Attribute Location.

Declare using the Identifier Location1?

Lexical error while checking:

2sdf
^

Invalid exponent code.

Appendix

414 Analytica Users Guide

E Memory usage

The following are two common syntax errors:

Expecting ","

Indicates a comma is missing, or there are too few parameters to a function.

Expecting ")"

Indicates there are too many parameters to a function.

If you attempt to change the identifier for a variable, and the new identifier is assigned to
another node, you will see a message similar to the following:

Evaluation error An evaluation error occurs when there is a problem while evaluating a variable, user-
defined function, or system function. You are asked if you want to edit the definition of
the variable currently being evaluated:

If a system function expects a specific kind of argument, an error message similar to the
following is displayed:

This message indicates that an argument passed to the function is of a different type or
cannot be handled by that function. You may need to redefine a variable being used as
an argument to the function, or change an expression being passed as an argument.

Invalid number If a calculation tries to perform a division by zero, it displays a warning with an option to
continue calculating. Three possible error codes may be returned as a result of an
invalid calculation:

Syntax error while checking:

2 + + 3
^

Expression expected.

Syntax error:

The Identifier "Location" is already in use.

Error during evaluation of Ch1.

Do you want to edit the Definition of Ch1?

Evaluation error:

First parameter of Sysfunction Argmax must be
a table.

 Analytica User Guide 415

Appendix E Memory usage

You can test for these results in an expression using "X=INF", Isnan(X), or X=NULL.

System error If you see this message type, please contact Lumina Decision System’s technical sup-
port department to report the error. (See inside the front cover for contact information, or
go to www.lumina.com.)

Out of memory error Indicates that Analytica has used up all available memory and cannot complete the cur-
rent command. If this occurs, first save your model. Before attempting to evaluate
again, close some windows, use a smaller sample size, or expand the memory avail-
able to Analytica (see “Numbers and arrays” on page 410).

Code Meaning

INF Infinity, such as 1/0

NAN Not A Number: Results from invalid functions such
as Sqrt(-1), or 0/0.

NULL
(blank)

Displays as a blank cell if the result is a table, or
shows the Compute button otherwise. Results from
certain functions, such as SubIndex(), when a
result is not available.

Appendix

416 Analytica Users Guide

F Memory usage

Appendix F. Forward and Backward Compatibility
Backward

compatibility
Models created in earlier releases of Analytica can be loaded, viewed, evaluated, and
modified with Analytica 4.0. There is no fundamental different in file format, so no file
conversion must take place. There are, however, some changes that could affect your
results when migrating a model from a previous release to 4.0.

When you are trying a model for the first time in 4.0, the first thing you should do is
ensure that Show Result Warnings is checked in the Preferences dialog. While evalu-
ating your model, avoid selecting Ignore Warnings if warnings do appear. If any expres-
sion in your model produces a warning that you can live with, surround the expression
with IgnoreWarnings(...) to suppress the warning, so that you don’t feel compelled to
select the Ignore Warnings button. When you leave warnings on while your model
evaluates, many potential backward compatibility issues, if present, will be reported to
you.

The most commonly encountered difference is the multiplication of NaN or INF by zero.
In earlier releases of Analytica, multiplying INF or NaN by zero results in 0, while now it
results in NaN (with a warning, if “Check result warnings” is on). The new 4.0 treatment
here is in accordance with the IEEE 754 binary floating point arithmetic standard. It was
not uncommon by Analytica 3.1 modelers to zero-out NaNs and INFs with a multiplica-
tion by zero. Now you may need to use IF-THEN-ELSE instead. If you find certain
results have suddenly changed to NaN in 4.0, this is the likely reason.

There have been many bug fixes in Analytica 4.0, so if for some reason your model uti-
lized an undocumented feature that was really a bug, a change in model behavior could
result. There are also numerous uncommon situations where there are syntactic and
evaluation differences between the releases. In a correctly functioning model from a
previous release, you are unlikely to encounter these, but they are documented in detail
on the Analytica Wiki at http://lumina.com/wiki/index.php/
Changes_in_4.0_that_could_impact_3.x_models.

Generally when you load a model into Analytica and evaluate uncertain variables in an
identical sequence, the identical random samples are returned. (Also, when you reset
the random seed, you can reproduce the same sample.) In most, but not all, cases,
Analytica 4.0 will return the same sample returned by Analytica 3.1; however, this is not
guaranteed, and there are several cases where the sample is different. Although the
samples in 4.0 and 3.1 come from the same distribution, the precise points in the ran-
dom samples may be different, causing changes in your results. Uncertain results inher-
ently have a certain “sampling error” arising from the fact that a finite sample size is
used, the these differences, when they occur, are reflecting this sampling error. Two
uses of distribution functions that are likely to result in a sampling difference are certain
hierarchical uses of distributions, in which the parameters to distribution functions are
themselves uncertain, and use of the Truncate function (which now preserves rank
order). In the hierarchical cases, several distribution functions are more efficient now,
requiring fewer random numbers to be generated when producing the entire sample. In
either case, once a different number of pseudo-random numbers are utilized, you will
see all samples from that point on changed.

Forward compatibility It is also possible to run models created or edited in Release 4.0 in earlier releases of
Analytica, such as Analytica 3.1, provided you don’t rely functions, features, or function-
alities new to Analytica 4.0. The models will load into Analytica 3.1, although may
encounter problems during parsing or evaluation in the places where 4.0 features are
used. A few 4.0 features may be stripped out of the model if it is re-saved from 3.1,

http://lumina.com/wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models
http://lumina.com/wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models

 Analytica User Guide 417

Appendix F Memory usage

including, for example, graphing settings for graphs viewed while the model was loaded
in 3.1.

There are two issues related to edit tables that could potentially create a problem when
loading a model edited with 4.0 into an earlier release of Analytica. If a computed index
has changed in the model since the downstream edit tables have been accessed, some
edit tables may not yet be fully spliced. When loaded into Analytica 3.1, unspliced edit
tables will not successfully parse. To avoid this, prior to saving the model from Analytica
4.0, access the typescript windows by pressing the F12 key and type:

SpliceTable all

A second issue arises if any of your edit tables have blank (empty) cells. Edit tables with
blank cells will not parse in earlier releases, so you must ensure that all cells in your edit
tables have value, even if just 0 or null.

In general, because there are so many new features in 4.0, it is likely that you may have
to test and debug your model in 3.1 to eliminate the use of new features or functions, if
its use in 3.1 is required. Please see “What’s new in Analytica 4.0?” for information on
the many things that are new to 4.0.

Appendix

418 Analytica Users Guide

G Memory usage

Appendix G. Bibliography
Morgan, M. Granger and Henrion, Max. Uncertainty: A Guide to Dealing with Uncer-
tainty in Quantitative Risk and Policy Analysis, Cambridge University Press
(1990,1998).

Written by the original authors of Analytica, this text provides extensive background on
how to represent and analyze uncertainty in quantitative models. It includes chapters
on:

• Building good policy models

• Categorizing types and sources of uncertainty

• How people make judgments under uncertainty

• Encoding expert judgment in the form of probability distributions

• Choosing a computational method for propagating uncertainty in a model

• Analyzing uncertainty in very large models

• Displaying and communicating uncertainty

• How to tell if representing uncertainty could make a significant difference to your
conclusions, or "the value of knowing how little you know"

We recommend the second edition, published 1998, which contains a full chapter on
Analytica (Chapter 10). If you have the first edition (1990), we recommend that you
ignore Chapter 10, which describes the precursor of Analytica and is quite out of date!

Clemen, Robert T. Making Hard Decisions: An Introduction to Decision Analysis. Dux-
bury Press (1991).

Howard, R., and Matheson, J. Influence Diagrams. In Readings on the Principles and
Applications of Decision Analysis, eds. R. Howard and J. Matheson. pp. 721-762.
Menlo Park, Calif.: Strategic Decisions Group (1981).

Keeney, R. Value–Focused Thinking: A Path to Creative Decision Making, Cambridge,
MA: Harvard University Press (1992).

Knuth, D.E. Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Program-
ming, Reading, MA: Addison-Wesley (1981).

L'Ecuyer, P. Communications of the ACM, 31, 742-774 (1988).

Park, S.K., and K.W. Miller. Communications of the ACM,
31, 1192-1201 (1988).

Pearl, J. Probabilistic Reasoning in Intelligent Systems, San Mateo, Calif.: Morgan
Kaufmann (1988).

 Analytica User Guide 419

Appendix H. Function List
When viewing this list online, click the category or function name to see details.

Basic Math
Abs, Arctan, Ceil, Cos, Degrees,
Exp, Factorial, Floor, Ln, Logten,
Mod, Radians, Round, Sin, Sqr, Sqrt,
Tan

Advanced Math
Arccos, Arcsin, Arctan2, BetaFn,
BetaI, Combinations, Cosh,
CumNormal, CumNormalInv, Erf,
ErfInv, GammaFn, GammaI,
GammaIInv, Lgamma, Permutations,
Regression, Sinh, Tanh

Creating Arrays
[...], m..n, Array, CopyIndex,
Sequence, Table

Array-Reducing
Area, Argmin, Argmax, Average, Max,
Min, Product, Subindex, Sum,
CondMin, CondMax,
PositionInIndex

Transforming Arrays
Cumproduct, Cumulate, Integrate,
Normalize, Rank, Sortindex,
Uncumulate

Selecting from Arrays
v[I=v], x[time=n], Slice,
Subscript

Interpolating
Cubicinterp, Linearinterp,
Stepinterp

Other Array Functions
Concat, ConcatRows, IndexNames,
Size, Sortindex, Subindex, Subset,
Unique, Rank, IndexesOf,
IndexValue

Tables and Arrays
MDArrayToTable, MDTable

Matrix Functions
Decompose, Determinant,
Determtable, DotProduct, Invert,
MatrixMultiply, Transpose,
EigenDecomp,
SingularValueDecomp

Continuous Distributions
Beta, Chisquared, Cumdist,
Exponential, Fractiles, Gamma,
Logistic, Lognormal, Normal,
Probdist, StudentT, Triangular,
Truncate, Uniform, Weibull

Discrete Distributions
Bernoulli, Binomial, Certain,
Chancedist, Geometric,
Hypergeometric, Poisson,
Probtable, Uniform

Statistical Functions
Frequency, Getfract, Kurtosis,
Mean, Mid, Probability, Probbands,
Rankcorrel, Regression, Sample,
Sdeviation, Skewness, Statistics,
Variance, CDF, PDF, Correlation,
Covariance

Text Functions
&, Asc, Chr, FindinText, JoinText,
SelectText, SplitText,
TextUpperCase, TextLength,
TextLowerCase,
TextSentenceCase,
TextReplace

Sensitivity Analysis
Correlation, Dydx, Elasticity,
Rankcorrel, Regression, Whatif,
WhatIfAll

Special Functions
Dynamic, Error, Evaluate,
IgnoreWarnings, Iterate,
Subindex, Time, Today, MsgBox,
ShowProgressBar, Whatif,
WhatIfAll

Financial Functions
Cumipmt, Cumprinc, Fv, Ipmt, Irr,
Nper, Npv, Pmt, Ppmt, Pv, Rate, Xirr,
Xnpv

Operators
@, + - * / ^ < <= = <> >= > : & \ # NOT
OR AND OF

Database Access
DBLabels, DBQuery, DBTable,
DBTableNames, DBWrite,
SqlDriverInfo, ReadTextFile,
WriteTextFile

Datatypes
Isnan, Isnumber, IsReference,
Istext, Isundef

Control Constructs
(s1;s2;...), Begin ... End, Error,
For, FunctionOf, Index, If, IfAll,
IfOnly, IgnoreWarnings, Iterate,
MemoryInUseBy, Var, While

System Variables
AnalyticaPlatform,
AnalyticaVersion,
CurrentDataDirectory,
CurrentModelDirectory, Run,
Samplesize, Time

System Constants
False, Null, Pi, True, INF

Object Classes
Chance, Constant, Decision, Form,
Index, Library, Model, Module,
Objective, Variable

Parameter Qualifiers
All, Atom, Array, Ascending,
Coerce, Context, ContextSample,
Descending, Mid, Index,
IsNotSpecified, Nonnegative,
Number, Optional, Positive, Prob,
Reference, Sample, Text,
Unevaluated, Variable

Optimizer Functions
Refer to the Optimizer Guide for information
on these functions.
LpDefine, LpFindIIS, LpObjSA,
LpOpt, LpRead, LpSolution,
LpStatusNum, LpStatusText,
LpWrite, LpWriteIIS, NlpDefine,
QpDefine

HAppendix

420 Analytica User Guide

 Analytica User Guide 421

Glossary
This glossary includes a compilation of terms specific to Analytica as well as statis-
tical terms used in this manual.

ADE
See “Analytica Decision Engine.”

Alias
A node in a diagram that refers to a variable or other node located somewhere else,
usually in another module. An alias permits you to display a variable in more than
one module. An alias node is distinguished by having its title in italics. See “Alias
nodes”.

Analytica Browser
A free edition of Analytica that allows a user to evaluate and view results, and
change input fields; however, from Analytica Browser a user cannot enter edit
mode or otherwise change the content of a model. Copies of Analytica without a
valid registration number run as the Analytica Browser. See “Editions of Analytica”.

Analytica Decision Engine
A product sold by Lumina Decision Systems, Inc., separate from Analytica. With the
Analytica Decision Engine (ADE), you embed the Analytica computation engine in
your web-server backend or in your custom applications built in Visual Basic, C++,
Microsoft Office, or any language supporting ActiveX Automation or COM. See
“Editions of Analytica”.

Analytica Enterprise
An edition of Analytica for users who intend to share data or models with others in
their organization. Analytica Enterprise contains all features of Analytica Pro as well
as functions for accessing ODBC databases and features for protecting your intel-
lectual property. See “Editions of Analytica”.

Analytica Professional edition
The standard, fully functional edition of Analytica. Analytica Pro provides all the fea-
tures and functionality required to create, edit, and evaluate models. See “Editions
of Analytica”.

Analytica Trial
A fully functional, but expiring, edition of Analytica. Analytica Trial can be down-
loaded from the Lumina web site (www.lumina.com) for those wishing to "test drive"
the product. Analytica Trial contains the complete functionality of Analytica Pro.
After expiration, Analytica Trial converts to Analytica Browser. See “Editions of Ana-
lytica”.

Array
A collection of values that can be viewed as one or more tables. An array has one
or more dimensions; each dimension is identified by an index. See “Introduction to
arrays”.

Array abstraction
See “Intelligent Array Abstraction.”

Glossary

422 Analytica User Guide

Arrow
An arrow or influence from one variable node to another indicates that the origin node
affects (influences) the destination node. If the nodes depict variables, the origin vari-
able usually appears in the definition of the destination variable. See “Drawing arrows”.

Arrow tool
The arrow tool, or influence arrow tool, is in the shape of a left-to-right pointing arrow
cursor. The arrow tool is used to draw arrows connecting variables to create relations
between them. See “Drawing arrows”.

Attribute
A property or descriptor of an object, such as its title, description, definition, value, or
inputs. See “Managing attributes”.

Attribute panel
An auxiliary window pane that you can open below a diagram or outline window. Use
the Attribute panel to rapidly examine one attribute at a time of any variable in the
model, by selecting the variable and then the attribute from a popup menu. See “The
Attribute panel”.

Author
An attribute recording the names of the person or people who created the model, or
other object.

Behavior analysis
Model behavior analysis is a type of sensitivity analysis in which you specify a set of
alternative values for one or more inputs and examine the effect on selected model out-
put variables. It is also known as parametric analysis. See “Analyzing Model Behavior”.

Browse-only models
Analytica Enterprise users can save a copy of their model in a browse-only form. When
a browse-only model is loaded into any edition of Analytica, the user cannot enter edit
mode, and therefore can only make changes to variables with input nodes. Browse-only
models are also obfuscated. See “Making a browse-only model and hiding definitions”

Browse tool
The browse tool is in the shape of a hand. With the browse tool, you can examine the
diagram but cannot make any changes, except to change the values in input nodes.
See “Browse mode”.

Chance variable
An uncertain variable that cannot be directly controlled by the decision maker. It is usu-
ally defined by a probability distribution. A chance variable is depicted as an oval node.
See “Classes of variables and other objects”.

Check
The check attribute contains an expression that checks the validity of the value of a vari-
able. It displays a message when the variable's value is out of specified bounds. See
“Automatic checking for valid values”.

Glossary

 Analytica User Guide 423

Class
The type of Analytica object: decision, chance, objective, or index variable; function;
module; library; form; model. See “Classes of variables and other objects”.

Cloaking
See “Definition Hiding.”

Conditional dependency
A chance variable a is conditionally dependent on another variable b if the probability of
a value of a depends on the value of b. If a is defined by a probability table, b may be an
index of its probability table. See “Add a conditioning variable”.

Constant
A variable whose value is not probabilistic, and does not depend on other variables,
such as the number of minutes in an hour. See “Classes of variables and other objects”.

Continuous distribution
A probability distribution defined for a continuous variable — that is, for a real-valued
variable. Example continuous distributions are beta, normal, and uniform. Compare to
“Discrete distribution.” See “Parametric continuous distributions” and subsequent sec-
tions.

Continuous variable
A variable whose value is a real number — that is, one of an infinite number of possible
values. Its range can be bounded (for example, between 0 and 1) or unbounded. Com-
pare to “Discrete variable.”

Created
The date and time at which the model was first created. This model attribute is entered
automatically, and is not user-modifiable.

Cumulative probability distribution
A graphical representation of a probability distribution that plots the cumulative probabil-
ity that the actual value of the uncertain variable x will be less than or equal to each pos-
sible value of x. The cumulative probability distribution is a display option in the
Uncertainty View popup menu. See “Cumulative probability”.

Data source
A data source is described by a text value, which may contain the Domain Service
Name (DSN) of the data source, login names, passwords, etc. See “DSN and data
source”.

Decision variable
A variable that the decision maker can control directly. Decision variables are repre-
sented by rectangular nodes. See “Classes of variables and other objects”.

Definition
A formula for computing a variable’s value. The definition can be a simple number, a
mathematical expression, a list of values, a table, or a probability distribution. In text for-
mat, it is limited in length to 32,000 characters. See “Creating and Editing Definitions”.

Glossary

424 Analytica User Guide

Definition Hiding
A feature in Analytica Enterprise for protecting your intellectual property when distribut-
ing models you have created to others. Definition hiding controls whether the end-user
of your model can view the definitions of selected nodes. See “Making a browse-only
model and hiding definitions”.

Description
Text explaining what the node represents in the real system being modeled. It is limited
in length to 32,000 characters. See “Attributes of a function”.

Deterministic table
A deterministic function that gives the value of a variable x conditional on the values of
its input variables. The input must all be discrete variables. The table is indexed by each
of its inputs, and gives the value of x that corresponds to each combination of values of
its inputs. See “Creating a determtable”.

Deterministic value
A variable's deterministic value, or mid value, is a calculation of the variable's value
assuming all uncertain inputs are fixed at their median values.

Deterministic (determ) variable
A variable that is a deterministic function of its inputs. Its definition does not contain a
probability distribution. The value of a deterministic variable can be probabilistic if one
or more of its inputs are uncertain. A deterministic variable is displayed as a double
oval. You can also use a general variable (rounded rectangle) to depict a deterministic
variable. See “Classes of variables and other objects”.

Determtable
See “Deterministic table.”

Diagram
See “Influence diagram.”

Dimension
An array has one or more dimensions. Each dimension is identified by an index vari-
able. When an array is shown as a table, the row header (vertical) and column headers
(horizontal) give the two dimensions of the table. See “Introduction to arrays”.

Discrete distribution
A probability distribution over a finite number of possible values. Example discrete dis-
tributions are Bernoulli and the Probtable function. Compare to “Continuous distribu-
tion.” See “Parametric discrete distributions”.

Discrete variable
A variable whose value is one of a finite number of possible values. Examples are the
number of days in a month (28, 29, 30, or 31), or a Boolean variable with possible val-
ues True and False. A variable that is defined as a list or list of labels is discrete. Com-
pare to “Continuous variable.”

Glossary

 Analytica User Guide 425

Domain
The possible outcomes of a variable. The domain has a type as well as value. The pos-
sible types are List of Labels, List of Numbers, or Continuous; the default type is Contin-
uous, except for variables defined with the Choice(), Probtable(), and
Determtable() functions.

DSN
The Domain Service Name (DSN) provides connectivity to a database through an
ODBC driver. The DSN contains the database name, directory, database driver, user ID,
password, and other information. See “DSN and data source” on page 375.

Dynamic variable
A variable that depends on the system variable Time and is defined by the Dynamic()
function. A dynamic variable can depend on itself at a previous time period, directly or
indirectly, through other dynamic variables. See “Dynamic Simulation”.

Edit table
A definition that is a table is also called an edit table because it can be edited. See
“Viewing an array as an edit table” and “Editing a table”.

Edit tool
A tool is used to create a new model or to change an existing model. It allows you to
move, resize, and edit nodes, and exposes the arrow tool and node palette.The edit tool
is in the shape of the normal mouse pointer cursor. See “Creating and editing nodes”.

Excel Graph
The graphing engine of Microsoft Excel®. Users who have Excel installed on their com-
puters can take advantage of Excel Graph to graph results.

Expression
A formula that can contain numbers, variables, functions, distributions, and operators,
such as 0.5, a-b, or Min(x), combined according to the Analytica language syntax.
The definition of a variable must contain an expression. See “Using Expressions”.

Expression type
The Expression popup menu, which appears above the definition field, allows you to
change the definition of a variable to one of several different kinds of expressions.
Expression types include expression, list (of expressions or numbers), list of labels (text
values), table, probability table, and distribution. Any definition, regardless of expres-
sion type, can be viewed as an expression. See “The Expression popup menu”.

File Info
The name of the file and folders in which the model was last saved.

Filed library
A library whose contents are saved in a file separate from the model that contains it. A
filed library can be shared among several models without making a copy for each
model. See “Using filed modules and libraries”.

Glossary

426 Analytica User Guide

Filed module
A module whose contents are saved in a file separate from the model that contains it. A
filed module can be shared among several models without making a copy for each
model. See “Using filed modules and libraries”.

Fractile
The median is the 0.5 fractile. More generally, there is probability p that the value is less
than or equal to the p fractile. Quantile is a synonym for fractile. (Fractal is something
different!) Compare to “Percentile.”

General variable
A variable that can be certain or probabilistic. It is often convenient to define a variable
as a general variable without worrying about what particular kind of variable it is. A gen-
eral variable is depicted by a rounded rectangle node. See “Classes of variables and
other objects”.

Graph
Format for displaying a multidimensional result. To view a result as a graph, click the
Graph button. See also “Table.”

Graphing role
n aspect of a graph or chart used to display a dimension (or Index) of an array value.
They include the horizontal axis, vertical axis, and key. See “Graphing roles”.

Identifier
A short name for a variable used in mathematical expressions in definitions. An identi-
fier must start with a letter, have no more than 20 characters, and contain only letters,
numbers, and ’_’ (underscore, used instead of a space). Each identifier in a model must
be unique. Compare to “Title.” See “Identifiers and titles”.

Importance analysis
Importance analysis lets you determine how much effect the uncertainty of one or more
input variables has on the uncertainty of an output variable. Analytica defines impor-
tance as the rank order correlation between the sample of output values and the sample
for each uncertain input. It is a robust measure of the uncertain contribution because it
is insensitive to extreme values and skewed distributions.

Unlike commonly used deterministic measures of sensitivity, this rank order correlation
averages over the entire joint probability distribution. Therefore, it works well even for
models where the sensitivity to one input depends strongly on the value of another. See
“Importance analysis”.

Index
An index of an array identifies a dimension of that array. An index is usually a variable
defined as a list, list of labels, or sequence. An index is often, but not always, a variable
with a node class of Index. See “What is an index?”.

Indexes
Plural of index. Indicates a set of index variables that define the dimensions of a table
(in an edit table or value).

Glossary

 Analytica User Guide 427

Index selection area
The top portion of a Result window, containing a description of the result and other
information about the dimensions of the result. See “Index selection”.

Index variable
A class of variable, defined as a list, list of labels, or sequence, that identifies the dimen-
sions of an array — for example, in an edit table. An index variable is depicted as a par-
allelogram node. Variables of other classes whose definition or domain consist of list,
list of labels, or sequence can also be used to identify the dimensions of an array, and
are sometimes referred to as index variables. See “Classes of variables and other
objects”.

Influence arrow
See “Arrow.”

Influence cycle
A cyclic dependency occurs when a variable depends on itself directly or indirectly so
that the arrows form a directed circular path. The only cyclic dependencies allowed in
Analytica are in variables using the Dynamic() function that contain a time lag on the
cycle. See “Influence cycle or loop”.

Influence diagram
An intuitive graphical view of the structure of a model, consisting of nodes and arrows.
Influence diagrams provide a clear visual way to express uncertain knowledge about
the state of the world, decisions, objectives, and their interrelationships. See “The
Object window”.

Innermost dimension
The dimension of an array that varies most rapidly in the Table() function. The inner-
most dimension is the last index listed in a Table() or Array() function. Compare to
“Outermost dimension.”

Input
A variable that appears in the definition of the selected variable. See also “Output.”

Input arrowhead
An arrowhead pointing into a node, indicating that the node has one or more inputs from
outside its module. Click the arrowhead for a popup menu of the input variables.

Inputs
A list of the variables or functions on which this variable or function depends. The inputs
are determined by the arrows drawn to and the variables or functions referred to in this
variable’s or function’s definition or check attribute. See also “Outputs.”

Intelligent Array Abstraction
A powerful key feature of the Analytica Engine that automatically propagates and man-
ages the dimensionality of multidimensional arrays within models.

Glossary

428 Analytica User Guide

Key
In a results graph, the key shows the value of the key index variable that corresponds to
each curve, indicated by pattern or color.

Kurtosis
A measure of the peakedness of a distribution. A distribution with long thin tails has a
positive kurtosis. A distribution with short tails and high shoulders, such as the uniform
distribution, has a negative kurtosis. A normal distribution has zero kurtosis. See “Kurto-
sis(x)”.

Last Saved
The date and time at which the model was last saved. This model attribute is entered
automatically, and is not user-modifiable. If the model is new, this field remains empty
until the model is first saved.

Library
A model component that typically contains a collection of user-defined functions and/or
variables to be shared. See “Libraries”.

List
A type of expression available in the Expression popup menu consisting of an ordered
set of numbers or expressions. A list is often used to define index and decision vari-
ables. See “Create a list”.

List of labels
A type of expression available in the Expression popup menu consisting of an ordered
set of text items. A list of labels is often used to define index and decision variables. See
“Creating an index”.

Matrix
A two-dimensional array of numbers with indexes of equal length. See “Matrix func-
tions”.

Mean
The average of the population, weighted by the probability mass or density for each
value. The mean is also called the expected value. The mean is the center of gravity of
the probability density function.

Median
The value that divides the range of possible values of a quantity into two equally proba-
ble parts. Thus, there is 0.5 probability that the uncertain quantity is less than or equal to
the median, and 0.5 probability that it is greater than the median.

Mid value
The result of evaluating a variable deterministically, holding probability distributions at
their median value. Analytica calculates the mid value of a variable by using the mid
value of each input. The mid value is a measure of central value, computed very quickly
compared to uncertainty values. Compare “Probvalue.”

Glossary

 Analytica User Guide 429

Mode
The most probable value of the quantity. The mode is at the highest peak of the proba-
bility density function. On the cumulative probability distribution, the mode is at the
steepest slope, at the point of inflection. See “Probability density”.

Model
A module, or a hierarchy of linked and/or embedded modules and libraries, on which
you work during an Analytica session; the main, or root, module at the top of the module
hierarchy. Between sessions, a model is stored in an Analytica document file. See
“Models”.

Module
A collection of related nodes, typically including variables, functions, and other mod-
ules, organized as a separate influence diagram. A module is depicted in a diagram as
a node with a thick outline. See “Classes of variables and other objects”.

Module hierarchy
A model can contain several modules, each one containing details of the model. Each
module can contain further modules, containing still more detail. This module hierarchy
is organized as a tree with the model at the top. You can view the hierarchical structure
in the Outline window. See “Organizing a module hierarchy” and “Show module hierar-
chy preference”.

Multimodal distribution
A probability distribution that has more than one mode. See “How many modes does it
have?”.

Node
A shape, such as a rectangle, oval, or hexagon, that represents an object in an influ-
ence diagram. Different node shapes are used to represent different types of variables.
See “Classes of variables and other objects”.

Normal distribution
The bell-shaped curve, or Gaussian distribution.

Obfuscated
Saved in a non-human-readable (i.e., encrypted) form. Obfuscation provides a mecha-
nism for protecting intellectual property. Analytica Enterprise users can distribute obfus-
cated copies of their models to their end-users. In Analytica, obfuscation also has the
effect of making settings for definition hiding and/or browse-only mode permanent. See
“Making a browse-only model and hiding definitions”.

Object
A variable, function, or module in an Analytica model. Each object is depicted as a node
in an influence diagram and is described by a set of attributes. See also “Class,”
“Node,” “Attribute,” and “Influence diagram.”

Object Finder
A dialog box used to browse and edit the functions and variables available in a model.
See “Object Finder dialog”.

Glossary

430 Analytica User Guide

Object window
A view of the detailed information about a node. The Object window shows the visible
attributes, such as a node’s type, identifier, and description. See “The Object window”.

Objective variable
A variable that evaluates the overall desirability of possible outcomes. The objective
can be measured as cost, value, or utility. A purpose of most decision models is to find
the decision or decisions that optimize the objective — for example, minimizing cost or
maximizing expected utility. An objective variable is represented by a hexagonal node.
See “Classes of variables and other objects”.

ODBC
Open Database Connectivity (ODBC) is a widely used standard for connecting to rela-
tional databases, on either local or remote computers, and issuing queries in Standard
Query Language (SQL). See “Overview of ODBC” on page 374.

OLE Linking
A standard in the Windows operating system for sharing data between applications.
See “Using OLE to link results to other applications”.

Operator
A symbol, such as a plus sign (+), that represents a computational process or action
such as addition or comparison. See “Operators”.

Outermost dimension
The dimension of an array that varies least rapidly in the Table() function. The outer-
most dimension is the first index listed in a Table() or Array() function. Compare to
“Innermost dimension.”

Outline window
A view of a model that lists the objects it contains as a hierarchical outline. See “The
Outline window”.

Output
A variable whose definition refers to the selected variable. See also “Input.”

Output Arrowhead
An arrowhead pointing out of a node, indicating that the node has one or more outputs
outside its module. Click the arrowhead for a popup menu of the output variables.

Outputs
A list of the variables or functions that depend on this variable or function. The outputs
are determined by the arrows drawn from this variable or function and the variables or
functions in whose definition or check attribute this variable or function appears. See
also “Inputs.”

Parameters
The arguments of a function. See “Analyzing Model Behavior”.

Glossary

 Analytica User Guide 431

Parametric analysis
See “Behavior analysis.”

Parent diagram
The diagram for the module that contains this object.

Percentile
The median is the fiftieth percentile (also written as 50%ile). More generally, there is
probability p that the value is less than or equal to the pth percentile. Compare to “Frac-
tile.”

Probabilistic variable
A variable that is uncertain, and is described by a probability distribution. A probabilistic
variable is evaluated using simulation; its result is an array of sample values indexed by
Run.

Probability bands
The bands that display the uncertainty in a value by showing percentiles from its distri-
bution — for example, the 5%, 25%, 50%, 75%, and 95% percentiles. On a graph,
these often appear as bands around the median (50%) line. Probability bands are also
referred to as credible intervals. See “Probability Bands option”.

Probability density function (PDF)
A graphical representation of a probability distribution that plots the probability density
against the value of the variable. The probability density at each value of X is the rela-
tive probability that X will be at or near that value. The probability density function can
be displayed for continuous, but not discrete variables. It is a display option in the
Uncertainty View popup menu. Compare to “Probability mass function,” which is used
with discrete variables. See “Probability density”.

Probability distribution
A probability distribution describes the relative likelihood of a variable having different
possible values. See “Probability distributions” and “Probabilistic calculation”.

Probability mass function
A probability mass function is a representation of a probability distribution for a discrete
variable as a bar graph, showing the probability that the variable will take each possible
value. The probability mass function can be displayed for discrete, but not continuous
variables. It is a display option in the Uncertainty mode View menu. Compare to “Proba-
bility density function (PDF),” which is used with continuous variables. See “Probability
density”.

Probability table
A table for specifying a discrete probability distribution for a chance variable. In a proba-
bility table, you specify the numerical probability for each value in the domain of the vari-
able. If the variable depends on (that is, is conditioned by) other discrete variables, each
of these conditioning variables gives an additional dimension to the table, so you can
specify the probability distribution conditional on the value of each conditioning variable.
See “Probtable(): Probability Tables”.

Glossary

432 Analytica User Guide

Probtable
See “Probability table.”

Probvalue
The probabilistic value of a variable, represented as a random sample of values from
the probability distribution for the variable. The probvalue for a variable is based on the
probvalue for the inputs to the variable. See also “Probabilistic variable” and compare to
“Mid value.”

Quantile
See “Percentile.”

Reducing function
A function that operates on an array over one of its indexes. The result of a reducing
function has that dimension removed, and hence has one fewer dimension. See “Array-
reducing functions”.

Remote variable
A variable in another module, not shown in the active diagram. Typically a remote vari-
able is an input or output of a node in the active diagram. See “Seeing remote inputs
and outputs”.

Result view
A window that shows the value of a variable as a table or graph.

Sample
An array of values selected at random from the underlying probability distribution for a
quantity. Analytica represents uncertainty about a quantity as a sample, and estimates
statistics, probability density function, and other representations of a probability distribu-
tion from the sample. See “Sample”.

Sampling method
A method used to generate a random sample from the probability distributions in a
model (for example, Monte Carlo and Latin hypercube). See “Sampling method”.

Scalar
A value that is a single number.

Scatter plot
A graph that plots the samples of two probabilistic variables against each other. See
“Scatter plots”.

Self
A keyword used in two different ways:

• Refers to the index of a table that is indexed by itself. Self refers to the alternative
values of the variable defined by the table.

• Refers to the variable itself, as a substitute for the variable’s identifier, in a check
attribute expression or a Dynamic expression.

Glossary

 Analytica User Guide 433

Sensitivity analysis
A method to identify and compare the effects of various input variables to a model on a
selected output. Example methods for sensitivity analysis are importance analysis and
model behavior analysis. See “Sensitivity analysis functions”.

Side effects
Changes to a global variable during evaluation other than those expected in its defini-
tion. See “Assigning to a local variable: v := e” on page 351.

Skewed distribution
A distribution that is asymmetric about its mean. A positively skewed distribution has a
thicker upper tail than lower tail; and vice versa, for a negatively skewed distribution.
See “Is the quantity symmetric or skewed?”.

Skewness
A measure of the asymmetry of the distribution. A positively skewed distribution has a
thicker upper tail than lower tail, while a negatively skewed distribution has a thicker
lower tail than upper tail. A normal distribution has a skewness of zero. See “Skew-
ness(x)”.

Slice
A slice of an array is an element or subarray selected along a specified dimension. A
slice has one less dimension than the array from which it is sliced. See “Selecting, slic-
ing, and subscripting arrays”.

Slicer

See “Slicers” on page 93.

SQL
Standard Query Language or SQL is a standard interactive and programming language
for getting information from and updating a database. See “Accessing databases” on
page 374.

Standard deviation
The square root of the variance. The standard deviation of an uncertainty distribution
reflects the amount of spread or dispersion in the distribution.

Suffix
Numbers such as 10K, 123M, or 1.23u are in suffix notation. The suffix letter denotes a
power of ten; for example, K, M, and u denote 103, 106, and 10-6, respectively. See
“Suffix characters”.

Symmetrical distribution
A distribution, such as a normal distribution, that is symmetrical about its mean. See “Is
the quantity symmetric or skewed?”.

System function
A function available in the Analytica modeling language. See also “User-defined func-
tion.”

Glossary

434 Analytica User Guide

System variable
A variable that is part of the Analytica modeling language, such as Samplesize or Time.

Table
A two-dimensional view of an array. The array can have more than two dimensions, but
only two can be seen at one time. A definition that is a table is also called an edit table.
In the Result window, click the Table button to select the table view of an array-valued
result.

Tail
The upper and lower tails of a probability distribution contain the extreme high and low
quantity, respectively. Typically, the lower and upper tails include the lower and upper
ten percent of the probability, respectively. See “Is the quantity symmetric or skewed?”.

Title
The full name of an Analytica object. A variable's or module's title is displayed in its
node, in window titles, and in object lists. It is limited to 255 characters. The title can
contain any characters, including spaces and punctuation. Compare to “Identifier.” See
“Edit a node title”.

Uncertain value
See “Probvalue.”

Uniform distribution
A distribution representing an equal chance of occurrence for any value between the
lower and upper values.

Units
The increments of measurement for a variable. Units are used to annotate tables and
graphs; they are not used in any calculation.

User-defined function
A function that the user defines to augment the functions provided as part of the Analyt-
ica modeling language.

Value
See “Mid value.”

Variable
An object that has a value, which may be text, a number, or an array. Classes of vari-
able include decision, chance, and objective. See “The Object window”.

Variance
A measure of the uncertainty or dispersion of a distribution. The wider the distribution,
the greater its variance.

Glossary

 Analytica User Guide 435

Glossary

436 Analytica User Guide

 Analytica User Guide 437

Index

Alphabetical Index
Symbols
- (subtraction) operator 142
(dereference) operator 208, 364
& (concatenation) operator 210
* (multiplication) operator 143
+ (addition) operator 142
.. (sequence) operator 166
/ (division) operator 143
:: (scoping) operator 144
:= (assignment) operator 351
< (less than) operator 143
<= ((less than or equal to) operator 143
<> (not equal) operator 143
= (equal) operator 143
> (greater than) operator 143
>= (greater than or equal to) operator 143
\ (reference) operator 343
^ (exponentiation) operator 143

A
About Analytica command 408
Abs() function 146
abstraction, automatic 155
Accept button 118
Add Library command 332, 401
Add Module command 332, 401
Add Module dialog box 332
Adjust Size command 75, 406
Advanced Math command 404
aliases, creating 55
Align Selection to Grid command 76, 406
All qualifier 343
AnalyticaPlatform system variable 405
AnalyticaVersion system variable 405
Arccos() function 213
Arcsin() function 213
Arctan() function 147
Arctan2() function 213
Area() function 186
Argmax() function 190
arithmetic operators, meanings 142
Array command 404
Array library 404
array qualifiers 342
Array() function 181, 182, 184
arrays

abstraction 155
changing index of 183
defining 182
defining variables as 168

Index

438 Analytica User Guide

functions that create 165
huge 387
introduction 153
modeling 151–165
one-dimensional 320
operations on 155–159
three-dimensional 321
two-dimensional 320
value sources 155
values 25

arrows
arranging 74
arrow tool 21
automatically drawn 52
between modules 53
bold 332
creating 51
drawing 51–55
drawing between modules 56
dynamic 306
hiding 77
small arrow head 53
to and from indexes 154

Asc 210
Assignment Operator 351
Attrib Of Ident function 329
Attribute panel

closing 24
using 23

attributes
creating new 328
displaying 328
displaying Check 124
in a definition 329
managing 327–329
of functions 327, 340
of modules 327
of variables 327
renaming 328
user-created 327

Attributes command 403
Attributes dialog box 124, 328
Author attribute 327
Average() function 186

B
background printing 26
behavior analysis 40
Bernoulli() function 241
Beta() distribution function 255
BetaFn() function 222
BetaI() function 222
Boolean

number format 87
operators 144
values 142
variables 227

Bring to Front command 77, 408, 409
browse mode 21
browse tool button 20
button objects 19

C
Cancel button 118
Cascade command 408
Ceil() function 146
cells

adding 172
copying and pasting 171
deleting 165, 172
editing 171
inserting 165
selecting 171

Certain() function 263
chance variables 18
Chancedist() function 251
Change identifier 59
Check attribute

displaying 124
features 327

check value bounds 61
check variable class 61
ChiSquared() distribution function 260
Choice option 129
Choice() function 196
Chr 210
Class attribute 327
class, changing for nodes 58
Clear command 402
Close command 401
Close Model command 16, 17, 401
Coerce qualifier 343
colors

changing 80
grouping nodes 80
in influence diagrams 80
input and output node 132
palette 80

columns, separating 378
Combinations() function 223
comments in definitions 117
comparison operators 143
computation time 398
Concat() function 201
concatenation operators 210
conditional dependencies 248

Index

 Analytica User Guide 439

conditional deterministic table 248
conditional operators 145
conditional probability tables 248
confidence intervals 398, 399
constants 19
Contact Lumina command 408
context qualifier 341
ContextSample qualifier 341
continuous distributions 227
conventions, typographic 9
Copy command 310, 402
Copy Diagram command 310, 402
Copy Table command 310, 402
Correlation() function 278
Cos() function 147
Cosh() function 213
Created attribute 327
cross-hatching 119
Cubicinterp() function 199
Cumdist() distribution function 261
Cumipmt() function 214
CumNormal() function 223
CumNormalInv() function 223
Cumprinc() function 215
Cumproduct() function 190
Cumulate() function 190
Cumulative Probability command 35, 405
cumulative probability options 236
curve fitting, see Regression function
Cut command 402
cycle, influence 52, 427
cyclic dependencies 52, 427

D
data

copying diagrams 310
identifying source 375
import/export format 319
importing and exporting 309–322
numerical 322
pasting from programs 310
pasting from spreadsheets 310

Database command 404
Database library functions 381
databases

configuring DSN 376
querying 374
writing to 379

Date number format 87
DBLabels() function 381
DBQuery() function 381
DBTable() function 382
DBTableNames() function 382

DBWrite() function 379, 382
decimal number format 140
decision variables 18, 65, 74
Decompose function 206
default view 30
Definition attribute 327
Definition button 20
Definition menu

overview 403
pasting from a library 123

definitions
adding identifiers 118
alphabetical list 421
changes to influence diagrams 119
comments in 117
creating 116–119
cross-hatching 119
description 116
editing 116–119, 123
exporting 318
hiding 385
hiding and unhiding 384
importing 318
incomplete 329
inheritance 385
invalid or missing 404
overview 340
special editing key combinations 117
syntax check 118
updating arrows 119

Degrees() function 147
Delete Columns command 172
Delete Rows command 165, 172, 402
dependencies

conditional 248
cyclic 52, 427
with the Dynamic() function 305

dereference operator 364
Description attribute 327
descriptions 340
Determinant() function 205
deterministic conditional tables 248
Determtable() function 249, 250
determtables 248
Diagram menu 406
Diagram Style dialog box 81
Diagram window

description 17
maximum number of 335

diagrams
adding frames 135
adding graphics 135
adding text 135
copying 310

Index

440 Analytica User Guide

opening details 18
organizing 75
screenshots 83

dimensions, modeling arrays and tables 152
discrete probability distributions

creating 251
vs. continuous 227

Distribution button 22
Distribution command 404
Distribution library 404
distributions

exponential 257
logistic 258
lognormal 254
multivariate 265
symmetric vs. skewed 228

Domain attribute 327
Domain Service Name 375
dot product 204
DRIVER attribute 375
DSN

configuring 376
identifying data source 375

Duplicate Nodes command 51, 402
Dydx() function 285
dynamic arrows, showing or hiding 306
dynamic models 74
dynamic simulation 298–307
Dynamic() function 298–307

E
Edit Definition command 116, 404
Edit Icon command 133, 406
Edit menu 402
Edit Table buttons 22
Edit Table window

copying 310
importing to 318
opening 171
viewing arrays 155

Edit Time command 298, 404
Edit tool button 20
EigenDeComp() function 206
Elasticity() function 286
Email Tech Support command 408
Erf() function 223
ErfInv() function 223
errors

evaluation 368, 414
factor 254
fatal 415
lexical 413
message types 413–415

naming 414
out of memory 415
syntax 413

Evaluate function 368
evaluation errors 368, 414
evaluation mode qualifiers 341
Exit command 17, 401
Exp() function 146
Exponent number format 87, 140
exponential distribution 257
Exponential() distribution function 256
Export command 318–322, 401
export format 319
Expression popup menu 120, 169
expressions

listing 120
parenthesis matching 117
syntax of 144
types 120
using 140–150

F
Factorial() function 147
False system variable 142, 405
fatal errors 415
File Info attribute 327
File menu 401
filed libraries 59, 330
Filed Library class 59
Filed Module class 58
filed modules 330
files, changing locations 313, 317
Find command 326, 403
Find dialog box 326
Find Next command 327, 403
Find Selection command 327, 403
Fixed Point number format 87
Floor() function 146
For...Do function 353
Form class 59
form modules 132
fractiles 399
frames, adding to diagrams 135
Frequency() function 279
FunctionOf() 331
functions

about 19
attributes 340
built-in 177
creating 339
pasting 118

Fv() function 215

Index

 Analytica User Guide 441

G
Gamma() distribution function 257
GammaFn() function 223
GammaI() function 223
GammaIInv() function 224
Gaussian probability distributions 254
generalized linear regression 292
Geometric distribution function 242
Getfract() function 277
Graph Setup command 94, 405
Graph setup dialog box 94
graphics, adding to diagrams 135
graphing roles, about 91
graphs

displaying 30, 31
exporting 310
scatter 102, 291
X-Y 105, 289

grid, aligning to 76

H
hardware specifications 410
Help attribute 327
Help menu 408
hidden definitions

creating 385
inheritance 385
setting 403
unhiding 384

Huge Arrays, overview 387
Hypergeometric distribution function 242
hyperlinks, model documentation 137

I
icons, adding to nodes 133
Ident(I=U) function 194, 196
Ident(Time-n) function 300
identifiers

changing 59
naming 414
overview 118, 340

Identifiers attribute 327
IgnoreWarnings 369
Import command 318–322, 401
import format 319
Index button 173
Index qualifier 342
indexes

changing on arrays 183
creating 161, 162, 170
defining 381
description 154
dialog box features 170

displaying arrows 154
in diagrams 154
modeling 151–165
recognizing nodes 19
removing from tables 170
selection area 29
summing over 157
using in OLE linking 313

IndexesOf() function 202
IndexNames() function 202
INF 141
infinity 141
influence arrows, see arrows
influence cycle 52, 427
influence diagrams

copying 310
decision variables 65
definition changes 119
editing 73–78
overview 17

input nodes, using 128–130
Inputs attribute 327
inputs, remote 18
Insert Columns command 402
Insert Rows command 165, 402
Integer number format 87, 140
Integrate() function 192
intellectual property, protecting 384
interpolation functions 199
Invert() function 205
Ipmt() function 216
Irr() function 216
Isnan() function 148
Isnumber() function 148
Istext() function 148
Isundef() function 148
Iterate function 356

J
Join() function 190

K
key combinations for editing 117
key icon 23
Knuth random number generator 235
Kurtosis() function 276

L
L’Ecuyer random number generator 235
labels

displaying 164
listing 120

Last Saved attribute 327

Index

442 Analytica User Guide

lexical errors 413
Lgamma() function 214
libraries

adding to a model 331
Array 404
Array Functions 202
creating 345
custom 404
Database 381
Distribution 230, 404
Distribution System 121
Distribution Variations 12, 265
filed 59, 330
Financial 219
Generalized Regression 14
Math 404
matrix 404
Multivariate Distributions 12, 265
Operators 404
optimizer 404
Performance Profiler 14, 391
removing from a model 331
saving 332
Special 404
statistical 404
Text 210
text functions 404
Trash 51
user 403
user-defined functions 345
using 346

Library class 58
linear regression 292
Linearinterp() function 200
List buttons 22, 129
lists

creating 40, 162
displaying 164
editing 165
navigating 165
numbers 164
Sequence option 163
vs. lists of labels 164

Ln() function 146
logical operators 144
logical values 142
logical variables 227
Logistic() distribution function 258
Lognormal() distribution function 254
Logten() function 146

M
m to n sequence 166

magnification, printouts 25
Make Alias command 55, 403
Make Importance command 283, 403
Make Input Node command 129, 403
Make Output Node command 131, 403
Math command 404
Math library 404
Matrix command 404
matrix functions 203–205
Matrix library 404
Matrix multiplication 204
Matrix() function 204
MDArrayToTable() function 197, 379
MDTable() function 198
Mean Value command 33, 405
Mean() function 275
median Latin hypercube sampling method 234
memory

Memory Usage window 410
requirements 410
usage 408

MemoryInUseBy 393
menus

command descriptions 401–409
right mouse button 409

Mid qualifier 341
Mid Value command 32, 405
Mid() function 280
Min() function 186
Minimal Standard random number generator 235
Mod() function 147
mode 228
Model class 58
models

building 64
closing 16
combining 333
creating 48
defined 16
defining 48
documentation 69
dynamic 52, 74
editing 48–57, 327
expansion 69
hyperlinks 137
integrated 333
modular 334
navigating 325
obfuscating 384
opening 16
opening details 22
protecting intellectual property 384
saving 332
separating columns 378

Index

 Analytica User Guide 443

switching 17
testing 67
using in XML format 135
viewing details 18

Module class 58
modules

about 19
filed 58, 330
hierarchy 324
linking 386
organizing hierarchy 79

Monte Carlo sampling method 234
Move Into Parent command 406
MsgBox function 369
multivariate distributions 265

N
naming errors 414
NAN 141
natural cubic spline 199
New Model command 401
Node Style dialog box 82
nodes

adding icons 133
aligning 76
arranging 74
changing class 58
changing size 51
consistent sizes 74
creating 49
creating aliases 55
customizing 82
default size 82
duplicating 51
editing title 49
grouping related 79
identifying types 18
in fonts 82
selecting 19
shape descriptions 18
text node type 135
title characteristics 73
undefined 61, 84
visual grouping 80
Z-order 77

Nonnegative qualifier 343
Normal() distribution function 254
Normalize() function 193
Nper() function 216
Npv() function 216
Number Format command 405
Number qualifier 343
numbers

combining with text 164
formats 86, 140
lists of 164

numerical data formats 322

O
obfuscated copies 384
obfuscated models, linking 386
object attributes, reading 329
Object button 20
Object Finder dialog box 121
Object menu 403
Object window

maximum number of 335
opening 22
using 22

objective variables 19, 64, 74
ODBC 374
OLE linking

activating other applications 317
auto recompute links 61, 313
automatic vs. manual updates 313, 317
changing file locations 313, 317
linking data from Analytica 311–314
linking data into Analytica 314–317
number formatting 313
OLE Links command 402
Open Source button 317
Paste Special dialog 316
procedure, from Analytica 311
procedure, to Analytica 314
refreshing links 314
table example 314
terminating links 317
using indexes 313

one-dimensional array format 320
Open Database Connectivity 374
Open Model command 17, 401
Open Source button 317
operators

arithmetic 142
Boolean 144
comparison 143
conditional 145
logical 144
scoping 144
text concatenation 210

Operators command 404
Operators library 404
Optimizer command 404, 408
Optimizer library 404
order of precedence 144
ordering qualifiers 344

Index

444 Analytica User Guide

Outline button 20
Outline window 325
output nodes

using 131
viewing values 22

Outputs attribute 327
outputs, remote 18

P
page breaks 408
palettes

color 80
Result 28

parameter qualifiers 340
Parameters attribute 327
parameters, overview 340
parametric analysis 40
parent diagram

returning to 23
viewing 18

Parent Diagram button 20
parenthesis matching 117
Paste command 310, 402
Paste Identifier command 121, 404
Paste Special command 402
Percent number format 87
percentiles 277
Permutations() function 223
Pi system variable 405
Pmt() function 217
Poisson() distribution function 242
popup menus

creating 129
using 22

PositionInIndex() function 188
Positive qualifier 343
Ppmt() function 217
precedence, order of 144
precision 410
Preferences command 59, 336, 402
Preferences dialog box 126, 324, 336
Print command 25, 319, 401
print options

magnification 25
multiple windows 26
page preview 25
printing to files 319
scaling 25
setting 25

Print Preview command 401
Print Report command 26, 401
Print Setup command 25, 401
printing options

background 26
Prob qualifier 341
Prob Table button 247
Probability Bands command 34, 405
probability bands, settings 236
Probability Density command 34, 405
probability density options 236
probability distributions

beta 255
Chi-squared 260
choosing 226–229
computing 240
continuous 227
defining a variable as 229
discrete 227, 251
functions 239–260
Gaussian 254
normal 254
triangular 253
truncating 263
uniform 252

Probability Mass command 34, 405
Probability Table command 246
probability tables 246–248
Probability() function 277
Probbands() function 277
Probdist() distribution function 262
Probtable() function 248
probtables 246–248
Probvalue attribute 327
Product() function 187, 188
profiling

time 391
Pv() function 217

Q
qualifiers

All 343
array 342
Coerce 343
context 341
ContextSample 341
evaluation mode 341
Index 342
Mid 341
Nonnegative 343
Number 343
ordering 344
parameter 340
Positive 343
Prob 341
Reference 343
Sample 341

Index

 Analytica User Guide 445

Scalar 342
Text 343
type checking 343
Unevaluated 343
Variable 342

quantiles 277

R
Radians() function 147
random Latin hypercube sampling 234
random number methods 235
random seed 235
Rank() function 193
Rankcorrel() function 279
Rate() function 217
Recent files 401
Recomputing results 30
reducing functions 185
Reference qualifier 343
Register command 408
Regression() function 292
remote variables 18
resampling 307
Resize Centered command 51, 406
Result button 20
result graphs, exporting 310
Result menu 405
result tables

copying 310
getting data 382
retrieving 378

Result tool palette 28
Result window

default view 30, 60
maximum number of 59, 336
table view 30
working with 28–30

results
comparing 36
recomputing 30
viewing 17

Round() function 147
Run system variable 170, 231, 280, 405

S
Safe Intermediates 61
Sample command 405
Sample qualifier 341
sample size

description 233
selecting 398
setting 233

Sample() function 280

Samplesize system variable 233, 280, 405
sampling methods

choosing 234
median Latin hypercube 234
Monte Carlo 234
random Latin hypercube 234
selecting 233

Save A Copy In command 332, 401
Save As command 332, 401
Save command 332, 401
Scalar qualifier 342
scalar variables 152
scale, printouts 25
scatter plots 102, 291
Scoping operator 144
scoping operator 144
screenshots, taking 83
Sdeviation() function 275
Select All command 76, 402
Self, probability tables 247
Send to Back command 77, 409
sensitivity analysis 284–286
sequence operator 166
Sequence option 163
Sequence() function 166
Set Diagram Style command 81, 406
Set Node Style command 82, 406
shells, stand alone 334
Show By Identifier command 118, 403
Show Color Palette command 80, 406
Show Invalid Variables command 329, 404
Show Memory Usage command 408, 411
Show module hierarchy 61, 324
Show Page Breaks command 25, 408
Show Result command 405
Show result warnings 61
Show undefined 61
Show With Values command 326, 403
ShowProgressBar function 371
Size() function 203
skewed distributions 228
Skewness() function 276
Slice() function 195
slicers, about 93
Snap to Grid command 76, 406
software specifications 410
Special command 404
Special library 404
specifications 410
SplitText() function 211
SQL

accessing databases 374
case sensitivity 377
retrieving result tables 378

Index

446 Analytica User Guide

specifying queries 377
SqlDriverInfo() function 382
Sqr() function 146
Sqrt() function 147
Standard Query Language 374
Statistical command 404
Statistical library 404
Statistics command 33, 405
Statistics() function 280
statistics, setting 235
Stepinterp() function 200
string, see text values
Stringlength() function 210
StudentT() distribution function 258
Subindex() function 187, 188
Subscript function 194
Suffix number format 87, 140
Sum() function 157, 185
symmetrical distributions 228
syntax

checking in definitions 118
errors 413

system constants 141
System Variables submenu 404

T
Table() function 182, 183
tables

adding cells 172
copying 310
copying and pasting cells 171
creating 168–170, 182
defining variables as 168
deleting cells 172
deterministic conditional 248
displaying 30
editing 171–??
editing cells 171
import/export data format 319
lookup 200
modeling 151–165
numerical data formats 322
removing indexes 170
selecting cells 171

Tan() function 147
terminology 421
text

adding to diagrams 135
combining with numbers 164
joining 210
values 142

text concatenation operators 210
Text functions command 404

Text functions library 404
Text qualifier 343
three-dimensional array format 321
Tile Horizontally command 408
Tile Vertically command 408
time profiling 391
Time system variable 298, 405

defining 300
description 170
details 300–303
modeling changes 298
using in a model 303

Title attribute 327
titles

attribute description 340
characteristics 73
editing 49

today() function 371
transformed beta distribution 255
transforming functions 190–??
Transpose() function 207
Triangular() distribution function 253
True system variable 142, 405
Truncate() distribution function 263
Tutorial command 408
two-dimensional array format 320
type checking qualifiers 343
typographic conventions 9

U
uncertainty factor 254
Uncertainty Sample option 233
Uncertainty Setup command 406
Uncertainty Setup dialog box 232
Uncumulate() function 193
undefined nodes 61
Undo command 57, 402
Unevaluated qualifier 343
Unhide Definition(s) command 403
Uniform() distribution function 252
Unique() function 168
Units attribute 327, 340
Update License command 408
Use Return to enter data 61
user libraries 345, 403
user-created attributes 327
user-defined functions 337–346

V
Value attribute 327
values

arrays 25
checking bounds 61

Index

 Analytica User Guide 447

checking validity 124–126
disabling checking 126
listing 120
text 142

Variable qualifier 342
variables

automatic renaming 59
chance 18
class checking 61
defining as arrays 168
description 17
finding 326
general 19
invalid 329
objective 19
public 333
remote 18
scalar 152

Variance() function 275, 277

W
Warning icon 118, 413
warnings, see errors
Web Tech Support command 408
Weibull() distribution function 259
Whatif() function 286
While...Do function 355
Window menu 408
windows

browsing 21
managing 335
numbers of 59
print settings 26
see also Diagram window, Object window, Outline

window
Windows system software 410
WriteTableSql() function 380

X
Xirr() function 218
XML format, using models 135
Xnpv() function 218
XY button 108, 289
X-Y results 105, 289

Z
Z-order, nodes 77

Index

448 Analytica User Guide

 Analytica User Guide 449

Analytica windows and dialogs

Outline Window

Diagram Window:
Inputs and Outputs Diagram Window:

Influence Diagram Result Window — Graph View

Object Window Object Finder

Result Window — Table View

Graph Setup Dialog

Uncertainty Setup Dialog

Find Dialog

Preferences Dialog

Attributes Dialog

Diagram Style Dialog Node Style Dialog Number Format Dialog

450 Analytica User Guide

Analytica Quick Reference

The Tool Bar

Numerical Formats (Output)

Numerical Prefixes and Suffixes (Input)

Tip If integer or fixed point is selected, numbers larger than 109 display in exponential format.

O
bj

ec
t

De
fin

itio
n

Re
su

lt

O
ut

lin
e

Br
ow

se
 to

ol
Ed

it
to

ol
Ar

ro
w

to
ol

The node palette is displayed
when either the edit tool or
arrow tool is selected.

Ch
an

ce
 n

od
e

Va
ria

bl
e

no
de

De
cis

io
n

no
de

O
bj

ec
tiv

e
no

de

In
de

x
no

de

Fu
nc

tio
n

no
de

M
od

ul
e

no
de

Co
ns

ta
nt

 n
od

e

Pa
re

nt
 D

ia
gr

am

Te
xt

 b
ox

Format Description Example

Suffix the default (see the following table) 12.35K

Exponent scientific exponential 1.235e04

Fixed Point fixed decimal point 12345.68

Integer fixed point with no decimals 12346

Percent percentage 1234568%

Date text date 12 Jan 93

Boolean true or false True

Power
of 10

Suffix Prefix Power
of 10

Suffix Prefix

-2 % percent

3 K Kilo -3 m milli

6 M Mega or Million -6 µ micro (mu)

 9 G Giga -9 n nano

 12 T Tera or Trillion -12 p pico

15 Q Quad -15 f femto

	Acknowledgements
	Contents
	About Analytica
	Welcome!
	If you don’t read manuals
	Hardware and software requirements
	Installation and license codes
	Editions of Analytica
	Compare Analytica features by edition

	Help menu and electronic documentation
	Online help and electronic documentation

	Normally, usually, and defaults
	Typographic conventions in this guide
	User guide examples folder
	What’s new in Analytica 4.0?
	User interface
	The Application
	Probability distributions and statistical functions
	New functions and language extensions
	Analytica Enterprise Edition
	Analytica Optimizer

	Examining a Model
	To open or exit a model
	Diagram window
	Classes of variables and other objects
	Selecting nodes
	The toolbar
	Browsing with input and output nodes
	Browse mode
	Viewing input nodes
	Viewing output node values
	Opening module details

	The Object window
	The Attribute panel
	Showing values in the Object window
	Printing

	Result Tables and Graphs
	The result window
	Index selection
	The default view
	Recomputing results

	Viewing a result as a table
	Viewing a result as a graph
	Uncertainty views
	Comparing results

	Analyzing Model Behavior
	Varying input parameters
	Analyzing model behavior results

	Creating and Editing a Model
	Creating and saving a model
	Creating and editing nodes
	Drawing arrows
	How to draw arrows between different modules
	Alias nodes
	To edit an attribute
	To change the class of an object
	Module Subclasses

	Preferences dialog

	Building Effective Models
	Creating a model
	Testing and debugging a model
	Expanding your model

	Creating Lucid Influence Diagrams
	Guidelines for creating lucid and elegant diagrams
	Arranging nodes to make clear diagrams
	Organizing a module hierarchy
	Color in influence diagrams
	Diagram Style dialog
	Node Style dialog
	Taking screenshots of diagrams

	Formatting Numbers, Tables, and Graphs
	Number formats
	Date formats
	Multiple formats in one table
	Graphing roles
	Graph setup dialog box
	Chart Type tab
	Axis Ranges tab
	Style tab
	Text tab
	Background tab
	Preview tab
	Categorical and Continuous Plots
	Exporting graph image type

	Graph templates
	To use a graph style template
	To stop using a graph style template
	To define a new graph style template
	To modify a graph style template
	Combining local, template, and model default settings
	Saving defaults as a template model
	Graph templates and setting associations
	Changing the global default
	To rename a graph style template

	XY comparison

	Creating and Editing Definitions
	Creating or editing a definition
	Automatically updating the diagram

	The Expression popup menu
	Object Finder dialog
	Using a function or variable from the Definition menu
	Automatic checking for valid values

	Creating Inputs and Outputs
	Using input nodes
	Creating a choice menu
	Using output nodes
	Input and output nodes and their original variables
	Using form modules
	Adding icons to nodes
	Graphics, frames, and text in a diagram
	Models in XML file format
	Hyperlinks in model documentation

	Using Expressions
	Numbers
	Text values
	Boolean or logical values
	Operators
	Operator binding precedence

	IF a THEN b ELSE c
	Functions
	Math functions
	Numbers and text
	Datatype functions

	Arrays and Indexes
	Introduction to arrays
	Operations on arrays
	IF a THEN b ELSE c with arrays
	Creating an index
	Editing a list
	Functions that create indexes
	[u1, u2, u3, … um]
	m .. n
	Sequence (start, end, stepSize)
	Subset (d)
	CopyIndex(i)
	Sortindex (d, i)
	Unique(a, i)

	Creating an array with an edit table
	Indexes dialog box

	Editing a table
	Editing or extending indexes in an edit table

	Choice menus in an edit table
	Shortcuts to navigate and edit a table

	More Array Functions
	Intelligent Arrays™
	Functions that create arrays
	Array(i1, i2, … in, a)
	Table (i1, i2, … in) (u1, u2, u3, … um)

	Array-reducing functions
	Sum(x, i)
	Product(x, i)
	Average(x, i)
	Max(x, i)
	Min(x, i)
	Argmax(a, i)
	Argmin(a, i)
	CondMin(X : Array[I], cond : Boolean[I] ; i : IndexType) CondMax(X : Array[I], cond : Boolean[I] ; i : IndexType)
	Subindex(a, u, i)
	PositionInIndex(a, x, i)
	@: Index Position Operator
	Area(r, I, x1, x2)

	Transforming functions
	Cumulate(x, i)
	Uncumulate (x, i, firstElement)
	Cumproduct(x, i)
	Rank(x, i)
	Integrate(r, i)
	Normalize(r, i)

	Selecting, slicing, and subscripting arrays
	X[I=V]: Subscript construct
	X[@I=n]: Slice construct
	x[time-n]: Preceding time slice
	Subscript(u1, i, u2)
	Slice(u, i, n)
	Slice(u, n)
	x[i = u]
	Choice(i, n, inclAll)

	Converting between multiD and relational tables
	MDArrayToTable(a, i, l)
	MDTable(t, rows, cols, vars, conglomFn, missingVal)

	Interpolation functions
	Cubicinterp(d, r, x, i)
	Linearinterp(d, r, x, i)
	Stepinterp(d, a, x, i)

	Other array functions
	Concat(a1, a2, i, j, k)
	ConcatRows(A : Array[I,J] ; I,J,K : Index)
	IndexNames(a)
	IndexesOf(A : Array)
	IndexValue(I)
	Size(u)

	SubTable
	Matrix functions
	Dot product of two matrices
	MatrixMultiply(a:Numeric all[aRow,aCol]; aRow, aCol:Index; b:Numeric all[bRow,bCol]; bRow, bCol:Index)
	Transpose(c, i, j)
	Invert(c, i, j)
	Determinant(c, i, j)
	Decompose(c, i, j)
	EigenDecomp(a:Numeric[i, j]; i, j:Index)
	SingularValueDecomp(a, i, j, j2)

	Other Functions
	Text functions
	Date functions
	Advanced math functions
	Financial functions
	Cumipmt(rate, nPer, pv, startPeriod, endPeriod, type)
	Cumprinc(rate, nPer, pv, startPeriod, endPeriod, type)
	Fv(rate, nPer, pmt, pv, type)
	Ipmt(rate, per, nPer, pv, fv, type)
	Irr(values, i, guess)
	Nper(rate, pmt, pv, fv, type)
	Npv(discountRate, values, i)
	Pmt(rate, nPer, pv, fv, type)
	Ppmt(rate, per, nPer, pv, fv, type)
	Pv(rate, nPer, pmt, fv, type)
	Rate(nPer, pmt, pv, fv, type, guess)
	Xirr(values, dates, i, guess)
	Xnpv(rate, values, dates, i)

	Financial library functions
	Calloption (S, X, T, r, theta)
	Putoption (S,X,T,r,theta)
	Capm (Rf,Rm,Beta)
	CostCapme (rOpp,rD,Tc,L)
	CostCapmm (rAllEq, Tc, L)
	Implied_volatility_c (S,X,T,r,p)
	Implied_volatility_p (S,X,T,r,p)
	Pvperp (C,rate)
	Pvgperp (C1, rate, growth)
	Wacc (Debt,Equity,rD,rE,Tc)

	Advanced probability functions

	Expressing Uncertainty
	Choosing an appropriate distribution
	Defining a variable as a distribution
	Including a distribution in a definition
	Probabilistic calculation
	Uncertainty Setup dialog box

	Probability Distributions
	Probability distributions
	Parametric discrete distributions
	Bernoulli (p)
	Binomial(n, p)
	Poisson(m)
	Geometric(p)
	Hypergeometric(s, m, n)
	Uniform(min, max, Integer:True)

	Probability density and mass graphs
	The domain attribute and discrete variables
	Custom discrete probabilities
	Probtable(): Probability Tables
	Chancedist (p, a, i)

	Parametric continuous distributions
	Uniform(min, max)
	Triangular(min, mode, max)
	Normal(mean, stddev)
	Lognormal(median, gsdev, mean, stddev)
	Beta (x, y, min, max)
	Exponential(r)
	Gamma(a, b)
	Logistic(m, s)
	StudentT(d)
	Weibull(n, s)
	ChiSquared(d)

	Custom continuous distributions
	Cumdist(p, r, i)
	Probdist(p, r, i)

	Special probabilistic functions
	Certain(u)
	Shuffle(a , i)
	Truncate(u, min, max)
	Random(expr)

	Multivariate distributions
	Over indexes as parameters to probability distributions
	Probability distributions with array parameters
	Multivariate Distribution library
	Create one distribution dependent on another
	An array of distributions with correlation or covariance matrix
	Other parametric multivariate distributions
	Arrays with serial correlation
	Uncertainty over regression coefficients

	Importance weighting

	Statistics, Sensitivity, and Uncertainty Analysis
	Statistical functions
	Mean(x)
	Sdeviation(x)
	Variance(x)
	Skewness(x)
	Kurtosis(x)
	Probability(b)
	Getfract(x, p)
	Probbands(x)
	Covariance(x, y)
	Correlation(x, y)
	Rankcorrel(x, y)
	Frequency(x, i)
	Mid(x)
	Sample(x)
	Statistics(x)
	PDF(X) and CDF(X)

	Weighted statistics and w parameter
	Importance analysis
	Sensitivity analysis functions
	Dydx(y, x)
	Elasticity(y, x)
	Whatif(e, v, vNew)
	WhatIfAll(e, vList, vNew)

	Tornado charts
	X-Y plots
	Scatter plots
	Regression analysis
	Regression(y, b, i, k)
	Logistic_Regression(Y, B, I, K)
	Probit_regression(Y, B, I, K)

	Uncertainty in regression results
	RegressionDist(y, b, i, k)
	RegressionFitProb(y, b, i, k, c)
	RegressionNoise(y, b, i, k, c)

	Dynamic Simulation
	The Time index
	Using the Dynamic() function
	Dynamic(initial1, initial2..., initialn, expr)
	x [Time - k]

	More about the Time index
	Reference to earlier time
	Defining time
	Using Time in a model

	Initial values for Dynamic
	Using arrays in Dynamic()
	Dependencies with Dynamic
	Dynamic dependency arrows
	Expressions inside dynamic loops

	Uncertainty and Dynamic
	Resampling

	Importing, Exporting, and OLE Linking Data
	Copying and pasting
	Using OLE to link results to other applications
	Important notes about linking to Analytica results

	Linking data from other applications into Analytica
	Example of linking a table into Analytica
	Important notes about linking into Analytica edit tables

	Importing and exporting
	Printing to a file
	Edit table data import/export format
	One-dimensional array
	Two-dimensional array
	Three-dimensional array
	Number format

	Working with Large Models
	Show module hierarchy preference
	The Outline window
	Finding variables
	Managing attributes
	Referring to the value of an attribute

	Invalid variables
	Using filed modules and libraries
	Adding a module or library
	Combining models into an integrated model
	Cautions in combining models

	Managing windows
	Optimization and speed-up

	Building Functions and Libraries
	Example function
	Using a function
	Creating a function
	Attributes of a function
	Parameter qualifiers
	Evaluation mode qualifiers
	Array qualifiers
	Type checking qualifiers
	Ordering qualifiers
	Optional parameters
	Deprecated synonyms for parameter qualifiers

	Libraries
	Creating a library
	Adding a filed library to a model
	Using a library

	Procedural Programming
	An example of procedural programming
	Summary of programming constructs
	Begin-End, (), and ’;’ for grouping expressions
	Declaring local variables and assigning to them
	Defining a local variable: Var v := e
	Assigning to a local variable: v := e
	Assigning to a slice of a local variable

	For and While loops and recursion
	For i := a Do expr
	While (Test) Do Body
	Iterate(x1, xi, bstop, maxIter, warn)
	Recursive functions

	Local indexes
	Ensuring array abstraction
	References and data structures
	Miscellaneous functions
	Error(message)
	Evaluate(t)
	IgnoreWarnings(expr)
	MsgBox(message, buttons, title)
	ShowProgressBar
	Today()

	Analytica Enterprise
	Accessing databases
	Separating columns in a model

	Database functions
	DBLabels(dbIndex)
	DBQuery(connectionString, sql)
	DBTable(dbIndex, column) DBTable(dbIndex, columnList) DBTable(dbIndex, columnIndex)
	DbTableNames(connectionString, cat, sch, tab, typ)
	DBWrite(connectionString, sql)
	SqlDriverInfo(driverName)

	Reading and writing text files
	ReadTextFile (filename)
	WriteTextFile (filename, text:Text; append, warn:Boolean optional; sep:Text optional)
	CurrentDataDirectory()
	CurrentModelDirectory()

	Making a browse-only model and hiding definitions
	Warning: Do not obfuscate libraries or linked submodules!

	Huge Arrays
	Creating buttons and scripts
	Assigning to global variables
	EvaluateScript(t)
	Typescript Window

	Performance Profiler
	Performance profiling attributes and function

	RunConsoleProcess(program, cmdline, stdIn, block)
	Examples

	Appendix A. Selecting the Sample Size
	Appendix B. Menus
	File menu
	Edit menu
	Object menu
	Definition menu
	System Variables submenu
	Result menu
	Diagram menu
	Align submenu
	Make Same Size submenu
	Space evenly submenu
	Window menu
	Help menu
	Right mouse button menus

	Appendix C. Analytica Specifications
	Memory usage

	Appendix D. Identifiers Already Used
	Appendix E. Error Message Types
	Appendix F. Forward and Backward Compatibility
	Appendix G. Bibliography
	Appendix H. Function List
	Index
	Analytica windows and dialogs
	Analytica Quick Reference
	The Tool Bar
	Numerical Formats (Output)
	Numerical Prefixes and Suffixes (Input)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

