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Chapter 1 Introducing the 
Analytica Optimizer

This chapter shows you:

• What is the Analytica Optimizer 

• How to obtain the Analytica Optimizer

• How to activate the Analytica Optimizer

• How to activate the Analytica Optimizer for 
ADE

• How to activate add-on engines
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Introducing the Analytica Optimizer
This Optimizer Guide explains how to use the Analytica Optimizer. The Quick Start chapter is 
a tutorial taking you through the key steps to create some simple example Analytica models 
that use linear and nonlinear optimization. The chapter on Formulating an Optimization helps 
you to formulate your model for optimizing, and to choose whether it requires linear program-
ming (LP), quadratic programming (QP), and non-linear programming (NLP). The other chap-
ters provide more details on each of these three types of optimization and their many options. 
The final chapter gives a concise reference for all the optimization functions.

What do I need to know?
This Guide, including the Quick Start chapter, assumes you have basic knowledge of building 
models and writing expressions in Analytica. If you do not, you might first work though the 
Analytica Tutorial and scan through the Analytica User Guide.

This Guide provides an introduction to the basic concepts of optimization, including linear, 
quadratic, and nonlinear programming. It is not, however, a complete textbook on optimization. 
You may find it useful, especially for more challenging applications, to consult one of the many 
good textbooks on optimization.

What is the Analytica Optimizer?
The Analytica Optimizer adds to Analytica powerful functions to find optimal decisions and to 
solve equations. An optimal decision strategy may maximize value, minimize costs, or any 
quantified objective. The optimization may be subject to a set of constraints. Analytica Opti-
mizer offers linear programming (LP), quadratic programming (QP), and non-linear program-
ming (NLP). LP requires linear objective functions and linear constraints. QP requires 
quadratic objective functions and linear or convex quadratic constraints. NLP handles general 
nonlinear objective and constraint functions. All three methods handle decision variables that 
are continuous, discrete (integer, boolean, grouped), or mixed. 

The Analytica Optimizer uses the Premium Solver Platform licensed from Frontline Systems, 
Inc. Frontline is the world leader in spreadsheet optimization: It developed the optimizer/solv-
ers in Microsoft Excel and other spreadsheets. Their Premium Solver is the leading add-on 
software for spreadsheet optimization, and incorporates state-of-the-art technologies. The LP 
and QP methods handle up to 8000 variables and 8000 constraints in addition to variable 
bounds (up to 2000 variables may be integer, and the limit is 2000 variables when quadratic 
constraints are present). The NLP methods offer hybrid methods using classical gradient-
search and evolutionary (genetic) algorithms for smooth and discontinuous objective func-
tions, with up to 500 decision variables and 250 constraints.

The Analytica Optimizer performs optimization under uncertainty to maximize expected val-
ues, minimize loss percentiles, and other statistical functions of objectives and constraints. 
The LP and QP methods fully support Analytica's Intelligent Arrays: Thus, you can easily cre-
ate arrays of optimizations conditioned on samples from uncertain variables, for parametric 
analysis of effects of key assumptions, and for each time period in a dynamic model. The non-
linear programming (NLP) functions do not fully support Intelligent Arrays. But, you can opti-
mize nonlinear objectives that aggregate over dimensions — e.g. expected net present value 
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to aggregate over uncertainty and time, and you can manually configure an optimization prob-
lem to abstract over explicitly named dimensions.

The Analytica Optimizer is an Analytica edition that includes all the functionality of the Analyt-
ica Enterprise edition. After developing optimizer-based models with Enterprise, you can 
deliver them to end users on the desktop using Analytica Power Player with Optimizer, or via a 
Web-browser on a server computer using the Analytica Decision Engine (ADE) with an Opti-
mizer license. 

How do I obtain the Analytica Optimizer?
You can purchase a license for the Analytica Optimizer or the Analytica Power Player with 
Optimizer from Lumina Decision Systems. Or you can purchase an upgrade to Optimizer if 
you already have a license for Enterprise or Professional editions.

If your copy of Analytica is for release 3.1 or earlier, you will need to upgrade it to release 4.0 
to obtain the newest Optimizer features as described in this manual. Substantial discounts are 
available if you have a maintenance agreement for Analytica 3.1 (included free for 12 months 
from purchase).

Use of Optimizer from ADE requires a special ADE license. ADE Optimizer licenses include 
limits on the number of concurrent ADE process instances, with licensing pricing based on the 
maximum number of concurrent instances allowed on a machine.

For more information, visit the Lumina web site:

http://www.lumina.com

or call Lumina at 650-212-1212.

To Activate the Optimizer for Analytica
If you have already installed any edition of Analytica 4.0, your installation already includes the 
Optimizer files: There is no need to download new software. To activate the software to use 
the Optimizer, all you need to do is to enter into Analytica a new license code with the Opti-
mizer option. Follow these steps:

1. Start up Analytica in the usual way, e.g. via the Windows Start menu, or by double-clicking 
on an Analytica model file.

2. From Analytica’s Help menu, select the Update license… option, to show the Analytica 
Licensing Information dialog box.

3. Replace the existing license code at the bottom of the dialog box with a new code that 
activates the optimizer. If you have received the new license code in an E-mail, you can 
copy and paste it directly into the dialog box. 

4. Click OK.

5. Exit and restart Analytica.

You can verify successful activation of Analytica Optimizer by examining the splash screen 
when Analytica starts up, or by going to Help > About Analytica.  The splash screen should 
display "Analytica <edition> with Optimizer", like this:
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To activate Analytica Optimizer for ADE
An Analytica Decision Engine (ADE) Optimizer edition is also available in release 4.0. An ADE 
Kit license includes a license code for Analytica Enterprise for developing models, as well as a 
code ADE for the production server. Similarly, ADE Optimizer includes a license code for Ana-
lytica Optimizer as well as a code for ADE Optimizer. See the preceding section on how to 
activate Analytica Enterprise with Optimizer. ADE Optimizer licenses include a maximum limit 
on the maximum number of concurrent ADE process instances that may be running concur-
rently on the same computer.

If you currently use ADE release 3.1 or earlier, you will first need to upgrade it to release 4.0. 

To upgrade an existing non-Optimizer installation of ADE 4.0 to activate the optimizer, follow 
these steps to enter a new license code for ADE Optimizer:

1. Open a command prompt. From the Start menu, select Run, type cmd and press OK.

2. Type: cd ADE_Dir, where ADE_Dir is the path to the directory for ADE 4.0.  
On most computers this will be: cd "c:\Program Files\Lumina\ADE 4.0"

3. Type: ade.exe /RegServer 
A dialog will appear that will allow you to enter your new license code.

4. Enter the new license code and press OK.



Chapter Introducing the Analytica Optimizer1

 Analytica Optimizer Guide 5

Installing Optimizer add-on Engines
With Analytica Optimizer 4.0, it is possible to add on other engines for solving optimization 
problems. Some engines provide superior performance on particular classes of optimization 
problems, and some engines handle larger numbers of variables or constraints. Among the 
available add-on engines are: MOSEK, Large-scale SQP, XPRESS, KNITRO, OptQuest, large 
scale GRG, and large scale LP/QP. These add-on engines are available at additional cost and 
special installation steps. 

To install an add-on engine in Analytica Optimizer, you must first receive the special license 
code and the DLL file containing the engine. With Analytica Optimizer already installed, place 
the DLL in your Analytica install directory (or, alternatively, remember the full file path to the 
DLL). Use RegEdit to add the following registry key/folder (if it does not already exist):

HKEY_LOCAL_MACHINE/Software/Lumina Decision Systems/Analytica/4.0/
SolverEngines

In this folder, create a String Value using the name of the add-on engine, and set its value to 
the full file path of your DLL. For example:

KNITRO : C:\Program Files\Lumina\Analytica 4.0\Knitro.dll

Next, find the Solver.lic file in your Analytica install directory and open it in a text editor such as 
NotePad. Add the license key provided for the add-on engine to this file.

To test for proper installation, open Analytica, and create a variable defined as follows:
Variable Engines := SolverInfo("AvailEngines")

Show the result for this variable and verify that your engine name appears in the resulting list.

What’s new in Analytica Optimizer 4.0
Analytica Optimizer has several new features and has become easier to use since Analytica 
3.1. Enhancements include:

• It has been upgraded to Frontline’s SDK version 7.1 (from 4.5 formerly).

• There is now a capability to add-in other external solvers engines (at an additional cost), 
including XPress, Knitro, Mosek, OptQuest and Frontline large-scale engines.

• All optimizer algorithm/engine settings are now specified through two parameters, named 
parameter and setting, to LpDefine(), QpDefine() and NlpDefine(). This scheme 
generalizes to the use of different engines, including new add-on engines.

• A new type of integer constraint, group-integers, is now supported. In this integer type, 
decision variables belonging to the same group are prohibited from having the same 
value.

• Quadratic constraints are now allowed in quadratic programs defined using QpDefine(). 
Special algorithms are highly effective in solving convex quadratic constraints, and 
second-order cone programs.

• A new function, SolverInfo(), provides access to the list of installed optimizer engines, 
the components of an optimization problem definition, and the attributes of an optimizer 
engine.



Chapter Introducing the Analytica Optimizer

6 Analytica Optimizer Guide

1

• When specifying non-linear optimization problems, almost all parameters to NlpDefine() 
are now optional, making it very simple to specify simple optimization problems. For 
example, the Vars and Constraints indexes can be omitted when there is only a single 
scalar decision variable, or zero or one constraints. For example, a simple unconstrained 
scalar optimization requires only two parameters.

• New SetContext and Over parameters to NlpDefine() provide more flexibility for 
structuring your model so that your optimization array abstracts properly. Also, 
NlpDefine() can be specified within a dynamic loop, such that the definition of an 
optimization problem at time t is based on the optimal solution of a previous optimization 
problem at time t-1.

• A new traceFile parameter to NlpDefine() makes it easy to log the points visited during 
an optimization search to a file for debugging.

• The ObjNL and LhsNl parameters to NlpDefine() allow quadratic dependence to be 
specified as a further hint.

• A MultiStart setting can be used with the "GRG nonlinear" engine in NlpDefine(), which 
is often quite effective when local minima are present.

• The nonlinear engines, such as "GRG Nonlinear" or "Evolutionary", can optionally be used 
to solve problems defined using LpDefine() or QpDefine(), as an alternative to the 
default "LP/Quadratic" and "SOCP Barrier" engines. With QpDefine(), this may be 
necessary if the quadratic constraints are non-convex.

• LpWrite(), LpRead(), and LpWriteIIS() now support three file formats: "LP", "MPS" 
and "LPFML". These formats are standards used for exchange of linear programs 
between other optimizer software products.

• The set of status codes returned from LpStatusNum() and the set of status messages 
returned from LpStatusText() have changed. Legacy models that tested against specific 
status numbers may need to be adjusted.



Chapter 2 Quick Start

This chapter shows you:

How to browse Analytica Functions

How to obtain the Analytica Optimizer

How to optimize a linear program

How to optimize a non-linear program
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Quick Start

Who this is for
This section leads you through a series of steps to create Analytica models that solve some 
simple linear and non-linear optimization problems. The reader should follow along by per-
forming the steps in Analytica. 

If you’re 
already 

familiar with 
linear and 
non-linear 

programming
…

If you are already familiar with concepts of linear, quadratic and non-linear programming, 
this provides a fast way to get started creating Analytica optimization models. Since this 
Quick Start chapter does not cover all the functions and features of Analytica Optimizer, and 
their use in complex situations, you should review the rest of the manual as well, especially 
“Optimization Function Reference” on page 94.

If you’re not 
an expert 
already…

If you do not already have a previous background in linear and non-linear programming, 
performing the step-by-step instructions in this section may be the best place to start, even 
if you don’t yet understand why each step is being done. Afterwards, read the remainder of 
this manual, returning to the examples in this section as you learn more about Analytica 
Optimizer. Also, be sure to explore the optimizer example models included with Analytica 
Optimizer.

Analytica 
prerequisites

…

This manual, including this Quick Start section, assumes a basic knowledge of modeling 
and writing expressions in Analytica. If you do not yet have this background, you should go 
through the Analytica Tutorial and Users Guide prior to continuing with this manual.

Browsing Analytica Optimizer Functions
To begin, follow these steps:

1. Start Analytica in the usual way, e.g., using the menus:  
Start > Programs > Analytica 4.0 > Analytica 4.0.

2. In the main application menu, select Definition.

3. Move your cursor down to the Optimizer submenu.

On the submenu that pops up, take a minute to scan the Analytica Optimizer function 
names. If you do not have an Optimizer option on your Definitions menu, it means that you 
do not have an Analytica Optimizer-activating License Code. You will need to contact 
Lumina at sales@lumina.com.

4. Select the diagram window and press CTRL-2 to create a new variable, and CTRL-E to 
edit its definition.

5. Select Paste Identifier… on the Definition menu.

6. Using the library pull-down, select Optimizer.

From here you can review the optimizer functions along with parameters and function 
descriptions. The two main functions to study initially are LpDefine() (to define a linear pro-
gram) and LpSolution() (to solve a linear program).
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A Linear Program
This section will take you through the process of encoding a linear program in Analytica 
Optimizer. The model you create here is included in the Example Models/Optimizer 
Examples directory installed with Analytica under the name Two Mines.ANA. The problem 
you will encode is described as follows:

The Two Mines Company owns two different mines that produce an ore which, after 
being crushed, is graded into three classes: high, medium and low-grade. The company 
has contracted to provide a smelting plant with 12 tons of high-grade, 8 tons of medium-
grade and 24 tons of low-grade ore per week. The two mines have different operating 
characteristics as detailed below.

How many days per week should each mine be operated to fulfill the smelting plant 
contract?1 

The first step is to identify the decision variables, in this case the number of days per week 
to operate each mine, and then create an index variable naming each decision variable: 

1. Create an index name and name it Mines. 
We will use this as the index for the objective variables, i.e., the number of days per week 
to operate each mine.: 

2. Edit its definition attribute and set its definition pull-down to  
List Of Labels.

3. Enter the labels Mine X and Mine Y:

 
Mine

 
Cost per Day 
($1000)

Production (tons/day)
High Grade Medium 

Grade
Low Grade

X 180 6 3 4
Y 160 1 1 6

1. This example was created by J.E. Beasley.  
Cf. http://www.brunel.ac.uk/depts/ma/research/jeb/or/contents.html 
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Next, enter the mining costs, which will become the objective coefficients that define the 
objective as a linear function of the decision variables:

4. Create a variable and name it Mining_Costs. Set its units attribute to $K/day.

5. Edit its definition attribute and set the definition type to Table. In the index chooser, 
select Mines and press OK. Populate the table with the operating costs as follows:

In this problem, there is one production constraint for each grade of ore. Thus, an index for 
ore-grade can serve as the constraint index:
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6. Create an Index variable and name it Ore_Grades. Set its definition to a list of labels, 
thus:

7. Create a decision variable and name it Ore_Production. Set its Units to tons/day. Set its 
Definition type to Table and in the Index chooser select both Mines and Ore_Grades. Fill 
in the table thus:

8. Create a variable and title it "Ore Production Requirements". For convenience, set its 
identifier to Ore_Prod_req. Set its Units to tons/week. 

9. Edit the definition attribute for Ore Production Requirements and set the definition type 
to Table, selecting Ore_grades as its index. Fill in the Edit Table thus:

Note that the constraints for the problem are, for each ore grade:
Sum(Ore_production*x, Mines) >= Ore_prod_req

where x is the objective, i.e., the number of days per week to operate each mine. 

We now have all the inputs required to define the linear program.

To create the linear program to solve this problem:

10. Create a variable and name it My_LP. Enter the following definition:

LpDefine(Vars: Mines,  
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constraints: Ore_grades, 
objCoef: Mining_costs, 
lhs: Ore_production, 
sense: ">", 
rhs: Ore_prod_req, 
lb: 0, 
ub: 5)

The parameters lhs, sense, and rhs refer to the left hand side of the constraint equations, 
the constraint equation comparator (greater than, equals, less than), and the right hand side 
of the constraint equations, respectively. The last two parameters, lb and ub (the lower and 
upper bounds), specify the limits on the number of days per work week that a mine can 
operate. 

Note that the example above uses name-based calling syntax for the function LpDefine: 
You give each parameter by name, colon, and the expression to be passed, e.g. Vars: 
Mines. You can also use more conventional position-based syntax, but that is less compre-
hensible for functions like LpDefine with many parameters and options. (See "Name-based 
calling syntax" in Chapter 20 of the User Guide.)

11. Select the My_LP node and press CTRL-R to evaluate it.
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The LpDefine() function defines the linear program and returns a special object which dis-
plays as <<LP>>; however, it does not solve for the optimal solution. To do that:

12. Create an objective node and title it "Days per Week to Operate Mines". Set its units 
attribute to Days per week, and set its definition to LpSolution(My_LP)

Your model should now look something like:
 

13. Press CTRL-R to evaluate the linear program. The result view shows the optimal number 
of days per week to operate each mine:

 

It is always a good idea to check the status of the optimization as well. To check on the sta-
tus of the optimization:

14. Create an objective variable and name it Status. Enter the definition: 
LpStatusText(My_LP)

15. Evaluate the variable Status.

In this case, Status should be “Optimal solution has been found,” indicating that the solution 
viewed earlier was indeed the optimum. If the search had terminated early for some reason, 
or it could not find a feasible solution, Status would show you the situation. See “Obtaining 
the Solution” on page 26 for the full list of possible status values.

The example produced a non-integer solution. Suppose we needed an integer solution — 
because you could operate each mine only for an integral number of days, and partial days 
are not possible. You can easily modify the problem to achieve this:
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Click on My_LP and change its definition by adding a ctype (Continuity type) parameter to 
indicate that you want an integer solution:

LpDefine(Vars: Mines,  
constraints: Ore_grades, 
objCoef: Mining_costs, 
lhs: Ore_production, 
sense: ">", 
rhs: Ore_prod_req, 
ctype: "I", 
lb: 0, 
ub: 5)

Click on Days per Week to Operate Mine and press CTRL-R to view the result. 

A Non-linear Program
You will now define and solve a non-linear optimization. Non-linear optimizations are treated 
differently from linear and quadratic optimizations. In the previous linear programming 
example, the coefficient matrices completely describe the problem, and the optimum solu-
tion is simply computed. A non-linear optimization, by comparison, repeatedly re-evaluates 
expressions or portions of your model during a search. You will indicate the portion of your 
model to re-evaluate to the NlpDefine() function.

We will formulate the following optimization problem:

Find the dimensions of a cylinder with minimum surface area with a volume of at least 
500 cm3. 

This example can be found in the Optimal can dimensions.ANA example model in the 
Example Models/Optimizer Examples directory installed with Analytica.

To model this, we first create a self-indexed table, Dimensions, to index the decision vari-
ables and to hold candidate solutions. 

1. Start Analytica, or select File > New to start a new model.

2. Create a decision variable, name it Dimensions.
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3. Set the definition type to Table, select Dimensions (Self) for the index, and fill in the 
edit table as follows: 

Since it is self-indexed, the Dimensions variable serves both as the optimization vector and 
as the Vars index. During the optimization search, the cell values will be set to candidate 
solutions and other portions of the model evaluated.

For convenience, we can break out the decision variables as Analytica variables. To do that, 
follow these steps:

4. Create a variable node, named Radius. Give it the definition: 
Dimensions[Dimensions="r"]

5. Create a variable, named Height. Give it the definition: 
Dimensions[Dimensions="h"]

Next compute the Surface Area and Volume. Surface_area will become the objective func-
tion. Volume will become a constraint.

6. Create a variable named Volume. Give it the definition: 
height * Pi * radius^2

7. Create a variable named Surface_Area. Give it the definition: 
2 * Pi * radius^2 + 2 * Pi * radius * height

8. Create a constant named Req_Volume  
(title: Required Volume). Set its value to 500.

Next, set up the constraints, in this case there is only one. For non-linear problems, this 
involves setting up a constraint index, a left-hand side (which will be a computed expres-
sion) and a right-hand side. Sometimes it is convenient to do this as follows:

9. Create an index named cp with the title Constraint Parts. Define it as a list of labels: 
["lhs","sense","rhs"]



Chapter Quick Start

16 Analytica Optimizer Guide

2

10. Create a variable named Constraints. Set its definition to a table and select Constraints 
(Self) and Constraint Parts as the indexes. Set up the edit table so that Constraint Parts 
is on the horizontal dimension and Constraints is on the vertical dimension. Fill in the edit 
table as shown here:

Now, define the non-linear optimization problem:

11. Create a variable named The_NLP. Give it the following definition:
NlpDefine(Dimensions, Constraints,  
x: Dimensions,  
obj: Surface_area, 
lhs: Constraints[cp="lhs"], 
sense: Constraints[cp="sense"], 
rhs: Constraints[cp="rhs"])

This defines the non-linear optimization problem. The objective function is Surface_area, 
which is computed from the values in the Dimensions node. The left-hand side of the con-
straint is also computed from Dimensions.

When The_NLP is evaluated (by selecting the node and entering CTRL-R), an object is cre-
ated that displays as <<NLP>>. 
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At that point, the NLP is not solved, it is only defined. It is solved when a function such as 
LpStatusText() or LpSolution() is evaluated. To get the solution:

12. Create an objective node named Status, and set its definition to: 
LpStatusText(The_NLP)

13. Create an objective node named Optimal_Dimensions and set its definition to: 
LpSolution(The_NLP)

When either of these objective nodes is evaluated, the optimization engine will search for 
and report the optimal solution. View the Status node’s result to make sure the optimization 
was successful, and view the Optimal_dimensions node to view the solution and its status
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Chapter 3 Formulating an 
Optimization Problem

This chapter shows you:

• The different types of optimization problems

• How to choose the proper type of 
optimization

• How to optimize when solving simultaneous 
equations
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Formulating an Optimization Problem

What are the parts of an optimization problem
The first step in performing an optimization is to formulate the problem appropriately. An 
optimization problem is defined by four parts: a set of decision variables, an objective func-
tion, bounds on the decision variables, and constraints. The formulation looks like this:

Decision 
variables

A vector (one dimensional array)  of the variables whose values we can 
change to find an optimal solution. A solution is a set of values assigned to these decision 
variables. 

Objective A function  of the decision variables that gives a single number evaluating a solution. 
By default, the Optimizer tries to find the value of the decision variables that minimizes the 
value of objective. It will instead try to maximize the objective, if you set the optional param-
eter Maximize to true. For a linear program (LP), the Objective is defined by a set of coeffi-
cients or weights that apply to the decision variables. For a nonlinear program (NLP), the 
Objective can be any expression or variable that depends on the decision variables.

Bounds A range  on the decision variables, defining what values are 
allowed. These bounds define the search space — that is the set of possible solutions. 
Each decision variable may have a lower bound and/or an upper bound. If not specified, the 
lower and upper bounds are -INF and +INF — that is, there are no bounds.

Constraints The constraints, e.g., , are bounds on functions of the decsion variables. They 
define which solutions are feasible. 

Each constraint consists of a lefthand side (LHS) , which is a function of the decision 
variables, , a Sense, (<, =, or >) defining the direction of the constraint, and a constant, 
e.g . 

Given 

such that

and

x x1 x2 … xn, , ,〈 〉=

minimize f x( )

lbi xi ubi,≤ ≤ i 1..n=

g1 x( ) b1≤

g2 x( ) b2≤

…
gm x( ) bm≤

Decision 

LHS Sense

Objective

Bounds

Constraints

 RHS

variables

x x1 x2 … xn, , ,〈 〉=

f x( )

lbi xi ubi,≤ ≤ i 1..n=

g1 x( ) b1≤

g1 x( )
x

b1
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Continuous, integer, and mixed-integer programs
Each decision variable may be specified as continuous, meaning it is a real number 
(between bounds if specified), as integer, meaning a whole number, as binary or Boolean, 
meaning its values may be True (1) or False (0), or as a member of an integer group, where 
each member of the group must have a different integer value. Optimization problems are 
classified as continuous, meaning the decision variables are all continuous, integer, mean-
ing they are all integer, binary, or group variables, or mixed-integer if they are a mixture of 
continuous and integer, binary or group variables. In this naming convention, binary or Bool-
ean variables are treated as integer variables. The optimizer engine uses these distinctions 
to select which algorithms to use. 

Choosing the type of optimization
A critical issue in formulating an optimization problem is determining whether it is linear, 
quadratic, or nonlinear. For a linear program (LP), the objective must be a linear function of 
the decision variables. For a quadratic program (QP), the objective and constraints must 
be linear or quadratic functions of the decision variables. The problem is a nonlinear pro-
gram (NLP) if the objective or any of the constraints are nonlinear in any of the decision 
variables. 

You define the type of a problem by using the function LpDefine(), QpDefine(), or NlpDe-
fine(), respectively. You provide the decision variables, objective, bounds, and constraints 
as parameters to the selected function, along with some other parameters, which are 
optional. 

Linear and convex quadratic optimization problems are often relatively fast to compute. But 
general nonlinear optimization is a computationally difficult problem. Many of the most 
famous and notoriously difficult computation problems can be cast as optimization pro-
grams, from the traveling salesman to the solution (or non-solution) of Fermat’s last "theo-
rem". It is, therefore, unreasonable to expect the Optimizer engine to succeed on any 
possible nonlinear problem you can formulate. While the Frontline Solver engine used in the 
Analytica Optimizer is among the best of the general purpose optimization engines avail-
able, success with hard optimization problems depends on your ability to formulate the prob-
lem effectively, provide appropriate hints for the Optimizer, and adjust the search control 
settings.

Linear and quadratic optimization in Analytica fully support Intelligent Arrays™ — that is, 
any of their parameters may be arrays with additional dimensions, and Analytica will perform 
an array of optimizations to compute an array of optimal values. For example, any parame-
ter may be uncertain, defined as a random sample; and the optimization may be carried out 
within a dynamic loop, for each time step. In contrast, NLP is subject to restrictions on array 
abstraction, particularly in models with uncertain factors in the objective or constraints, or 
when used in dynamic loops. However, there are ways around these limitations, which we 
describe in “Array Abstraction” on page 48. However, it is easier to manage array abstrac-
tion, particularly in dynamic simulation, with linear or quadratic optimization problems.

There are often several ways to formulate the same optimization problem. The greater 
speed and flexibility of linear and quadratic formulations mean it is worth careful thought to 
see if it is possible to reformulate a nonlinear optimization into a linear or quadratic optimiza-
tion. Often a simple transformation, combination, or disaggregation of the decision variables 
can turn an apparently nonlinear problem into a linear or quadratic problem. 
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Solving simultaneous equations
The optimizer first attempts to find a feasible solution. If found, it then attempts to optimize 
within the set of feasible solutions. Thus, the solving a set of simultaneous equations is a 
special case of the optimization problem, where each constraint has a sense of "=", the 
objective is irrelevant (unless you want to express a preference among feasible solutions), 
and any feasible solution is a solution to the system of equations.



Chapter 4 Linear Optimization

This chapter shows you how to:

• Define a linear optimization problem

• Obtain a solution

• Deal with integer and binary decision 
variables

• Control the search
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Linear Optimization

Defining a Linear Optimization Problem
A linear optimization problem has the following standard formulation: 

In this standard form, all decision variables, xi, are real-valued and unconstrained, ranging 
from -INF to +INF (  to ).

To encode this in Analytica, use the function LpDefine():
LpDefine(Vars, Constraints: Index;

ObjCoef: Number[Vars];
LHS: Number[Vars, Constraints];
RHS: Number[Constraints] )

with these required parameters:

Vars An index over the n Decision Variables, [x1, x2, ... xn], for which we wish to find the optimal 
solution — that is, the values that minimize (or maximize) the Objective. The index has one 
element for each decision variable. You may define it as a list of numbers, 1..n, or a list of 
labels to give meaningful names to each Decision variable.

Constraints An index over the set of m constraints, with one element for each constraint. Again, you may 
define it as a list of numbers, 1..m, or a list of labels to give meaningful names to each Deci-
sion variable.

ObjCoef The Objective Coefficients, an array of n coefficients, [c1, c2, ... cn], indexed by Vars. The 
objective we are trying to minimize (or maximize) is the dot product of these Objective Coef-
ficients and the Decision variables — that is, c1 x1 + c2 x2+ … + cn xn.

LHS The Left-Hand Side of the constraints is an n by m array of coefficients, indexed by Vars 
and Constraints, a11, a12, …aij ... amn]. 

RHS The Right-Hand Side of the constraints, being an array of m constants, (b1, b2, ... bm) 
indexed by Constraints. The constraints, e.g., , are bounds on functions of the 
decision variables. They define which solutions are acceptable.

Each constraint consists of a left-hand side (LHS) , which is a function of the decision 
variables, : a Sense, (<, =, or >) defining the direction of the constraint, and a constant, 
e.g . 

Minimize c1 x1 + c2 x2+ … + cn xn 
 
such that: 
a11 x1 + a12 x2 + … + a1n xn <=    b1 
… 
am1 x1 + am2 x2 + … + amn xn <=   bm

Objective

Constraints

Objective coefficients

LHS: Left-Hand Side coeff’s RHS: Right-Hand Side
Sense

∞– ∞

g1 x( ) b1≤

g1 x( )
x

b1
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When LpDefine() is evaluated, the result is a special linear program object, which displays 
as <<LP>>. This defines the linear program, but does not compute the optimum; that infor-
mation is obtained through a series of functions described below under Obtaining the Solu-
tion.

Optional parameters
You can specify a wide set of optional parameters to LpDefine() for variations on the basic 
formulation shown above. These options include lower and/or upper bounds on the decision 
variables, maximizing instead of minimizing the objective, and changing the direction 
(sense) of the constraints from "<=" to ">=" or "=". 

You can specify these optional parameters to LpDefine() in any order by listing each 
parameter name, followed by a colon, followed by the value. For example:

LpDefine(Vars: VarIndex, Lb: 0, 
Constraints: ConIndex, Lhs: lhs, Sense: ">=", Rhs: rhs, 
ObjCoef: ObjCoef, Maximize: True)

In this case, Vars, Constraints, Lhs, Rhs, and ObjCoef are the required indexes and coef-
ficients as described in the previous section, and the other parameters are optional parame-
ters, specifying that we want to Maximize the objective, each decision variable (x1, …, xn) 
has a lower bound (Lb) of zero, and all constraints have Sense ">=", instead of the default 
"<=".

Lower and upper Bounds on decision variables
You can specify lower and upper bounds on decision variables using the optional parame-
ters:

Lb, Ub: Optional Number[Vars]

By default, Lb = -INF and Ub = +INF. If you give a single number to one of these parame-
ters, it will specify the same bound for all decision variables. To specify a different bound for 
each decision variable, give it an array of values indexed by Vars.

Lower and upper bounds for binary and grouped-integer variables are ignored, even if spec-
ified, since these are fixed. Binary variable bounds are 0-to-1, and grouped-integer bounds 
are 1..N, where N is the number of decision variables in the same group.

Maximizing the objective
The optional parameter Maximize should be either True or False, specifying whether Ana-
lytica Optimizer should attempt to maximize or minimize the objective function. If not speci-
fied, it defaults to False, and minimizes the objective function.

Sense of constraints
The sense of a constraint refers to whether the left-hand side is "<=", ">=", or "=" to the 
right-hand side. The Sense parameter:

Sense: Optional Text[Constraints]
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is used to specify the sense for each constraint. When omitted, it assumes "<=" by default. 
The following text text values are recognized:

"<", "<=", "L" : LHS is less-than or equal to RHS 
">", ">=", "G" : LHS is greater-than or equal to RHS 
"=", "E" : LHS is equal to RHS

If a single value is passed to the sense parameter, that sense will apply to all constraints. If 
each constraint has a different sense, then the sense parameter should be an array indexed 
by constraints.

Obtaining the Solution
The optimal values for the decison variables, x1, …, xn, are obtained using the LpSolu-
tion() function, which takes as a single parameter the <<LP>> object created by LpDe-
fine(), and which returns an array indexed by the Vars index. The value of the objective 
function at the optimum is obtained using the LpOpt() function. 

LpSolution(lp: LpType)
Returns the optimal solution to the programming problem lp defined by LpDefine(). The 
result is an array of decision variables indexed by Vars. If the Optimizer cannot find an opti-
mal solution, it returns the best values found during the search so far. 

LpOpt(lp: LpType)
Returns the value of the objective function for linear program lp at the optimum. For a linear 
problem, the value it returns is equal to:

Sum(LpSolution(lp) * ObjCoef, Vars)

LpStatusNum(lp: LpType) and LpStatusText(lp: LpType)
These two functions return, respectively, the status number and the corresponding text 
describing the status of the solution, or why the optimization search terminated, for the pro-
gramming problem lp. If the optimization is successful these results will be 0 and "Optimal 
solution has been found". If not successful LpStatusNum will return another number and 
LpStatusText will return different text explaining why it has not found an optimal solution.

Note:The numeric codes from LpStatusNum, and the corresponding text from 
LpStatusText have changed in Analytica Optimizer 4.0. These reflect changes in 
the status numbers and text returned by the Frontline System's new, and 
restructured, optimizer.

Tip Starting with version 4.0 of the Analytica Optimizer, you can use a different optimizer engine 
than the Frontline optimizer that comes with Analytica Optimizer. If a different optimizer 
engine is used, different engine-specific codes may be returned. In these cases, 
LpStatusText will return "unknown Frontline solver status code", and the result returned by 
LpStatusNum will depend on the status number returned by the optimizer engine. Consult 
the documentation for the engine you are using.
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Possible outcomes to an optimization include:

1. It found a global optimum.

2. There is no feasible solution, because the constraints are contradictory.

3. The optimal solution is unbounded, because the constraints (if any) do not prevent the 
objective function from approaching  (for a minimization problem).

4. The search terminates with a feasible solution, but before an optimal solution is found. 
This happens when the computation time or number of pivots exceeds the termination 
criteria before a feasible solution has been located (see “Controlling The Search” on 
page 32). 

5. The search terminates before finding a feasible solution.

These different cases can be detected using the LpStatusNum() or LpStatusText() 
functions, both of which take the LP as a single parameter, and which may return the 
following values for a continuous linear program:

Status 
Number Status Text

-3 Invalid status.
-2 Ignore status. Used when dummy result code needs to be overridden.
-1 Invalid license status. (License expired, missing, invalid, etc.)
0 Optimal solution has been found.
1 The Solver has converged to the current solution.
2 "No remedies" status. (All remedies failed to find better point.)
3 Iterates limit reached. Indicates an early exit of the algorithm.
4 Optimizing an unbounded objective function.
5 Feasible solution could not be found.
6 Optimization aborted by user. Indicates an early exit of the algorithm.
7 Invalid linear model. Returned when a linearity assumption renders incorrect.
8 Bad data set status. Returned when a problem data set renders inconsistent. 
9 Float error status. (Internal float error.)

10 Time out status. Returned when the maximum allowed time has been 
exceeded. Indicates an early exit of the algorithm.

11 Memory dearth status. Returned when the system cannot allocate enough 
memory to perform the optimization.

12 Interpretation error. (Parser, Diagnostics, or Executor error.)
13 Fatal API error. (API not responding.)
14 The Solver has found an integer solution within integer tolerance.

15 Branching and bounding node limit reached. Indicates an early exit of the 
algorithm.

16 Branching and bounding maximum number of incumbent points reached. 
Indicates an early exit of the algorithm.

17 Probable global optimum reached. Returned when MSL (Bayesian) global 
optimality test has been satisfied.

18 Missing bounds status. Returned for EV/MSL Require Bounds when bounds 
are missing.

19 Bounds conflict status. Indicates <=  => = bounds conflict with existing binary 
or all different constraints.

∞–
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LpSolution() will often return the best solution "point" so far even in the cases in which the 
global optimum was not located, so it is important to check the status. 

Secondary Aspects to Solution
The solution to a linear program contains more information that just the optimal solution, (x1, 
…,xn). Often these secondary elements of the solution are of more value than the solution 
itself for decision making purposes, since they indicate how changes (e.g., different deci-
sions) impact the optimum. These secondary aspects of the solution are accessed using the 
functions LpSlack(), LpObjSa(), LpRHSSa(), LpShadow(), and LpReducedCost().

Slack or Surplus: LpSlack(lp: LpType)
When you have a constraint

ai1 x1 + ai2 x2 + … + a1n xn <= bi

the slack (or surplus) for that constraint is the positive value that, when added to the LHS, 
makes both sides equal, i.e., 

ai1 x1 + ai2 x2 + … + a1n xn + slacki = bi

The constraints that have zero slack are of particular interest, since they are instrumental in 
constraining the optimum. If these constraints are relaxed (e.g., by increasing bi), a larger 
maximum value can be obtained. However, as critical constraints are relaxed, other con-
straints may become relevant. For the constraints the non-zero slack gives an indication of 
how close they are to becoming critical.

The slack for each constraint is obtained from the function:
LpSlack(Lp)

It takes as input the object returned from LpDefine() and returns an array indexed by Con-
straints, containing the slack at the optimum for each constraint.

20
Bounds inconsistency status. Returned when the lower bound value of a 
variable is grater than the upper bound value, i.e. lb[i] > ub[i] for some variable 
bound i.

21 Derivative error. Returned when API_Jacobian has not been able to compute 
gradients.

22 Cone overlap status. Returned when a variable appears in more than one 
cone.

999 Exception occurred status. Returned when an exception has been caught by 
try/catch top-level.

1000 Custom base status. (Base for Solver engine custom results.)

1102 The quadratic constraints are non-convex, the SOCP engine cannot solve this 
problem.

Status 
Number Status Text
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Coefficient Sensitivity: LpObjSa() & LpRhsSa()
If we change a coefficient in the objective function, the optimal solution (x1, …,xn) will con-
tinue to be the optimal solution as long as the coefficient remains within a certain range. 
Note that the solution point is the same, but the value of the objective function at the opti-
mum is effected. This range can be computed with the function

LpObjSa(Lp: LpType; Var: optional)

The first parameter, Lp, is a linear program defined using LpDefine(). When called with 
only a single parameter, the range is computed for all decision variables, and the result is 
indexed by the linear program variable array, Vars. If the range for only a single decision 
variable (or a small subset) is required, the second parameter. Var, is used to indicate the 
decision variable for which the sensitivity is to be computed. The second parameter should 
be an element (or a subset) of the Vars index.

The result returned from LpObjSa() is dimensioned by a local index, .range:= 
['lower','upper']. Thus, to get the smallest value for each coefficient in the objective 
that would continue to produce the same solution, you would use an expression such as:

Var sa:= LpObjSa(myLp) DO
sa[.range='lower']

Note:The LpObjSa() function can only be used with a linear-program. It is not meaningful 
for quadratic or non-linear programs. 

The sensitivity of the right-hand side coefficients can be computed using the function:
LpRHSSa(Lp: LpType; constraint: Optional)

This computes the range over which coefficient in the RHS can vary without changing the 
basis of the solution. In other words, over the returned range the set of constraints with zero 
slack remain the set of constraints with zero slack (i.e., the critical constraints).

The result is indexed by a local index, .range:= ['lower', 'upper'], containing the 
smallest and largest values for the corresponding RHS coefficient. If the optional second 
parameter is not specified, the range is computed for all variables and the result is indexed 
by Vars. If the range is needed for only a single coefficient, the second parameter specifies 
an element of the Constraints index, and only the range for that constraint is computed.

When a coefficient can be changed an arbitrary amount without changing the solution basis, 
the corresponding entry in the result returned by LpRhsSa() or LpObjSa() will be -INF for 
the lower value or +INF for the upper value.

Dual Values: Shadow Prices and Reduced Costs
If a constraint is relaxed, i.e., by increasing the right-hand side, bi, by one unit, how will this 
impact the objection function? This is referred to as the shadow price, or dual value, of the 
constraint. A shadow price is valid only for small changes in bi (the actual range for which it 
is valid can be obtained from the LpRhsSa() function), and is computed by the function:

LpShadow(lp: LpType)

Where lp is a linear program object returned by LpDefine(). The result is indexed by Con-
straints. Mathematically, the shadow price is given by

Shadowi
 Obj∂
bi∂

-------------=
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i.e., the partial derivative of the objective function relative to the constraint RHS coefficient.

Warning:Not all linear programming packages use the same convention for the sign of 
shadow prices. If you have used the LINDO package, note that the convention 
used by Analytica Optimizer, differs from the sign produced by the LINDO 
package. 

How far can a coefficient in the objective function be increased (in a minimization program) 
or decreased (in a maximization program) before the objective function changes? When a 
decision variable has a non-zero value in the optimal solution, then any change in the objec-
tive function coefficient will change the objective value, so for those decision variables the 
answer would be zero. But for decision variables that are zero, the coefficient can change 
until that variable eventually enters the basis. This amount is known as the reduced cost (or 
dual value) of the variables and is returned by the function

LpReducedCost(lp: LpType)

The result is indexed by Vars.

The Shadow Price and Reduced Cost are known as dual values, the Shadow Price being a 
dual to the solution in the original (or “primal”) problem, and the Reduced Cost being a dual 
to the slack price in the original problem. To each problem in the standard form (see “Defin-
ing a Linear Optimization Problem” on page 24) there corresponds a dual linear program 
given by:

maximize b1 y1 + b2 y2 + … + bm ym

such that
a11 y1 + a21 y2 + … + am1 ym >= c1
…
a1n y1 + a2n y2 + … + amn ym >= cn

The new variables in this program, y1,y2, …,ym, are the shadow prices, and the slack value 
for each constraint are the reduced costs in the primal problem. Note that the variables in 
the primal problem correspond to constraints in the dual problem, and constraints in the pri-
mal problem correspond to decision variables in the dual problem.   

Examples
Several example linear-programming optimization models are included in the Example 
Models/Optimization Examples folder installed with Analytica. The linear program 
examples include:

• Automobile production.ANA: Taking differences in unit production cost, and 
labor and material availability into consideration, figure out how many cars to 
produce at each factory to meet a production goal. This example demonstrates the 
use of Linear Program-related sensitivity functions.

• Big Mac Attack.ANA: Optimize your McDonald’s-based diet to fit your budget, 
nutritional needs, and minimize your calorie or carbohydrate consumption.

• Capital Investment.ANA: Simple case of selecting which projects to pursue 
given a fixed budget.

• Optimal production planning.ANA: A classic textbook linear program: 
Selecting how much of each product to produce given resource limitations.
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• Production Planning LP.ANA: Another take on the same problem, but 
demonstrating the interpretation of the secondary solution aspects.

• Two Mines Model.ANA: Schedule production at multiple mines to meet 
production goals given capacity constraints. (This is the example used in Chapter 2, 
“Quick Start,”)

• Sudoku with Optimizer.ANA: Solves Sudoku puzzles. Demonstrates use of 
grouped integer variable types with many groups.

Integer, Binary, and Grouped Decision Variables
In a standard linear program the decision variables are assumed to be continuous (real-val-
ued) numbers. However, you can also use Analytica Optimizer to define and optimize a lin-
ear program with some or all of the decision variables constrained to be integers, boolean or 
binary, grouped-integer, or a mixture of continuous and integer, binary and grouped-integer 
variables (a mixed integer program).

You can specify the type of each decision variable as continuous, integer, binary or grouped 
using the optional parameter:

ctype: Optional Text[Vars]

which takes one of the following values:

• "C": Continuous

• "I": Integer

• "B": Binary or Boolean value, i.e. 0 or 1

• "G": Grouped integer, i.e., one of 1..N, where N is the number of decision variables 
in the same group, and such that no variables in a group have the same value.

If you give the ctype parameter a single text character, it specifies the same type for all deci-
sion variables, e.g.:

LpDefine(…, ctype: "B")

specifies that all decision variables are binary. To specify a mixed-integer program, you 
supply an array of characters, indexed by Vars, specifying the type of each decision vari-
able.

When you have grouped-integer variables partitioned into two or more groups, the group 
parameter specifies which group each of the grouped-integer variables belongs to:

group : Optional Number[Vars]

For example, if your grouped-integer decision variables are partitioned into three groups, the 
elements of the array passed to group would be 1, 2, or 3 to indicate the group that each 
variable belongs to, and 0 for each of the non-grouped-integer decision variables. Each 
decision variable can belong to at most one group, and each group should have at least two 
grouped-integer decision variables. The example model "Sudoku with Optimizer.ana" 
demonstrates the use of multiple grouped-integer groups.

In general, Integer and mixed-integer linear programs are harder to solve than linear pro-
grams with exclusively continuous variables. The Optimizer uses a combination of a Sim-
plex algorithm with a memory-efficient branch-and-bound algorithm.
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In some cases, the Optimizer may fail to find a solution to a large integer or mixed-integer 
linear program. Use the LpStatusNum() and LpStatusText() functions to see whether it 
has been successful, and if not, why not. For a complete list of the possible values returned 
by LpStatusNum(), see “LpStatusNum(lp: LpType)” on page 97.

Controlling The Search
A linear program having all continuous decision variables is solved using a simplex algo-
rithm. The space of feasible solutions is called a simplex and is a convex polyhedron in N-
dimensional space, where N is the number of decision variables. A simplex algorithm tra-
verses the simplex from corner to corner, moving to an adjacent corner with an improved 
objective value at each iteration (pivot). The objective is improved with each pivot until the 
global optimum is reached. The same algorithm is used on an augmented simplex initially to 
find an initial feasible solution. 

An integer, binary, or mixed-integer program uses the simplex algorithm in combination with 
a branch-and-bound algorithm. It first uses the simplex to solve the continuous version of 
the problem. This bounds the optimal objective from one side and provides a starting point 
for a search. Whenever it finds a feasible integer solution, this provides a bound on the opti-
mal objective on the other side and allows the branch-and-bound search to prune alterna-
tive integer solutions that would be provably inferior to the ones already found. As the 
algorithm explores solutions having one integer decision variable set to a particular integer 
value, the continuous LP sub-problem is solved again using repeated invocations of the 
simplex algorithm on increasingly constrained problems. It terminates the search when the 
search space has been exhausted (i.e., the global optimum located), when the termination 
criteria has been exceeded, or when the best solution found is within the solution (gap) tol-
erance. In addition, logical implications of integer constraints can often be deduced before 
Simplex is even run. Various algorithms for finding these constraints are reformed to as 
Cuts, and various algorithms for recognizing and utilizing cuts of different types may be 
switched on or off.

Many settings controlling the precise behavior of the optimizer can be altered using the two 
parameters to LpDefine() named parameter and setting. The list of all possible parame-
ters is the topic of Chapter 7, “Control Settings”.

Viewing and specifying control settings
Once you have defined a linear program using LpDefine( ), the following function returns 
the set of control settings used by the engine:

SolverInfo("Setting", Lp: myLp )

where you replace myLp with the name of the variable holding the result from LpDefine( ).

You can also access the range of allowed values for each setting, as well as the default 
value, using SolverInfo( ). For this, you need to know the name of the optimizer engine 
used on your problem. For linear programs, this will always be "LP/Quadratic" unless you 
have installed an add-on engine. To obtain the name of the engine used in the general case, 
use:

SolverInfo("Engine", Lp: myLp )

Using the name of the engine, the range (min/max) of possible values for each setting, and 
the default value, can be obtained using:
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SolverInfo( ["MinSetting","MaxSetting","Defaults"],  
Engine: "LP/Quadratic")

If you want to change the value for a single control setting, you can specify values for two 
optional parameters, parameter and setting, to LpDefine( ), providing the name of the set-
ting to parameter, and the value to setting. For example, if you wished to set the Scaling 
parameter to 1, you would modify your call to LpDefine( ) as follows:

LpDefine( .., Parameter: "Scaling", Setting: 1 )

To alter more than one control setting, you need to supply arrays to these parameters. The 
arrays passed to parameter and setting should have a single common index. If the index of 
the array passed to setting is a list of labels, where the index labels contain the name of 
each control setting, then you only need to include the setting parameter.

It is often convenient to specify control settings in a self-indexed edit table. The following 
steps illustrate this:

1. Drag a variable node to your diagram, title it "My Lp Settings".

2. In the definition pane, set the definition type to Table.

3. In the Index Chooser dialog, select "My Lp Settings (Self)" as the table index.

4. Click on the row heading cell, and change "Item 1" to "Scaling".

5. With the row header still selected, press down-arrow to add a row.

6. Change the second row header cell to "MaxTime"

7. Enter 1 into the first table body cell.

8. Enter 30 into the second body table cell. 

9. In your call to LpDefine( ), insert a setting parameter as follows:
LpDefine( ..., setting: My_lp_settings )

The optimizer will scale parameters and terminate after 30 seconds if the optimum has not 
been found. A self-indexed table set up in this fashion makes it easy to adjust multiple con-
trol settings if the need arises.

Note: In Analytica Optimizer 3.1, control settings were specified as optional parameters to 
LpDefine( ). These legacy parameters are still supported for backward 
compatibility; however, use of the setting parameter is recommended. This change 
reflects a change in Frontline’s architecture, and more readily generalizes to other 
add-on engines and future optimizer engine extensions.
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Linear Programming Settings
The list and descriptions of all settings to Optimizer engines is covered in Chapter 7, “Con-
trol Settings”. Continuous linear problems will usually solve very quickly and reliably, and 
seldom require much tuning. Integer programs, on the other hand, can be very complex to 
solve in some cases, so that experimentation with engine settings may be justified with hard 
problems. Here is a brief list of some of the settings that may be of interest, but see 
Chapter 7 for detailed descriptions.

Termination Control
Iterations: Maximum number of pivots by the simplex algorithm.

MaxTime: Maximum number of seconds the optimizer will spend on the problem.

MaxTimeNoImp: The maximum number of seconds with no substantial improvement.

Tolerance: The amount of improvement required within MaxTimeNoImp in order to con-
tinue.

IntTolerance: If branch-and-bound can prove its current solution is within this percentage of 
the true optimal, it will stop.

Preprocessing
Scaling: Whether to scale decision variables and constraints for Simplex. If coefficients 
vary by many orders of magnitude, numeric instabilities may result without scaling.

Presolve: When on, the engine performs a presolve step removing singleton rows or col-
umns, fixed variables and redundant constraints, and tightening bounds.

StrongBranching: Performs experiments prior to solving to estimate the impact of branch-
ing on each integer variable. The up-front cost may pay off later in more efficient branch-
and-bound searches.

Branch & Bound Hints
IntCutoff: A bound you provide in advance on the objective function value for the optimal 
solution -- an upper bound for a minimization, or a lower bound for a maximization. If you 
can provide such a bound, the branch-and-bound algorithm may be able to prune huge por-
tions of its search space.

UseDual: Controls whether the dual or primal basis is used by Simplex to solve subprob-
lems generated by branch-and-bound.

ProbingFeasibility: Engine attempts to deduce values of certain binary variables based on 
settings of others, prior to actually solving a subproblem.

Primal Heuristic: Uses a heuristic method to attempt to discover a solution early in the 
branch and bound process. This can be an effective way to locate an IntCutoff early, to dra-
matically prune the branch and bound search space later.

Cut Generation
MaxRootCutPasses, MaxTreeCutPasses: Controls how many cut passes are carried out 
at each step of the solution process.
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GomoryCuts, KnapsackCuts, ProbingCuts, OddHoleCuts, MirCuts, TwoMirCuts, Red-
SplitCuts, SOSCuts, FlowCoverCuts, CliqueCuts, RoundingCuts, LifeAndCoverCuts: 
These are all different "cut" methods that attempt to deduce constraints from existing integer 
commitments, thus reducing the space of feasible solutions. Each introduces a time over-
head, that could be spent searching instead, but in problems where a method is effective, 
speed-up can be dramatic.

Tolerance and Precision
ReducedTol, PivotTol: The control which rows or columns are candidates for pivots during 
the Simplex algorithm.

Precision, PrimalTolerance: Controls the amount of numeric error by which a constraint 
can be violated and still be considered satisfied. For example, in an equality constraint, you 
don’t want 1-bit of numeric error to result in an unsatisfied constraint.

Array Abstraction
As with most Analytica functions, LpDefine() and all the functions used to retrieve the solu-
tions to a linear program are fully array-abstractable. If, for example, you supply an array of 
coefficients to the ObjCoef parameter of LpDefine() that is indexed by index In1 in addition 
to the Variables index, LpDefine() will return multiple <<LP>> objects, with the collection 
being indexed by In1. When such a result is solved, multiple optimization problems will be 
run.

If any parameter that expects a particular dimension is supplied an object without that 
dimension, LpDefine() will treat it as if that dimension were specified with the value con-
stant across that dimension. So, for example, specifying the parameter

RHS: 1

would treat the right-hand-size of every constraint has having the value 1. 

Because these functions are fully array abstractable, any coefficient, bound, or other param-
eter may be uncertain, evaluated as a sample (indexed by Run), computed from probability 
distributions or chance variables. When evaluated in probabilistic mode, these models will 
solve a separate optimization problem for each sample.

Linear programs involving time can also be embedded in Dynamic loops (see Chapter 17 in 
the Analytica User’s Guide: “Modeling Changes over Time”). By specifying a parameter 
value that is a function of a previous time step, and using LpDefine() from within a 
Dynamic loop, a separate optimization can be performed at each Time point.
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Chapter 5 Quadratic Optimization

This chapter shows you how to:

• Define a quadratic optimization

• Solve a quadratic optimization

• Use sample quadratic optimizations as a 
starting point for your own optimizations
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Quadratic Program Optimization

Defining a Quadratic Program
The general form for a quadratically-constrained quadratic program accepted by Analytica 
Optimizer is: 

The objective and constraint left-hand sides are written here in matrix notation. The term 
 is the linear part of the objective, and each constraint has a linear part . These 

linear parts are the same as the objective and constraint left-hand sides of a linear program, 
with coefficient vectors . This formulation augments the linear program by 
adding quadratic terms to the objective and to constraints. In a pure quadratic program, only 
a quadratic objective is used, and the constraints are all linear, so that the  matrices are 
omitted (or 0). The more general case in which constraints may also be quadratic is refered 
to as a quadratically constrained quadratic program, but for conciseness, we use quadratic 
program to cover the general case.

The quadratic terms, i.e.,  in the objective and  in the constraint are specified 
by the  matrices , where  is the number of decision variables 
and  is the number of constraints, and  denotes the vector transpose of the decision 
variables.

To ensure that the Q matrices are square, you need to specify a second index (Vars2 in the 
example on the next page), with the same number of elements as the first index, Vars. (An 
array in Analytica may be indexed only once by the same index.) 

A quadratic program is defined with these parameters:

{required parameters:}
QpDefine(Vars, Vars2, Constraints: Index:

c: Optional Number[Vars];
Q: Numeric[Vars, Vars2];
Lhs: Numeric[Vars, Constraints];

Minimize   
 
such that:

...

c x xTQx+⋅

a1 x xTQ̂1x+⋅ b1≤

am x xTQ̂mx+⋅ bm≤

LHS: 

RHS: Right-Hand SideSense

Objective function

Left-ad Side

Constraints

c x⋅ ai x⋅

c a1 a2 … am, , , ,

Q̂i

xTQx xTQ̂ix
n n× Q Q1

ˆ Q2
ˆ … Q̂m, , , , n

m xT
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LhsQ : Number[Vars,Vars2,Constraints];
Rhs: Numeric[constraints];

{Optional parameters:}
sense: Optional Text[Constraints];
maximize: Optional Boolean;
lb,ub: Optional Number[Vars];
ctype: Optional Text[Vars];
group : Optional Text[Vars];
guess: Optional Number[Vars];
Parameter : Optional Text;
Setting : Optional Number;
Engine: Optional Text

)

Note: The parameters to QpDefine( )are not shown here in exactly the same order that the 
function expects. The LhsQ parameter has been moved up to its logical position in the text 
for clarity, and a several deprecated parameters are not shown here. Because there are so 
many optional parameters to this function, you should always use the named-parameter 
calling convention when using QpDefine(). In the named calling convention, you preceed 
each argument the parameter name, as in the following example: 
 

QpDefine ( Vars: Part, Vars2: Part2, Constraints: ConstraintIndex,  
c: coef, Q: Qcoef, Lhs: LhsCoef, LhsQ: LhsQcoef, Rhs: b 
sense: ’<=’, maximize: True )

When evaluated, QpDefine() returns a quadratic program object, which displays as 
<<QP>>. The optimum solution is not solved until one of the routines to access the solution, 
such as LpStatusNum() or LpSolution() is called. 

Optional 
Parameters

The optional parameters sense (’<=’, ’=’, or ’>=’), maximize (true to maximize objective), lb 
and ub (upper and lower variable bounds), ctype (continuous/integer type, ’C’, ’B’, ’I’, or 
’G’), group (integer-group), and parameter and setting (for specifying search control set-
tings) are all also optional parameters of LpDefine() and are described in the chapter on 
linear programming. As with linear programs, Analytica Optimizer supports integer, binary, 
and mixed-integer quadratic programs. 

The optional guess parameter provides an initial guess for a solution which may or may not 
be utilized by the optimization engine to disambiguate multiple extrema when a  matrix is 
indefinite (see below).

Engine The optional engine parameter can be used to explicitly select which optimization engine to 
use to solve the problem. By default, engine:"LP/Quadratic" is used with a quadratic objec-
tive and linear constraints, and engine:"SOCP Barrier" is used when quadratic constraints 
exist. If the constraints are not convex, the "SOCP Barrier" engine may return a status 1102 
("The quadratic constraints are non-convex"). If this happens, you may need to use 
engine:"GRG Nonlinear" to obtain a solution.

Q
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Solution Properties
The Hessian of the objective function is a second partial derivatives of the objective relative 
to each pair of decision variables, and is given by . Depending on the values in this 

 matrix, the objective function may have a number of different shapes, and the objective 
may contain a single extreme (minimum or maximum), an infinite number of extrema, or no 
extreme values. The optimum value to a quadratic program may lie at the objective’s 
extrema, or it may exist on a constraint boundary.

Positive & 
negative-
definiteness

When the Q matrix of a minimization problem is positive-definite, meaning that for all non-
zero : : the objective function has a “bowl” shape with a single extrema. Similarly, 
for a maximization problem if it is negative-definite it will have a bowl-shape with a single 
extrema. When the extrema is a feasible solution, it will be the unique optimal solution to the 
quadratic program. The quadratic programming algorithms are optimized for this case.

Semi-
definiteness

When the Q matrix is positive semi-definite (or negative semi-definite for a maximization 
problem), the objective will have a “trough” with infinitely many extrema. In such a case, the 
optimizer will find one of the feasible points in the trough.

Indefinite 
objective

If the Q matrix is indefinite, the objective will have a “saddle point”. Like an extrema, a sad-
dle point has a zero gradient, but is not an actual optimum. The true optima (one or many) 
will lie on the constraint boundaries. In an indefinite case, the optimizer will converge either 
to the saddle point, or to one of the optimum solutions on the constraint boundaries. If it 
converges to the saddle point, which might not be optimal, LpStatusNum() will return 65 
(“objective changing too slowly”). The final point reached by the optimization depends on 
the initial starting point for the search, which may optionally be specified using the parame-
ter guess to QpDefine():

guess: Optional Number[Vars];

The guess parameter is only relevant if Q is indefinite, otherwise the same end result will be 
reached regardless of the starting point.

Because QpDefine() is totally array-abstractable, you can provide multiple guesses by 
dimensioning the argument to this parameter by an index other than Vars, with different 
starting points. In that case, multiple quadratic optimizations will be solved, each at different 
starting points.

Convexity The set of constraints are said to be convex when the set of feasible solutions is a convex 
subset of all potential solutions. A convex subset is one in which for every two points in the 
set, all points on the line segment connecting them are also in the subset.

A quadratic constraint is convex in these cases:

• The matrix Q̂i  is positive semi-definite and the constraint sense is ’<=’

• The matrix Q̂i  is negative semi-definite and the constraint sense is ’>=’

• The constraint is linear.

When all constraints are convex, then the set of feasible solutions is convex. Quadratic pro-
grams can be solved efficiently when the set of feasible solutions is convex. Positive (or 
negative) semi-definiteness of Q can be tested for using Analytica’s EigenDecomp( ) func-
tion. The matrix is positive (negative) semi-definite if all Eigenvalues are non-negative (non-
positive). Note: if your Q is not symmetric, use EigenDecomp on .

Q QT
+

Q

x xTQx 0>

Q QT
+
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Common Quadratic Situations
Quadratic programs arise in several applications, one of the most common being portfolio 
optimization.

Portfolio 
allocation

Assume there are N investments, each with an uncertain outcome. The investments are not 
independent; for example, two investments in the same sector may be influenced by similar 
market forces and thus be highly correlated. Other pairs of investments may be negatively 
correlated. A symmetric covariance matrix, Q: can be used capture the pair-wise covari-
ances between investments, as well as the variances of the individual investments (the diag-
onal elements of Q). Letting each element of the vector  be the fraction of the total portfolio 
allocated to investment, the variance of the complete portfolio is . As a result, various 
objective functions used in portfolio optimizations will depend on the net variance of the port-
folio, and lead to quadratic programs of the form show under “Choosing the type of optimiza-
tion” on page 21. Two such examples are demonstrated in the example model 
Asset Allocation.ana found in the Example Models\Optimizer Examples direc-
tory.

When sample covariances are computed from historical data, and the number of time peri-
ods used is greater than the number of dimensions (e.g., the number of investments), the 
resulting Q matrix is guaranteed to be positive-definite. As discussed in the previous section, 
then property lends itself well to solution by quadratic programming.

Obtaining the Solution
The QpDefine() function defines the quadratic program, but does not solve it. The optimum 
is solved for when LpSolution(), LpStatusNum(), LpStatusText(), or any of the other 
functions that use the solution are called.

The functions LpSlack(), LpShadow(), and LpRhsSa() are all available for quadratic pro-
grams (see the discussion for each of these in Chapter 4, “Linear Optimization”)

The LpReducedCost() function can also be called on a quadratic program. 

Search Control Settings
In addition to settings found on linear programs, several additional settings apply to quadrat-
ically constrained problems. These can be altered from their default values using the two 
parameters to QpDefine() named parameter and setting. See Chapter 7, “Control Set-
tings”, for details on using search control settings, and for descriptions of available settings.

Examples
The Example Models/Optimization Examples directory, installed with Analytica, contains 
an example model demonstrating quadratic optimization:

x
xTQx
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• Asset Allocation.ANA: Portfolio optimization is a classic quadratic programming 
application. This example demonstrates four formulations of an asset allocation 
problem, two of which are quadratic programs.



Chapter 6 Non-Linear Optimization
•

•

•

This chapter shows you how to:

• Formulate a non-linear optimization problem

• Obtain the solution for a non-linear 
optimization problem

• Give hints to help the optimizer

• Control the search
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Non-linear Optimization

Non-Linear Programs
A non-linear program (NLP) is the most general formulation for an optimization. The objec-
tive and the constraints can be arbitrary functions of the decision variables, continuous or 
discontinuous. This generality comes at the price of longer computation times, less preci-
sion than linear and quadratic programs (LP and QP). There is also the possibility with 
smooth NLPs, that the Optimizer will return a local optimum that is not the global optimum 
solution. In general, it is hard to prove that a solution is globally optimal or not. For these 
reasons, it is better to reformulate nonlinear problems as linear or quadratic when that is 
possible.

Linear and quadratic problems define the objective function as arrays of linear or quadratic 
coefficients.They pass these arrays as parameters to the Optimizer, which operates on 
them directly to find a solution without further interaction with the rest of the Analytica 
model. For nonlinear problems, the objective function is defined as an Analytica expression 
or variable that depends on the decision variables. In this case, the Optimizer repeatedly 
evaluates the objective function as it tries assigns different values to the decision variables 
in its search for a solution. It does the same with expressions passed to Lhs, the left-hand 
side of the constraints.

This approach imposes certain restrictions on array abstraction (support for Intelligent 
Arrays) for NLPs — for example, requiring the objective function to return a single (scalar) 
number. We devote a section of this chapter to showing how to work with these restrictions 
so that you can apply NLP optimization to create arrays of optimizations for models with 
uncertainty (samples indexed by Run), for parametric analysis, and dynamic models over 
time, or other Indexes.

The Optimizer has a variety of methods, including gradient-based search, branch-and-
bound, and genetic algorithms, from which it chooses to try to suit the problem. In many 
cases, you can give it information about the problem that can help it choose the most appro-
priate methods, and so work faster and more reliably. Such hints include: 

• The type of dependence — i.e., whether the objective or constraint functions vary 
linearly, smoothly, or discontinuously with each decision variable.

• The gradient and Jacobian expressions to compute the needed partial derivatives for 
the objective much faster at each search point

• Control parameters to influence how the search is performed. 
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Problem Formulation
The basic formulation for a non-linear optimization is:

where  is a vector denoting the n-dimensional candidate solution. A non-linear optimization 
problem is defined using the function NlpDefine(), shown here without optional parame-
ters:

NlpDefine(Vars, Constraints: Optional Index;
X: Variable;
Obj, LHS: Optional Expression;

 RHS: Optional Numeric[Constraints])

Vars An index for the decision variable, X below. This can be omitted when there is only one sca-
lar decision variable.

Constraints An index for the constraints, LHS and RHS below. This is optional when there are fewer 
than two constraints.

X The decision variables, indexed by Vars. The parameter passed to X must be the name 
(identifier) of a global variable or decision, or a local variable, not an expression: As the NLP 
Optimizer searches for better solutions, it assigns new values to the decision variable, and 
computes the corresponding value of the Objective.

Obj The objective to maximize or minimize, according to the setting of optional parameter Maxi-
mize. It may be a variable or an expression. It must depend on the decision variables, X, 
directly, or indirectly via other variables. When no objective is specified, the optimizer stops 
when a feasible solution, satisfying all the constraints, is found.

LHS The Left-Hand Side of the constraints, indexed by Constraints, if the Constraints index is 
specified. You may omit LHS if you have no constraints. If you have a single constraint (and 
Constraints is omitted), the expression should evaluate to a scalar. If you have more than 
one constraint, then Lhs should be indexed by Constraints. Each element of LHS may be 
an expression or a variable. They must depend on the decision variables X, directly or indi-
rectly.

RHS The Right-Hand Side of the constraints, indexed by Constraints, if the Constraints index is 
specified. You may omit this if you have no constraints. If you have a single constraint, RHS 
should evaluate to a single number, and if you have multiple constriants, each element of 
the array passed to RHS must evaluate to a single number. It must not depend on the deci-
sion variables. By default, feasible solutions are those in which the LHS is less than or equal 
to the corresponding value of RHS. You can change this with the optional Sense parameter, 
described below.

 such that minimize f x( )

g1 x( ) b1≤

g2 x( ) b2≤

…
gm x( ) bm≤

objective function

constraints

x
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Optimization without constraints
To solve for the unconstrained minimum of f(x) where x is a scalar, only the decision vari-
able, X and the objective need to be specified. For example, the following defines an NLP to 
find the minimum of :

var x:=0;
NlpDefine( X:x, Obj: cosh(1+sinh(x)) )

In this example, the decision variable, x, is a local variable, and the objective expressed 
explicitly. Alternatively, the decision variable and objective may be variables in your model, 
as in this example:

NlpDefine( X:annualMaintExpense, Obj:costOfOwnership )

To minimize over several decision variables, X is a vector, and the index of that vector is 
specified using the parameter Vars. The objective must be a variable or expression that 
depends on X, but must evaluate to a scalar. For example, to find a vector of coefficients, 
Coeff, indexed by K, that minimize errorMeasure, the problem is formulated as

NlpDefine( Vars: K, X: Coeff, Obj: errorMeasure )

Representing Constraints
A system of equations and inequalities can be represented as a set of constraints without 
an objective. Discrete constraint satisfaction problems can also be encoded using integer-
valued variables. When there is no objective, the optimizer will generally terminate when 
any feasible solution has been located. Systems of nonlinear equations can be extremely 
difficult to solve, and it may be unrealistic to expect an optimizer to find a solution just 
because it can be expressed, so a certain degree of realism is essential. 

GoalSeek A goal-seek functionality seeks a value for a scalar x that causes scalar y to be equal to g, 
where y depends on x. Since x is scalar, the Vars index does not need to be specified, and 
because there is a single constraint, no Constraints index is necessary. When we use 
GoalSeek, equality is usually desired, so the Sense parameter is specified as ’=’ (otherwise 
it defaults to ’<=’). Since any feasible solution is sought, no object needs to be specified. 
Hence, simple GoalSeek requires parameters X, Lhs, and Rhs.

NlpDefine( X:GrossIncome, Lhs:NetIncome, Sense:’=’, Rhs: 1M )

or
NlpDefine( X:Price, Lhs: Supply(Price)-Demand(Price), Sense:’=’, Rhs:0)

or using a local variable:
Var x:=0; 
NlpDefine( X:x, Lhs:cosh(1+sinh(x)), sense’=’, rhs:1.001 )

Multiple 
Constraints

When there is more than one constraint, an index parameter, Constraints, must be speci-
fied. When LHS is evaluated during the optimization search, the result must be indexed by 
the Constraints index, and only by the Constraints index. Often it is convenient to set up a 
variable that computes LHS, defined as a table indexed by Constraints, with a separate 
expression in each cell (the  in the basic formulation). 

RHS should also evaluate to an array indexed by Constraints; however, unlike LHS, RHS 
is constant during the optimization search, so RHS should not depend on X. 

f x( ) 1 x( )sinh+( )cosh=

gi x( )
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Obtaining the Solution
The same functions used to obtain the solution to LP and QP optimizations also work for 
NLP. These include: LpStatusNum(), LpStatusText(), LpOpt(), LpSolution(), 
LpSlack(), LpShadow(), and LpReducedCost(). 

For more, see Chapter 9, “Optimizer Function Reference,” on page 94.

Optional Parameters for NLP
Every parameter of NlpDefine( ) except X is optional; however, either an objective or at 
least one constraint is required. In addition to the core parameters used for specifying the 
objective and constraints, the following are optional parameters to NlpDefine() can also be 
specified. :

Maximize
By default, NlpDefine() defines a minimization problem. You should set the optional 
parameter

Maximize: Optional Boolean

to True when you wish to maximize the objective.

Sense
By default, each constraint specifies that the left-hand side is less-than or equal to the right-
hand side. Using the optional Sense parameter, you can change the relationship between 
left-hand and right-hand sides:

Sense: Optional Text[Constraints]

• "<", "<=", or "L": LHS is less-than or equal to RHS

• ">", ">=", or "G": LHS is greater-than or equal to RHS

• "=" or "E": LHS is equal to RHS

If you pass a single text value, such as "=", to the Sense parameter, that sense will apply to 
all the constraints. If you want a different sense for each constraint, pass an array indexed 
by Constraints, with each cell containing its own text value "<=", ">=", "E", etc.

Bounds
You can define upper and lower bounds on each decision variable for an NLP problem, as 
for LP and QP problems, using these optional parameters:

Lb, Ub: Optional Number[Vars]

If not explicitly specified, the optimizer assumes bounds of -INF and +INF, i.e., that the deci-
sion is unbounded. If you pass a single number to either of these parameters, that bound 
applies to all decision variables. So, for example:

NlpDefine(…, Lb:0,Ub:1 …)



Chapter Non-Linear Optimization

48 Analytica Optimizer Guide

6

specifies that all decision variables are in the range 0 to 1. If lower or upper bounds are dif-
ferent for each decision variable, pass them arrays of numbers indexed by Vars.

Array Abstraction
NlpDefine() does not automatically array abstract over extra dimensions that appear in 
the results of evaluating the objective or constraint left-hand side expressions. When the 
objective function, Obj, is evaluated, it should be a single number with no extraneous 
indexes. Similarly, when Lhs is evaluated, it should contain only the index passed to Con-
straints parameter. If you have multiple objectives, you must combine them (for example, as 
a weighted average) if they are all criteria that you wish to optimize simultaneously. If 
instead you desired multiple optimization problems, for example, for each combination of 
scenarios, then you must tell NlpDefine() about these dimensions explicitly, otherwise an 
error will result when Obj or Lhs is discovered to have extra dimensions.

Two parameters of NlpDefine() can be used in some situations to specify dimensions that 
must be iterated, in which a separate optimization should be conducted for each combina-
tion of elements in these extra dimensions.

Over : ... optional atomic
SetContext : ... optional Variable

Each of these are optional repeated parameters, allowing several indexes (in the case of 
Over) or several parametric variables (in the case of SetContext) to be specified.

The Over parameter specifies a list of indexes that should be abstracted over. For example, 
if we wish to run a separate optimization problem for each possible discount_rate, and each 
possible Initial_Investment option, where Discount_rate and Initial_Investment are variables 
that may contain lists, we would specify:

NlpDefine(..., Over: Discount_rate, Initial_investment)

If Discount_rate rate contains 3 elements, Initial_investment contains 5 elements, then 15 
separate optimization problems will be defined. No error results if Discount_rate or 
Initial_investment is not a list, which means that values that might be set to a list during a 
parametric exploration, but normally are not, can be listed here. In addition, if there is a 
result in your model that contains the extra dimensions, the identifier of the result array can 
be listed, and each of the dimensions in that result are used. This fact is useful for defining 
an NLP that abstracts across the Run dimension in sample mode, but not in Mid mode, 
using e.g.,:

NlpDefine(..., Over: Uniform(0,1) )

The Over parameter does two things. It instructs Analytica to define multiple NLPs, and 
instructs NLP define to pay attention to one particular slice of Obj or Lhs in each NLP when 
there are extra dimensions. It is important to note, however, that Over does not restrict how 
the rest of your model is evaluated when computing Obj and Lhs. If you rely only on the 
Over parameter, your evaluation of Obj and Lhs may be computing far more than neces-
sary, most of which gets ignored, resulting in slow evaluations during optimization.

The SetContext parameter provides a mechanism to restrict your computation to only the 
slice that is used by a particular NLP. For example, instead of computing Obj for every pos-
sible discount_rate, and then throwing away all results except the one corresponding to the 
current NLP, it is more efficient to set discount_rate to a single value before running the opti-
mization search, thus limiting the computation of Obj at each cycle to the single 
discount_rate that is used. SetContext specifies a list of variables that will be restricted to a 
single value for the duration of one particular optimization.
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To use SetContext, the variable listed must contain a list-based domain attribute, containing 
the set of possible values for that variable. Each instance of NLP corresponds to one of 
those possible values, and when that instance runs, the variable is set to that single value. 
For example

Discount_rate := Choice(Self,0)
Domain of Discount_rate := [8%,10%,12%] 

NlpDefine(..., SetContext: Discount_rate)

If the Over parameter is also specified, for example with other indexes, the parameter spec-
ified in SetContext should also be specified in Over. If the context variable evaluates to a 
single number, it is not set (hence, it will work fine with Choice(), abstracting only when All 
is selected in the choice pulldown).

The use of Over and SetContext may allow array abstraction in some situations, but they 
are not always applicable, and not always the best way to achieve an array-abstractable 
optimization. In the The Airline Example for NLP below, a variety of other techniques are 
demonstrated.

Integer, Binary and Mixed-Integer Programs
Like the LP and QP optimizers, the NLP optimizer can handle discrete decision variables — 
that is, integer or binary (Boolean) — as well as continuous values. Use the parameter

Ctype: Optional Text[Vars]

to specify the continuity type of each decision variable by providing one of the following text 
values for each variable:

• "C": Continuous

• "I": Integer

• "B": Binary or Boolean

• "G": Grouped integer

The non-linear optimizer uses a genetic, or evolutionary, algorithm, when discontinuous vari-
ables are present. 

When the grouped integer parameter is used, each grouped integer variable belongs to one 
group, where each group contains at least two grouped integer variables. Within a group, a 
feasible solution assigns the integers 1..N to each variable, where N is the number of vari-
ables in the group, such that all variables have different values.When you have more than 
two groups, you should also specify the group parameter:

Group : Optional Number[Vars]

This parameter specifies the group number for each grouped integer variable. If group is 
omitted, all variables are assumed to belong to the same group. The "traveling sales-
man.ana" example model demonstrates the use of grouped-integer variables (belonging to 
a single group).
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Hard integers vs. soft integer constraints
The CType parameter can be used to indicate that a decision variable in any feasible solu-
tion is integer-valued. However, during the course of the search, the non-linear optimizer 
may explore non-integer values for these variables while exploring the rate of change within 
the search space. If your model produces well-defined results for non-integer values, then 
this type of soft-integer constraint does not present a problem, and the optimizer can benefit 
from being able to explore non-integer solutions.

In some cases, however, you may need to enforce a hard-integer constraint. For example, a 
table lookup may encounter an error when a non-integer lookup is attempted. Or your 
model may encounter errors for other reasons when non-integer values are attempted. If 
you have hard-integers, you can either modify your model to return something sensible for 
non-integer values (for example, by linearly-extrapolating), or you should explicitly select 
the "Evolutionary" engine using the parameter:

Engine : "Evolutionary"

When using the Evolutionary engine, two control settings are relevant (these are set using 
the parameter and setting parameters to NlpDefine()). First, at each iteration, a new sam-
ple point is generated by mutating or combining two members of the population via cross-
over. Then, that sample may be improved further using a local search before adding it to the 
population. For example, a gradient descent may be utilized to find the nearest local optima 
before adding it. LocalSearch controls whether, any by what method, local searches are 
performed. By leaving at its default, off, position, non-integer solutions will not be explored. 
If you do elect to utilize local search, then the FixNonSmooth setting controls whether gra-
dient information in local searches is limited to continuous variables. If you have hard-inte-
ger constraints with local search, then you should ensure that FixNonSmooth is indeed on. 
These parameter settings do not impact the "GRG Nonlinear" engine.

The Airline Example for NLP
Here we introduce the airline decision problem. We will use this example in the rest of this 
chapter with eight cases that illustrate how to formulate problems for NLP, including situa-
tions in which parameters have extra indexes, for dealing with uncertainty, parametric anal-
ysis, and dynamic models over time. You can find this example in the Example Models/
Optimizer Examples/Airline NLP.ANA. It includes the eight different cases described 
below. Please open the model in Analytica to see full details.
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A small airline is trying to decide how many planes to lease and what fare to charge on a 
new route. It has two decision variables — Num_planes, the number of planes allocated for 
this route, and Fare, the price charged for trips on this route — and two chance variables — 
the Base_demand for seats (assuming the fare is $200) and the Elasticity1 of demand 
with respect to price:

Decision Num_planes := 2
Decision Fare := 200 ($/passenger trip)
Chance Base_demand := 

Triangular(300K, 400K, 500K) (trips/year)
Chance Elasticity1 := Triangular(2, 3, 4) 

Note:When you first load the model, Num_planes and Fare will not be set to these single 
numbers. You can change them at this point to single numbers, or even to the 
following sequences to view Profit parametrically.

Decision Num_planes := 1..5
Decision Fare := 100..300

We assume that the demand is elastic with respect to changes in price, using a demand 
function that decreases as Fare increases at a exponential decay rate determined by 
Eliasticity1. At a base fare of $200, the demand is equal to the Base_Demand. We com-
pute the actual Seats_sold as the lesser of the demand modified for price elasticity and the 
actual seats available, the product of the number of planes and annual Seats_per_plane: 

Variable Seats_per_plane := 200 * 360 * 2
Variable Seats_sold := Min([Base_demand * 

(Fare/200)^-Elasticity1, 
Num_planes * Seats_per_plane])

Finally, we model the Objective variable Profit as the difference between revenues and 
costs, including Fixed_cost, the annualized fixed cost of leasing and operating each plane, 
and Var_cost, the incremental cost for each new passenger:

Variable Fixed_cost := 12M ($/plane/year)
Variable Var_cost := 100 ($/passenger trip)
Objective Profit := Seats_sold*Fare 
 - Seats_sold*Var_cost - Num_planes*Fixed_cost 
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This graph shows Profit as a function of the two decision variables, using parametric 
approach to visualize the effects. Note that for each number of planes, 1 to 5, the profit is a 
sharply peaked function of the fare. The optimum fare is at the highest peak, $195 with 3 
planes. 

In this simple case, with only two decision variables, you can visualize the objective function 
and find the optimal values (or close) by parametric analysis. For more complex problems, 
the Optimizer is essential. We now show how to apply that.

Reformulating the decision variables for NLP
We usually need to reformulate a decision problem, at least a little, to apply NLP. One rea-
son is that NLPDefine() expects a single, array-valued decision variable for parameter X. 
So, if you want to apply NLP to optimize a model, like the airline example, whose decision 
variables are two or more separate Analytica variables, you need to combine these deci-
sions into a single array-valued decision. If the model has n scalar decision variables, you 
should define a decision variable Decisions as a one-dimensional array with an index con-
taining n elements. For the airline example, we define Decisions with two elements, corre-
sponding to its two decisions, Num_planes and Fare:

Index Dvars := ['Number of planes', 'Plane fare']
Decision Decisions :=Table(Dvars)(3, 200)

The values in the table are the initial values, prior to optimizing. We must now redefine the 
individual decision variables so that they obtain their values from the corresponding ele-
ments of Decisions:

Num_planes:= Decisions[Dvars ='Number of planes']
Fare := Decisions[Dvars = 'Plane fare']
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As the Optimizer searches for optimal values, it will assign successive new candidate solu-
tions to Decisions, and get the resulting value of Profit, which in turn gets its values from 
Decisions, via Num_planes and Fare.

If one or more of the original decision variables is an array, the new decision variable Deci-
sions passed to X must still have only one dimension. Its size should be the sum of the 
sizes of all the original decision variables. Again, you should assign the current initial values 
of the original decision variables to the corresponding elements of Decisions. Then you 
redefine each original decision variable so that it gets each element from the corresponding 
element of Decisions. See Case 7. NLP with Optimizations over time below for an 
example, where we add the Time dimension to Num_planes and Fare.

Case 1. Simple NLP Optimization
We will now complete the formulation of the NL P for the airline problem introduced above, 
creating a model that looks like this:

We need to specify the type of each decision — ’I’ (integer) for Number of planes, and 
’C’ (continuous) for Fare — the lower and upper bounds for the two decisions, and the Con-
straints index:

Variable Dec_type := Table(Dvars)('I','C')
Variable Lb_decisions := Table(Dvars)(1, 100)
Variable Ub_decisions := Table(Dvars)(5, 300)

We can now define the NLP using these parameters:
Variable NLP_1 := NLPDefine(

Vars: Dvars, X: Decisions, Ctype: Dec_type, 
LB: Lb_decisions, UB: Ub_decisions,
Obj: Profit, Maximize: True )

Since we want the largest Profit, we set Maximize to True. Finally, we define the key 
results of the optimization: The optimal decisions, the profit with these decisions, and the 
status of the optimization:

Decision Optimal_decisions1 := LPSolution(Nlp_1)
Objective Profit_with_nlp1 := LPOpt(Nlp_1)
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Variable Nlp_status1 := LPStatusText(Nlp_1)

When we display the result of any of these three variables, it will perform the optimization. 
For example, Optimal_decisions1, gives this table (agreeing closely with the parametric 
analysis):

Intelligent Arrays, array abstraction and NLP
Unlike most other Analytica functions, including linear and quadratic optimization, nonlinear 
optimization does not fully support Intelligent Arrays — that is, it will not automatically gen-
eralize over extra dimensions for all parameters. Below we show how you can work around 
these restrictions to create and solve arrays of NLP problems, including handling uncer-
tainty, parametric analysis, and dynamic optimization over time.

NLP’s limitations are that the following required parameters must be dimensioned by the 
specified indexes and no other indexes:

X must be indexed only by the index supplied to Vars

Obj must be scalar — a single number with no indexes

LHS must be indexed by the index supplied to Constraints, or have no index.

Similarly, these optional parameters, if specified, must also be dimensioned by only the 
specified indexes:

Gradient must be indexed only by the index supplied to Vars

Jacobian must be indexed only by the indexes supplied to Vars and Constraints

See page 66 for details on Gradient, and Jacobian. 

Note that NlpDefine() does generalize fully over extra dimensions for all parameters other 
than those seven listed above. But, for those seven parameters, it is up to you, the modeler, 
to make sure that they have only the required indexes. Otherwise it will flag an error. Read 
on to see how to get around these limitations.

In many of the cases that follow, there are two alternative approaches, one in which we 
encapsulate the NLP in a user-defined function, and a second utilizing the SetContext 
parameter. Since both approaches usually entail certain changes to the underlying model, 
there are tradeoffs between the two approaches, and in any particular problem you may find 
one more convenient than the other. The cases that follow demonstrate both alternatives 
when both are applicable.
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Case 2. Maximize expected value: NLP with uncertainty
If you want to find the optimal decisions with an uncertain model, the most common 
approach is to define the objective as maximizing the expected value (i.e. mean) of the 
objective function — for example, maximizing the expected profit, or the expected utility in a 
decision analysis formulation. For the Airline example, we define NLP2, which differs from 
NLP1 only in that the objective takes the mean of the profit:

Variable NLP2 := NLPDefine(... ,
X: Decisions, Obj: Mean(Profit), ...)

In this case, the objective is a single scalar number (i.e., the expected value). Although it is 
a function of an uncertain quantity, it is not itself uncertain. So you can apply NLPDefine() 
directly, and the restrictions on array abstraction mentioned above cause no problems. Note 
the results of doing the optimization using expected value are a bit different from the deter-
ministic analysis, because the profit function is not symmetric:

The same approach works if you want to maximize a statistic of the objective other than 
mean, such as to minimize the 1st percentile of an uncertain profit (loss), e.g. Get-
fract(Profit, 1%). If there is uncertainty in the constraint functions, you may define the 
constraints using percentiles (using Getfract() or other statistical functions) — for exam-
ple, the constraint that the cumulative cashflow has a >95% chance of being nonnegative. 

In these cases, you are trying to find the optimal decision now, before resolving the uncer-
tainties that affect the objective or constraints. You can set the model to perform a single 
optimization and the result is a single optimal solution (set of decisions) and corresponding 
maximum expected value (or other statistic) of the objective. Given the optimal solution, you 
can then compute a probability distribution over the objective function to model the uncer-
tainty over the value outcome.

Case 3. NLP with uncertainty: Probabilistic optimization
The second type of optimization under uncertainty is less common: The optimal decisions 
will be made after resolving the uncertainty, and you want to compute probability distribu-
tions over what those optimal decisions will be now while still uncertain. This is sometimes 
known as preposterior analysis because the optimization is performed a posteriori — after 
the uncertainty is resolved — but you are performing the analysis now, before the uncer-
tainty is resolved. (Not to be confused with preposterous analysis, which we try to avoid.) 
This situation requires a sample of optimizations to be performed. It results in a random 
sample of optimal decisions, and a sample of corresponding values of the objective for each 
solution.

You might try simply to compute a probabilistic value of the optimal decision in case 1, from 
NLP_1, by selecting a uncertain view, e.g. Sample, in the Result for Optimal_decisions1, 
shown previously: But, this would generate the error "The expression for the objective func-



Chapter Non-Linear Optimization

56 Analytica Optimizer Guide

6

tion in NlpDefine must evaluate to a single numeric value during optimization..." This is 
because the objective, Profit, is no longer a single number at each iteration, but rather a 
Monte Carlo sample of numbers.

Instead, we need to create an NLP that abstracts over the Chance variables, so that the Run 
index does not cause problems for NLPDefine. Two techniques for accomplishing this are 
demonstrated here. The first encapsulates the NLP in a user-defined function, and the sec-
ond utilizes the SetContext parameter.

UDF Encapsulation
For convenience, we define two functions, first ProfitFn() that encapsulates the Objective 
Profit as a function of the decisions and chance variables as parameters. This function 
replicates Profit in the simple airline model. (See next page.)
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Then we define a function Airline_nlp() that defines an NLP using ProfitFN() that we 
just defined for the objective: 

Airline_nlp() qualifies its parameters as Atomic. This means means that, if the actual 
parameters are arrays, indexed by Run or anything else, it will reduce them all to scalar val-
ues and call the function multiple times, once for each combination of scalar values. it calls 
multiple times, Each time it passes scalar parameters to ProfitFn(), so that the objective 
passed to Obj in NLPDefine() is scalar, as required. In this way, it restores the Intelligent 
Array behavior that NLP otherwise lacks. 

We now define a variable using this function:
Variable Nlp_3 := Airline_nlp( Num_planes, Fare,  

Demand, Elasticity1)

If you show the result of this variable in a sample view (with Samplesize set to 5 for rapid 
execution), it shows a sample of NLP problems:

When we show the result of the resulting optimal decisions
Decision Optimal_decisions_3:=LPSolution(Nlp_3)
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it evaluates each sample of the NLP and generate a corresponding sample of optimal deci-
sions:

This computation involves doing Samplesize optimizations. So, it could take a long time if 
the NLP problem is difficult and the sample size is large. 

Use of SetContext
The uncertainty in the objective comes from the uncertainty in Seats_per_plane, which is 
uncertain as a result of its uncertain inputs Base_demand and Elasticity1. When we use 
the value of Seats_per_plane, we can slice out only the sample corresponding to the cur-
rent optimization. To do this, we set up a context variable:

Run_context := if IsSampleEvalMode then Run else 1
domain of Run_context := Index Run

Next we modify our NlpDefine() call, specifying Run_context as a context for the 
optimization:

Nlp_3b := NlpDefine(..., SetContext:Run_context )

When Nlp_3b is viewed in Sample mode, a separate NLP appears for each element of the 
Run index. When the NLP corresponding to Run=3 is evaluating, Run_context is set to 1 
during that search. Finally, we must slice out a single element of the sample for 
Seats_per_plane. We do this by modifying the definition of Profit (in the example, a copy 
of Profit as been placed in this module named Profit_in_context):

Profit_in_context :=  
Seats_sold[Run=Run_context] * (Fare - Var_cost)

- Num_planes * Fixed_cost

The choice was made here to slice on the current RunContext at Profit, rather than within 
Seats_per_plane, where each of Base_demand and Elasticity1 could have been sliced. 
A speed advantage can be obtained by using your context as late in the computation as 
possible. In this way, Seats_sold is computed once, and does not have to be re-evaluated 
at each point in the search space.

Case 4. NLP and parametric analysis
What if you want to examine how the optimal decisions vary as you change one or more 
input parameters, such as Demand? (See User Guide Chapter 4 "Analyzing Model Behavior" 
for more on parametric analysis.) In this case, the variables you treat parametrically will 
have multiple values, so you cannot apply NLPDefine() to them directly. However, the func-
tion Airline_nlp() that we just defined comes in handy again. Suppose we define:

Variable Demand_param :=[200K,400K,600K,800K,1M]
Variable NLP_4 := Airline_nlp( Num_planes, Fare, 
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Demand_param, Elasticity1)
Decision Optimal_decisions4 := LPSolution(Nlp_4)

Because Airline_nlp() qualifies its parameters as Atomic, NLP_4 generates an array of 
NLPs, one for each value of Demand_param. The Result for Optimal_decisions4 shows 
corresponding optimal values for each value of Demand_param:
 

Note how the optimal number of planes increases from 1 to 4, as the demand increases, 
and the optimal fare varies nonmonotonically.

Once again, the parametric analysis can also be accomplished using the SetContext 
parameter:

NlpDefine(Vars: Dvars, X: Decisions, Ctype : Dec_type,
Obj: Profit_4b, Maximize : True, 
Lb : Lb_decisions, Ub : Ub_decisions,
SetContext:Demand_param)

Case 5. NLP over time using NPV
The most common formulations for optimization over time involve finding a set of decisions 
to optimize an objective that measures overall performance over multiple time periods, such 
as the net present value (NPV). In these cases, the objective function returns a single num-
ber that aggregates over the time periods, so it poses no problem for direct application of 
NLPDefine(). 

Consider the airline example again. We add an uncertain annual compound growth in 
demand, define Time for years from 2005 to 2010, and compute the resulting 
Demand_by_time:

Chance Demand_growth_rate := Triangular(0%, 10%, 20%)
Time := 2005 .. 2010
Variable Demand_by_year := Dynamic(Base_demand, 

Self[Time-1] * (1 + Demand_growth))

We now define the objective of the NLP using mean of the net present value (NPV):
Variable Nlp_5 := 

NLPDefine(Vars: Dvars, X: Decisions, CType:Dec_type,
Obj: Mean(NPV(Discount_rate, 

ProfitFn( Num_planes, Fare,  
Demand_by_year, Elasticity1), Time)),

Maximize:true,
Lb:Lb_decisions, Ub:Ub_decisions)



Chapter Non-Linear Optimization

60 Analytica Optimizer Guide

6

This causes no array-abstraction issues for the objective since the mean of the NPV is a 
scalar. Notice that we are finding a single optimal value for the decisions, Num_planes and 
Fare, for all time periods: We are assuming that these decisions stay the same over the six 
years. Because of the growth in demand, the optimal number of planes is three, larger than 
before:

Case 6. Optimize for each year
What if you want to change the decisions, Num_planes and Fare, in each time period? One 
approach is to perform a separate optimization in each time period. This formulation models 
a process in which the decisions are made at the start of each time period to maximize profit 
for that time period. In this case, the decisions and objectives (and possibly constraints) are 
indexed by time. Again, the function Airline_NLP(), which we defined earlier, comes in 
handy. 

Variable Nlp_6 := Airline_nlp( Num_Planes, Fare, 
Demand_by_year, Elasticity1 )

Decision Optimal_decisions4 := LPSolution(Nlp_4)

Since Demand_by_year is indexed by Time, Airline_nlp() creates an array of NLPs over 
time. The optimal decisions4 are then computed separately for each year: 

Demand_by_year has uncertainty. Since we have formed the objective given the value for 
Demand_by_year, in the probabilistic result we have actually created a separate optimiza-
tion problem for each Monte Carlo sample at each time period. In terms of the problem, this 
is saying that we are uncertain today exactly what the demand will be in future years, but we 
will know the demand each year before we make our decision. Hence, we are array 
abstracting across two dimensions, Run and Time.

In the alternative formulation, SetContext can also be used in this case to array abstract 
across both Run and Time, as demonstrated in NLP_6b. In this case, we need to introduce 
two context variables, Run_context (already introduced in Case 3) and Time_context. 
When computing the objective profit, we need to restrict our inputs to these contexts:

Profit_in_context6 := ProfitFn( Num_planes,



Chapter Non-Linear Optimization6

 Analytica Optimizer Guide 61

Demand_by_year[Time=Time_context, Run=Run_context],
Elasticity1[Run=Run_context] )

Because we are array-abstracting across two contexts, both appear in the SetContext 
parameter:

NLPDefine(Vars: Dvars, X: Decisions, Ctype : Dec_type,  
Obj: Profit_in_context6,Maximize : True,  
LB : Lb_decisions, UB : Ub_decisions,
SetContext: Run_Context, Time_Context)

Case 7. NLP with Optimizations over time
If there are interactions between decisions in different years, you may want to find the deci-
sions in each year that collectively maximize the NPV (or other objective that aggregates 
over time). In this case, we want to perform only one optimization, but with an expanded set 
of decisions, that comprises both decisions over all time period. With 2 decisions in each of 
6 time periods, we define a Decisions vector of 12 elements. Note that Decisions must be a 
one-dimensional vector with 12 elements, not a two-dimensional table with 2 by 6 elements. 

In this case, we choose to create a single table with the decision settings -- initial values, 
Ctype, lower and upper bounds, for all 12 elements:

We derive the Decisions_by_time as a slice of this table:
Decision Decisions_by_time := 

Decision_params[Decision_settings='Initial']

See the module in the example model for details of how the NLP is defined. We have a sin-
gle optimization problem here with no array abstraction considerations. Here are sample 
results for the optimal decisions:
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The time to perform NLP optimization typically increases superlinearly with the number of 
decision variables. So this approach can become time consuming if you have many deci-
sion variables and time periods. In general, it takes longer than Case 6. Optimize for each 
year, which is linear in the number of time periods.

Case 8. NLP with a dynamic model
The previous three cases are dynamic in the sense that the model changes over time. How-
ever, they do not need to use the Dynamic() function explicitly because the decisions in 
each year do not depend on the results of the previous year. In this final case, the optimiza-
tion at each time step depends on the results of the optimization at the previous time step, 
so we must use Dynamic(): We assume that the planes are on long-term leases: We can 
lease more planes each year, but cannot decrease them because of the lease agreement. 
This means that the lower bound on the number of planes decision in each period is the 
value of the optimal number of planes computed in the previous time period, thus:

Variable Nlp_8 := Dynamic( 
Airline_nlp_mev(Num_planes, Fare, Demand,  

Elasticity1),
Airline_nlp_mev(Optimal_num_planes[Time-1], 

Fare, Demand_by_year, Elasticity1 ))
Decision Optimal_decisions_8:= LPSolution(Nlp_8)
Decision Optimal_num_planes := 

Optimal_decisions_8[Dvars = 'Number of planes']

Note that this creates a dynamic loop, with the time lagged dependence shown in the dia-
gram in gray:

When embedding an NLP inside a dynamic loop, as a general principle, only a local vari-
able should ever be used for your decision variable, X, and SetContext should not be used. 
If you were to use a global variable for X or SetContext, each optimization would end up 
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invalidating the results of optimizations at other time steps in the dynamic loop. However, 
you can include your decision variables as global decision variables in your dynamic loop, 
defining them using LpSolution(), but using a local variable for the decision vector passed 
to parameter X of NlpDefine(). This is demonstrated in Nlp_8b. The expressions for Obj 
and Lhs may contain time offsets (in this case they do not). Keep in mind that Self[Time-
1] in one of these expressions refers to an NLP object, not the previous value of the Obj or 
Lhs expression. To use the optimum objective value in the previous time step, you would 
use LpOpt(Self[Time-1]), for example. A portion of the definition of Nlp_8b is as follows:

Variable Nlp_8b := Dynamic( 
Var d[DVars] := Array(Dvars,[num_planes,fare]) do 

NlpDefine( Vars: DVars, X:d, ... ),  
Var d[DVars] := Array[Dvars,[num_planes8b[Time-1],far]) do 

NlpDefine( Vars: DVars, X:d, ... 
Lb: if DVars=’Number of planes’ Then Num_planes8b[Time-1] 

 Else Lb_decisions ) 
)

Variable Num_planes8b := LpSolution(Nlp_8b)[DVars=’Number of planes’]

The critical thing to notice here is that the decision variables appearing in the dynamic loop, 
in this case Num_planes8b, are defined using LpSolution. The expressions at Time=t can 
make use of the optimal solutions at Time=t-1 in the definition of NlpDefine(), in its 
parameters, or in the expressions. The decision vector passed to X must be a local variable, 
and SetContext cannot be used. 

Summary of array abstraction for NLP
These airline problem Cases 1 to 8 shown above illustrate ways to reformulate a problem for 
NLP to deal with various issues of array abstraction and Intelligent Arrays. Case 1 shows 
how to combine multiple scalar decisions into a single vector of decisions, as needed for 
NlpDefine(). Case 7 shows how to assemble array-valued decisions into a single vector of 
decisions. Case 2 shows that you require no special reformulation for NLP to maximizes 
expected value (or other statistical function of an uncertain objective), since the objective is 
a scalar, even if the underlying model has uncertainty. Similarly, Cases 5 and 7 illustrate that 
maximizing the net present value (or another objective that aggregates over time) produces 
a scalar value for the objective, so you can apply NlpDefine() directly.

In the other cases, the objective is intrinsically an array of values, indexed by Run for uncer-
tainty in Case 3, by a parametric analysis (Demand) in Case 4, and by Time in Cases 6 and 8. 
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We handle these cases in a similar way: We encapsulate the NLPDefine() in a function 
whose parameters are qualified as Atomic, so that each call to NLPDefine() is made with 
the required inputs and hence the Objective passed to X as scalar. The result of calling 
these functions is an array of NLPs. Functions of this result, such as the optimal decisions, 
LPsolution(), status, LPStatusText(), and optimal value, LPOpt(), are therefore simi-
larly indexed by these extra dimensions. For Cases 3, 4, and 6, we’ve also shown an alter-
native approach, in which we utilize the SetContext parameter to NlpDefine() restrict the 
model to a restricted slice while the optimization search takes place. In Case 8, with 
dynamic dependence, we see that an NLP can be embedded in a dynamic loop, refering to 
previous time points, as long as a local variable is used for the X parameter and SetCon-
text is not used. If dimensions other than Time must be abstracted over, with each NLP 
depending on the solution to an earlier one, then encapsulating the NLP in a user-defined 
function is the only viable option.

For more details, look at the example Analytica file that contains these cases: 
Example Models/Optimizer Examples/Airline NLP.ANA.

These examples show how to deal with array abstraction for the objective Obj. The same 
approach will work for the other parameters that are repeatedly evaluated during an optimi-
zation, i.e. LHS, Gradient, and Jacobian. All other parameters array-abstract automati-
cally.

Solving Systems of Equations
Solving a system of non-linear equations is a special case of a non-linear program. The set 
of solutions is the set of feasible points. The non-linear optimizer can be used to find a solu-
tion to a system of equations by encoding the system of equations as the set of constraints, 
using a Sense of "=". You can omit the objective function (the Obj parameter) if you simply 
care about finding any solution, or you can use the objective to express a preference among 
solutions when the system of equations has, or may have, multiple solutions.

Other examples
If you haven’t already, you may find it useful to follow through the steps in the “Quick Start” 
section for creating a non-linear optimization model (see “A Non-linear Program” on 
page 14).

The Example Models/Optimizer Examples directory, installed with Analytica, contains 
several models demonstrating non-linear optimization. These models include:

• Asset Allocation.ana: A classic portfolio optimization problem, formulated in four 
ways. One formulation uses a linear objective with a quadratic constraint, which 
qualifies as a non-linear problem. Another formulation maximizes expected utility, thus 
demonstrating the use of stochastic simulation within a non-linear optimization. The 
other two formulations are quadratic programs.

• NLP with Jacobian.ana: A very simple non-linear program demonstrates the use of 
a gradient and Jacobian, as well as the use of a local variable for X.

• Optimal can dimensions.ana: The example is the one used in Chapter 2, “Quick 
Start,” of this manual. The problem is to find the dimensions for a cylindrical can to hold 
a given volume using the minimum surface area.
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• Solve using NLP.ana: A very simple example of using the non-linear optimizer to 
solve a non-linear system of equations.

• Problems with local optima.ana: Demonstrates several techniques for overcoming 
the problem of local optima in non-linear optimizations.

• Traveling salesman.ana: Demonstrates the use of grouped-integer decision 
variables.

Giving hints to help the Optimizer
The Optimizer tries to identify characteristics of your NLP problem so that it can choose the 
most efficient and reliable algorithms. In some cases, you can improve its performance by 
telling it things about the problem that it may not be able to figure out on its own.

Type of dependence
If the Optimizer knows that the objective has smooth nonlinear dependence on some or all 
of the decision variables, it can use much faster gradient-based algorithms than in the gen-
eral case that allows discontinuous functions. You can provide this information using these 
two optional parameters to NlpDefine().

objNl: Optional Text[Vars]
lhsNl: Optional Text[Vars, Constraints]

You should provide each of these parameters with one of these text values:

• "L": Linear or no dependence

• "Q": Quadratic dependence

• "N": Smooth non-linear dependence

• "D": Discontinuous 

You can provide a single text value to each parameter, e.g., "N", to specify the same type of 
dependence for all decision variables and, to lhsNl, for all constraints. Otherwise, if the type 
of dependence varies by variables and constraints, you will probably create a variable 
defined as an edit table indexed by Vars and Constraints, to specify each dependency 
type.

When the objective has linear, quadratic, or smooth non-linear dependence on continuous 
decision variables, the optimizer uses an efficient gradient-based search method. If it knows 
that the dependence is linear (and so has constant derivative), or quadratic (and so has a 
constant second derivative) it can drastically speed the search by reducing the number of 
re-evaluations of the objective. If one or more decision variables are discontinuous, the Opti-
mizer uses a genetic (evolutionary) algorithm, in which multiple candidate solutions are 
maintained, and the search is performed by mutating and recombining members of the pop-
ulation based on a fitness metric. 

If you do not indicate the type of dependence, the optimizer will assumes smooth non-linear, 
and the "GRG Nonlinear" engine is used. If any discontinuous dependence is indicated, the 
"Evolutionary" algorithm is selected. In some cases, you may find the "Evolutionary" engine 
performs better even on smooth non-linear problems, in which case you can force use of the 
Evolutionary engine using the parameter:
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Engine: "Evolutionary"

Gradient and Jacobian Functions
If the decision variables are all continuous, you can speed up the optimizer considerably if 
you can give it an analytical expression for the gradient of the objective function and/or the 
Jacobian of the constraint left-hand sides. The gradient and Jacobian enable the Optimizer 
to avoid most re-evaluations of the objective and LHS expressions, respectively, which it 
uses estimate the partial derivatives based on small changes to each decision variable.

The gradient of the objective function is a vector indexed by Vars, where each element is 
the partial derivative:

where  is the objective function. 

The Jacobian of the left-hand side of the constraints is a matrix, indexed by Vars and Con-
straints, where each element is the partial derivative:

where  is the left-hand side of constraint j.

The gradient and Jacobian parameters accept an Analytica variable or expression, which 
should depend on X, directly or indirectly. The Optimizer evaluates these parameters deter-
ministically repeatedly at each step of the search process Assuming X is indexed only by 
Vars, the gradient must be indexed only by Vars, and the Jacobian must be indexed only 
by Vars and Constraints. See “Intelligent Arrays, array abstraction and NLP” on page 54 
for information on coping with these restrictions.

It is important for your gradient and Jacobian expressions to be correct, otherwise you will 
mislead the optimizer and it may move away from the optimum. Debugging a Jacobian 
expression can be challenging. However, you can check whether the Jacobian is correct 
using the optional parameter, DerivMethod, to NlpDefine():

NlpDefine(…, DerivMethod: "check", …)

When DerivMethod is set to "check", the Optimizer compares the supplied Jacobian 
expression, with the Jacobian that it estimates using finite differencing. If they are not within 
a small difference, the Optimization will stop with LpStatusNum() = 67 (“error in evaluating 
problem functions”). Once you have confirmed the supplied Jacobian is correct, remember 
to reset Derivmethod to "Jacobian" so that the Optimizer reaps the benefits of not having 
to estimate the Jacobian itself at each search point.

Initial Guess
If you know the approximate region that contains the optimal solution, you can speed the 
Optimizer by giving it an initial solution in that region. You specify this starting solution as an 
array indexed by Vars for the optional parameter guess:

guess: Optional Number[Vars]

If you do not provide this parameter, and if you provide a global variable (as opposed to a 
local variable) for X, the Optimizer users the current value of X as its starting solution.

xi∂
∂ f x( )

f x( )

xi∂
∂ gj x( )

gj x( )
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Dealing with Local Optima
A difficult problem common to many hard non-linear optimization problems is the existance 
of local optima. Once a local optima is reached, it is impossible for the optimizer to know 
where, or even if any, better solutions exist. If you think you are having problems with local 
optima, there are several settings that can be manipulated.

MultiStart
If you have a continuous non-linear problem, enabling the MultiStart setting of the "GRG 
Nonlinear" engine is often the quickest and easiest recourse. This can be tried quickly sim-
ply by adding the following parameters to NlpDefine():

NlpDefine(..., parameter:"MultiStart", setting:1 )

Multistart will require more search time, as it tries multiple starting points. When using Multi-
search, you should also specify finite lower and upper variable bounds using the Lb and Ub 
parameters to NlpDefine(). Narrow bounds produce better results.

If turning MultiStart on alone is inadequate, you can further enhance exploration by 
enabling topographic search, via the TopoSearch setting, which improves the selection of 
starting points, and by increasing the number of starting points by increasing Population 
Size. See "Specifying Settings" in Chapter 5.

Engine Selection
Two non-linear optimization engines come with Analytica Optimizer:

• "GRG Nonlinear" : A gradient-descent search.

• "Evolutionary" : A genetic-algorithm search.

If you have purchased other add-on engines, other options may also be available to you. To 
explicitly select the engine to be used, include the Engine parameter to NlpDefine():

Engine : Optional Text

If you have indicated that your problem is discontinuous, the GRG engine cannot be used.

By default, the Evolutionary engine does not utilize gradient information. However, if the 
LocalSearch setting is on, then it optimizes sample points before adding them to the popu-
lation using various techniques including gradient-based search.

To view the list of possible engines installed, evaluate the following Analytica expression:
SolverInfo( "AvailEngines" )

If your problem is highly discontinuous or contains many local optima, then the "Evolution-
ary" engine is a better choice. If your problem is relatively smooth with relatively few local 
optima, then the "GRG Nonlinear" engine is likely to obtain results more quickly.
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Chapter 7 Control Settings

This chapter shows you how to:

• specify optimizer engine settings to 
LpDefine, QpDefine and NlpDefine

• determine what setting are available for each 
engine, defaults, and possible range

• determine size capacities for installed 
engines.

• control termination criteria during 
optimization

• select search algorithms

• specify numeric precision
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Controlling the search
The optimization engine exposes several settings that you can change to influence how the 
search for the optimum proceeds and when it terminates. The specific collection of settings 
that are available is a function of which engine is used to solve the optimization, so that if 
you install and use an add-on engine, other than the engine that comes standard with Ana-
lytica Optimizer, the possible settings may be different. The SolverInfo() function can be 
used to view all available settings, the range of possible values, their defaults, and their cur-
rent values for a problem. Settings can be changed for a particular problem by specifying 
values for the parameter and settings parameters to LpDefine(), QpDefine(), or Nlp-
Define(). The first subsection below describes how you specify and view settings, while the subse-
quent sub-sections detail particular settings used by engines the come standard with Analytica 
Optimizer.

Selecting the Optimization Engine
Four optimization engines come standard with Analytica Optimizer:

• "LP/Quadratic": Used for LPs and QPs with linear constraints.

• "SOCP Barrier": QPs with quadratic constraints.

• "GRG Nonlinear" : Smooth NLPs: A gradient-descent search

• "Evolutionary" : NLPs: A genetic-algorithm search.

If you have purchased other add-on engines, other options may also be available to you. 
You can obtain a full list of installed engines by evaluating the following Analytica expres-
sion:

SolverInfo( "AvailEngines" )

To explicitly select the engine to be used, include the Engine parameter to LpDefine(), 
QpDefine(), or NlpDefine():

Engine : Optional Text

For example:
NlpDefine( ..., Engine: "Evolutionary" )

The following engines can be used with each function:

• LpDefine(): "LP/Quadratic", "SOCP Barrier", "GRG Nonlinear", "Evolutionary".

• QpDefine(): "LP/Quadratic" (but only if constraints are linear, i.e., parameter LhsQ not 
specified), ’SOCP Barrier", "GRG Nonlinear", "Evolutionary".

• NlpDefine( ): "GRG Nonlinear" (but only if any objNl or lhsNl has been marked ’D’ for 
discontinuous), "Evolutionary".

If you do not specify the engine, Analytica will select an appropriate engine based on the 
function you’ve used to define your problem, and the properties of the problem that you’ve 
specified. However, if the engine does not perform satisfactorily on that problem, you might 
obtain better results with a different engine.

To determine what engine is actually used on a problem, evaluate the Analytica expression:
SolverInfo( "Engine", prob )
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where prob is the object returned by LpDefine(), QpDefine(), or NlpDefine().

The "LP/Quadratic" engine uses a dual simplex method combined with branch-and-bound 
for mixed-integer constraints, with a variety of integer cut-set procedures. This is generally 
the engine of choice for LPs and Mixed-integer LPs. However, for hard mixed-integer LPs, 
since the Evolutionary engine utilizes a very different approach, that engine may be worth 
trying.

SOCP uses a second-order cone programming technique designed specifically for quadrati-
cally-constrained convex problems. The GRG Nonlinear engine is often a good alternative 
for problems formulated with QpDefine(), especially if the constraints end up being non-
convex.

For non-linear problems, if your problem is highly discontinuous or contains many local 
optima, then the "Evolutionary" engine is a better choice. If your problem is relatively smooth 
with relatively few local optima, then the "GRG Nonlinear" engine is likely to obtain results 
more quickly, and if gradients and jacobians can be analytically computed, it is likely to be 
dramatically faster. If non-integer values cannot be explored during the intermediate steps of 
a search, the "Evolutionary" engine should be used.

By default, the Evolutionary engine does not utilize gradient information. However, if the 
LocalSearch setting is on, then it optimizes sample points before adding them to the popu-
lation using various techniques including gradient-based search.

Examining Engine Capabilities
Information about an installed optimization such as the maximum number of variables or 
constraints allowed can be accessed using:

SolverInfo( Item: "<item>", Engine: <engineName> )

where engineName is a value returned by SolverInfo("AvailEngines"), and item is one 
of "MaxVars", "MaxIntVars", "MaxConstraints", or "MaxVarBounds". These return a 
result indexed by a local index named ProblemType, having elements ["LP", "QP", "QCP", 
"CVX", "NLP", "NSP"]. ( QP=quadratic objective, linear constraints, QCP=Quadratic with 
convex quadratic constraints, CVX=non-convex quadratic, NLP=smooth non-linear, 
NSP=non-smooth non-linear). For example:

Index Engines := SolverInfo("AvailEngines"); 
SolverInfo( ["Maxvars", "MaxIntVars", "MaxConstraints", "MaxVarBounds"],  

Engine: Engines) [.ProblemType=’LP’]

returns:
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Specifying Settings
If you want to change the value for a single control setting, you can specify values for two 
optional parameters, parameter and setting, to LpDefine( ), QpDefine() or NlpDefine(), 
providing the name of the setting to parameter, and the value to setting. For example, if 
you wished to set the "Scaling" parameter to 1, you would modify your call to LpDefine( ) 
as follows:

LpDefine( .., Parameter: "Scaling", Setting: 1 )

To alter more than one control setting, you need to supply arrays to these parameters. The 
arrays passed to parameter and setting should have a single common index. If the index 
of the array passed to setting is a list of labels, where the index labels contain the name of 
each control setting, then you only need to include the setting parameter.

It is often convenient to specify control settings in a self-indexed edit table. The following 
steps illustrate this:

1. Drag a variable node to your diagram, title it "My Lp Settings".

2. In the definition pane, set the definition type to Table.

3. In the Index Chooser dialog, select "My Lp Settings (Self)" as the table index.

4. Click on the row heading cell, and change "Item 1" to "Scaling".

5. With the row header still selected, press down-arrow to add a row.

6. Change the second row header cell to "MaxTime"

7. Enter 1 into the first table body cell.
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8. Enter 30 into the second body table cell. 

9. In your call to LpDefine( ), insert a setting parameter as follows:
LpDefine( ..., setting: My_lp_settings )

The optimizer will scale parameters and terminate after 30 seconds if the optimum has not 
been found. A self-indexed table set up in this fashion makes it easy to adjust multiple con-
trol settings if the need arises.

Note: In Analytica Optimizer 3.1, control settings were specified as optional parameters to 
LpDefine( ), QpDefine() and NlpDefine(). These legacy parameters are still 
supported for backward compatibility; however, use of the setting parameter is 
recommended. This change reflects a change in Frontline’s architecture, and more 
readily generalizes to other add-on engines and future optimizer engine extensions.

Examining Available Settings
Once you have defined an optimization problem using LpDefine( ), QpDefine() or NlpDe-
fine(), the following function returns the set of control settings used by the engine:

SolverInfo("Setting", Lp: myLp )

where you replace myLp with the name of the variable holding the result from LpDefine( ).

You can also access the range of allowed values for each setting, as well as the default 
value, using SolverInfo( ). For this, you need to know the name of the optimizer engine 
used on your problem. For linear programs, this will always be "LP/Quadratic" unless you 
have installed an add-on engine. To obtain the name of the engine used in the general case, 
use:

SolverInfo("Engine", Lp: myLp )

Tip For quadratic and non-linear problems, to be certain you get the correct engine, evaluate 
SolverInfo("Engine", Lp:myLp) after you’ve attempted to find a solution -- after 
LpSolution( ), LpStatusText( ), or LpOpt( ) has been evaluated. If you have not specified 
the engine parameter explicitly, the Optimizer may change to a different, non-default engine 
based on the properties of your problem. 
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Using the name of the engine, the range (min/max) of possible values for each setting, and 
the default value, can be obtained using:

SolverInfo( ["MinSetting","MaxSetting","Defaults"],  
Engine: "LP/Quadratic")

Termination Controls
Iterations:

Specifies the maximum number of iterations (pivots) by the Simplex Algorithm during 
the optimization. If this is exceeded, LpStatusNum() returns 3 (Iterates limit reached. 
Indicates an early exit of the algorithm). Maximum number of generations in 
Evolutionary solver. Maximum number of gradient descent steps by GRG Nonlinear.

Default: no limit.

MaxTime:

Maximum number of seconds the optimizer will spend on the problem. If exceeded, 
LpStatusNum() will be 10 (Time out status. Returned when the maximum allowed time 
has been exceeded. Indicates an early exit of the algorithm).

Default: no limit.

MaxTimeNoImp: 

The maximum number of seconds that the Optimizer will continue without finding any 
improvement in the best solution.

Default: 30 seconds.

Allowed range: Positive

IntTolerance: 

In a MIP optimization, if the branch-and-bound algorithm can determine that the best 
solution found so far is within this relative tolerance of the true optimal, it will terminate 
the search and return the best solution found so far. The bound is relative, meaning a 
value of 10% guarantees a solution within 10% of the optimal. Often, the branch-and-
bound algorithm will quickly locate a nearly optimal solution, but then spend a large 
amount of refining its best solution to the true optimum. Specifying a non-zero gap 
tolerance can eliminate this additional search, thus in some cases drastically reducing 
computation time. The gap is computed as the absolute value of the difference between 
the best solution so far, and the best bound on the optimum, divided by the best bound 
on the optimum. With zero gap (default), the search will continue until the entire search 
space is eliminated so that the global optimum is reached.

Default: 0%

Allowed range: 0 to 1

Convergence

The evolutionary solver will stop with status "Solver has converged to the current 
solution" when nearly all members in the current population have very similar fitness 
values. This stopping criteria is satisfied when 99% of the population members all have 
fitness values within Convergence tolerance of each other.

The fitness value is a combination of the objective function value and a penalty for 
constraints still violated. If you think the evolutionary solver is terminating too quickly, 
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you can make this tolerance smaller, but you may also want to increase MutationRate 
or PopulationSize in order to increase the diversity of trial solutions.

Default: 10-4

Allowed range: 0 or 1

Tolerance

If the relative (i.e., percentage) improvement observed during the previous 
MaxTimeNoImp seconds does not exceed this value, then evolutionary solver will 
terminate. See MaxTimeNoImp.

Default: 0

Allowed range: 0 to 1

MaxTimeNoImp

Controls the amount of time (in seconds) that the evolutionary solver is willing to spend 
without making any significant progress. If the relative improvement during this time has 
not exceeded the setting specified by Tolerance, it terminates with status (Solver 
cannot improve the current solution) or (Solver could not find a feasible solution).

Default: 10-5

Allowed range: 10-9 to 10-4

MaxSubProblems: 

Maximum number of subproblems explored by Evolutionary algorithm before 
terminating.

Default: no limit

Allowed range: Positive

MaxFeasibleSolutions

The maximum number of feasible solutions found by the Evolutionary algorithm before 
terminating.

Default: no limit

Allowed range: Positive

MaxIntegerSols

The optimizer will terminate after this many feasible solutions have been found by the 
branch & bound algorithm.

Default: no limit

Allowed range: Positive

Algorithm Selection

Preprocessing
Scaling
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When this is True, the optimizer will attempt to rescale decision variables and 
constraints internally for the Simplex algorithm, which usually leads to be reliable results 
and fewer iterations. A poorly scaled model, in which values of the objective, 
constraints, or intermediate results differ by several orders of magnitude, may result in 
numeric instabilities within the optimizer when scaling is turned off, due to the effects of 
finite precision computer arithmetic.

Default: False

Allowed range: 0 or 1

Presolve

When this is True, the LP/Quadratic engine performs a presolve step to detect singleton 
rows and columns, remove fixed variables and redundant constraints, and tighten 
bounds, prior to applying the Simplex method.

Default: True

Allowed range: 0 or 1

Engine: "LP/Quadratic"

PreProcess

Turns on or off all integer pre-processing. (on by default).

Default: 1

Allowed range: 0 or 1

Engine: "LP/Quadratic"

StrongBranching

This setting applies to integer and mixed-integer problems. When this is on, the 
optimizer estimates the impact of branching on each integer variable of the objective 
function prior to beginning the branch and bound search. It does this by performing a 
few iterations of the Dual Simplex method after fixing each variable. This "experiment" 
provides the search with an estimate of which integer variables are likely to be most 
effective choices during the branch and bound search. Although the time spent in this 
estimation process may be moderately expensive, the cost is often regained many 
times over through a reduction in the number of branch-and-bound iterations that must 
be explored to find an optimal integer solution.

Default: 1

Allowed range: 0 or 1

Engine: "LP/Quadratic"

Debugging
SolveWithout

When this is True, any integer (ctype) constraints are ignored, and the continuous, and 
the continuous version of the problem is solved instead. The effect is the same as 
changing the ctype parameter to ’C’, but may be more convenient in some cases when 
debugging.

Default: True

Allowed range: 0 or 1

IISBounds
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Determines whether vraiable bounds should be included in the infeasibility search 
conducted by LpFindIIS() or LpWriteIIS(). When set to 1, only a subset of 
constraints along the Constraints index is considered. When set to 0, variable bounds 
may be eliminated in order to find an IIS with a greater number of constraints. This 
parameter is only used by FindIIS() when the second optional parameter, newLp, is 
true. When newLp is true, FindIIS() returns a new LP object, from which you can use 
SolverInfo() to access the list of constraints and list of variable bounds present in the 
IIS. When newLp is false, since only a subset of hte constraints index is returned, 
LpFindIIS() relaxes only constraints, leaving variable bounds in tact.

Default: 0

Allowed range: 0 or 1

Numeric Estimation
Derivatives:

The Derivatives setting controls how derivatives are computed. These values are 
possible:

• 1 = forward: This is the default if Jacobian and gradient parameters are not 
supplied. The optimizer estimates derivatives using forward differencing, i.e., 

x( )∂
∂ f x Δ+( ) f x( )–

Δ
-----------------------------------≈

• 2 = central: The optimizer estimates derivatives using central differencing, i.e., 

x∂
∂ f x Δ+( ) f x Δ–( )–

2Δ
--------------------------------------------≈

• 3 = jacobian: The optimizer computes derivatives using the supplied Jacobian 
and gradient expressions. This is the default if these are supplied.

• 4 = check: The optimizer computes derivatives using the supplied Jacobian 
expression and also estimates the Jacobian using finite differencing. If they don’t 
agree to within a small tolerance, the optimization aborts with LpStatusNum() = 67 
(“error in evaluating problem functions”). This option is useful for testing whether the 
Jacobian is accurate.

StepSize:

The step size used to estimate derivatives numerically. This is the  value in the 
estimates listed in the preceding Derivatives description.

Default: 10-6

Allowed range: 10-9 to 10-4

SearchOption:

Controls how the gradient-based search determines the next point to jump to during 
search:

• 0 = Newton: Uses a quasi-Newton method, maintaining an approximate Hessian 
matrix for the reduced gradient function.

• 1 = Conjugate-gradient: Use a conjugate gradient method, which does not 
require the Hessian.

Default: 0

Δ
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Allowed range: 0 or 1

Estimates:

The Estimates setting controls the method used to estimate the initial values for the 
basic decision variables at the beginning of each one-dimensional line search:

• 0 = linear: Uses linear-extrapolation from the line tangent to the reduced 
objective function.

• 1 = quadratic: Extrapolates to the extrema of a quadratic fitted to the reduced 
objective at its current point.

Default: 0

Allowed range: 0 or 1

RecognizeLinear:

When set to 1, the optimizer will attempt to detect automatically decision variables that 
influence the objective and constraints in a linear fashion. It can then save time by pre-
computing partial derivatives for these variables for the rest of the search. This 
aggressive strategy can create problems when a dependence changes dramatically 
throughout the search space, particularly when a decision variable is near linear around 
the starting point, but the gradient changes elsewhere in the search space. When the 
solution is reached, the optimizer will recompute the derivatives and verify them against 
the assumed values. If they do not agree, the status text "The linearity conditions 
required by this solver engine are not satisfied" is returned.

Engine: "GRG Nonlinear"

Default: 0 (select default)

Allowed range: 0 or 1

SOCP Barrier Search
In addition to the many search control settings available of linear programs, covered in the 
previous chapter, a few additional settings can be used to control the search when solving 
quadratically constrained problems using the "SOCP Barrier" engine.

These parameters are set using the parameter and settings parameters to QpDefine(), as 
described for LpDefine() in the previous chapter.

SearchDirection:

Controls the search direction on each iteration of the SOCP Barrier engine. The Power 
Class method is a technique with the long-step barrier algorithm leading to a polynomial 
complexity. The dual scaling method uses HKM (Helmberg, Kojima and Monteiro) dual 
scaling, in which a Newton direction is found from the linearization of a symmetrized 
version of the optimality conditions. Either of these may be further modified by a 
predictor-corrector term.

Default: 0 (off)

Allowed range: 1=Power class, 2=Power class with predictor-corrector, 3=dual scaling, 
or 4=dual scaling with predictor-corrector.

Engine: "SOCP Barrier"

PowerIndex:
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This parameter is used to select a particular search direction when the SearchDirection 
is set to 1 or 2.

Default: 1

Allowed range: Non-negative integer

Engine: "SOCP Barrier"

StepSizeFactor:

The relative step size (between 0 and 1) that the SOCP Barrier engine may take 
towards the constraint boundary at each iteration.

Default: 0.99

Allowed range: 0.00 to 0.99

Engine: "SOCP Barrier"

GapTolerance:

The SOCP Barrier Solver uses a primal-dual method that computes new objective 
values for the primal problem and the dual problem at each iteration. When the gap or 
difference between these two objective values is less than the Gap Tolerance, the 
SOCP Barrier Solver will stop and declare the current solution optimal.

Engine: "SOCP Barrier"

Default: 10-6

Allowed range: 0 to 1

FeasibilityTolerance

The SOCP Barrier engine considers a solution feasible when the constraints are 
satisfied to within this relative tolerance.

Engine: "SOCP Barrier"

Default: 10-6

Allowed range: 0 to 1

Evolutionary Search Controls
PopulationSize:

Controls the population size of candidate solutions maintained by the "Evolutionary" 
engine, or the number of starting points for MultiStart in the "GRG Nonlinear" engine. 
MultiStart has a minimum population size of 10. If you specify 0, or any number smaller 
than 10, then the number of starting points used is 10 times the number of decision 
variables, but no more than 200.

Engine: "GRG Nonlinear", "Evolutionary"

Default: 0 (automatic)

Allowed range: 0, or integer >= 10

MutationRate

The probability that the evolutionary Optimizer engine, on one of its major iterations, will 
attempt to generate a new point by “mutating” or altering one or more decision variable 
values of a current point in the population of candidate solutions..
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Engine: "Evolutionary"

Default: 0.075

Allowed range: 0 to 1

ExtinctionRate

This determines how often the Evolutionary engine throws out its entire population, 
except for the very best candidate solutions, and starts over from scratch.

Engine: "Evolutionary"

Default: 0.5

Allowed range: 0 to 1

RandomSeed:

Both engines utilize a pseudo-random component in their search for an optima. As a 
result, the final result can differ each time an optimization of the exact same problem is 
performed. By setting the random seed, you can ensure that the same sequence of 
pseudo-random numbers is utilized, so that the same result obtains every time the 
same problem is re-evaluated. If you do not specify the random seed, Analytica uses its 
internal random seed, so that when you first load a model and evaluate results in a fixed 
order, you will get a predictable result. Setting RandomSeed to 0 causes the pseudo-
random generated to be seeded using the system clock. Any positive value sets the 
initial seed to a fixed number.

Engine: "GRG Nonlinear", "Evolutionary"

Default: (use Analytica’s random seed)

Allowed range: non-negative integer

Feasibility

When set to 1, the Evolutionary engine will throw out all infeasible points, and keep only 
feasible points in its population. When set to 0, it accepts feasible points in the 
population with a high penalty in the fitness score, which tends to be useful when it has 
a hard time finding feasible points.

Default: 0

Allowed range: 0 or 1

LocalSearch

Selects the local search strategy employed by the Evolutionary engine. In one step, or 
generation, of the algorithm, a possible mutation and a crossover occur, followed by a 
local search in some cases, followed by elimination of unfit members of the population. 
This parameter controls the method used for this local search. The decision for whether 
to apply a local search at a given generation is determined by two tests. First, the 
objective value for the starting point must exceed a certain threshold, and second, the 
point must be sufficiently far from any already identified local extrema. The threshold is 
based on the best objective found so far, but is adjusted dynamically as the search 
proceeds. The distance to local optima threshold is based on distance travelled 
previous times the local optima was reached.

There is a computational trade-off between the amount of time spent in local searches, 
versus the time spent in more global searches. The value of local searches depends on 
the nature of your problem. Roughly speaking, the Randomized method is the least 
expensive, the Gradient method tends to be the most expensive (i.e., with more time 
devoted to local searches rather than global search).



Chapter Control Settings7

 Analytica Optimizer Guide 81

Engine: "Evolutionary"

Default: 0

Allowed Range: 0 to 3 
1 = Randomized Local Search: Generates a small number of new trial points in the 
vicinity of the just-discovered "best" solution. Improved points are accepted into the 
population. 
2 = Deterministic Pattern Search: Uses a deterministic "pattern search" method to seek 
improved points in the vicinity of the just-discovered "best" solution. Does not make use 
of the gradient, and so is effective for non-smooth functions. 
3 = Gradient Local Search: Uses a quasi-Newton gradient descent search to locate an 
improved point to add to the population.

FixNonSmooth

Determines how non-smooth variables (see NlpDefine parameters objNl=’D’ and 
lhsNl=’D’) are handled during the local search step. If set, then only linear and nonlinear 
smooth variables are allowed to vary during the local search. Because gradients often 
exist at most points, even for discontinuous variables, leaving this off can still yield 
useful information in spite of the occasional invalid gradient.

Engine: "Evolutionary"

Default: 0

Allowed Range: 0 or 1

Mixed-Integer Controls

Integer Branch & Bound
IntCutoff

If you can correctly bound the objective function value for the optimal solution in 
advance, this can drastically reduce the computation time for MIP problems, since the 
branch-and-bound algorithm to prune entire branches from the search space without 
having to explore them at all. For a maximization problem, specify a lower bound, and 
for a minimization problem, specify an upper bound. If you specify this parameter, you 
need to be sure that there is an integer solution with an objective value at least this 
good, otherwise the optimizer might skip over, and thus never find, an optimal integer 
solution.

Default: no bounding

UseDual

When true, the LP/Quadratic engine uses the Dual Simplex method, starting from an 
advanced basis, to solve subproblems generated by the branch-and-bound method. 
When false, it uses the Primal Simplex method to solve subproblems. Use of Dual 
Simplex often speeds up the solution of mixed integer problems.

The subproblems of an integer programming problem are based on the relaxation of the 
problem, but have additional or tighter bounds on the variables. The solution of the 
relaxation (or of a more direct “parent” of the current sub problem) provides an 
“advanced basis” which can be used as a starting point for solving the current 
subproblem, potentially in fewer iterations. This basis may not be primal feasible due to 
the additional or tighter bounds on the variables, but it is always dual feasible. Because 
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of this, the Dual Simplex method is usually faster than the Primal Simplex method when 
starting from an advanced basis.

Default: 2

Allowed range:  
1 = Primal

2 = Dual

ProbingFeasibility

Probing is a pre-processing step during which the solver attempts to deduce the values 
for certain binary integer variables based on the settings of others, prior to actually 
solving a subproblem. While solving a mixed-integer problem, probing can be 
performed on each subproblem before running a constrained simplex. As branch-and-
bound fixes one variable to a specific binary value, this may cause the values for other 
binary variables to become determined. In some cases, probing can identify infeasible 
subproblems even before solving them. In certain types of constraint satisfaction 
problems, probing can reduce the number of subproblems by orders of magnitude.

Default: 0

Allowed range: 0 or 1

BoundsImprovement

This strategy attempts to tighten bounds on variables that are not 0-1 or binary 
variables, based on values that have been derived for binary variables, before 
subproblems are solved.

Default: 0

Allowed range: 0 or 1

OptimalityFixing

This strategy attempts to fix the values of binary integer variables before each 
subproblem is solved, based on the signs of coefficients in the objective and 
constraints. As with BoundsImprovement and ProbingFeasibility, this can result in 
faster pruning of branches by the branch & bound search; however, in some cases 
Optimality Fixing can yield incorrect results. Specifically, optimality fixing creates 
incorrect results when the set of inequalities imply an equality constraint. For example, 
if you have a situation where:

Lhs[ Constraints=1 ] = Lhs[ Constraints=2 ]

for all Vars, and your constraints are
Sum( Lhs[Constraint=1] * X, Vars ) <= 10
Sum( Lhs[Constraint=2] * X, Vars ) >= 10

this implies an =10 constraint. You must also watch out for more subtle implied 
equalities, such as where it is possible to deduce the value of a variable from the 
inequalities. Such equalities must be represented explicitly as equalities for 
OptimalityFixing to work correctly.

Default: 0

Allowed range: 0 or 1

PrimalHeuristic

This strategy attempts to discover a feasible integer solution early in the branch & 
bound process by using a heuristic method. The specific heuristic used by the LP 
Simplex solver is one that has been found to be quite effective in the "local search" 
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literature, especially on 0-1 integer programming problems, but which not guaranteed to 
succeed in all cases in finding a feasible integer solution. If the heuristic method 
succeeds, branch & bound starts with a big advantage, allowing it to prune branches 
early. If the heuristic method fails, branch and bound begins as it normally would, but 
with no special advantage, and the time spent with the heuristic method is wasted.

Default: 0

Allowed range: 0 or 1

LocalHeur, RoundingHeur, LocalTree

These strategies look for possible integer solutions in the vicinity of known integer 
solution using a local heuristic ("local search heuristic" or "rounding heuristic"), adjusting 
the values of individual integer variables. As with the PrimalHeuristic, finding an 
integer solution can help improve bounds used by the search, and thus prune off 
portions of the search tree.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

FeasibilityPump

An incumbant finding heuristic used by branch-and-bound to find good incumbants 
quickly.

Engine: "LP/Quadratic"

Default: 1

Allowed range: 0 or 1

GreedyCover

Another incumbant finding heuristic used by branch-and-bound to find good incumbants 
quickly.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

Cut Generation Control
Cut generation options are available for the LP Simplex method and is used when solving 
integer or mixed-integer LP problems.

A cut is an automatically generated constraint that "cuts off" some portion of the feasible 
region of an LP subproblem without eliminating any possible integer solutions. Many differ-
ent cut methods are available each of which are capable of identifying different forms of con-
straints among integer variables that can be leveraged to quickly reduce the feasible set, 
and thus prune the branch-and-bound search tree. However, each of these methods require 
a certain amount of work in order to identify cut opportunities, so that when opportunities are 
not identified, that effort may be wasted. The defaults are set in ways that represent a rea-
sonable trade-off for most problems, but for hard integer problems, you have the ability 
experiment with these to find the best settings for your own problem. You may find that 
some methods are more effective than others on your particular problem.

MaxRootCutPasses
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Controls the maximum number of cut passes carried out immediately after the first LP 
relaxation is solved. This has an effect only if one of the cut method options is on. If this 
is set to a value of -1, the number of passes is determined automatically. The setting 
MaxTreeCutPasses is used for all iterations after the first.

Engine: "LP/Quadratic"

Default: -1 (automatically determined)

Allowed range: -1or more

MaxTreeCutPasses

Controls the maximum number of cut passes carried out at each step of the solution 
process with the exception of the first cycle. This setting is used only if at least one cut 
method is on. Each time a cut is added to a problem, this may produce further 
opportunities for additional cuts, hence cuts can continue to be added until no more cuts 
are possible, or until this maximum bound is reached.

Engine: "LP/Quadratic"

Default: 10

Allowed range: 0 or more

GomoryCuts

Gomory cuts are generated by examining the inverse basis of the optimum solution to a 
previous solved LP relaxation subproblem. The technique is sensitive to numeric 
rounding errors, so when used, it is important that your problem is well-scaled. It is 
recommended that you set the Scaling settings to 1 when using Gomory cuts.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

MaxGomoryCuts

This is the maximum gomory cuts that should be introduced into a given subproblem.

Default: 20

Allowed range: non-negative

GomoryPasses

The number of passes to make over a given subproblem looking for possible Gomory 
cuts. Each time you add a cut, this may present opportunities for new cuts. It is actually 
possible to solve an LP/MIP problem simply by making continual Gomory passes until 
the problem is solved, but typically this is less efficient than branch and bound. 
However, that may be different for different problems.

Default: 1

Allowed range: non-negative

KnapsackCuts

Knapsack cuts are only used with grouped-integer variables (whereas Gomory cuts can 
be used with any integer variable type). These are also called lifted cover inequalities. 
This setting controls whether Knapsack cuts are used.

Engine: "LP/Quadratic"

Default: 0
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Allowed range: 0 or 1

MaxKnapsackCuts

The maximum number of knapsack cuts to introduce into a given subproblem.

Default: 20

Allowed range: non-negative

KnapsackPasses

The number of passes the solver should make over a given subproblem, looking for 
knapsack cuts.

Default: 1

Allowed range: non-negative

ProbingCuts

Controls whether probing cuts are generated. Probing involves setting certain binary 
integer variables to 0 or 1 and deriving values for other binary integer variables, or 
tightening bounds on the constraints.

Engine: "LP/Quadratic"

Default: 1

Allowed range: 0 or 1

OddHoleCuts

Controls whether Odd Hole Cuts (also called Odd Cycle cuts) are generated. This uses 
a method due to Grotschel, Lovasz and Schrijver that apply only to constraints that are 
sums of binary variables.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

MirCuts, TwoMirCuts

Mixed Integer Rounding Cuts and two-mixed integer Rounding Cuts.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

RedSplitCuts

Reduce and Split cuts are a variant of Gomory cuts.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

SOSCuts

Special Ordered Sets refer to constraints consisting of a sum of binary variables equal to 
1. These arise common in certain types of problems. In these constraints, in any 
feasible solution exactly one of the variables in the constraint must be 1, and all the 
others zero, such that only n permutations need to be considered, rather than .2n



Chapter Control Settings

86 Analytica Optimizer Guide

7

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

FlowCoverCuts

Controls whether Flow Cover Cuts are used.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

CliqueCuts

Controls whether Clique cuts may be used, using a method due to Hoffman and 
Padberg. Both row clique cuts and start clique cuts are generated.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

RoundingCuts

A rounding cut is an inequality over all integer variables formed by removing any 
continuous variables, dividing through by the greatest common denominator of the 
coefficients, and rounding down the right hand side.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

LiftAndCoverCuts

Lift and Cover cuts are fairly expensive to compute, but when they can be generated, 
they are often very effective in cutting off portions of the LP feasible region, improving 
the speed of the solution process.

Engine: "LP/Quadratic"

Default: 0

Allowed range: 0 or 1

Coping with Local Optima
MultiStart:

When turned on, the GRG engine restarts at multiple starting points, following the 
gradient from each to its corresponding local optima. Starting points are selected 
randomly between the specified lower and upper variable bounds, and clustered using 
a method called multi-level single linkage. The solver selects a representative point 
from each cluster, and then continues to successively smaller clusters based on the 
likelihood of capturing undiscovered local optima. Best results will be obtained from 
MultiStart when your variable upper and lower bounds are finite with as narrow range 
as possible. If finite bounds are not specified, you must set RequireBounds to 0. 
PopulationSize controls the number of starting points. TopoSearch can be set for a 
more sophisticated method of selecting starting points.
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Engine: "GRG Nonlinear"

Default: 0 (off)

Allowed range: 0 or 1

RequireBounds:

When MultiStart is used to select random starting positions, points between the bounds 
specified for each variable are sampled. If finite bounds on some variables are not 
specified, then MultiStart can still be used, but is likely to be less effective because 
starting value must be selected from an infinite range, which is unlikely to cover all 
possible starting points, and thus is unlikely to find all the local optima. When 
RequireBounds is on, as it is by default, an error results if you have not specified finite 
bounds on variables and have selected the MultiStart method, so as to remind you to 
specify bounds. If you really intend to use Multistart without finite bounds on the 
variables, you must explicitly set RequireBounds to 0. 
 
When using the Evolutionary engine, finite bounds are also important in order to ensure 
a appropriate sampling for an initial population. Although it can still function without 
bounds, the infinite range that must be explored can dramatically slow down amount 
required to find a solution, and thus it is recommended that you always specify finite 
upper and lower bounds when using the Evolutionary engine. If RequireBounds is 1 (the 
default) when no bounds are specified, an error is reported in order to encourage the 
use of bounds.

Engine: "GRG Nonlinear", "Evolutionary"

Default: 1 (on)

Allowed range: 0 or 1

TopoSearch:

TopoSearch is only used when MultiStart is 1. When set to 1, the multistart method 
uses a topographic search method that fits a topographic surface to all previously 
sampled starting points in order to estimate the location of hills and valleys in the search 
space. It then uses this information to find a better starting points. Estimating 
topography takes more computing time, but in some problems that can be more than 
offset from the improvements in each GRG search.

Engine: "GRG Nonlinear"

Default: 0 (off)

Allowed range: 0 or 1

Numeric Tolerance and Precision
ReducedTol

The Optimal or Reduced Cost Tolerance. The Simplex method looks for a variable to 
enter the basis that has a negative reduced cost. Decision variables whose reduced 
cost is less than the negative of this tolerance are candidates for entering the basis 
during the Simplex search. 

Default: 10-5

Allowed range: 10-9 to 10-4
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PivotTol

During the Simplex Algorithm, elements in the solution matrix must have an absolute 
value greater than this value to be candidates for pivoting. 

Default: 10-5

Allowed range: 10-9 to 10-4

Precision

This value specifies how closely the calculated values on the left-hand side of 
constraints must match the right-hand sides in order for the constraint to be satisfied. 
Because of the finite precision arithmetic, a left-hand side that would ideally evaluate to 
7.0 might compute as 6.9999999. With a Precision of 10-6, the constraint A1 >= 7 would 
be considered satisfied in this case.

Default: 10-6

Allowed range: 10-9 to 10-4

PrimalTolerance

The maximum amount by which the constraints can be violated and still considered 
feasible. 

Engine: "LP/Quadratic"

Default: 10-7

Allowed range: 0 to 1

DualTolerance

The maximum amount by which the dual constraints and still considered feasible. 

Engine: "LP/Quadratic"

Default: 10-7

Allowed range: 0 to 1

Unused
There are a few optimizer settings that are not used by the standard engines in Analyti-
caOptimizer, even though they do show up on the list of settings. Some of these are used 
by add-on engines (add-on engines have their own set of additional parameters in general). 

Crashing

IntCutoffHigh, deprecated, used IntCutoff

IntCutoffLow, deprecated, use IntCutoff

PrecisionTol

SolutionAccuracy

SolutionResolution

SolutionTol

VariableReordering



Chapter 8 Debugging Optimization 
Problems

This chapter shows you how to:

• Write a linear or quadratic optimization 
formulation to a file for inspection

• Diagnose Conflicting Constraints

• Debug a Non-Linear Optimization
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Debugging a Problem Formulation

Writing and Reading From a File
A linear or quadratic optimization formulation can be written to (and read from) a text file 
using the functions 

LpWrite() 
LpRead()

LpWrite(lp: LpType ; filename: Text )
LpRead(filename: Text)

LpWrite() returns the full filename path written to. LpRead() returns an <<LP>> or 
<<QP>> object. Viewing the resulting file can sometimes be useful for detecting problems 
with your call to LpDefine() or QpDefine(). These functions cannot be used on a non-lin-
ear optimization. The filename are interpreted relative to the current Analytica data direc-
tory.

Both functions accept an optional parameter:
format : optional text

which accepts the value of "LP", "MPS" or "LPFML". These are standard file formats used 
for exchanging problem specifications between other optimization software.

LpRead() also optionally accepts two indexes:
Vars,Constraints : optional Index

If specified, the length of each of these indexes must match the number of variables and 
number of constraints in the file being read exactly. When they are not specified, local 
indexes are created.

Diagnosing Conflicting Constraints
If you have conflicting constraints in your formulation, there will be no feasible solution. 
When you have many constraints, you can find the conflicting constraints by computing an 
Irreducibly Infeasible Subset (IIS) of constraints using one of the functions

LpFindIIS() 
LpWriteIIS()

LpFindIIS(lp: LpType)
LpWriteIIS(lp: LpType; filename: Text)

An Irreducibly Infeasible Subset of constraints is a subset of your constraints which contains 
no feasible solution, but which has the property that if any single constraint is removed, 
there will be feasible solutions. Thus, it is a minimal set of conflicting constraints.

LpFindIIS() returns a subset of your Constraints index. This can be used on linear con-
straints defined from LpDefine() or QpDefine().

LpWriteIIS() writes the IIS to an indicated file and returns the full file path. This function 
can be used with linear and quadratic optimizations with linear constraints, but not with non-
linear optimization problems. The file format is the same as that used by LpWrite(). An 
optional format parameter of either "LP", "MPS" or "LPFML" can also be included.

When finding an IIS, there is an option of whether to only remove constraints, or whether 
variable bounds can also be removed in order to find an IIS. By removing variable bounds, it 
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may be possible to find an IIS with a larger number of constraints. By default, LpFindIIS() 
removes only constraints, leaving variable bounds alone, which is necessary since a subset 
of the constraints index is returned. To allow variable bounds to be relaxed, you must 
include a second parameter to LpFindIIS():

LpFindIIS( lp, newLp: true )

When this second parameter is included, LpFindIIS() returns a new <<LP>> object - the 
same type of object returned by LpDefine(). The new LP is still infeasible, but using it you 
can examine the reduced set of constraints and reduced set of variable lower and upper 
bounds using these expressions, where lp is the object returned by LpFindIIS():

SolverInfo( "Constraints", lp )
SolverInfo( "lb", lp )
SolverInfo( "ub", lp )

By default, LpWriteIIS() relaxes both variable bounds and constraints. The setting "IIS-
Bounds" can be used to override this behavior for both LpWriteIIS() and LpFindIIS(.., 
newLp:true), see IISBounds in Chapter 7, “Control Settings”.

Debugging a Non-Linear Optimization
After formulating a non-linear problem, you may find that the optimization runs and returns 
something other than what you expect. After viewing the LpStatusText(), it may not be clear 
why it terminated where it did, or why it didn’t succeed in solving your optimization as you 
desire. In these cases, you may need to monitor the optimization while it is searching in 
order to debug why it is doing what it is doing. 

TraceFile The optional parameter to NlpDefine()
TraceFile : optional Text

can be given a filename to write a log of all points visited during the optimization search. 
Written to the file are the values of the decision variables at each evaluation, the value com-
puted for the objective, and the computed jacobian and gradient values if those expressions 
are also provided to NlpDefine(). The file can then be viewed in a text editor such as Text-
Pad or NotePad. The values are tab-separated, so adjusting tab width in your text editor can 
help with readability. Often by studying how the search progressed, it will often become evi-
dent why the optimizer behaving as it is. Once this is understood, this may help to uncover 
errors in your problem formulation, or suggest approaches to improve the search.

Using MsgBox 
to Debug

Another "trick" that is often convenient is to simply peek at what values optimizer is plugging 
in for X in a more interactive fashion while the search is taking place. You can do this by 
inserting a MsgBox inside the expression that computes your objective (or in any node down-
stream of X and upstream of your objective expression). For example, if your objective 
expression is 

obj: Sum(Exp(-a*x), Vars)

you might modify this to read:
obj: MsgBox(x,0,"X="): Sum(Exp(-a*x), Vars)

Then each time the optimizer evaluates the objective, a message box will appear on the 
screen, allowing you to view progress. Seeing the optimizer in action will often give you an 
understanding of what it would take to improve the search.
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There are a few quirks to be aware of when using MsgBox in this fashion. First, the MaxTi-
meNoImp parameter specifies a maximum time the optimizer will work with no improve-
ment in the best feasible solution found so far. Time spent staring at the message box will 
count towards time spent, and may result in an earlier termination. If this happens, you may 
want to explicitly set this parameter in your call to NlpDefine() to something large.

A second quirk is that if you decide to print out multiple pieces of information with a mes-
sage box, you must consider how they will array abstract. MsgBox() prints out a description 
of your entire array result, but its parameter is evaluated before it even considers printing it. 
So, if you call MsgBox() using:

MsgBox("x=" & x)

when x is array-valued, you’ll see something like:

rather than 

X=Array(Vars,[X=0.2,0.5,-0.3])

as you might have expected. If you plan on displaying multiple variables in the same mes-
sage box, consider using expressions such as:

MsgBox("X=[" & JoinText(X, Vars,",") & "]")

which outputs:

You can scatter MsgBox() calls throughout expressions to peek at the optimization at vari-
ous points as it progresses.



Chapter 9 Optimizer Function 
Reference

This chapter lists and defines all the Analytica 
optimization functions.
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Optimization Function Reference

Problem Definition Functions
When defining an optimization problem, we highly recommend using a named-parameter 
syntax, rather than relying on the parameter being the first, second, or third parameter, etc. 
In a named-parameter syntax, you type the parameter name, followed by a colon (:), fol-
lowed by the parameter value. For example:

NlpDefine( X:d, Obj: F(d) )

In the descriptions of LpDefine(), QpDefine() and NlpDefine() that follow, the parame-
ters are shown in a logical grouping, but not in the actual order. We assume you will use 
named-parameter syntax. You can view the full parameter declarations from Analytica, in 
the actual parameter order, by selecting Definition --> Optimizer --> <function> from the 
Analytica menu which viewing an influence diagram with nothing selected.

LpDefine( { Decision variables } 
vars : Index,  
lb, ub: optional Number[vars];  
ctype: optional Text[vars] = ’C’;  
group : optional Number[vars]; 
{ Objective function } 
objCoef: Number[vars];  
maximize: optional Boolean = false;  
{ Constraint specification } 
constraints: Index;  
lhs: Number[vars,vonstraints];  
sense: optional Text[constraints] = ’<=’ ;  
rhs: Number[constraints] ;  
{ Engine settings } 
engine : optional Text ; 
parameter : optional text ; 
setting : optional number ; 
{ deprecated } 
ItLimit, NdLimit, MipLimit, TimeLimit: optional Positive;  
optTolerance, pivotTolerance, feasTolerance, gapTolerance: optional Positive; 
optLb,OptUb, scaling: Optional Numeric )

Defines a linear optimization program. See Chapter 4, “Linear Optimization”, for a descrip-
tion of usage and parameters, and Chapter 7, “Control Settings”, for possible engine set-
tings.

QpDefine({ Decision Variables } 
vars, vars2 : Index ; 
lb,ub: optional Number[vars];  
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ctype: optional Text[vars] = ’C’ ; 
group : optional Number[vars] 
guess: Optional Numeric[vars];  
{ Objective Function } 
c: Numeric[Vars]; Q: Numeric[vars,vars2];  
maximize: Optional Boolean = false;  
{ Constriant specification } 
constraints: Index;  
lhs: optional Number[vars,constraints];  
lhsQ : optional Number[vars,vars2,constraints] ; 
sense: Optional Text[constraints] = ’<=’ ;  
rhs: Number[constraints];  
{ Engine settings } 
engine : optional Text ; 
parameter : optional text ; 
setting : optional number ; 
{ Deprecated } 
warnIndefinite: optional Boolean;  
ItLimit, NdLimit, MipLimit, TimeLimit: optional Positive; 
optTolerance, pivotTolerance, feasTolerance, gapTolerance: optional Positive; 
optLb,OptUb, scaling: optional Numeric )

Defines a quadratic optimization program. See Chapter 5, “Quadratic Optimization”, for a 
description of usage and parameters, and Chapter 7, “Control Settings”, for possible engine 
settings.

NlpDefine({ Decision Variables } 
vars: optional Index ; 
x : LVarType ; { global or local variable } 
lb,ub: optional Number[vars] ;  
ctype: optional Text[vars] = ’C’ ; 
group : optional Number[vars] ; 
guess: Optional Numeric[vars];  
{ Objective Function } 
obj : optional Expression { atomic }; 
maximize: optional Boolean = false ;  
objNl : optional Text[ vars ] = ’N’ ; 
gradient : optional Expression { vars }; 
{ Constraint specification } 
constraints: optional Index ; 
lhs : optional Expression { constraints };  
sense : optional Text [constraints] = ’<=’ ; 
rhs : optional Number[constraints] = 0 ; 
lhsNl = optional Text [ vars, constraints ] = ’N’ ; 
jacobian : optional Expression { constraints, vars } 
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{ Engine settings } 
engine : optional Text ; 
parameter : optional text ; 
setting : optional number ; 
{ Deprecated } 
itLimit, noImpSeconds, timeLimit, convTolerance: optional Positive ; 
mutate: optional Positive;  
linVar: optional Scalar;  
DerivMethod, EstimMethod, DirecMethod: optional Text;  
SampSz: optional Positive)

Defines a non-linear optimization problem. See the Chapter 6, “Non-Linear Optimization”, 
for a description of usage and parameters, and Chapter 7, “Control Settings”, for possible 
engine settings.

Other Functions

LpFindIIS(lp: LpType : newLp : optional boolean)
Computes and returns the Irreducibly Infeasible Subset (IIS) of the constraints. This is 
meaningful when LpStatus(lp)=2 (“no feasible solution”), and is useful for identifying what 
portions of your constraint formulation make the problem infeasible.  
 
When the optional parameter, newLp, is specified, returns a new <<LP>> object having the 
subset of constraints (still infeasible). The components of this object can be accessed using 
SolverInfo().

LpObjSa(lp: LpType; v: Optional)
Returns the sensitivity ranges for the objective function coefficients for a linear program lp 
for decision variable(s) v, which should be one of or a subset of decision variables, Vars. If 
v is omitted, it computes the sensitivity for all Vars.

LpOpt(lp: LpType)
Returns the value of the objective function at the optimum.

LpRead(filename: Text; vars, constraints: optional Index ;  
format : optional Text)

Reads a linear or quadratic program definition from file filename, previously written by 
LpWrite() and returns an opaque <<LP>> or <<QP>> object. The optional Vars and con-
straints are the corresponding indexes for the LP, and must be of the same size as the 
problem read in. The optional format parameter may be "LP" (default), "MPS", or "LPFML" 
to indicate the type of file being read.
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LpReducedCost(lp: LpType)
Returns the reduced costs (dual values) of each variable as an array indexed by Vars.

LpRhsSa(lp: LpType;constraint: Optional)
Returns the sensitivity ranges for the RHS values. The default is to compute sensitivities for 
all RHS values, with the result indexed by Constraints. If you specify the optional second 
parameter, it returns the sensitivity for only that constraint or subset of constraints.

LpShadow(lp: LpType)
Returns the shadow prices (dual values of the constraints) as an array indexed by con-
straints.

LpSlack(lpv)
Returns the slack or surplus values at the optimal solution as an array indexed by con-
straints. If it cannot find an optimal solution, it generates an appropriate error.

LpSolution(lp: LpType)
Returns the optimal solution to the linear, quadratic, or non-linear programming problem lp 
defined by LpDefine(), QpDefine(), or NlpDefine(). The result is an array of decision 
variables indexed by Vars. If it cannot find an optimal solution, LpSolution() returns the 
best values found during the search so far, and LpStatusNum() and LpStatusText() indi-
cate why it has not found an optimal solution.

LpStatusNum(lp: LpType)

LpStatusText(lp: LpType)
Returns the status number as an integer and corresponding text message, respectively, of 
the optimization problem lp. It is wise to examine the status before evaluating LpSolution() 
to avoid an error message.Possible results include:

Status 
Number Status Text

-3 Invalid status.
-2 Ignore status. Used when dummy result code needs to be overridden.
-1 Invalid license status. (License expired, missing, invalid, etc.)
0 Optimal solution has been found.
1 The Solver has converged to the current solution.
2 "No remedies" status. (All remedies failed to find better point.)
3 Iterates limit reached. Indicates an early exit of the algorithm.
4 Optimizing an unbounded objective function.
5 Feasible solution could not be found.
6 Optimization aborted by user. Indicates an early exit of the algorithm.
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Note:The possible status numbers and messages returned in Analytica Optimizer 4.0 
have changed since Analytica 3.1, due to changes in the underlying Frontline 
solver. If you have legacy models that test against specific status numbers, you will 
need to adjust these accordingly.

LpWrite(lp: LpType; filename: Text ; format : optional Text)
Writes a Text description of a linear or quadratic program, lp, defined using LpDefine() or 
QpDefine(), to a file with the specified filename. Note that if lp is an array of LP problems, 
and the filename does not share the same dimension, the file written by LpWrite() will con-
tain the result of only the last lp. 

LpWriteIIS(lp: LpType; filename: Text ; format : optional Text)
Writes an Irreducibly Infeasible Subset (IIS) of a linear or quadratic program to a file, includ-
ing only a subset of constraints that is infeasible, but with the property that if any single con-

7 Invalid linear model. Returned when a linearity assumption renders incorrect.
8 Bad data set status. Returned when a problem data set renders inconsistent. 
9 Float error status. (Internal float error.)

10 Time out status. Returned when the maximum allowed time has been 
exceeded. Indicates an early exit of the algorithm.

11 Memory dearth status. Returned when the system cannot allocate enough 
memory to perform the optimization.

12 Interpretation error. (Parser, Diagnostics, or Executor error.)
13 Fatal API error. (API not responding.)
14 The Solver has found an integer solution within integer tolerance.

15 Branching and bounding node limit reached. Indicates an early exit of the 
algorithm.

16 Branching and bounding maximum number of incumbent points reached. 
Indicates an early exit of the algorithm.

17 Probable global optimum reached. Returned when MSL (Bayesian) global 
optimality test has been satisfied.

18 Missing bounds status. Returned for EV/MSL Require Bounds when bounds 
are missing.

19 Bounds conflict status. Indicates <=, =>, = bounds conflict with existing binary 
or all different constraints.

20
Bounds inconsistency status. Returned when the lower bound value of a 
variable is grater than the upper bound value, i.e. lb[i] > ub[i] for some variable 
bound i.

21 Derivative error. Returned when API_Jacobian has not been able to compute 
gradients.

22 Cone overlap status. Returned when a variable appears in more than one 
cone.

999 Exception occurred status. Returned when an exception has been caught by 
try/catch top-level.

1000 Custom base status. (Base for Solver engine custom results.)

1102 The quadratic constraints are non-convex, the SOCP engine cannot solve this 
problem.

Status 
Number Status Text
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straint is removed, the resulting problem will be feasible. The format is the same as that 
used by LpWrite().

SolverInfo( item : Text ; lp : optional LpType ; engine : optional Text )
Returns general Optimizer information, internals of a specific optimization problem, or infor-
mation about an engine. There are three styles of use.

SolverInfo( item )
Information about the Optimizer. Possible values for item include:

• "AvailEngines" : Returns a list of installed optimizer engines.

SolverInfo( item, lp )
Returns information about an optimization problem definition. Possible values for item 
include the following, where dimensionality of the result is shown in brackets.:

• "type" : Problem type, one of "LP", "QP", "QCP", or "NLP".

• "vars" [vars] : Elements of the vars index, i.e., variable names.

• "lb" [vars]: lower bound for each variable. Indexed by vars.

• "ub" [vars]: upper bound for each variable. Indexed by vars.

• "ctype" [vars]: Integer type for each variable. One of ’C’, ’I’, ’B’, or ’G’. 

• "group" [vars] : Group number for grouped-integer variables.

• "maximize" : 0 for minimization, 1 for maximization problem.

• "objCoef" [vars]: (LP,QP) - objective coefficients.

• "Q" [vars,vars2]: (QP) - objective function quadratic matrix.

• "lhs" [constraints,vars]: (LP,QP) The linear constraint coefficients.

• "lhsQ" [constraints,vars,vars2]: (QP) The quadratic constraint matrices. 

• "sense" [constraints]: One of ’>=’, ’<=’, or ’=’ for each constraint. 

• "rhs" [constraints]: Right hand side coefficient for each constriant.

• "constraintUb" [constraints]: Upper bound for each constraint.

• "constraintLb" [constraints]: Lower bound for each constraint.

• "engine" : The engine name used to solve the problem.

• "setting" [.Parameter] : The engine settings for this problem. The index is a local index, 
whose elements depend on the engine used for the problem.

Solver( item, engine:"engineName")
Returns information about an installed optimizer engine. The items providing engine capabil-
ities are indexed by a local index .ProblemType, which includes [’LP’,’QP’,’QCP’, ’CVX’, 
’NLP’, and ’NSP’].
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The index provides page numbers in which men-
tion of the following occur:

• Topics & terminology

• Optimizer Functions

• Control settings

• Algorithms

• Identifiers appearing in examples

• Example models
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Index
A
Add-on engines

Available engines 5
Installing 5

ADE, see Analytica Decision Engine 
(ADE)
Airline Example 50
Airline NLP.ANA 50, 64
Airline_Nlp 60
Airline_nlp 57
Airline_nlp_mev 62
Algorithm selection 75
AllDifferent, see Decision variables, 
grouped-integer
Altura Software 2
Analytica Decision Engine (ADE) 3
Analytica Optimizer edition 3
Analytica Power Player with Optimizer 
3
Apple Computer 2
Array abstraction 35, 48

In NLPs 54
Restrictions on in NLPs 44
Summary for NLPs 63

Asset Allocation.ANA 41, 42, 64
AvailEngines 67
AvailEngines, see SolverInfo 5
B
Base_demand 51
Beasley, J.E. 9
Binary variables, see Decision variables
Boolean variables, see Decision vari-
ables
Bounds 20
BoundsImprovement 82
Branch-and-bound algorithm 32, 71

Hints 34
Settings 81

C
Carnegie Mellon University 2
Chance variables 56
CliqueCuts 35, 86
Computational complexity 21

Conjugate-gradient search 77
Constraint_parts 15
Constraints 16, 20, 24, 45
Continuous variables, see Decision vari-
ables
Control settings, see Search control set-
tings
Controlling the search 32, 70
Convergence 74
Convex constraints 40
Convex quadratic optimization 21
Convexity 40
Copyright Notice 2
Covariance matrix 41
Crashing 88
Crossover 80
Ctype 14, 49, 50
Cuts 32, 71

Cut generation control 34, 83
Defined 83

CVX 71
D
Debugging

Conflicting constraints 90
Linear optimizations 90
Problem formulations 90

Decision variables 20
Binary (boolean) 21, 49
Bounds 47
Continuous 21
Grouped-integer 49
Integer 21, 49
Mixed-integer 21

Decisions 52
Decisions_by_time 61
Dec_type 53
Defaults 33
Demand_by_year 59
Demand_growth_rate 59
Demand_param 58
Derivatives 77
Determining which engine is used for an 
optimization 70
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Deterministic pattern search 81
Diagnosing conflicting constraints 90
Dimensions 14
Discontinuous dependence 65
Discontinuous optimization problems 
67
Discountinous optimization problems 
65
Domain 49
Dual scaling method 78
Dual Simplex method, see Simplex al-
gorithm
Dual values 97
DualTolerance 88
Dvars 52
Dynamic models 35, 44, 59, 60, 62, 63
E
EigenDecomp 40
Eigenvalues 40
Elasticity1 51
Engine 32, 39, 50, 66, 67

Engines available in Analytica Opti-
mizer 70

Examining available settings 73
Selection 67, 70

Engine capabilities
maximum number of variables and 

constraints 2, 71, 72
viewing with SolverInfo 71

Estimates 78
Evolutionary algorithm 65
Evolutionary engine 50, 67, 70

Settings 79
Evolutionary search controls 79
Examining available settings 73
Example models 9, 14, 41, 42, 50, 64
Expected value, maximizing 55
ExtinctionRate 80
F
Fare 51
Feasibility 80
FeasibilityPump 83
FeasibilityTolerance 79
Fermat’s last theorem 21
Fitness values 74

Fixed_cost 51
FlowCoverCuts 35, 86
Formulating an Optimization Problem 
19
Fractiles, see GetFract
Frontline Systems, Inc. 2, 21
Function Reference 94
G
Gap tolerance 32
GapTolerance 79
Genetic algorithm, see Evolutionary en-
gine
Getfract 55
Giving hints to help the optimizer 65
GoalSeek 46
GomoryCuts 35, 84
GomoryPasses 84
Gradient 44, 54, 64, 77
Gradient local search 81
Gradient-based search 65
GreedyCover 83
Grotschel 85
Group 49
Grouped-integer variables, see Decision 
variables
Guess 39, 40, 66
H
Helmberg, Kojima, Monteiro dual scal-
ing 78
Hessian 40
HKM dual scaling 78
I
IIS, see Irreducibly Infeasible Subset
IISBounds 76, 91
Indefinite matrix 40
Indefiniteness 40
Initial Guess, see Guess
Installing Optimizer add-on Engines, see 
Add-on engines
IntCutoff 34, 81
IntCutoffHigh 88
IntCutoffLow 88
Integer constraints

Hard-integer constraints 50
See also Decision variables, integer
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Soft-integer constraints 50
Integer cut-set procedures, see Cuts
Integer variables, see Decision variables
Intelligent array abstraction 21, 54
Intelligent array abstraction, see also Ar-
ray abstraction
Introduction 1
IntTolerance 34, 74
Irreducibly Infeasible Subset (IIS) 90
IsSampleEvalMode 58
Iterations 34, 74
J
Jacobian 44, 54, 64, 77
K
KnapsackCuts 35, 84
KnapsackPasses 85
KNITRO 5
L
Large scale GRG 5
Large scale LP/QP 5
Large-scale SQP 5
Lb 12, 47
Lb_decisions 53
Left-hand side, see also Lhs
Left-hand size 20
Lhs 12, 24, 45, 48, 54, 64
LhsNl 65
License code

entering in ADE 4
entering in Analytica 3

License for Analytica Optimizer 3
LifeAndCoverCuts 35
LiftAndCoverCuts 86
Linear dependence 65
Linear optimization 24
Linear optimization, see also Linear pro-
grams
Linear programs

Defining 24
Introduction to 9

Local optima 86
LocalHeur 83
LocalSearch 50, 67, 71, 80
LocalTree 83
Lovasz 85

LP 71
LP file format 90, 96
LP, see Linear programs
LP/Quadratic engine 70, 71
LpDefine 11, 24, 32, 35, 94

Core parameters 24
Engines that can be used 70
Variable bounds 25

LpDefine, optional parameters 25
LpFindIIS 77, 90, 96
LPFML file format 90, 96
LpObjSa 96
LpOpt 47, 63, 73, 96
LpRead 90, 96
LpReducedCost 41, 47, 97
LpRhsSa 41, 97
LpShadow 41, 47, 97
LpSlack 41, 47, 97
LpSolution 13, 17, 39, 41, 47, 64, 73, 97
LpStatusNum 39, 40, 41, 47, 66, 77
LpStatusText 13, 17, 41, 47, 64, 73
LpWrite 90
LpWriteIIS 77, 90
Lumina Decision Systems 2
Lumina web site 3
M
MacApp 2
MaxConstraints 71
MaxFeasibleSolutions 75
MaxGomoryCuts 84
Maximize 20, 25, 45, 47
Maximize expected value 55
Maximizing the objective 25
MaxIntegerSols 75
MaxIntVars 71
MaxKnapsackCuts 85
MaxRootCutPasses 34, 83
MaxSetting 33
MaxSubProblems 75
MaxTime 33, 34, 73, 74
MaxTimeNoImp 34, 74, 75, 92
MaxTreeCutPasses 34, 84
MaxVarBounds 71
MaxVars 71
Mean, maximizing 55
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Mines 9
Minimize 20
Minimum surface area 14
Mining_Costs 10
MinSetting 33
MirCuts 35, 85
Mixed-Integer Controls 81
Mixed-integer variables, see Decision 
variables
Monte Carlo 56
MOSEK 5
MPS file format 90, 96
MsgBox 91
Multiple Constraints in NLPs 46
MultiStart 67, 79, 86
MutationRate 79
My_LP 11
N
Name-based calling syntax 12
Negative semi-definiteness 40
Negative-definiteness 40
Newton gradient descent 81
Newton method 77
NLP with Jacobian.ANA 64
NLP, element of ProblemType 71
NLPDefine 59
NlpDefine 14, 16, 45, 48, 50, 63, 65, 70, 
95

Core parameters 45
Engines that can be used 70
Giving hints to the optimizer 65
Optional parameters 47

Non-linear programs
Array abstraction 48
Over time 59, 60, 61, 62
With uncertainty 55

NSP 71
Numeric estimation 77
Numeric precision 87
Numeric tolerance 87
Num_planes 51
O
Obj 45, 48, 54, 64
ObjCoef 24, 35
Objective 20, 38

ObjNl 65
Odd cycle cuts, see OddHoleCuts
OddHoleCuts 35, 85
Optimal can dimensions.ANA 14, 64
Optimal cost tolerance 87
Optimal Methods, Inc. 2
Optimal_dimensions 17
OptimalityFixing 82
Optimization without constraints 46
Optimizer Functions

Browsing 8
Reference 94

Optimizer license, see License for Ana-
lytica Optimizier
OptQuest 5
Ore_Grades 11
Ore_Prod_req 11
Ore_Production 11
Over 48
P
Parameter 72
Parametric analysis 44, 58, 63
Partial derivatives 44
Parts of an optimization problem 20
Pivot 32
PivotTol 35, 88
PopulationSize 79
Portfolio allocation 41
Positive semi-definiteness 40
Positive-definiteness 40

of covariance matrix 41
Power class 78
PowerIndex 78
Precision 35, 87, 88
PrecisionTol 88
Predictor-corrector 78
Premium Solver 2
Preposterior analysis 55
Preposterous analysis 55
PreProcess 76
Preprocessing 34, 75
Presolve 34, 76
Primal Heuristic 34
Primal Simplex method, see Simplex al-
gorithm
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PrimalHeuristic 82
PrimalTolerance 35, 88
Probabilistic optimization 55
ProbingCuts 35, 85
ProbingFeasibility 34, 82
Problems with local optima.ana 65
ProblemType index 71
Profit 51
ProfitFn 56, 60
Q
Q matrix 38
QCP 71
QP 71
QP, see Quadratic programs
QpDefine 38, 41, 78, 94

Engines that can be used 70
QpDefine, optional parameters 39
QpDefine, required parameters 38
Quadratic dependence 65
Quadratic matrices 38
Quadratic programs 38

Defining 38
Obtaining the solution 41
Search control settings 41
Solution properties 40

Quadratic terms 38
Quadratically-constrained problems 38

Engine to use 71
Quadratically-constrained quadratic 
program 38
Quasi-Newton gradient descent 81
Quick Start 8
R
Randomized local search 81
RandomSeed 80
RecognizeLinear 78
RedSplitCuts 35, 85
Reduced cost 97
Reduced cost tolerance 87
ReducedTol 35, 87
Representing Constraints in NLPs 46
RequireBounds 87
Rhs 12, 24, 35, 45
Right-hand side 20

see also Rhs

RoundingCuts 35, 86
RoundingHeur 83
Run 35, 56
Run_context 60
S
Saddle point 40
Scaling 33, 34, 72, 75, 84
Schrijver 85
Search control settings 32, 41

Algorithm selection 75
Cut generation control 83
Debugging 76
Evolutionary search controls 79
Mixed-integer settings 81
Not-used by Analytica Optimizer 88
Numeric estimation 77
Numeric tolerance and precision 87
Settings for coping with local optima 

86
SOCP Barrier search 78
Termination control 74
Viewing 32

Search space 20
SearchDirection 78
SearchOption 77
Seats_per_plane 51
Seats_sold 51
Second-order cone programming 71
Semi-definiteness 40
Sense 12, 20, 25, 47
SetContext 48, 54, 56, 58, 59, 60, 62, 64
Setting 72
Settings 32
Shadow price 97
Simplex 32
Simplex algorithm 32, 71, 81, 87, 88
Simultaneous equations 22
Slack values 97
SOCP Barrier engine 70, 78
SOCP Barrier search 78
Solution tolerance 32
SolutionAccuracy 88
SolutionResolution 88
SolutionTol 88
Solve using NLP.ana 65
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Solver has converged to the current solu-
tion 74
SolverInfo 32, 67, 91

AvailEngines 5, 70
Determining which engine is used 

for an optimization 70
Engine capabilities 71
Examining available settings 73

SolverInfo, viewing control settings 32
SolverSDK.dll 2
SolveWithout 76
Solving Systems of Equations 64
SOSCuts 35, 85
Special Ordered Sets 85
Specifying 32
Specifying control settings 72
Specifying settings 72
StepSize 77
StepSizeFactor 79
StrongBranching 34, 76
Sub-problems 32
Subproblems 81
Surface_area 15
Surplus values 97
T
Termination control 34, 74
The expression for the objective func-
tion in NlpDefine must evaluate to a sin-
gle numeric value during optimization... 
55
Time 59
Time_context 60
Tolerance 34, 35, 75, 87
TopoSearch 87
TraceFile 91
Traveling salesman 21, 49, 65
Traveling salesman.ANA 49, 65
Two Mines.ANA 9
TwoMirCuts 35, 85
Type of dependence 44, 65
Type of optimization 21
U
Ub 12, 47
Ub_decisions 53
Upgrading from Analytica 3.1 3

UseDual 34, 81
V
VariableReordering 88
Variables, see decision variables
Vars 24, 45
Vars2 38
Volume 15
W
What’s new in Analytica Optimizer 4.0 
5
X
X 45
XPRESS 5
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