
Optimizer Guide
Analytica 4.4

19 April, 2012
’

Chapter

ii Analytica Optimizer Guide

1

Copyright Notice
Information in this document is subject to change without notice and does not represent a commitment on the part
of Lumina Decision Systems, Inc. The software program described in this document is provided under a license
agreement. The software may be used or copied, and registration numbers transferred, only in accordance with the
terms of the agreement. It is against the law to copy the software on any medium except as specifically allowed in
the license agreement. No part of this document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or information storage and retrieval systems, for any
purpose other than the licensee's personal use, without the express written consent of Lumina Decision Systems,
Inc.

This document is © 1993-2011 Lumina Decision Systems, Inc. All rights reserved.

The software program described in this document, Analytica, is copyrighted:
© 1982-1991 Carnegie Mellon University
© 1992-2011 Lumina Decision Systems, Inc., all rights reserved.

Analytica was written using MacApp®: © 1985-1996 Apple Computer, Inc.

Analytica incorporates Mac2Win technology, © 1997 Altura Software, Inc.

Analytica incorporates the PCRE library, © 1997-2008, University of Cambridge.

Analytica incorporates the Reprise License Manager libraries licensed from Reprise Software, Inc.

The Analytica® software contains software technology licensed from Carnegie Mellon University exclusively to
Lumina Decision Systems, Inc., and includes software proprietary to Lumina Decision Systems, Inc. The MacApp
software is proprietary to Apple Computer, Inc. The Mac2Win technology is technology to Altura, Inc. Both MacApp
and Mac2Win are licensed to Lumina Decision Systems only for use in combination with the Analytica program.
Neither Lumina nor its Licensors, Carnegie Mellon University, Apple Computer, Inc., and Altura Software, Inc.,
make any warranties whatsoever, either express or implied, regarding the Analytica product, including warranties
with respect to its merchantability or its fitness for any particular purpose.

Lumina Decision Systems is a trademark and Analytica is a registered trademark of Lumina Decision Systems, Inc.

Analytica Optimizer incorporates SolverSDK.dll from Frontline systems, Inc.: Software copyright © 1991-2009 by
Frontline Systems, Inc.
Portions copyright ©1989 by Optimal Methods, Inc.
Portions copyright © 1994 by Software Engines.

Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
Phone: (650) 212-1212
Fax: (650) 240-2230
www.lumina.com

Introduction Introduction

This introduction explains:

• How to use this Optimizer Guide

• What is the Analytica Optimizer?

• How to obtain the Analytica Optimizer

• How to activate the Analytica Optimizer

• How to activate the Analytica Optimizer for ADE

• How to activate high-end add-on Optimizer engines

• What’s new in Analytica Optimizer 4.3 and 4.4

2 Analytica Optimizer Guide

Introduction Introduction What is the Analytica Optimizer?

How to use the Analytica Optimizer Guide
This Guide explains how to use the Analytica Optimizer. It provides a Quick Start Tuto-
rial in Chapter 1 and an introduction to the basic concepts of optimization, including lin-
ear, quadratic, and nonlinear programming in Chapter 2. Special topics for NLPs are
also covered in Chapter 4. But, it's not a complete textbook on optimization. You might
find it useful, especially for more challenging applications, to consult one of the many
good textbooks on optimization.

If you're new to
Analytica

You will find it easier if you first learn the essentials of Analytica before learning the Ana-
lytica Optimizer described here. Start with the Analytica Tutorial to learn the basics of
interacting with Analytica and its modeling language, especially Chapter 5, Working with
Arrays. It's important to have a good understanding of Intelligent Arrays to make good
use of the Optimizer.

If you're new to the
Analytica Optimizer

We suggest you start with Chapter 1, Quick Start, an introductory tutorial that takes you
through the key steps to create a simple optimization. Chapter 2, Optimization charac-
teristics explains the general principles of optimization and the types of optimization,
including Linear Programming (LP), Quadratic Programming (QP), and
Non-Linear Programming (NLP). We also recommend Chapter 3, Optimizing with
Arrays to master optimization with parametric analysis. Chapter 4 explains how to use
optimization in models having dynamic influences and Monte Carlo-based uncertain-
ties.

If you've used
Analytica Optimizer

4.2 or earlier

The 4.3 release of Analytica introduced Structured Optimization, a new set of features
that eliminates many difficult steps previously required for structuring optimizations in
Analytica. For example, it can use a set of decision variables of varying dimensions,
instead of requiring you to combine and flatten them manually. It introduces Constraints
as a new object class. It can discover automatically whether your objective is linear,
quadratic, or nonlinear, and apply the appropriate solver engine --and a whole lot more.

So if you’ve used the Optimizer before, we strongly recommend that you learn about
these new features so you can take full advantage of them. “What’s new in Analytica
Optimizer 4.3 and 4.4” on page 6 and then read Chapter 1, Quick Start, and Chapter 4,
Optimizing with Intelligent Arrays (at least). Even though Analytica 4.4 still supports
functions from releases 4.2 and earlier of Optimizer for backward compatibility, you will
likely want to learn and use the new functions instead.

What is the Analytica Optimizer?
The Optimizer enhances Analytica with powerful functions to find optimal decisions and
to solve equations. Most Optimizer models aim to find a decision strategy — values for
Decision variables — to maximize or minimize a quantified objective subject to a set of
equality or inequality constraints. Some models merely seek a feasible solution that
satisfies a set of constraints without regard to an objective.

Types of Optimization A Linear Program (LP) requires the objective function and constraints to be linear func-
tions of decision variables. Linear programs are solvable using straightforward algo-
rithms that yield unique (global) maximizing or minimizing solutions. Although LP
algorithms are well understood, large scale optimizations can be computationally com-
plex.

When pairs of decision variables are multiplied together, including squared decision
variables, quadratic terms result. A QP is a problem with quadratic terms in the objec-
tive and linear constraints. A generalization of a QP, in which one or more constraints
contains quadratic terms is called a Quadratically Constrained Program (QCP). If the

 Analytica Optimizer Guide 3

Introduction Introduction How do I obtain the Analytica Optimizer?

objective and constraint functions satisfy a mathematical property known as convexity,
QP solutions are always unique (global). Non-convex formulations can result in “local”
solutions that may or may not represent the global optimum.

NonLinear Programming (NLP) imposes no restrictions on the mathematical properties
of objectives and constraints. A wide variety of computational algorithms can be applied
to NonLinear Programs. Strategies include gradient tracking and genetic algorithms that
allow potential solutions to compete within the computation.

With all classes of optimization, Analytica supports variables that are continuous, dis-
crete (integer, Boolean, grouped), or mixture of continuous and discrete decision vari-
ables.

Analytica Optimizer can analyze your objective function and constraints automatically to
discover the type of Optimization and select the appropriate solver engine. See the sec-
tion on the Type parameter of DefineOptimization() for more details on these types of
Optimization.

Premium Solver
Specifications

The standard edition of Analytica Optimizer uses the Premium Solver Platform licensed
from Frontline Systems, Inc. Frontline developed the Optimizer/Solver in Microsoft
Excel, and is the world leader in spreadsheet optimization. The Premium Solver is the
leading add-on software for spreadsheet optimization, and incorporates state-of-the-art
technologies. The LP and QP solver engines that come included with Analytica Opti-
mizer handle up to 8000 variables and 8000 constraints in addition to bounds on the
decision variables. Up to 2000 of these variables may be constrained to be integer-val-
ued for Mixed Integer Programing (MIP). Up to 2000 decision variables of any kind are
supported when quadratic constraints are present. The NLP solvers offer hybrid meth-
ods using classical gradient-search and evolutionary (genetic) algorithms for smooth
and discontinuous objective functions, with up to 500 decision variables and 250 con-
straints. Large scale add-on engines are also available at extra cost that eliminate the
limit on variables and constraints entirely (see).

If your problems exceed these limits, or you need a solver that is even faster, you can
add any of a number of high-end solvers, LP, QP, or NLP, that include some of the most
powerful solver engines available anywhere. See “Installing Optimizer add-on engines”
on page 5 and the Engine parameter of DefineOptimization() on page 76 for details.

Optimize with
uncertain values and

Intelligent Arrays

The Analytica Optimizer performs optimization under uncertainty to maximize expected
values and minimize loss percentiles, as well as other statistical functions of objectives
and constraints. Analytica allows users to combine Intelligent Arrays with all classes of
optimization. Thus, you can easily create arrays of optimizations conditioned on sam-
ples from uncertain variables, for parametric analysis of effects of key assumptions, and
for each time period in a dynamic model.

Compatibility with
other Analytica

editions

The Analytica Optimizer is an edition of Analytica that includes all the functionality of the
Analytica Enterprise edition. After using Analytica Optimizer to create optimizing mod-
els, you can deliver them to end users on the desktop using Analytica Power Player
with Optimizer, or via a web browser on a server using the Analytica Web Player (AWP)
or Analytica Decision Engine (ADE) with an Optimizer license.

How do I obtain the Analytica Optimizer?
You can purchase a license for the Analytica Optimizer or the Analytica Power Player
with Optimizer from Lumina Decision Systems. Or you can purchase an upgrade to
Optimizer if you already have a license for Enterprise or Professional editions.

4 Analytica Optimizer Guide

Introduction Introduction Activating Analytica Optimizer

If your copy of Analytica is for release 4.2 or earlier, you need to upgrade to release 4.3
or later to obtain the newest Optimizer features as described in this manual. Substantial
discounts are available if you have a maintenance agreement for Analytica 4.2
(included free for 12 months from purchase).

For more information:

• Visit the Lumina web site: http://www.lumina.com

• Call Lumina at 650-212-1212

Activating Analytica Optimizer
If you have purchased an individual license of Analytica Optimizer, you will be sent an
Activation Key. This key allows you to retrieve a license specific to your computer and
account from Lumina’s activation server. The license itself is contained in a file, usually
stored in the Analytica installation directory and usually named Analytica.lic. The
term activation refers to the process of obtaining this file.

First time install When you are installing Analytica for the first time, you will run the Analytica installer
program, downloaded from http://www.lumina.com/support/downloads/. If you
have purchased the 64-bit edition, download Ana64Setup.exe, otherwise download
AnaSetup.exe. If you run the installer from your own end-user account (recommended),
then enter the activation key when prompted, and the installer will automatically retrieve
and install your license file over the internet (if you don’t have an internet connection,
see “Manual Activation” below). If a system administrator runs the installer from an
account other than your own end-user account, then leave the activation key field blank,
then after it is installed, log into your own account and follow the instructions for “Previ-
ous edition already installed”.

Previous edition
already installed

If you already have any edition of Analytica 4.4 installed (including Trial), your installa-
tion includes the Optimizer files and there is no need to download new software. To acti-
vate the Optimizer software while you are connected to the internet, you need to enter a
new activation key with the Optimizer option. Follow these steps:

1. Start Analytica in the usual way, e.g., via the Windows Start menu, or by double-
clicking an Analytica model file.

2. From Analytica’s Help menu, select the Update license... option, to show the
Analytica Licensing Information dialog box.

3. Enter the activation key into the License ID box, replacing the license name
currently displayed. As soon as the key is correctly entered, an Activate button
appears to the right. When you press Activate, your license is retrieved over the
internet from an activation server. Your license name will then appear in the License
ID box.

4. Click OK.

5. Exit and restart Analytica.

Manual Activation Automatic activation will fail if you do not have a connection to the internet, or if your
firewalls and proxy servers are configured to prevent Analytica from communicating
with the activation server. In this case, you can obtain the license file through manual
activation. You will need your activation key and the Host ID and User ID that are dis-
played at the bottom of the Analytica Licensing Information dialog from Step 2
above. Enter this information into the form at http://www.lumina.com/sup-
port/activate-analytica/, and the license file will be emailed to you.

 Analytica Optimizer Guide 5

Introduction Introduction Installing Optimizer add-on engines

Floating License If your organization provides you with a floating license to Analytica Optimizer, then
your IT department will provide you with the name (and possibly IP port) of the Reprise
License Manager (RLM) server computer where your IT department will have already
installed and activated a floating license.

Run the Analytica installer as described in “First time install” on page 4, but during the
install, on the License Information page, select Centrally managed license (RLM
License Server) and enter the server host name, or port@host, provided to you.

If you already have Analytica installed, you can also enter this information into the Ana-
lytica License Information by selecting Update License... on the Help menu.

Validating successful
activation

You can verify successful activation of Analytica Optimizer by examining the splash
screen when Analytica starts up, or by going to Help > About Analytica. The splash
screen should display “Analytica Optimizer,” as shown below.

Installing Optimizer add-on engines
You can add on other engines for solving optimization problems. Some engines provide
superior performance on particular classes of optimization problems, and some engines
handle larger numbers of variables or constraints. The following add-on engines are
available:

• Large Scale LP

• Large Scale SQP

• Large Scale GRG

• Gurobi (LP/QP)

6 Analytica Optimizer Guide

Introduction Introduction What’s new in Analytica Optimizer 4.3 and 4.4

• XPRESS (LP/QP)

• MOSEK (cQCP/NLP)

• KNITRO (NLP)

• OptQuest (NSP)

When you purchase an add-on engine license, or obtain an add-on engine trial, Lumina
will provide you with the following items:

• EngineSetup.exe (or EngineSetup64.exe for Analytica 64-bit users), the add-on
engine installer from Frontline Systems.

• The password required by EngineSetup

• The file SolverAddons.lic

• A Lumina activation key.

Installing an add-on engine requires the following steps:

1. Install Analytica Optimizer first, if you have no already done so.

2. Run EngineSetup.exe or EngineSetup64.exe, the add-on engine installation
program. Use EngineSetup64.exe when you are using Analytica 64-bit.

3. The EngineSetup program asks for a password and activation key. The password
will be provided to you by email when you are sent the Engine Setup program. You
can leave this activation key field blank.

4. Start up Analytica and select Update License... from the Help menu.

5. Enter the activation key provided into the License ID box and press the Activate
button.

Validate the activation To test for proper installation, open Analytica, and create a variable defined as follows:
Variable Engines := OptEngineInfo("All","TrialPeriod")

The names of available engines should appear with non-zero values.

What’s new in Analytica Optimizer 4.3 and 4.4
Analytica Optimizer release 4.3 or 4.4 eliminates most of the work in formulating a
model for optimization while offering increased flexibility and power compared to
release 4.2 earlier. This new framework is known as Structured Optimization. Some of
these features are similar to those found in algebraic optimization languages. But in
Analytica, they build on the strengths of Analytica's influence diagrams and Intelligent
Arrays. These core features were introduced in 4.3 and not altered substantially in
release 4.4.

These are the highlights:

• It uses the influence diagram structure of your original model. You no longer
need to reformulate your model for the Optimizer to combine and flatten the
Decisions into a vector of scalar variables. All you need to do is specify which
decision variables you want to optimize. Even if the decision variables are arrays
with differing dimensions, it combines them automatically into a single Decision
Vector to pass to the Solver without you having to think about it.

 Analytica Optimizer Guide 7

Introduction Introduction What’s new in Analytica Optimizer 4.3 and 4.4

• A new function, DefineOptimization(), supports any type of optimization, replacing
the original separate functions LpDefine(), QpDefine() and NLPDefine()1.

• It adds Constraint as a new class of object for optimization, joining the existing
objects: Variable, Decision, Objective, and Chance.

• It is designed to co-exist with parametric analysis and other non-optimized uses of
the model.

• Users can encode Linear, Quadratic, and Non-Linear problems in the same way.

• Objectives and constraints are encoded using Analytica's usual expression syntax
(i.e., variable definitions). Constraints are encoded as comparisons
(<=, >=, =, or Ranges: lb <= x <= ub).

• You can have any number of separate decision nodes and constraint nodes. Each
decision or constraint can be multidimensional, and the dimensionality of each
decision or constraint can be different. No need to flatten, unflatten, or
conconcatenate multidimensional decisions and constraints. It takes care of all that
for you.

• In linear and quadratic cases, it determines the coefficients automatically by
analyzing the Objective function. There is no need for you to separate out the
coefficients. You just use standard Analytica expressions.

• Coefficients for linear and quadratic problems are processed using sparse matrices
of coefficients, enabling the solution of very large (but sparse) LP, QP and QCP
problems.

• It infers whether indexes are intrinsic to the problem or are extrinsic - i.e.should be
array abstracted, with the optimization run separately for each value of the index.
Or you can override the default inference, if you want to control the array
abstraction.

• It greatly expands the richness and flexibility of the Domain attribute for Decision
variables, letting you specify lower and upper bounds, Boolean or Integer type
(grouped integer for Mixed Integer Programming), or even array-valued domains
(where integer type, bounds, etc. vary along one or more indexes).

• It supports Decision variables with explicit Domains - e.g., a lists of labels. It
formulates these as integer-valued NLPs, and automatically manages the mapping
from domain value to the integer used internally by the solver.

• It supports Piecewise-Linear functions (i.e., models that use the LinearInterp
function). This feature automatically converts non-linear curves to an approximate
linear form so that suitable non-linear models can be solved using LP methods.

• It supports semi-continuous variables. These are variables whose value must fall
within given bounds, or may be zero.

• Library functions are provided for copying the solution into the definition of the
decision variables, and for restoring the original definitions. These can be utilized
from button scripts.

• Optimization can be used in conjunction with Analytica’s uncertainty analysis and
Dynamic simulation.

• The names of optimizer functions have been changed to begin with Opt..., whereas
in release 4.2 and earlier these functions begin with Lp... For example,

1. It still supports these legacy functions for compatibility with older models. See the
Analytica Wiki (wiki.lumina.com) for details

8 Analytica Optimizer Guide

Introduction Introduction What’s new in Analytica Optimizer 4.3 and 4.4

OptSolution() replaces the old function LpSolution(), LpStatusText() is now
OptStatusText(), etc. The name change reflects the fact that most these functions
apply to non-LP optimizations equally well. The older functions are now deprecated,
but will continue to function as before.

Chapter 1 Quick Start

This chapter shows you how to:

• Set up a basic NLP optimization model using Decision,
Objective, and Constraint Nodes

• Define the central Optimization node using the
DefineOptimization() function

• Obtain solution output and status

• Specify domain types (i.e., integer, continuous, etc.) and
bounds for decisions

• Combine parametric analysis with optimization

• Change initial guesses for non-convex solution spaces

2 Analytica Optimizer Guide

Introduction Quick Start Introduction to Structured Optimization

Introduction to Structured Optimization
The Analytica Optimizer 4.3 release includes a significant new set of features, collec-
tively called Structured Optimization, designed to simplify the optimization modeling
process. In Structured Optimization format, LP, QP and NLP optimizations can all be
modeled in similar ways.

All types of optimization are specified using the DefineOptimization() function1. The
DefineOptimization() function automatically analyzes your model to determine the type
of optimization and selects the appropriate optimization engine, although you can still
override this process if desired.

Another significant change associated with Structured Optimization is the introduction of
a new object type, the Constraint. Constraint objects give users the ability to specify
constraints, or arrays of constraints, in common expression format using equality or
inequality operators. This intuitive interface allows users to easily integrate different
types of constraints and to organize constraint arrays efficiently.

This chapter includes simple NLP examples to demonstrate the roles of Decision vari-
ables, Constraint objects, Objective variables, and Decision attributes in the Structured
Optimization framework. The same basic structure applies to LP and QP optimizations
as well.

Notation
Throughout this manual, we use a shorthand notation for displaying the definitions of
Analytica objects. An object’s class (e.g., Variable, Decision, Constraint, etc) and identi-
fier is followed by :=, and then the definition is shown, e.g.:.

1. DefineOptimization() supercedes the LPDefine(), QPDefine() and NLPDefine() function that were used
to specify optimizations prior to Analytica 4.2. These functions remain available for backward compatibil-
ity, but are now deprecated.

Constraint Volume_Constraint := Volume >= Required_Volume

Object class Identifier

{
Definition

 Analytica Optimizer Guide 3

Introduction Quick Start The Optimum Can Example

The Optimum Can Example
The Optimum Can example determines the dimensions of a cylindrical object having
minimum surface area for a given volume. Admittedly, this is not a very interesting opti-
mization problem. In fact, the solution can be derived on paper using basic differential
calculus. (Spoiler alert! The optimum can has height equal to twice the radius.) But the
simplicity of the example allows us to focus on the workflow and object relationships
using the new Structured Optimization framework in Analytica.

Decisions
In this example we will decide on the Radius and Height of a cylindrical vessel. We
represent each of these as a Decision variable in the influence diagram. The values we
define for these nodes will be used as initial guesses for optimization types that require
an initial guess (NLP or non-convex QP). Otherwise the definitions of these inputs are
not important. We use 1cm as an initial guess for both the radius and height.

Decision Radius := 1

Decision Height := 1

Constants
Constants have no special interpretation in optimization definitions. They can be used
as usual for values that stay constant in the model. In this example we will use a Con-
stant for the required volume which does not vary in the model.
Constant Required_Volume := 1000

Variables
General variables are used for intermediate values as well as for the central DefineOp-
timization() function described below. We also use a variable to define Volume of the
cylinder.
Variable Volume := pi*Radius^2*Height

Constraints
Constraints contain equalities or inequalities that restrict the range of optimized results.
In this example, we use a constraint object to enforce the minimum volume requirement
on our can.
Constraint Volume_Constraint := (Volume >= Required_Volume)

4 Analytica Optimizer Guide

Introduction Quick Start The Optimum Can Example

Objectives
Most optimizations have an objective value to maximize or minimize. (Some problems
are only concerned with feasible solutions that meet constraints.) In this example we
are minimizing the surface area of our can. We define surface area using an Objective
variable. The can has round disks at the top and base with surface area
(πR2) and a tubular side with surface area (2πRH).
Objective Surface_area :=

2 * (pi * Radius^2) + (2 * pi * Radius * Height)

 Analytica Optimizer Guide 5

Introduction Quick Start The Optimum Can Example

The DefineOptimization() function
The DefineOptimization() function is the key component of all Structured Optimization
models. It brings all other components together, specifying the optimization to be per-
formed. This function is typically placed in a Variable object in the center of our influ-
ence diagram. Although this function includes many optional parameters, we will only
use the core parameters in this example:

• Decision:
Identifier for the decision node (or a list of identifiers separated by commas if there
are multiple decisions). Specify All to include all decision nodes in the model or
All in module to include all desired decisions within a designated module.

• Constraint:
Identifier for the constraint node (or a list of identifiers separated by commas if there
are multiple constraints). Specify All to include all constraint nodes in the model or
All in module to include all desired constraints within a designated module. You
can also specify inequality or equality expressions directly, or omit the parameter
entirely in an unconstrained optimization problem.

• Maximize/Minimize:
Use the words “Maximize” or “Minimize” depending on the type of problem. Follow
this with an expression or with the identifier for the relevant objective node.

We define our Define Optimization node as:
Variable Opt :=

DefineOptimization(

Decisions: Radius, Height,

Constraints: Volume_Constraint,

Minimize: Surface_area)

Viewing the Optimization Object
The DefineOptimization() function evaluates to a special object that contains detailed
information about the optimization. The object appears as a blue hyperlink that shows
the type of optimization problem you have constructed. In this case we see it is «NLP».
You can double-click the optimization object to open a new window revealing internal
details from the optimization engine. Clicking reference objects allows you to drill down
to finer levels of detail. This information is also available by using the
OptInfo() function (See “OptInfo(Opt, "Item", Decision, Constraint, asRef)” on page 81
for more details).

6 Analytica Optimizer Guide

Introduction Quick Start The Optimum Can Example

In this case we have allowed Analytica to automatically determine the type of problem.
Alternatively, you can specify the problem type along with the desired engine and other
settings by adding optional parameters to DefineOptimization(). See the “Optimizer
Function Reference” chapter on page 72 for more details about the Type and Engine
parameters of DefineOptimization().

Obtaining the Solution
Now that we have specified an optimization, how do you compute and view the result?
You may be tempted to re-evaluate the Radius and Height decision variables to see if
their values have changed. But this is not how optimization works in Analytica. Input val-
ues always retain their original definitions. (In this case we simply used 1 as a dummy
value for Radius and Height.) To obtain the solution, you need to create an output node
defined with the OptSolution() function. This function usually uses two parameters:
OptSolution(Opt,Decision)

• Opt: Identifier for the node containing DefineOptimization()

• Decision: Identifier for the counterpart Decision input node

Decision Opt_Radius := OptSolution(Opt, Radius)

Decision Opt_Height := OptSolution(Opt, Height)

The Decision parameter is optional. If it is omitted, the solution will include all decisions
along a local index named .DecisionVector.

 Analytica Optimizer Guide 7

Introduction Quick Start The Optimum Can Example

As expected optimum Height value is twice the Radius.

Obtaining the optimized Objective value
To conveniently evaluate the optimized objective value (the surface area of the solution
can) you can use the OptObjective() function. The only parameter is the identifier for
the Define Optimization node.
Objective Opt_Surface := OptObjective(Opt)

Viewing Optimization Status
To check the status of an optimization, it is convenient to use the OptStatusText() func-
tion. Enter the identifier for the node containing DefineOptimization().
Variable Status := OptStatusText(Opt)

This will reveal a text string describing the status of the optimization result. Status mes-
sages differ according to problem characteristics and the engine being used. In general
these messages indicate whether or not a feasible solution has been found and if so,
whether or not the optimizer was able to converge to a bounded solution. In this exam-
ple status is: “Optimal solution has been found.”

8 Analytica Optimizer Guide

Introduction Quick Start The Optimum Can Example

Copying Optimized Results to Definitions
In some cases, you may wish to copy the optimized decision values into the definition of
the original decisions. With this, the result for variables downstream of the decisions will
reflect their optimal values as well.

You can configure your model to copy optimized results into the original decisions by
adding two buttons to your model. The first button solves for the optimal solution and
copy the optimal values. The second button restores the original (non-optimized) defini-
tion. Functions provided in the Structured Optimization Tool.ana library take care
of the details.

To configure these buttons:

1. With the diagram in focus, select Add Library... from the File menu.

2. Select Structured Optimization Tools.ana and press Open. Select Embed,
OK.

3. Drag a button from the tool bar, title it “Set to Optimal”:

4. Press to edit the button’s Script attribute. Enter: Use_opt_decisions(opt)

5. Drag a second button to the diagram, name it “Restore Defintions” and set its Script
attribute to:

Restore_Decision_Defs(opt)

 Analytica Optimizer Guide 9

Introduction Quick Start The Optimum Can Example

Now we’re ready to try them out.

6. Press to enter browse mode. Press the Set to Optimal button.

7. Open the object window for Radius:

Changing variable types (Domain)
Double-click either Radius or Height to open the Object window for the node. You will
notice pull-down menu for Domain. This attribute specifies the variable type. It is
always visible for decision nodes if you are using the Optimizer edition.

Suppose the factory requires Radius and Height to be integer values in centimeters for
tooling purposes (or maybe just because they don’t like decimals). Change the
Domains of Radius and Height to “Integer” and re-evaluate the solution:

The new solution finds the integer values that come closest to meeting the optimization
criteria.

See the Attribute Reference Chapter for descriptions of all available domains.

Setting bounds on decision values
Suppose the cans must not exceed a 5cm radius in order to meet National Association
for the Advancement of People with Small Hands (NAAPSH) guidelines. One way to set

The definition
has been
filled in with the
optimal value

10 Analytica Optimizer Guide

Introduction Quick Start The Optimum Can Example

this limit would be to add another constraint. But since this restriction applies directly to
one of the decision variables, it is easier to simply set an upper bound on the variable
directly.

Double-click the Radius variable and enter 5 as the upper bound. The updated solution
will describe a thinner can: 5cm in Radius and 13cm in Height.

Bounds and Domains
Some Domain types are not compatible with bounds. If one of these domains is
selected (i.e. Boolean), bounds attributes will not be visible.

Bounds and Feasible Solutions
It is possible to have no feasible solution within the designated bounds. For example if
you restrict Radius to 5cm while restricting Height to 10cm, it will be impossible to pro-
duce a can that meets the minimum volume constraint. The OptStatusText() function
indicates whether or not a feasible solution has been found.

Using Parametric Analysis with Optimization
Before adding optimization to existing models, it is often useful to perform a parametric
analysis to see how variations in decision inputs affect the objective value. If you have
done this, your Decision and Objective variables will include parametric indexes. To
demonstrate this in the Optimum Can example, we can define the Radius to be a
sequence of values that vary parametrically. We then re-define Height such that the
volume of the cylinder remains constant as radius varies:
Variable Radius := Sequence(4.5, 6.5, 0.1)

Variable Height := Required_volume/(pi*Radius^2)

Now you can evaluate the objective Surface_Area to see how it is affected by Radius.

An optimization requires a scalar-valued objective. An array-valued objective usually
implies an array of optimizations, each optimizing an individual element of the objective
array. But parametric indexes are an exception to this rule! If the Objective is an array
over parametric indexes, the indexes are ignored by the optimization. So even though

 Analytica Optimizer Guide 11

Introduction Quick Start The Optimum Can Example

we have an array valued Objective in this example, there is still only one optimization
run.

Parametric analysis is a good way to gain insight into your model. The Structured Opti-
mization framework is designed so that it will not be confused by this.

The Initial Guess attribute
LP and convex QP problems do not rely on initial guesses and always yield globally
optimal solutions. But in NLP and non-convex QP problems it is not always possible to
guarantee that a solution found by the optimizer is a global optimum. It might be merely
a “local” optimum within the solution space. Optimization methods for these problems
use an initial guess from which to start the search for a solution. The particular solution
the optimizer returns may depend on the starting point.

Normally, Analytica uses the defined value of the Decision variables as the initial guess.
In the Optimum Can example, we initially defined Radius and Height as 1. If a decision
variable is defined using a parametric index, Analytica uses the first element of the
parametric array as the initial guess.

You can change the initial guess without re-defining the decision variable using the
Initial Guess attribute in the Decision node. We can demonstrate this using the Polyno-
mial NLP.ana example where the objective is a non-convex curve with local maxima.

The Initial Guess attribute is hidden by default. To make it visible in Decision nodes:

• Select Attributes... from the Object menu.

• Toggle a check box next to Initial Guess.

The attribute will now be visible in the Object windows of all Decision variables.

The polynomial curve in this model is designed to have several critical points.

12 Analytica Optimizer Guide

Introduction Quick Start The Optimum Can Example

Decision X := 0 (or any value at all)
Initial Guess of X := [-4, 2, 0, 2, 4]

Objective Polynomial :=

1+X/6-X^2/2+X^4/24-X^6/720+X^8/40320-X^10/3628800

Variable Opt := DefineOptimization(

Decision: X,

Maximize: Polynomial)

Variable X_solution := OptSolution(Opt,X)

Objective Max_Objective := OptObjective(Opt)

The array of initial guesses will cause Analytica to abstract over the index and perform
multiple optimizations.

We see that the result depends on the initial guess for this non-convex NLP.

If the array of guesses were entered as a definition for the decision variable instead of
as an initial guess attribute, Analytica would interpret it as a parametric index and apply
only one initial guess. (See subsection above.) Therefore it is necessary to use the Ini-
tial Guess parameter if you want to perform multiple optimizations using an array of
guesses.

Note:Finding multiple different local extrema in this fashion can be a useful way to
locate multiple solutions of interest. One often needs to combine unmodeled
factors with insight and results obtained from a model, so these other solutions
may turn out to be more interesting for reasons that you have not modeled.

Note:When your interest is in finding just the global optima, there are additional
methods for dealing with the problem of local optima. The Multistart and
topological search options can be utilized with gradient-based methods (see
“Coping with local optima” on page 104). The “Evolutionary” and “OptQuest”
engines use population-based search methods that are more robust to local
optima.

 Analytica Optimizer Guide 13

Introduction Quick Start Chapter Summary

Chapter Summary
The Optimum Can example demonstrates the basic workflow of Structured Optimization
in Analytica. It includes input Decision variables, a Constraint object, an Objective vari-
able, intermediate Variables and the central DefineOptimization() function.

The DefineOptimization() function recognizes the non-linear characteristics of the
Optimum Can model and classifies it as an NLP. The function evaluates as a special
object containing details about the optimization.

The Domain attributes in Decisions allow you set variable type and bounds.

Structured Optimization is compatible with a decision variable defined as a parametri-
cally varying sequence.

If the Initial Guess attribute is kept hidden or left blank, Analytica will use the defined
value of the decision variable as an initial guess. Users can override this value or enter
an array of initial guesses by using the Initial Guess attribute in Decision nodes. This
attribute is hidden by default but can be made visible when necessary.

14 Analytica Optimizer Guide

Introduction Quick Start Chapter Summary

Chapter 2 Optimization
characteristics

This chapter shows you:

• The different types of optimization problems

• How to recognize different types of optimization problems

• How to recognize problems that have continuous, discrete, or
mixed variables

• How to optimize when solving simultaneous equations

16 Analytica Optimizer Guide

Chapter Optimization characteristics2 Parts of an optimization problem: General Description

Introduction
Although the material in this chapter is not specific to Analytica, it should give users a
foundation of knowledge sufficient to understand the basic characteristics of an optimi-
zation problem and to understand the mathematical characteristics that define different
optimization types.

Parts of an optimization problem: General Description
The first step in performing an optimization is to formulate the problem appropriately. An
optimization problem is defined by four parts: a set of decision variables, an objective
function, bounds on the decision variables, and constraints. The formulation looks like
this.

Decision variables A vector (one-dimensional array) of the variables whose values we
can change to find an optimal solution. A solution is a set of values assigned to these
decision variables.

Objective A function of the decision variables that gives a single number evaluating a solu-
tion. By default, the Optimizer tries to find the value of the decision variables that mini-
mizes the value of objective. If you set the optional parameter Maximize to True, it
instead tries to maximize the objective. For a linear program (LP), the objective is
defined by a set of coefficients or weights that apply to the decision variables. For a
nonlinear program (NLP), the objective can be any expression or variable that depends
on the decision variables.

Bounds A range on the decision variables, defining what values are
allowed. These bounds define the set of possible solutions, called the search space.
Each decision variable can have a lower bound and/or an upper bound. If not specified,
the lower and upper bounds are -INF and +INF — that is, there are no bounds.

Constraints The constraints, e.g., , are bounds on functions of the decision variables.
They define which solutions are feasible.

Given

such that

and

x x1 x2 … xn, , ,〈 〉=

minimize f x()

lbi xi ubi,≤ ≤ i 1..n=

g1 x() b1≤

g2 x() b2≤

…
gm x() bm≤

Decision

Objective

Bounds

Constraints

variables

x x1 x2 … xn, , ,〈 〉=

f x()

lbi xi ubi,≤ ≤ i 1..n=

g1 x() b1≤

 Analytica Optimizer Guide 17

Identifying the type of optimizationChapter Optimization characteristics2

Identifying the type of optimization
A critical issue in formulating an optimization problem is determining whether it is linear,
quadratic, or nonlinear. Although Analytica can automatically determine class of optimi-
zation, it is important for the user should have a basic understanding of what these
classes mean.

For a linear program (LP), the objective must be a linear function of the decision vari-
ables. For a quadratic program (QP), the objective is a quadratic function and the con-
straints must be linear functions of the decision variables. For a quadratically
constrained program (QCP), the objective and constraints must all be linear or qua-
dratic functions of decision variables. The problem is a nonlinear program (NLP) if the
objective or any of the constraints are nonquadratic in any of the decision variables.

Linear and convex quadratic optimization problems are often relatively fast to compute.
But general nonlinear optimization is a computationally difficult problem. Many of the
most famous and notoriously difficult computation problems can be cast as optimization
programs, from the traveling salesman to the solution (or non-solution) of Fermat’s last
“theorem.” It is, therefore, unreasonable to expect the Optimizer engine to succeed on
any possible nonlinear problem you can formulate. While the Frontline Solver engine
used in the Analytica Optimizer is among the best of the general-purpose optimization
engines available, success with hard optimization problems depends on your ability to
formulate the problem effectively, provide appropriate hints for the Optimizer, and adjust
the search control settings.

There are often several ways to formulate the same problem. Linear and quadratic for-
mulations are faster and more flexible, so it is worth careful thought to see if it is possi-
ble to reformulate a nonlinear optimization into a linear or quadratic optimization. Often
a simple transformation, combination, or disaggregation of the decision variables can
turn an apparently nonlinear problem into a linear or quadratic problem.

Specific Optimization Characteristics
The general description of optimization problems on page 16 applied to all problem
types. The following sections offer more specific mathematical descriptions for each
type of optimization:

Parts of a Linear Program (LP)
A linear optimization problem has the following standard formulation.

In this standard form, all decision variables, xi, are real-valued and unconstrained, rang-
ing from -INF to +INF (to).

Minimize c1 x1 + c2 x2+ … + cn xn

such that:
a11 x1 + a12 x2 + … + a1n xn <= b1
…
am1 x1 + am2 x2 + … + amn xn <= bm

Objective

Constraints

Objective coefficients

∞– ∞

18 Analytica Optimizer Guide

Chapter Optimization characteristics2 Specific Optimization Characteristics

Linear programs generally solve quickly, although large models can be computationally
complex. Solutions to linear problems always represent a global maximum or minimum.
This means that you always be assured of finding the absolute optimum solution.

Parts of a Quadratic Program (QP)
A quadratic program has the following standard formulation:

The objective and constraint left-hand sides are written here in matrix notation. The con-
straints are the same as they were in the LP formulation, and differ here only by the fact
that they appear here in matrix notation. The term is the linear part of the objec-
tive, and the is the quadratic part of the objective,which is specified by the
matrix . denotes the vector transpose of the decision variables.

Parts of a Quadratically Constrained Program (QCP)
The general form for a quadratically constrained quadratic program is:

This formulation augments the pure quadratic program by adding quadratic terms to the
constraints. It may be the case that most constraints are linear, so that the matrices
for those constraints are not present (or 0), but if even a single constraint is quadratic,
the problem is classified as a QCP..

The quadratic terms, i.e., in the objective and in the constraint are speci-
fied by the matrices , where is the number of decision
variables and is the number of constraints, and denotes the vector transpose of
the decision variables.

Minimize

such that:

...

c x xTQx+⋅

a1 x⋅ b1≤

am x⋅ bm≤

Objective function

Constraints

c x⋅
xTQx n n×

Q xT

Minimize

such that:

...

c x xTQx+⋅

a1 x xTQ̂1x+⋅ b1≤

am x xTQ̂mx+⋅ bm≤

Objective function

Constraints

Q̂i

xTQx xTQ̂ix
n n× Q Q1

ˆ Q2
ˆ … Q̂m, , , , n

m xT

 Analytica Optimizer Guide 19

Continuous, integer, and mixed-integer programsChapter Optimization characteristics2

Parts of a Non-Linear Program (NLP)
The basic formulation for a nonlinear optimization is

where is a vector denoting the n-dimensional candidate solution.

A nonlinear program (NLP) is the most general formulation for an optimization. The
objective and the constraints can be arbitrary functions of the decision variables, contin-
uous or discontinuous. This generality comes at the price of longer computation times,
and less precision than linear and quadratic programs (LP and QP). There is also the
possibility with smooth NLPs that the Optimizer will return a local optimum that is not the
global optimum solution. In general, it is hard to prove whether a solution is globally
optimal or not. For these reasons, it is better to reformulate nonlinear problems as linear
or quadratic when possible.

When a model is linear, quadratic, or quadratically constrained, DefineOptimization()
analyzes the model and all the definitions contained within, and determines the coeffi-
cients for the objective and each constraint. Solver engines are able to apply special
algorithms to these coefficient matrices, and avoid repeated evaluations and finite dif-
ferencing of your model. However, once your problem is non-linear, the solver engines
must repeatedly re-evaluate your model, often multiple times around a single search
point in order to estimate gradients. All the engine can infer about the search space are
the results of these evaluations. Hence, a solver of a non-linear problem has less infor-
mation to work with, and thus has a much more difficult task to perform.

Continuous, integer, and mixed-integer programs
Each decision variable can be specified as continuous, meaning it is a real number
(between bounds if specified), as semi-continuous (a real number with bounds, or
zero), as integer, meaning a whole number, as binary or Boolean, meaning its values
can be True (1) or False (0), as a member of an integer group, where each member of
the group must have a different integer value, or as one of a finite set of explicit dis-
crete categorical labels. Optimization problems are classified as continuous, meaning
the decision variables are all continuous; integer, meaning they are all integer, binary,
or group variables; or mixed-integer if they are a mixture of continuous, semi-continu-
ous, integer, binary, group, or discrete variables. In this naming convention, binary or
Boolean variables are treated as integer variables. The Optimizer engine uses these
distinctions to select which algorithms to use.

Solving simultaneous equations
The Optimizer first attempts to find a feasible solution. If found, it then attempts to opti-
mize within the set of feasible solutions. Thus, solving a set of simultaneous equations
is a special case of the optimization problem, where each constraint has a sense of =,

 such that minimize f x()

g1 x() b1≤

g2 x() b2≤

…
gm x() bm≤

objective function

constraints

x

20 Analytica Optimizer Guide

Chapter Optimization characteristics2 Solving simultaneous equations

the objective is irrelevant (unless you want to express a preference among feasible
solutions), and any feasible solution is a solution to the system of equations.

Chapter 3 Optimizing with Arrays

This chapter shows you how to:

• Optimize using Decision and Constraint arrays

• Identify indexes that are intrinsic to the optimization

• Enter intrinsic arrays in Intrinsic Indexes lists

• Use Analytica’s Intelligent Array logic to set up multiple
optimizations

• Refine a model by changing dimensions of the decision array

22 Analytica Optimizer Guide

Chapter Optimizing with Arrays3

Arrays in optimization models and Array abstraction
Arrays in Optimization Problems
The textbook description of LP, QP and NLP formulations in the previous chapter
depicted the set of decision variables as a one-dimensional vector, along with a linear
vector of constraints. However, array-valued variables and array-valued constraints
arise naturally in many optimization problems, and it is often more natural and conve-
nient to formulate specific decision variables as multi-dimensional arrays, with dimen-
sionality differing from decision to decision.

Structured optimization allows you to easily define array-valued decision variables,
using the dimensionality that is natural to your problem. Additionally, since the variables
appearing in a constraint expression may themselves be array-valued when computed,
a single inequality expression may expand to be a multi-dimensional array of scalar
constraints. Internally, structured optimization takes care of flattening and concatenating
all these decision and constraint arrays for solution by the underlying solver engine so
that you don’t have to worry about it.

Array Abstraction
As experienced users know, array abstraction is an important feature of Analytica. Array
abstraction allows an index to be added to the input of a computation, such that the
original computation is carried out repeatedly for each new input value without having to
alter the original computation. Array abstraction in Analytica is a univeral concept that
derives its power from the fact that it applies at every level, from simple expressions all
the way up to entire models.

Optimization models are no different. If we have a submodel that solves an optimization
problem, we can vary the set of inputs across a new index and repeat the optimization
repeatedly for a set of scenario combinations. Thus, array abstraction gives rise to
arrays of optimization problems.

A necessary distinction comes about
Analytica with its Structured Optimization feature therefore provides both the ability to
incorporate arrays within an optimization, as well as array abstract to obtain arrays of
optimizations. This leads to a distinction, in which we can describe indexes as being
either intrinsic or extrinsic. Intrinsic indexes lead to arrays within an optimization prob-
lem, while extrinsic indexes lead to arrays of optimizations.

An intrinsic index is what other optimization environments would simply call an index. It
makes all of its elements available to the optimizer during a single optimization run.

An extrinsic index is available for array abstraction in Analytica. If you start with model
that performs a single optimization, and then add a new dimension to one of the input
variables, Analytica will generally treat the new index as extrinsic and abstract over it.
You will now have an array of optimizations corresponding to each element of the extrin-
sic index.

The inherent support for both types of arrays is a key differentiator of Analytica’s Struc-
tured Optimization. In this chapter we explain how to control array handling in Analytica
and work through a detailed example that handles indexes in both ways.

Tip Readers who are not already familiar with the basic concepts of array abstraction will
benefit from reading Tutorial Chapter 5 and User Guide Chapter 12.

 Analytica Optimizer Guide 23

Chapter Optimizing with Arrays3

Narrative Examples
Here are some narrative examples to help clarify what it means for an optimization to
handle an index intrinsically or extrinsically:

Breakfast of Champions
Suppose you have a model that decides on the best breakfast for you to eat every day
of the wrestling season. Your objective is to win as many matches as possible. The
model has an index of Days since there will be a breakfast for each day.

Extrinsic Decision
Index

If the Days index is treated extrinsically, the model will perform a separate optimization
for each day. If you have a match on a particular day, the model will probably advise you
to eat a hearty breakfast to fuel your victory. On rest days, there is no match to win so
the model won’t care what you eat. Each optimization is completely oblivious of the
existence of any day other than the one it is considering. In this scenario you will proba-
bly win your early matches but you also risk gaining weight and getting bumped up to a
heavier class later in the season. The total number of matches you win throughout the
season will not necessarily be optimized. If fact, it would be impossible for your model to
optimize any objective that spans more than a single day.

Intrinsic Decision
Index

If the Days index in intrinsic, the model will perform a single optimization that outputs
your entire breakfast schedule for the season. The intrinsic character of the index is
clear when you consider that each element of the array can influence outcomes across
the entire index of Days.

Beer Distribution
Intrinsic Constraint

Index
This chapter includes a detailed LP example in which there are multiple breweries ship-
ping to multiple regions. Each brewery has a maximum capacity limit, and each region
has a minimum demand to be met. In the example, we express capacity constraints for
all breweries as one-dimensional array in the Supply Constraint node, using Brewery
as the index for the array. We have a similar array of Demand constraints using Region
as the index. The key to the problem is that all constraints must hold simultaneously for
the solution to work. Therefore, Brewery and Region are intrinsic indexes. If they were
extrinsic instead, we would have an array of optimizations; one for each combination of
Brewery and Region. Each optimization would consider a scenario where only a single
combination of constraints would apply. For example, “What if the Fairfield brewery is
limited to 600k cases of beer, and the Western region must receive at least 500k, but no
other supply or demand constraints apply?” Answering a series of these strange ques-
tions would not be useful to us.

Extrinsic Index: To demonstrate the role of an extrinsic index in the Beer Distribution example, we imag-
ine that regional beer demand will depend on the winner of the World Series. The index
titled World Series Winner includes two mutually exclusive scenarios for which we want
to perform separate optimizations. This is an example of an extrinsic index available for
array abstraction. While searching for the optimum beer distribution solution for a partic-
ular scenario, it is not necessary for the optimizer to know that the other scenario exists.

Tip If you are not sure about the status of an index in an optimization, ask “Does the
optimizer need to consider every element of this index simultaneously in order to find the
correct solution?” If the answer is YES, the index is intrinsic to the optimization.

24 Analytica Optimizer Guide

Chapter Optimizing with Arrays3

Setting the Intrinsic Index Attribute
Decision and Constraint nodes contain a special attribute called Intrinsic Indexes.
Populating this list will ensure that Analytica Optimizer interprets the array as intended.
The process is similar to the way you identify indexes when defining a table.

To see how this works, create a new Decision or Constraint node and double-click it to
open the Object Window. Press the Indexes button next to Intrinsic Indexes. This
opens the index selection window. Select from the indexes list on the left and press the
transfer button to move them to the Selected Indexes window on the right. Click OK.

Analytica inferd Intrinsic Indexes
You can leave the Intrinsic Indexes attribute unspecified in either decisions and con-
straints, in which case DefineOptimization() infers the intrinsic indexes from the prob-
lem formulation. Whenever your intention is different from what these heuristics infer,
you will need to specify the intrinsic indexes explicitly. An indexes that appear only in
Constraints, but not in any Decision, is inherently ambiguous, and usually results in a
meaningful (but different) optimization problem whether it is intrinsic or extrinsic. Analyt-
ica will assume such indexes are extrinsic, so if you want them to be intrinsic you must
specify them explicitly in the Constraint’s intrinsic indexes attribute.

Tip It is good practice to always populate Intrinsic Index lists in all Decisions and
Constraints used in an optimization problem.

Extrinsic Indexes
Whenever the optimizer does not need to consider the index as a whole --as when con-
sidering only a single index element-- the index is extrinsic to the optimization. If a solu-
tion array has an extrinsic dimension it displays the results of multiple independent
optimization runs along the extrinsic dimension. This is simply the concept of array
abstraction applied to optimizations.

Extrinsic by omission Extrinsic indexes are never explicitly specified — an index is extrinsic when it is present
but not intrinsic. The intrinsic indexes attribute for a Decision variable is inclusive and
exhaustive, which means that every index listed is always included as an intrinsic index,
and only those listed are intrinsic indexes of the decision. The intrinsic indexes attribute

 Analytica Optimizer Guide 25

Chapter Optimizing with Arrays3

of a constraint is inclusive but not exhaustive. Any index listed there will become an
intrinsic index for the constraint, but if other indexes are present that are already intrin-
sic elsewhere in the optimization, they too will be intrinsic to the constraint. The non-
exhaustive nature of the intrinsic index specification allows optimization models to array
abstract consistently.

What if all dimensions
of an array are
extrinsic?

In some cases you may want to explicitly tell the optimizer that all indexes of the Deci-
sion are extrinsic. This means that you intend for the optimizer to treat the Decision as a
scalar value. To do this, Open the Intrinsic Indexes attribute and click OK without
selecting any indexes. Analytica displays a dialog box asking you to confirm whether
you want to designate the array as Scalar or leave the list Unspecified.

26 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 1: Beer Distribution LP, Base Case

Example 1: Beer Distribution LP, Base Case
Model Description We start with an adaptation of a classic Linear Programming (LP) example: A large

brewing company operates five breweries nationwide. Each brewery distributes product
among four regions. Routes include all combinations of Breweries and Market regions.
The challenge is to find the shipping pattern that minimizes distribution cost while
a) meeting demand in each region, and b) observing production limits at each brewery.
We assume that distribution cost per case of beer is proportional to the distance
between the brewery and the region.

Setting up the Model
To explore and follow this example in Analytica, find the Beer Distribution LP 1.ana
model in the Optimizer Examples folder.

Brewery and Market
(indexes)

There are five Breweries and four Market regions:
Index Brewery :=

['Fairfield','Fort Collins','Jacksonville','Merrimack','St Louis']

Index Market := ['North','South','East','West']

Distance
(input array)

Distance between breweries and markets is represented as a table dimensioned by
Brewery and Market. Units are thousands of miles:
Variable Distance :=

Table(Brewery,Market)(1.8,2.2,3.4,0.1,0.3,1.2,2.4,1,2.9,1.8,0.6,3.3,
1.2,2.1,0.2,3.5,0.5,1.1,0.8,2.5)

Freight Price
(input scalar value)

Freight Price is a simple scalar value of $5 per 1,000 miles per case of beer.
Variable Freight_price := 5

 Analytica Optimizer Guide 27

Example 1: Beer Distribution LP, Base CaseChapter Optimizing with Arrays3

Production Limits
(input array)

Production Limits indicate maximum capacity for each brewery in cases of beer:
Variable Production_limits :=

Table(Brewery)(600K,250K,450K,300K,240K)

Delivery Targets
(input array)

Delivery Targets indicate the minimum quota that each Market region must receive:
Variable Delivery_target := Table(Market)(240K,280K,700K,500K)

Distribution Cost
(intermediate array)

Distribution Cost per Case is Freight Price multiplied by Distance:
Variable Dist_per_case := Freight_price * Distance

Shipment Quantities
(input decision array)

The input decision array represents Shipment Quantities from each brewery to each
region. It is a two-dimensional array indexed by Brewery and Market. The non-opti-
mized values are not used anywhere else in the model so we can simply insert 1 as a
dummy value across the array.
(Initial guesses do not apply since this is a Linear Program.)

Units are cases of beer.

Staying Positive We set the Lower Bound attribute to zero to disallow negative shipping values, along
with the undesirable implication of turning perfectly good beer back into barley and
hops.

Set Brewery and
Market as intrinsic

indexes

Finally and perhaps most importantly, we consider the index status for this array. The
optimized solution should be in the same form as this table. It should also be integrated
such that every array element has simultaneous influence over all other elements.
Brewery and Market are both intrinsic indexes in this case.

28 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 1: Beer Distribution LP, Base Case

Decision Shipment_Quantity := Array([Brewery, Market],1)

Shipment_Quantity attribute Lower Bound := 0

Shipment_Quantity attribute Intrinsic Indexes := [Brewery, Market]

Total Distribution
(Objective)

Our goal is to minimize the total distribution cost. For each route, distribution cost is the
Distribution Cost per Case multiplied by the Shipment Quantity for each route. The
final objective is the sum for all routes:
Objective Total_dist_cost :=

Sum(Shipment_Quantity * Dist_per_case, Brewery, Market)

Summing over Brewery and Market makes the objective a scalar value. This is a nec-
essary condition for the optimization.

Tip Every minimizing or maximizing optimization is based on a scalar objective value. In
other words, intrinsic dimensions are not allowed in the Objective. If the Objective is not
scalar, Analytica assumes the dimensions are extrinsic and performs independent
optimizations for each scalar element in the Objective array.

(For some optimization problems, the challenge is simply to find a solution that satisfies
all constraints. This type of optimization has no objective at all.)

Supply Constraint The Supply Constraint ensures that shipment quantities from a single brewery to all
available markets do not exceed the production limit for the brewery.

The Production Limit array is already dimensioned by Brewery. Since this array is an
input to Supply Constraint, we expect Brewery to be a dimension of Supply Con-
straint as well, even though we don’t explicitly mention the index in the defining expres-
sion. This is the basic principle of array abstraction in Analytica.

The Supply Constraint array actually defines five constraints; one for each Brewery.

 Analytica Optimizer Guide 29

Example 1: Beer Distribution LP, Base CaseChapter Optimizing with Arrays3

Set Brewery as an
intrinsic index

Is Brewery an intrinsic index for the Supply Constraint array? The answer is YES
because we need to enforce the respective Supply Constraints on all breweries simulta-
neously. Make sure to include Brewery in the Intrinsic Indexes list for the Supply Con-
straint node.
Constraint Supply_constraint :=

Sum(Shipment_Quantity, Market)<=Production_Limits

Supply_constraint attribute Intrinsic Indexes := [Brewery]

Is Market an intrinsic index for the Supply Constraint? The answer is NO because
Market is not a dimension of the array at all. The Sum() function eliminates it, leaving
the array with only one dimension.

Demand Constraint The Demand Constraint ensures that each market region receives a total quantity
from all breweries greater than or equal to the market demand. The input array Delivery
Targets is dimensioned by Market, and therefore the Demand Constraint will also
have this dimension.

The Demand Constraint array defines four constraints; one for each Market.

Set Market as an
intrinsic index

Market is an intrinsic index for the Demand Constraint because the solution should
meet quotas for all markets. Make sure to include Market in the Intrinsic Indexes list for
the Demand Constraint node.

Constraint Demand_constraint :=
Sum(Shipment_Quantity, Brewery) >= Delivery_Target

Demand_constraint attribute Intrinsic Indexes := [Market]

The Sum() function eliminates Brewery from the array.

Optimization Node Remembering required attributes of the DefineOptimization() function as described in
Chapter 1, we need to identify Decisions, Constraints, and the Objective to be mini-
mized/maximized.
Variable Optimization := DefineOptimization

(Decision:Shipment_Quantity,
Constraints:Supply_Constraint, Demand_Constraint,
Minimize: Total_Dist_Cost)

Solution Node We obtain the solution using the OptSolution() function. The first parameter identifies
the optimization node. The second parameter (optional) identifies a specific Decision for
which the solution should be represented.
Decision Optimized_Solution :=

OptSolution(Optimization, Shipment_Quantity)

Optimized Objective The OptObjective() function calculates the minimized or maximized quantity. In this
case, it represents the total distribution cost.
Variable Optimized_Objective := OptObjective(Optimization)

Status Status text will confirm that the optimizer has found a solution
Variable Status := OptStatusText(Optimization)

30 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 1: Beer Distribution LP, Base Case

Verifying the Optimization Setup
Evaluate the
Optimization node

It is always a good idea to evaluate the Optimization node to confirm that the optimiza-
tion is interpreting your problem as intended. The DefineOptimization() function evalu-
ates as a special symbol, or array of symbols, indicating the type of optimization
problem presented. In this case, «LP» confirms that this is a Linear Program as
expected. Furthermore, the result shows only a single «LP» symbol. This confirms that
the solution is the result of a single optimization run.

Evaluate Status The OptStatusText() function confirms that the optimizer has found a feasible solution
satisfying all constraints.

 Analytica Optimizer Guide 31

Example 1: Beer Distribution LP, Base CaseChapter Optimizing with Arrays3

Checking the Result
Optimized Solution as
an Array

Evaluate the Optimized Solution array to check the final result.

In this example we used the optional second parameter of the OptSolution() function to
reference the Shipment Quantities array. This formats the output to match the same
dimensions as the Decision input array. It is a two-dimensional table indexed by Market
and Brewery.

Optimized Solution as
a List

If you omit the second parameter of OptSolution(), Analytica creates a local index called
.DecisionVector and presents the result as a one-dimensional array. You can experi-
ment with this output format by removing the second parameter from the OptSolution()
function.
Variable Optimized_solution := OptSolution(Optimization)

.

Summary: Basic Beer Distribution LP
The basic beer distribution example demonstrates a simple Linear Program with a two-
dimensional decision array. There are two one-dimensional Constraint arrays, each
over a different index. The model has only two indexes overall: Brewery and Market.
Both indexes are intrinsic to the optimization. The example does not include any extrin-
sic indexes.

32 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 2: Beer Distribution with Added Scenario

Example 2: Beer Distribution with Added Scenario
Model Description Let’s assume that beer demand in Western and Southern markets will depend on the

winner of the 2010 World Series. Notwithstanding those inclined to drown their sorrows,
we assume that people in the winning market will drink more, while those in the losing
market will drink less.

To show this in the model, we add a new index titled World Series Winner and add this
new dimension to the Delivery Targets array. Then we edit the values in the array to
reflect the new assumptions. No other adjustments are necessary.

Combining Optimization with Intelligent Arrays
Now that the model is clear on which indexes are intrinsic, you are free to add extrinsic
indexes and rely on Analytica’s Intelligent Array abstraction features just as you would
in any other situation. In this example we add a new dimension that propagates from
optimization inputs all the way to the solution array, driving multiple optimization runs
along the way. This demonstrates how easy it is to combine optimization with Analyt-
ica’s Intelligent Arrays.

Setting Up the Model
To explore and follow this example in Analytica, find the Beer Distribution LP 2.ana
model in the Optimizer Examples folder. In this section we start with the model from
Example 1, detailing changes only.

World Series Winner Add a new index for the World Series Winner
Index World_Series_Winner :=

[‘Giants win World Series’, ‘Rangers win World Series’]

Edit Delivery Targets
Array

To add this new index to the Delivery Targets array, open the edit table and press the
Index selection button in the upper left corner. Add World Series Winner to the list of
indexes for this array.

 Analytica Optimizer Guide 33

Example 2: Beer Distribution with Added ScenarioChapter Optimizing with Arrays3

Edit the two-dimensional table to match the values shown here:

Variable Delivery_Targets := Table(Market,World_Series_Winner)
(240K, 240K ,230K, 330K ,700K, 700K ,550K, 450K)

34 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 2: Beer Distribution with Added Scenario

Verifying the Optimization Setup
Evaluate the
Optimization node
and check status

The DefineOptimization() function now evaluates to an array, telling you that the opti-
mizer is performing independent optimizations for each World Series scenario.

The status text reports the status of each optimization individually.

Checking the result
Evaluate the Optimized Solution array to check the solution.

The result is a three-dimensional array including both intrinsic and extrinsic dimen-
sions.You can pivot the output to any desired configuration.

 Analytica Optimizer Guide 35

Example 3: Beer Distribution with Limited RoutesChapter Optimizing with Arrays3

Summary: Beer Distribution LP with Added Scenario
In this example, we started with the basic model and added a new dimension to the
Delivery Targets input array. According to the basic rules of array abstraction, Analyt-
ica adds the new dimension to all arrays influenced by Delivery Targets. These include
Demand Constraint, Optimization, Optimized Solution, Optimized Objective and
Status values. Adding an extrinsic dimension to the Optimization node drives separate
optimization runs for each element of the extrinsic array.

The solution output combines intrinsic and extrinsic dimensions, representing them all
in a combined array. In this example, the dimensions of the solution array are Brewery,
Market, and World Series Winner.

Example 3: Beer Distribution with Limited Routes
Model Description In the previous examples, we allowed all five Breweries to ship to all four Markets, pre-

senting twenty possible routes. In this example we confine the shipments to ten chosen
routes and disallow the rest. Such restrictions can be cumbersome in some optimizing
environments. In Analytica, it is a simple matter of changing the dimension of the deci-
sion array.

Setting Up the Model
To explore and follow this example in Analytica, find the Beer Distribution LP 3.ana
model in the Optimizer Examples folder. In this section we start with the model from
Example 2, detailing changes only.

Create a Route Index First we create an index of approved routes. These are specific combinations of
Brewery and Market.

Index Route :=
['Fairfield North','Fairfield South','Fairfield West',
'Fort Collins North','Fort Collins South',
'Jacksonvile East',
'Merrimack North','Merrimack East',
'St Louis North','St Louis East']

36 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 3: Beer Distribution with Limited Routes

Re-define the
Decision input array

In previous examples we defined the Decision input as a two-dimensional array. In this
example we re-define it to be a one-dimensional array along the index of approved
routes. Once again, we can insert a dummy value of 1 for the non-optimized quantities
since they are not used anywhere else in the model.

Edit the Intrinsic
Indexes list

Make sure to also edit the Intrinsic Indexes list. Remove Brewery and Market, and add
Route to the list.
Variable Shipment_Quantity := Array(Route, 1)

Shipment_Quantity attribute Intrinsic Indexes := [Route]

Re-define the
Objective and its

inputs

The Objective representing Total Distribution Cost should now sum over the Route
index instead of Brewery and Market.
Objective Total_Dist_Cost := Sum(Shipment_Quantity * Dist_per_case,

Route)

All inputs to Total Distribution Cost should be also dimensioned by Route. We re-
define the Distance array using corresponding values from the original table.
Variable Distance :=

Table(Route)(1.8,2.2,0.1,0.3,1.2,0.6,1.2,0.2,0.5,0.8)

Original Distance
Array

Re-defined
Distance Array

 Analytica Optimizer Guide 37

Example 3: Beer Distribution with Limited RoutesChapter Optimizing with Arrays3

Creating Index Maps Constraint arrays do not change indexes in the new model. Production Limits still
apply to Breweries, and Delivery Targets still apply to Markets. But the Shipment
Quantities array no longer contains these indexes. To solve this dilemma, we start by
making index maps relating the Route index to Brewery and Market. An index map is a
one-dimensional array that associates a coarse index with a fine index. The map uses
the fine index as its dimension and lists corresponding elements of the coarse index.

Create a new variable titled Route / Brewery map.
Variable Route_Brewery_map := Table(Route)

('Fairfield', 'Fairfield', 'Fairfield',
'Fort Collins', 'Fort Collins',
'Jacksonville',
'Merrimack', 'Merrimack',
'St Louis', 'St Louis')

Create a new variable titled Route / Market map.
Variable Route_Market_map :=Table(Route)

('North','South','West','North','South',
'East','North','East','North','East')

Using Aggregate() The Aggregate() function can use these maps to create aggregated sums. This allows
us to convert Shipment Quantities from the fine index (Route) to the coarse target
indexes (Brewery or Market).

The basic syntax of the Aggregate() Function is:
Aggregate(input_array, map, fine_index, target_index)

38 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Example 3: Beer Distribution with Limited Routes

Aggregate Shipment
Quantities

Now we can create suitable inputs for the Constraint nodes.

Create a new variable titled Total Shipments from Breweries
Variable Ship_from_Brewery :=

Aggregate(Shipment_Quantity, Route_Brewery_map, Route, Brewery)

Create a new variable titled Total Shipments to Markets
Variable Ship_to_Market :=

Aggregate(Shipment_Quantity, Route_Market_map, Route, Market)

You can evaluate the aggregated arrays to verify that they represent Shipment Quanti-
ties aggregated by Brewery and Market. Input Quantities are 1 for each Route, so
these aggregated sums represent the number of routes associated with each Brewery
or Market.

Edit Constraint Inputs Edit the Supply Constraint to use Total Shipments from Breweries as an input.
Brewery is still an intrinsic index for this node.
Constraint Supply_Constraint := Ship_from_brewery<=Production_Limits

Supply Constraint attribute Intrinsic Indexes := [Brewery]

Edit the Demand Constraint to use Total Shipments to Markets as an input. Market
is still an intrinsic index for this node.
Constraint Demand_Constraint := Ship_to_market >= Delivery_Target

Demand Constraint attribute Intrinsic Indexes := [Market]

Checking the Result
Evaluate the Optimized Solution array to see the result for the limited route example.
This is now a two-dimensional array indexed by the intrinsic Route index and the extrin-
sic World Series Winner index.

 Analytica Optimizer Guide 39

Example 3: Beer Distribution with Limited RoutesChapter Optimizing with Arrays3

40 Analytica Optimizer Guide

Chapter Optimizing with Arrays3 Chapter Summary

Chapter Summary
This chapter presented an overview of how to use arrays in optimization problems. We
used three examples to demonstrate the differences between intrinsic and extrinsic
indexes in optimization arrays.

The Intrinsic Index attribute in Decision and Constraint arrays controls how the opti-
mizer interprets arrays. The optimizer incorporates intrinsic arrays into the optimization
while leaving extrinsic arrays eligible for array abstration outside the optimization.

In the first example, the input Decision and Constraint arrays had intrinsic
dimensions. A single optimization run incorporated all elements of the intrinsic
indexes simultaneously.

In the second example we added an extrinsic dimension to the model. Analytica
propagated this new dimension through the model according to the usual principles
of array abstraction. As a result, the optimizer performed independent optimization
runs for each element of the new index. The Optimized Solution array displayed the
combined results as a single array having both intrinsic and extrinsic dimensions.

In the third example, we restricted the solution space by substituting a new index for
the input Decision and Objective arrays. We aggregated decision quantities using
index maps in order to apply constraints.

Chapter 4 Key Concepts:
The Airline NLP example

This chapter shows you how to:

• Apply parametric variations to Variable and Decision nodes in
optimizations

• Use a parametric array of Initial Guesses

• Combine uncertainty with optimization using

• Fractile or Average Stochastic method (FAST)

• Multiple Optimizations of Separate Samples (MOSS)
method

• Optimize using reduced objectives

• Use Time as an intrinsic or extrinsic index

• Understand special characteristics of NLPs

• Improve efficiency of NLPs using the SetContext parameter of
DefineOptimization()

• Plane an Optimization inside a Dynamic Loop

42 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 NLP Characteristics

Concepts covered in the Airline NLP example
The Airline NLP demonstrates a set of key concepts that Analytica Optimizer modelers
should be familiar with. Although it includes some topics that apply only to NLP models,
each module includes content that is relevant to all optimization types.

Before reading this chapter, you should already be familiar with the basic parameters of
DefineOptimization() and OptSolution() functions (Chapter 1 on page 5-7), and roles
of intrinsic and extrinsic indexes in optimization (Chapter 3 of this guide).

Additionally, Modules 3 and 4 of the Airline NLP example assume familiarity with Monte
Carlo simulation and Probability Distributions (User Guide Chapter 16). Module 7
assumes familiarity with the Dynamic() function (User Guide Chapter 18)

Topics relevant to all optimization types (LP, QP, and NLP) are:

• Module 1: Setting up basic Airline NLP example

• Module 2: Parametric Analysis

• Combining uncertainty with optimization:

• Module 3: Optimizing on Fractiles or Averages Stochastically (FAST)

• Module 4: Multiple Optimizations of Separate Samples (MOSS) method

• Module 5: Abstracted objectives; example of Time as an extrinsic index

• Module 6: Intrinsic decision arrays; example of Time as an intrinsic index

Embedded topics relevant only to Non-Linear Problems (NLPs) are:

• Improving efficiency using context variables (Modules 4 and 5)

• Module 7: Embedding an NLP inside a dynamic loop

NLP Characteristics
The Airline model is an example of a Non-Linear Program (NLP), the most general for-
mulation for an optimization. In this type of optimization, the objective and the con-
straints can be arbitrary functions of the decision variables, continuous or
discontinuous. This generality comes at the price of longer computation times, and less
precision than linear and quadratic programs (LP and QP). There is also the possibility
with smooth NLPs that the Optimizer will return a local optimum that is not the global
optimum solution. In general, it is hard to prove whether a solution is globally optimal or
not. For these reasons, it is better to reformulate nonlinear problems as linear or qua-
dratic when possible.

Searching rather than solving
Algorithms for solving Linear Programs (LP) and Quadratic programs (QP) operate
directly on arrays of coefficients for linear and quadratic terms. Once Analytica deduces
these coefficients from your model, the problem is solved by the underlying engine with-
out further interaction with your Analytica model. But NLP optimizations work differently.
While an NLP is being solved, your model is being repeatedly evaluated at each search
point. The search begins with an Initial Guess for the decision variables. Once the initial
guess is established, the optimizer will calculate the corresponding objective quantity
according to the structure of the model. For smooth models, the optimizer uses gradi-

 Analytica Optimizer Guide 43

NLP CharacteristicsChapter Key Concepts: The Airline NLP example4

ents and Jacobians (determined through finite differencing) to decide which decision
values to use for the next guess. The iterative process continues until the gradient is
within minimums (signaling a local or global optimum) or until time or iteration limits are
reached.

Initial Guesses in NLPs
Since NLP methods cannot guarantee a global optimum, the solution may depend on
the initial guess for decisions. Normally, Analytica evaluates the defined quantities in
decision nodes and uses these values for initial guesses. You can optionally override
the defined value using the Initial Guess attribute (see “The Initial Guess attribute” on
page 11 and “Initial Guess” on page 68 for details about overriding initial guesses).

Improving efficiency by identifying Context Variables
As the Optimizer repeatedly assigns different values to the decision variables, it
requires Analytica to repeatedly evaluate the objective function and all intermediate
variables. In special cases where the optimization contains extrinsic indexes, the inter-
mediate variables may be arrays that contain more slices of data than the optimization
needs. This is a situation where Analytica’s efficiency with arrays can actually slow
down NLP solution searches. The DefineOptimization() function has an optional
parameter to remedy this: SetContext. Understanding which variables to designate as
context variables is key to making sure that NLPs are running as fast as possible in
Analytica. We develop this important concept in Module 4 of the example.

44 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Airline NLP Module 1: Base Case

Airline NLP Module 1: Base Case
You can navigate to the Airline NLP example starting in the directory in which Analytica
is installed.

Example Models/Optimizer Examples/Airline NLP.ana

The goal is to determine optimum ticket fare and the number of planes to operate such
that the airline can achieve the highest profit possible.

Decisions are Fare and the Number of Planes. Since this is an NLP, the values we use
to define these decisions will be used as initial guesses in the optimization. Fare will be
a continuous variable with lower and upper bounds. Number of Planes will be an Inte-
ger value with lower and upper bounds.

Decision Fare := 200

Domain of Fare := Continuous(100,400)

Decision Number_of_Planes := 3

Domain of Number_of_Planes := Integer(1,5)

First we assume a base level of demand in passenger-trips per year assuming a base
fare of $200 per trip.

Variable Base_Demand := 400k

Actual demand will vary by price according to market demand elasticity.
Variable Elasticity := 3

Variable Demand := Base_Demand*(Fare/200)^(-Elacticity)

Each plane holds 200 passengers. We assume each plane makes two trips per day,
360 days per year.

Variable Seats_per_plane := 200

Variable Annual_Capacity := Number_of_Planes*Seats_per_Plane*360*2

Annual seats sold is limited either by capacity or by passenger demand.
Variable Seats_Sold := Min([Demand, Annual_Capacity])

We assume annual fixed cost per plane and variable cost per passenger.
Variable Fixed_cost := 15M

Variable Var_cost := 30

The objective, Profit, is the difference between revenue and cost
Objective Profit := Seats_sold * (Fare - Var_cost)

- Number_of_Planes * Fixed_cost

Finally we create the optimization node and solution quantities.
Variable Opt := DefineOptimization(

Decisions: Number_of_Planes, Fare
Maximize: Profit)

Decision Optimal_Fare := OptSolution(Opt, Fare)

Decision Optimal_Planes := OptSolution(Opt, Number_of_Planes)

Objective Optimal_Profit := OptObjective(Opt)

Variable Opt_Status := OptStatusText(Opt)

.

 Analytica Optimizer Guide 45

Airline NLP Module 1: Base CaseChapter Key Concepts: The Airline NLP example4

The solution yields an optimal fare of $195 with three planes in service

46 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Using parametric analysis: Airline NLP Module 2

Using parametric analysis: Airline NLP Module 2
It is often useful to vary the input values of a model to see how the changes affect
downstream variables. In optimization problems, we are primarily concerned with the
objective value. Analytica’s Structured Optimization also makes it easy for you to see
how parametric variations affect objectives and optimization results.

Analytica Optimizer treats parametric variations on Variables and Decisions differently.

Parametric variations in input Variables
Applying Parametric variations to input Variables causes Analytica to abstract over the
parametric index. This allows you to see how parametric variations affect the Objective
value as well as the optimization result.

To see this, start with the Module 1 Base Case and apply parametric variations to Base
Demand.

Variable Base_Demand := [200k,400k,600k,800k,1M]

Evaluate Profit to see how this variation affects the pre-optimized objective value.
(This value applies the original Decision inputs: Fare = 200, Number of Planes = 3)

We see that profit levels saturate when planes reach full capacity. The transition hap-
pens somewhere between 400k and 600k values for Base Capacity, assuming original
Decision values.

Now evaluate the solution variables:

Analytica abstracts the parametric index on Base Demand so that we have separate
optimization runs for each element. Indexes abstracted over optimizations are called
extrinsic. Here we see that the airline can make a profit in all Base Demand scenarios

 Analytica Optimizer Guide 47

Using parametric analysis: Airline NLP Module 2Chapter Key Concepts: The Airline NLP example4

after making the right adjustments to Fare and Number of Planes. Higher demand
always leads to higher profit. For the lowest Base Demand scenario, a successful strat-
egy is to raise the fare and save cost by operating only one plane.

Parametric variations in Decisions
Applying parametric variations to Decisions will NOT cause array abstraction on the
optimization. But you can still see how parametric variations on Decisions affect the
Objective.

Apply parametric variation to Fare:
Decision Fare := [180,190,200,210,220]

Evaluate Profit to see how this variation affects the pre-optimized objective value.
(This value applies the parametric inputs for Fare, and the original Decision value for
Number of Planes: 3)

The new Objective array shows the result of both variations. When Base Demand is
low, a lower fare is best. When Base Demand is 600k or above, the higher fares are
favored.

Because Fare is a Decision, its parametric index is ignored by the optimization. We
expect the optimization results to have the same dimensions as before:

The dimensions are the same. The result is similar but not identical. Notice that the
solution for the 800k Base Demand scenario has changed since we applied parametric
variation to Fare. Why did this occur?

This demonstrates an unavoidable characteristic of NLPs: Due to the existence of
locally optimum solutions, the solution may depend on the initial guess. Analytica uses
the first element of a parametric series as the initial guess. By adding a parametric
index on Fare, we effectively changed the initial guess from $200 to $180.

48 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Using parametric analysis: Airline NLP Module 2

If you enter the parametric variation on Fare as an Initial Guess attribute of the Decision
node, Analytica will abstract over the index and run separate optimizations for each ini-
tial guess value.

If the Initial Guess attribute is not already visible, select Attributes from the Object menu
and toggle a check box next to Initial Guess. The attribute will now be visible in the
Object window.

Initial Guess of Fare := [180,190,200,210,220]

There are only slight differences in the optimal Profit achieved. The original of guess of
Fare = 200 is never inferior in this case.

The tendency toward locally optimal solutions is a characteristic of the optimization
engine alone. Analytica is designed to make all aspects of modeling as transparent as
possible. This is especially important for optimization. In a spreadsheet environment
using the same engine, the same optimization characteristics would apply but they
would be more difficult to explore. Premium NLP engines available on Analytica include
sophisticated algorithms to increase the likelihood of finding globally optimum solutions.

 Analytica Optimizer Guide 49

Optimizing with UncertaintyChapter Key Concepts: The Airline NLP example4

Optimizing with Uncertainty
Analytica uses Monte Carlo simulation to analyze uncertain quantities. Probability distri-
butions are represented as sample arrays that include the system index Run. Each ele-
ment of the Run index represents a sample of possible values for uncertain quantities,
according to the chosen probability distribution. As an array dimension, Run propagates
through the model in the same way as any other index. How can uncertain quantities be
combined with optimization and how should we interpret results of uncertain optimiza-
tions?

There are two basic approaches to combining uncertainty with optimization in Analytica.
The appropriate approach depends on whether the decision maker must commit before
or after the uncertainty is resolved. These lead to a Monte Carlo simulation within a sin-
gle optimization (the Stochastic approach) or an optimization within each Monte Carlo
scenario (the preposterior approach). For convenience we label these FAST and
MOSS, respectively.

1. Optimize on Fractiles or Averages Stochastically (FAST)

Reduce the Run index in the Objective and Constraints by using summary statistics.
In the Airline example, Module 3, we maximize the expected value of the objective:
Mean(Profit). This collapses the Run dimension so that there is a scalar objective,
and hence only one optimization. Fractile statistics are also commonly used instead
of expected value. You can summarize the Objective as the median (50% fractile)
or any other fractile value using the GetFract() function. For example, a constraint
might require the 5% fractile for Profit to be greater than a certain value.
In any case, it is important to reduce the Run index in the Objective as well as all
Constraints when performing Stochastic Optimization.

2. Multiple Optimizations of Separate Samples (MOSS)
Treat Run as an extrinsic index, abstracting it over the optimization. The result is a
Monte Carlo sample of solutions. Each solution represents optimum decisions
corresponding to the input values of an individual Monte Carlo sample. The MOSS
method establishes the range of decision values that should be considered given
the uncertainty. But it assumes that the actual decision will be made a posteriori, or
after the uncertainty is resolved.

Even though Analytica’s Intelligent Arrays make setting up MOSS optimizations
much easier than in other environments, the method remains computationally
intensive on all platforms. The sheer number of optimizations (equal to the sample
size) may prevent the computational stone from rolling along as fast as you would
like it to. It is always important to choose the correct sample size when using the
MOSS method. For NLPs, you should also avoid unnecessary computation by
identifying context variables. (See next section).

50 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Optimizing with Uncertainty

Module 3: Stochastic Optimization (FAST)
Starting with the Module 1 Base Case, suppose that Base Demand and Elasticity are
uncertain quantities described by triangular distributions:

Chance Base_Demand := Triangular(300k, 400k, 500k)

Chance Elasticity := Triangular(300k, 400k, 500k)

Create a new Objective for the expected value of Profit. Use this as the objective for
the optimization.

Objective Mean_Profit := Mean(Profit)

Variable Opt := DefineOptimization(
Decisions: Number_of_Planes, Fare,
Maximize: Mean_Profit)

Analytica allows you to adjust the sample size (the size of the Run index). For new mod-
els the default is 100. For the Airline NLP example, we only use 10. Select Uncertainty
Options from the Result menu and enter 10 for the sample size.

This result represents the decision values that yield the highest expected value for
Profit. It would be appropriate to implement these values if the uncertainty cannot be
resolved before the decision is made, and if maximizing expected value of Profit is your
goal. The values differ only slightly from the Base Case.

 Analytica Optimizer Guide 51

Optimizing with UncertaintyChapter Key Concepts: The Airline NLP example4

Module 4: Multiple Optimizations of Separate Samples (MOSS)
If you evaluate the Profit Objective from Module 3 (not the mean of Profit) and view
in Sample mode, you’ll see that it’s an array dimensioned by Run.

Naturally, the Run index was propagated to Profit from the Base Demand and Elas-
ticity inputs. As long as an index does not originate from a Decision, it is eligible for
array abstraction. To get a Monte Carlo sample of optimizations, we just need to make
sure the dimension gets propagated all the way to the DefineOptimization() node. In
Module 3, the Mean() function reduced the Run index before it could get that far.

Delete the Mean_Profit node and switch back to Profit as the optimization objective.
Variable Opt := DefineOptimization(

Decisions: Number_of_Planes, Fare,
Maximize: Profit)

If at first, the result does not look like it includes the Run index, remember that you must
view it in Sample mode.

Select Sample
View

52 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Improving Computational Efficiency of NLPs:

The MOSS approach does not determine what the best decision would be under cir-
cumstances of uncertainty. It gives us a range of decisions that would be optimal in situ-
ations where the corresponding Base Demand and Elasticity are already known with
certainty. This allows you answer questions that would not be addressable using Sto-
chastic Optimization. For example, “What is the current expected value of Profit, given
that the Number of Planes and Fare decisions will be determined after Base Demand
and Elasticity uncertainties are resolved?” The answer to this question is simply the
average of the Optimal Profit samples (although it would be a good idea to use a larger
sample size to avoid inherent sampling error.)

Improving Computational Efficiency of NLPs:
Module 4 of the Airline NLP was the first example in which we used an extrinsic index
(Run) with an NLP. Since this was a very simple example with only ten samples, the
result appeared pretty much instantly. Improving computational efficiency in this case
would be important only to the world’s most ambitious competitive coffee drinking cham-
pion. But real world NLPs can be very demanding on processing cycles. The dirty
secret of the Module 4 example described above is that it made about ten times as
many calculations as it needed to. Since Module 4 is intended to be a proxy for larger
models, we need to fix this problem and make it run even faster! (This section is spon-
sored by Starbucks.)

Remember that NLP search algorithms are iterative. The optimizer repeatedly sets new
Decision values and re-evaluates every downstream variable, all the way to the Objec-
tive value.

.

The influence diagram makes it easy to identify variables that are evaluated repeatedly
during the search. These include Annual_Capacity, Seats_Sold, Demand, and of
course the Objective: Profit

 Analytica Optimizer Guide 53

Improving Computational Efficiency of NLPs:Chapter Key Concepts: The Airline NLP example4

If any of these variables contains an extrinsic index (such as Run in this example) Ana-
lytica will compute the entire array for each iteration. This includes slices for all ele-
ments of Run whether they are needed or not. But Run is an extrinsic index in this
version of the Airline model. This means that each element of Run has its own optimiza-
tion and vice versa. Within a given optimization, the optimizer is interested in only one
Run element even though entire arrays are being evaluated repeatedly. The superfluous
slices are discarded by the optimizer, and the next iteration starts.

The optional SetContext parameter of DefineOptimization() allows you to identify
nodes for which only a single element of the extrinsic index applies to a given optimiza-
tion. This avoids the inefficiency described above.

:

To identify the best context variables, let’s look at the same influence diagram in a differ-
ent light. Nodes have been re-labeled here to show the extrinsic indexes present or
“scalar” if none. Iterated quantities (i.e. quantities downstream of Decisions) are colored
green.

There are a few basic principles of context setting:

• A context variable will not propagate extrinsic indexes to downstream variables
during the optimization.

• You should avoid using variables that are downstream of Decisions. They are
repeatedly evaluated and will therefore be only partially effective at improving
efficiency.

• Context variables should be as close to the optimization as possible without being
downstream of Decisions.

• The set of context variables should include only as many as necessary to prevent
propagation of extrinsic indexes to iterated quantities.

54 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Module 5: Time as an Extrinsic index

In this example, Setting context on Demand would eliminate the Run index from Seats
Sold and Profit. But Demand is downstream of a Decision and is therefore NOT the
most suitable candidate.

.

Base Demand and Elasticity are right choices. They are only evaluated once, and
together they can eliminate Run from the rest of the model during optimization.

The diagram above shows how the chosen context variables prevent the extrinsic index
from being propagated to iterated variables. Iterated variables end up being scalar in
terms of their extrinsic dimensions in the context of a single optimization. Outside the
optimization, the dimensions of these arrays don’t change.

The following definition will dramatically improve the performance of the Airline NLP
Module 4 example:

Variable Opt := DefineOptimization(
Decisions: Number_of_Planes, Fare,
Maximize: Profit,
SetContext: [Base_Demand, Elasticity])

Note: In this example, Run was merely an example of an extrinsic index. The
SetContext parameter is important for all NLPs that use extrinsic indexes
whether they contain uncertain quantities or not.

Module 5: Time as an Extrinsic index
Let’s assume that Base Demand increases by 10% per year. How would that affect our
decisions over time. In this example you Analytica will abstract over the system index
Time instead of Run. The principle is exactly the same as in Module 4.

First we define the system Time index to represent years from 2011 to 2015. To edit this
special index, select Edit Time from the Definition menu and enter the following defini-
tion:

Index Time := 2011..1015

 Analytica Optimizer Guide 55

Identifying the Source of an Extrinsic IndexChapter Key Concepts: The Airline NLP example4

Starting with the Base Case setup, create a new node titled Base Demand Growth
Rate. Re-define Base Demand to that is grows by this rate exponentially over time.

Variable Growth_Rate := 10%

Variable Base_Demand := 400k*(1+Growth_Rate)^(@Time-1)

This definition uses a positional reference for the Time index. The first year corresponds
to position 1 (making the exponent zero). Thus, Base Demand for the first year will be
400k, and this value increases 10% every year.

Time is now an index of Base Demand. The extrinsic index is propagated to the Objec-
tive. Array abstraction results in separate optimizations for each year.

Profit rises in each year as demand increases. A new plane is added in 2014.

Wait! Did you forget something? This in an NLP with an extrinsic index. If you remem-
bered to set a context variable you win a free Grande Analyti-latte! Base_Demand is
the sensible choice.

Variable Opt := DefineOptimization(
Decisions: Number_of_Planes, Fare,
Maximize: Profit,
SetContext: Base_Demand)

Identifying the Source of an Extrinsic Index
Due to Analytica’s efficiency in array abstraction, you may occasionally find that you
have inadvertently propagated an extrinsic index through your optimization model. If it is
a very complex model, this can have an unpleasant effect on memory loads and com-
putation times. It can also be difficult to trace the source of the error.

The OptInfo() function in Analytica Optimizer 4.3 includes “Extrinsic Indexes” as a con-
venient new item designed for this purpose. Even more conveniently, you don’t even
have to use the OptInfo() function to see this result. All OptInfo items are accessible by
double-clicking the encoding object displayed when you evaluate DefineOptimiza-
tion().

Evaluate the Optimization node and set the view to Sample mode.

Double-click on the optimization encoding object: «NLP»

56 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Module 6: Time as an Intrinsic Index

In the next view, double click the reference object next to Extrinsic Indexes.

In a complex model, you may have many Decisions and Constraints. The OptInfo()
view would identify the specific arrays that contain various extrinsic indexes. In this
example the Time index is traced to the Objective.

The final window here would also displayed by OptInfo(Opt, "Extrinsic
Indexes"). See the Function Reference chapter on page 81 for a list of all OptInfo()
items.

Module 6: Time as an Intrinsic Index
If there are interactions between decisions in different years, you might want to find the
decisions in each year that collectively maximize the Net Present Value (NPV) or
another objective that aggregates over time. In this example, the NPV() function will
reduce the time dimension so that the Objective will be a scalar value again. But there is
an array of decisions over time that all contribute to this value. In this case, there is one
optimization that yields an collective array of decisions of decisions over time. Time
becomes an intrinsic decision index.

Create a new Objective node for NPV of Profit. Assume a discount rate of 5%.

Use the new objective in the optimization.
(Context variables are not necessary because there are no extrinsic indexes here.)

Variable Discount_Rate := 5%

Objective NPV_Profit := NPV(Discount_Rate, Profit, Time)

Variable Opt := DefineOptimization(
Decisions: Number_of_Planes, Fare,
Maximize: NPV_Profit)

 Analytica Optimizer Guide 57

Module 7: Embedding an NLP in a Dynamic LoopChapter Key Concepts: The Airline NLP example4

Redefine the Decisions as arrays. We can use the Array() function to extend the origi-
nal initial values over time. To avoid ambiguities about how the Time index should be
handled, be sure to list it as an intrinsic index in the Decision node attributes:

Decision Fare := Array(Time, 200)

Intrinsic_Indexes of Fare := [Time]

Decision Number_of_Planes := Array(Time, 3))

Intrinsic Indexes of Number_of_Planes := [Time]

Now a single optimization yields an array of decisions over time. They collectively max-
imize a single objective value: the NPV of profit over all years.

The computational time requirements for NLPs typically increase superlinearly with the
number of decision variables, so this approach can become time-consuming if you have
many decision variables and time periods. In general, it takes longer than Module 5
where we optimized separately for each year. The intrinsic time approach only makes
sense if there is interaction between time periods that might favor a less than optimal
objective value in a particular period for the benefit of the whole time series. In the
absence of this type of interaction, it is better to run discrete optimizations for each
period. This principle can be generalized to any decision index.

Module 7: Embedding an NLP in a Dynamic Loop
The solution in Module 6 above advises the airline to decrease the number of planes in
service between 2014 and 2015. What if the airline has a lease agreement that does
not allow them to return planes? In this case we would like to impose a constraint that
requires the Number of Planes to increase or stay the same from year to year.

The lower bound of the constraint depends on Number of Planes in the previous year.
The constraint is based on a dynamic quantity.

You can embed an NLP inside a dynamic loop to impose dynamic constraints. There is
only one restriction:

• Bounds on Decision variables cannot be recursively dependent on Time
(or other index on which the Dynamic loop is based). To impose recursively time-
dependent bounds, they must be entered as constraints instead of Decision bounds
attributes.

Let’s try it! Starting with Module 6, create a new variable titled Previous Number of
Planes. (We will have to use a dynamic definition since we are referring to a previous
time step.) Then create the constraint based on the new variable.

58 Analytica Optimizer Guide

Chapter Key Concepts: The Airline NLP example4 Controlling Engine Selection and Settings

Variable Previous_Planes := Dynamic(0, Number_of_Planes[Time-1])

Constraint No_Plane_Decrease := Number_of_Planes >= Previous_Planes

Variable Opt := DefineOptimization(
Decisions: Number_of_Planes, Fare,
Constraints: No_Plane_Decrease
Maximize: NPV_Profit)

The dynamic constraint is satisfied.

Controlling Engine Selection and Settings
Optimization engines can be controlled by changing certain internal settings. These set-
tings are accessible through the optional SettingName and SettingValue parameters
of DefineOptimization(). It is sometimes useful to experiment with different settings if
the engine is not performing as expected on a particular type of problem. See “Specify-
ing settings” on page 92 for more details.

You may also want to try different engines using the optional Engine parameter of Defi-
neOptimization(). See “DefineOptimization()” on page 72.

Chapter 5 Logistic Regression
Function Reference

This chapter describes the Analytica logistic regression functions:

• Logistic_regression()

• Probit_regression()

• Poisson_regression()

These functions are found in the Generalized Regression.ana
library, and require Analytica Optimizer to use.

60 Analytica Optimizer Guide

Chapter Logistic Regression Function Reference5

Logistic regression functions
The Generalized Regression.ana library contains functions that you can use to esti-
mate the probability (or probability distribution) of a dependent (output) variable as a
function of known values for independent (input) variables. This is similar to linear
regression, which predicts the value of a dependent variable as a function of known val-
ues for independent variables. Logistic regression is the best known example general-
ized regression, so even though the term logistic regression technically refers to one
specific form of generalized regression (with prob and poisson regression being other
instances), it is also not uncommon to hear the term logistic regression functions used
synonymously with generalized regression, as we have done with the title of this chap-
ter.

To use the functions described in this chapter, you must have Analytica Optimizer and
you must add the Generalized Regression.ana library to your model using the Add
Library option from the File menu.

Logistic_regression(y, b, i, k)
Logistic regression is a technique for predicting a Bernoulli (i.e., 0,1-valued) random
variable from a set of continuous dependent variables. See the Wikipedia article on
logistic regression (http://en.wikipedia.org/wiki/Logistic_regression) for a simple
description. Another generalized logistic model that can be used for this purpose is the
Probit_regression() model. These differ in functional form, with the logistic regression
using a logit function to link the linear predictor to the predicted probability, while the
probit model uses a cumulative normal for the same.

The Logistic_regression() function returns the best-fit coefficients, c, for a model of
this form given a data set basis b, with each sample classified as y_i, having a classifi-
cation of 0 or 1.

The syntax is the same as for the Regression() function. The basis can be of a gener-
alized linear form, that is, each term in the basis can be an arbitrary nonlinear function
of your data; however, the logit of the prediction is a linear combination of these.

When you have used the Logistic_regression() function to compute the coefficients
for your model, the predictive model that results returns the probability that a given data
point is classified as 1.

Example Suppose you want to predict the probability that a particular treatment for diabetes is
effective given several lab test results. Data is collected for patients who have under-
gone the treatment, as follows, where the variable Test_results contains lab test data
and Treatment_effective is set to 0 or 1 depending on whether the treatment was
effective or not for that patient.

1n
pi

1 pi–
-------------⎝ ⎠
⎛ ⎞ ckbi k,

k
∑=

http://en.wikipedia.org/wiki/Logistic_regression

 Analytica Optimizer Guide 61

Chapter Logistic Regression Function Reference5

Using the data directly as the regression basis, the logistic regression coefficients are
computed using this.

Variable c := Logistic_regression(Treatment_effective,

Test_results, Patient_ID, Lab_test)

We can obtain the predicted probability for each patient in this testing set this.
Variable Prob_Effective :=

InvLogit(Sum(c*Test_results,Lab_Test))

If we have lab tests for a new patient, say New_Patient_Tests, in the form of a vector
indexed by Lab_Test, we can predict the probability that treatment will be effective this.

InvLogit(Sum(c*New_patient_tests, Lab_test))

Probit_regression(y, b, i, k)
A probit model relates a continuous vector of dependent measurements to the probabil-
ity of a binomial (i.e., 0,1-valued) outcome. In econometrics, this model is sometimes
called the Harvard model. The Probit_regression() function infers the coefficients of
the model from a data set, where each point in the training set is classified as 0 or 1.

Probit regression is very similar to Logistic_regression(). Both are used to fit a bino-
mial outcome based on a vector of continuous dependent quantities. They differ in their
use of the link function.

Given a set of data points, indexed by i, with each point classified as 0,1 in the Y param-
eter, and a set of basis terms, b, containing the dependent variables (where the vector
of dependent variables is indexed by k), the Probit_regression() function finds and
returns the set of coefficients for the probit model where is the inverse cumulative
normal distribution function.

The basis, b, is a function of the dependent variables in your data. Each element along
k of the basis vector can be an arbitrary, even nonlinear, combination of the data in your
data set. However, the number of terms in the basis should be kept small relative to the
number of data point in your data set.

Example Probit regression can be applied to the same prediction problem example shown above
for logistic regression. The probit coefficients are obtained using this.

Variable c2 := Prob_regression(Treatment_effective, Test_results,

Patient_ID, Lab_test)

pi Φ= ckbk
k
∑⎝ ⎠
⎛ ⎞

62 Analytica Optimizer Guide

Chapter Logistic Regression Function Reference5

The predicted probability for a new patient (with lab tests given by New_patient_tests)
is given by this.

CumNormal(Sum(c2*New_patient_tests, Lab_test))

Library Generalized Regression.ana

Poisson_regression(y, b, i, k)
A Poisson regression model is used to predict the number of events that occur, y, from
a vector independent data, b, indexed by k. The Poisson_regression() function com-
putes the coefficients, c, from a set of data points, (b, y), both indexed by i, such that
the expected number of events is predicted by this formula.

The random component in the prediction is assumed to be Poisson-distributed, so that
given a new data point b, the distribution for that point is shown below.

Poisson(sum(c*B,K)

If your dependent variable is continuous, with normally distributed error, use Regres-
sion or RegressionDist2. If your dependent variable is binomially distributed (i.e., 0,1-
valued), use Logistic_Regression() or Probit_Regression(). If your dependent vari-
able models a count, such as the number of events that occur, use
Poisson_Regression().

Note:The distribution here accounts for data variation only, and does not include error
in the coefficients c, as the RegressionDist() function does, for example.

Library Generalized Regression.ana

2. To use RegressionDist, add the Multivariate Distributions.ana library to your model.

E Y() ckbk
k
∑⎝ ⎠
⎛ ⎞exp=

Chapter 6 Optimizer Attribute
Reference

This chapter describes special node attributes used in optimiza-
tion problems:

• Domain and Bounds

• Intrinsic Indexes

• Initial Guess

64 Analytica Optimizer Guide

Chapter Optimizer Attribute Reference6 Domain and Bounds

Visible and Hidden Attributes
The default set of attributes Analytica displays depends on the edition. Standard attri-
butes for Analytica Professional and Analytica Enterprise include Identifier, Title, Units,
Description, and Definition. This chapter focuses on some additional attributes that are
specific to Analytica Optimizer. These include:

Domain and Bounds
The domain attribute specifies the set of possible values for a variable. In general, a
domain can be various combinations of continuous or discrete, and bounded or
unbounded. The grouped integer category is a special case, requiring variables to be
discrete, bounded, and unique within a variable group.

In most cases, you can specify the desired domain using the convenient popup menus
in the Object window for a decision variable. Domains can also be entered in expres-
sion format which can add more flexibility (using array-based expressions for example).

Bounds
Entering bounds will constrain the variable within lower and upper limits. These do not
count as constraints for optimization engines that impose limitations on the total number
of constraints.

Domains
Automatic By default, the domain for a new decision variable is set to Automatic. This setting

allows Analytica to determine appropriate domain based on the definition of the vari-
able, leaving it unbounded. The domain will automatically switch from Automatic to
Continuous when bounds are applied.

Continuous Allows any double-precision decimal value between to . Although Analytica’s
double float ranges from -8.988e10307 to8.988e10307 (-21023 and 21023), most opti-
mizer engines treat anything larger than as equivalent to infinity.

Integer Restricts values to integers.

Grouped Integer Some optimization problems require a solution where each variable is assigned a
unique value among discrete choices. The Grouped Integer domain establishes a

Analytica Optimizer
Attributes Node Type Visibility

Domain and Bounds Decision Always visible
Intrinsic Indexes Decision, Constraint Always visible
Initial Guess Decision Hidden by default, visible if chosen

1040– 1040

1040

 Analytica Optimizer Guide 65

Domain and BoundsChapter Optimizer Attribute Reference6

sequence of integers 1 through N, where N is the size of the group. All decision vari-
ables in the group are assigned an integer, and no two scalar values can share the
same assignment.

If all elements of the decision array belong to the same group:

• Select Grouped Integer from the domain list.

• Enter a group name (This is optional if there is only one group in your model.)

Multiple decision nodes can share the same group name if all scalar values in the com-
bined must have unique values. The size of the integer group is equal to the total num-
ber of scalar decision values assigned to it. If an array is assigned to a group, the group
will contain all scalar elements in the array.

You can assign multiple groups within the same decision node by entering the Grouped
Integer information in expression mode and entering an array expression for the group
name parameter. (See Domain and Bounds Expressions below) This advanced tech-
nique is demonstrated in the Sudoku with Optimizer.ana example file.

Boolean Restricts values to either 0, 1.

Discrete This pop-up menu choice is not used in Optimization problems because discrete values
must be listed explicitly. Instead of this choice, use Explicit Values or the Discrete() func-
tion in expression format.

Explicit Values This choice allows you to enter a list of possible values for the variable. These can be
numbers, expressions, or text strings.

Copy From Index This choice populates the explicit values list using the elements of an existing index.

66 Analytica Optimizer Guide

Chapter Optimizer Attribute Reference6 Domain and Bounds Expressions

Domain and Bounds Expressions
Every Domain choice listed above can be entered in expression format. These expres-
sions are fully generalized. They can even include array formulas and conditional state-
ments. To enter a domain in expression format, select Expression from the Domain
pop-up menu in the Object window.

Intrinsic Indexes
Intrinsic Index attributes are present in Decision and Constraint nodes. Analytica incor-
porates designated intrinsic indexes within optimizations and avoids abstracting over
them. See Chapter 3 for a more complete explanation of the meaning of intrinsic and
extrinsic indexes in the context of optimizations.

Specifying Intrinsic
Indexes

To populate the Intrinsic index list:

• Select the Edit Tool.

• Open the Object window for Decision or Constraint node

• Press the Indexes button next to the Intrinsic Index attribute. An index selection
window will appear.

Domain expression syntax Examples
Continuous(lb,ub) Leaving bounds unspecified:

Continuous()

Assign upper and lower bounds:
Continuous(lb:0, ub:2.734)
Continuous(0, 2.734)

Continuous(lb,ub,orZero:true)

Semi-continuous: Between
bounds or zero.

Lower bound only:

Continuous(lb:1K, orZero:true)

Both bounds:

Continuous(lb:10,ub:15,orZero:true)
Integer(lb,ub) Leaving bounds unspecified:

Integer()

Assign upper and lower bounds:
Integer(lb:0, ub:3)
Integer(0, 3)

Boolean()

Restricts values to 0 or 1.

Boolean()

Discrete(value1, value2, ...)

Variable can only take on listed
values.

Discrete(2,4,6,8)
Discrete("Win","Place","Show")

GroupedInteger(GroupName)

All variables within the same
group are assigned different
integer values.

Single group assignment:
GroupedInteger("Sales_Ranking")

Assign multiple groups using an array expression:
GroupedInteger("C"&Column_index)

 Analytica Optimizer Guide 67

Intrinsic IndexesChapter Optimizer Attribute Reference6

• Select the desired indexes from list on the left. Press the transfer button to move
them to the selected indexes list on the right.

• Click OK

Specifying that there
are NO Intrinsic

Indexes

You can explicitly specify that a Decision should NOT have any intrinsic indexes. This
means that the optimizer will treat the Decision as a single scalar value within any sin-
gle optimization. This makes all dimensions of the array eligible for abstraction,
whereby Analytica will perform separate optimizations for every element of the array.

To specify scalar status for a decision:

• Select the Edit Tool.

• Open the Object window for the Decision variable.

• Press the Indexes button next to the Intrinsic Index attribute. An index selection
window will appear.

• If there are any indexes in the selected indexes list on the right, use the transfer
button to move them back to the available indexes list on the left.

• With the selected indexes list blank, Click OK.

• A dialog box will appear asking if you want to clear index status (leaving status
unspecified) or to specify the node as scalar. Choose Scalar.

68 Analytica Optimizer Guide

Chapter Optimizer Attribute Reference6 Initial Guess

Leaving Intrinsic
Index lists

unspecified

If you leave the Intrinsic Index list unspecified, Analytica will analyze the optimization
problem to infer the intrinsic indexes of your unspecified decision or constraint using
heuristics. Although these inference algorithms are complex, there are a few guidelines:

• Indexes appearing in the various attributes of a decision — the definition, domain
and bounds, or initial guess — provide the heuristics with a set of candidate
indexes. If an index doesn’t appear in any of these attributes, it won’t be inferred to
be an intrinsic or extrinsic index of the decision.

• If your model operates over a candidate index, such that the index is eliminated by
the time a downstream constraint or objective is computed, then the index is
inferred to be intrinsic.

• If an index is explicitly declared as intrinsic, or inferred to be intrinsic, in another
decision or constraint within the optimization problem, then it is usually taken to be
intrinsic to the decision or constraint in question.

• Extra dimensions in a decision’s domain, bounds, or initial guess that aren’t inferred
to be intrinsic are inferred to be extrinsic. Extra dimensions found in the definition
are inferred to be parametric and ignored for the purposes of optimization.

• Given the explicit and inferred intrinsic index assignment for all decisions, any
indexes that end up in the objective are taken to be extrinsic.

• Extra dimensions in a constraint are inferred to be intrinsic if they appear specified
elsewhere in the optimization as intrinsic, otherwise, they are inferred to be
extrinsic.

Tip If there is any question about index status, consider the question, “Does the optimizer
need to consider all elements of this index for an overall solution?” If YES, list the index
in the Intrinsic Indexes attribute.

Initial Guess
Initial guesses are utilized for optimizations that use gradient search methods. These
include non-convex QP problems and all NLP problems. Initial guess values will be
ignored if they don’t apply to the problem type.

By default, the defined value of the input decision node will be used as an initial guess
for the optimization. Therefore, the initial guess attribute is hidden by default. If used,
the initial guess attribute will override the defined value of the node.

To use the defined value of the Decision node as an initial guess:

• (No action necessary. Keep the Initial Guess attribute hidden)

To enter an Initial Guess that overrides the defined value of the Decision input
node:

• Select Attributes from the Object menu.

• Toggle a check mark next to Initial Guess.

• Open the Object window of the Decision node.

• Enter override value in the Initial Guess attribute.

 Analytica Optimizer Guide 69

Initial GuessChapter Optimizer Attribute Reference6

You can use general Analytica expressions as initial guesses, including expressions
that are conditional or array valued.

Tip The Initial Guess attribute is a good way to run multiple optimizations with different
starting points. If the Initial Guess expression evaluates to an array with dimensions that
are not intrinsic elsewhere in the optimization, Analytica will perform separate
optimizations for each starting point.

To return Initial Guess to the default state (not visible):

• Delete all Initial Guess expressions.

• Select Attributes from the Object menu.

• Toggle off the check mark next to Initial Guess.

70 Analytica Optimizer Guide

Chapter Optimizer Attribute Reference6 Initial Guess

Chapter 7 Optimizer Function
Reference

This chapter lists and defines Analytica optimization functions cur-
rent in versions 4.3 and higher:

• DefineOptimization()

• OptSolution()

• OptObjective(), OptObjectiveSa()

• OptStatusText(), OptStatusNum()

• OptInfo(), OptEngineInfo()

• OptShadow(), OptRhsSa()

• OptReducedCost()

• OptSlack()

• OptRead(), OptWrite()

• OptFindIIS(), OptWriteIIS()

72 Analytica Optimizer Guide

Chapter Optimizer Function Reference7

Using Named Parameters
When calling a function in Analytica, you can use the conventional method of listing
parameters in their standard sequence, or named-parameter syntax, where you type
the parameter name, followed by a colon (:), followed by the parameter value. Here is
an example:

DefineOptimization(

Decisions: [d1, d2],

Constraints: [c1, c2, c3],

Maximize: x)

Since DefineOptimization() has a large number of optional parameters, named-param-
eters are much more convenient to write and read. So, we use that method in our exam-
ples.

You can view the full parameter declarations from Analytica, in the actual parameter
order, by selecting Definition > Optimizer > <function> from the Analytica menu.

Primary Optimization Functions
Using just these three functions, you will be able to define any optimization and view
results.

• DefineOptimization()

• OptSolution()

• OptObjective()

DefineOptimization()
This function defines an optimization problem. It automatically determines the type of
optimization: LP, QP, or NLP.3 If you want to specify a particular type of optimization
instead of having Analytica make the choice auto-matically, use DefineOptimization()
with the optional Type parameter (see sub-section below).

When DefineOptimization() is evaluated, it returns a special object, which displays as:
«LP», «QP», «QCP», «NCQCP», «NLP», or «NSP», depending on the type of problem.
This object encapsulates an encoding of the problem definition that is passed to the
solution functions.

Tip Double-clicking on the special object in the DefineOptimization() evaluation window will
display a new window containing details about the optimization. The new window may
also contain clickable objects that let you drill down to more specific levels of detail.

3. DefineOptimization() replaces LpDefine(), QpDefine() and NLPDefine() used in Analytica Optimizer
releases previous to 4.3. These legacy functions are still supported for backward compatibility with older
models. See the Analytica Wiki wiki.lumina.com for details.)

 Analytica Optimizer Guide 73

Chapter Optimizer Function Reference7

Parameters of DefineOptimization()

Decisions type: variable

A list of identifiers of decision variables. The Optimizer searches for decision values that
maximize (or minimize) the Objective and/or meet Constraints. Variables should be sep-
arated by commas, and (optionally) enclosed in square brackets . Use All to include all
decision variables in the model, or All in m to include all decision variables in a
module, m.

Examples:
DefineOptimization(Decisions: [Height, Radius],...)

DefineOptimization(Decisions: All,...)

DefineOptimization(Decisions: All in LP_Module,...)

Constraints type: variable (optional)

A list of Constraint node identifiers, or a direct equality or inequality expression. Use All
to include all constraint nodes in the model, or All in m to include all constraint nodes in
a module, m. May be omitted for unconstrained optimizations.

Examples:
DefineOptimization(...,Constraints:[Height_limit, Volume_limit],...)

DefineOptimization(...,Constraints: All,...)

DefineOptimization(...,Constraints: All in LP_Module,...)

DefineOptimization(...,Constraints: 4*x+3*x*y-y^2 >= z^2, ...)

Minimize / Maximize type: expression (optional)
Synonyms: min / max

Use one of these parameter names to identify the Objective variable or expression to
minimize or maximize. The value of the Objective must be scalar for each optimization
run. You may omit this parameter for constraints-only optimizations where the goal is
simply to find some feasible solution meeting all constraints.

Examples:
DefineOptimization(...,Minimize: Surface_Area,...)

DefineOptimization(...,Minimize: 2*pi*R^2+2*pi*R*H,...)

If the variable or expression evaluates to an array, it performs a separate optimization
for each value.

For example:
DefineOptimization(...,

Maximize: Array(Objective_index,[Profit, Revenue]),...)

will perform two optimizations, to maximize Profit and Revenue respectively, returning
the results as an array.

Guess type: expression (optional)
Synonyms: InitialGuess, InitialValue

Indicates an initial guess for optimization types that may have local minimum. Initial
guesses have no effect on LP and convex QP optimizations. To enter guess parameters
for multiple decision variables, separate by commas in the same order as the decision
nodes are listed after the Decisions parameter.

74 Analytica Optimizer Guide

Chapter Optimizer Function Reference7

Example applying the same guess value to every element of a decision array:
DefineOptimization(Decisions: Decision_Array, Guess: 100)

Example applying different guesses to different decision variables:
DefineOptimization(

Decisions: Height, Radius,

Guess: 12, 7)

If you have specified N decisions, you can list up to N guess values (or expressions)
separated by commas. The guess values are placed in positional correspondence with
the decisions listed — in the example, 12 is used as the guess for Height, 7 as the
guess for Radius. You can pass Null for for any guess, in which case the guess
obtained from the decision object is not overridden by the parameter, e.g.:

DefineOptimization(

Decisions:Height, Radius,

Guess: Null, 7)

When only one guess parameter is specified, then it applies to all decisions. If you wish
to override only guess for the first parameter, then you should specify the second guess
as Null.

When an expression passed to the guess parameter evaluates to an array, the array
value is used as the guess. Any indexes that are extrinsic to the decision thus result in
an array abstraction with multiple optimizations from distinct starting points. Any
indexes that are intrinsic to the decision are consumed, specifying an array-valued ini-
tial guess.

Unless you have a specific reason to enter a guess value as a DefineOptimization()
parameter, it is recommended to enter it as a Decision attribute instead. When guess
values exist in both locations, the DefineOptimization() parameter will override the
Decision variable’s attribute.

Domain and Bounds type: domain expression (optional)

You can use domain expressions to determine variable types and bounds. When used
as a parameter in DefineOptimization, the expression follows the word Domain as in
these examples:

When only one domain specification is listed, it applies to all decision variables. In this
example, the domain parameter overrides the domain of both Height and Radius to
force a continuous optimization with a lower bound of zero:

DefineOptimization(

Decisions: Height, Radius,

Domain: Continuous(LB:0),

...)

When you have listed N decisions, you may list up to N domain specification, which
apply in positional correspondence with the decisions:

DefineOptimization(

Decisions: Height, Radius,
Domain: Integer(LB:0), Continuous(LB:0, UB:5),

...)

Use Null when you do not wish to override the domain for one decision while specifying
the domain for others. E.g., to override only the domain for Radius:

DefineOptimization(

 Analytica Optimizer Guide 75

Chapter Optimizer Function Reference7

Decisions: Height, Radius,
Domain: Null, Continuous(LB:0, UB:5),

...)

Note:The only way to specify the integer type and bounds for a local variable that
used as a decision variable is by using the domain parameter.

For details on Domain expression syntax, see Domain and Bounds section in the Attri-
bute Reference chapter.

Tip Unless you have a specific reason to enter domains and bounds as a
DefineOptimization() parameter, it is recommended to enter them into the Decision’s
Domain attributes instead. When domain specifications exist in both locatons, the
DefineOptimization() parameter takes precedence.

Type type: text (optional)

Indicates the type of optimization problem. If omitted, Analytica analyzes the decisions,
objective, and constraints to determine the problem type automatically. This parameter
is useful if you expect a particular type of optimization (LP, for example) and you want it
to give a warning if the model characteristics don’t match your expectation — for exam-
ple, if an expected LP has non-linear characteristics. Type setting can also affect the
choice of engine and processing speed.

Quotation marks must be included since this parameter is passed as text. Example:
DefineOptimization(...,Type: "QP")

Possible Type values are:

• "LP": Linear Program
Optimization is limited to linear programs only. An error will display if the
optimization has any non-linear characteristics.

• "QP": Linearly Constrained Quadratic Program
Most restrictive QP category. It displays an error if constraints are not linear.

• "QCP": Quadratically Constrained Program.
Solution set may be non-convex. The solution may depend on initial guess.
Optimizer will spend some processing time evaluating convexity characteristics.

• "NCQCP": Non-Convex Quadratically Constrained Program
Least restrictive QP category. Solution set may be non-convex. Optimum solution
may depend on initial guess. Faster than QCP setting for non-convex problems
since the optimizer will not spend time evaluating convexity characteristics. May be
slower than QCP setting for convex solution sets.

• "NLP": Non-linear Program
Smooth non-linear program. Optimization uses gradient and Jacobian based
strategies that assume continuous functions.

• "NSP": Non-smooth Program
Selects the Evolutionary engine. Suitable for:

• Hard integer problems for which non-integer values cannot be computed or are
not meaningful

• Problems with discontinuous relationships between decisions and solutions.

SetContext type: variable list (optional)

76 Analytica Optimizer Guide

Chapter Optimizer Function Reference7

SetContext avoids unnecessary computation when solving non-linear programs (NLPs)
with extinsic indexes present in the model. An extrinsic index is an index along which
multiple individual optimizations are performed. For any given optimization run, only a
single element of the index is relevant. As the optimization engine runs repeatedly re-
evaluates your model at different search points, arrays indexed by extrinsic indexes will
be repeatedly recomputed. Since only one element of an extrinsic index is relevant, all
but a single slice of the array will be discarded by the optimization engine. This ineffi-
ciency can prolong NLP computation times by orders of magnitude. If more than one
extrinsic index is involved, the computational inefficiency could scale quadratically or
cubically, etc. with the size of the indexes.

This inefficiency can be avoided by listing a set of context variables after the SetContext
parameter. When an optimization begins, the full value of the context variable is
replaced with just the slice corresponding to the coordinates of the optimization that is
active. When used appropriately, this prevents the extrinsic index from being propa-
gated downstream from the context variable, and thus saves unnecessary computation.

The best context variable candidates are arrays that include extrinsic indexes and are
computed only once for the optimization (i.e. they are not downstream of a Decision
variable). Variables for which context is set will not propagate extrinsic indexes to down-
stream arrays during optimization. The set of context variables should be inclusive
enough eliminate extrinsic indexes from every downstream array that is repeatedly
evaluated during the optimization (i.e. every array positioned in the influence stream
between a Decision variable and the Optimization node). But the set should not include
the repeatedly evaluated arrays themselves.

Example:
DefineOptimization(...,

SetContext: Base_demand, Price_elasticity, Discount_rate)

Engine type: text (optional)

Usually, the Optimizer chooses a solver engine to match the problem type. But, you can
use this parameter to specify which engine you want to use. To see a list of installed
engines, evaluate the expression OptEngineInfo('All', 'Name').

Quotation marks must be included since this parameter is passed as text. Example:
DefineOptimization(..., Engine: "GRG Nonlinear")

Standard Engines:
The following engines come standard with Analytica Optimizer:

• "LP/Quadratic"
The LP/Quatratic engine handles linear programs and quadratic programs with
linear constraints. It implements Primal and Dual Simplex methods plus a Quadratic
extension. Memory is efficiently managed using a sparse representation of the LP
simplex matrix. For integer domains, the engine first computes a continuous
solution, then uses a Branch and Cut method to find the best integer solution. The
number of decision variables is limited to 8,000 or less.

• "SOCP Barrier"
This engine uses a Second Order Cone Programming technique designed
specifically for quadratically constrained convex problems. The GRG Nonlinear
engine is often a good alternative for this type of problem, especially if the
constraints end up being non-convex. The number of decision variables is limited to
2,000 or less.

 Analytica Optimizer Guide 77

Chapter Optimizer Function Reference7

• "GRG Nonlinear"
The Generalized Reduced Gradient nonlinear engine is suitable for problems that
are relatively smooth with few local optima. Problems that allow gradients and
Jacobians to be computed analyitically will run much faster than problems that
require finite difference methods. The number of decision variables is limited to 500
or less.

• "Evolutionary"
The Evolutionary engine is the best choice for problems that do not allow non-
integer values to be explored during the intermediate steps of a search. These
include hard integer problems and problems with a large number of discontinuities.
The number of decision variables is limited to 500 or less.

Add-On Engines:
Lumina offers the following add-on engines for advanced applications. Please visit
www.lumina.com for purchase details.

• Large-Scale LP/QP
Allows an unlimited number of variables and constraints. It has been used to solve
problems with millions of variables.

• Large-Scale SQP
The most versatile solver for large scale problems. Handles linear, quadratic, conic,
smooth nonlinear, and non-smooth problems with no fixed limits on problem size.

• Large-Scale GRG Solver
Extends the variable limit of the GRG nonlinear engine to 12,000 decision variables.
It uses sparse matrix storage methods for memory efficiency, and advanced
methods for selecting a basis and dealing with degeneracy.

• Gurobi
Gurobi is the fastest available engine for linear and mixed-integer linear (LP/MIP)
problems and also handles QP. It has been engineered to expliot multi-core
processors more effectively than other solvers.

• XPRESS
XPRESS is designed for high-speed performance on standard LP and mixed-
integer linear and quadratic problems (LP/MIP and QP/MIP). It has no fixed limit on
the numbers of variables or constraints.

• MOSEK
MOSEK handles large scale LP and QP problems including those with quadratic
and second order cone constraints with speed comparable to linear problems. It
inclues both simplex and self-dual interior point methods. Also handles convex non-
linear problems. It has no fixed limit on problem size.

• KNITRO
KNITRO is designed especially for smooth nonlinear problems. It includes state-of-
the-art implementation of interior point nonlinear methods and "active set"
Sequential Linear / Quadratic Programming techniques (SLQP). It has no fixed limit
on problem size.

• OptQuest
OptQuest is designed to work will all types of models including those with
discontinuous functions. It uses advanced methods including tabu search and
scatter search to identify solutions that are globally optimum or close to globally
optimum. Supports up to 5,000 variables and 1,000 constraints, though the
practical size of problems that can be solved to near global optimality may be less
than these limits.

78 Analytica Optimizer Guide

Chapter Optimizer Function Reference7

Over type: index list (optional)

The Over parameter forces array abstraction over an index, resulting in separate opti-
mization runs for each element of the index. To abstract over multiple indexes, enter a
list of index identifiers separated by commas:.

Example:
DefineOptimization(...,Over: Scenario_Index, Objective_Index,...)

TraceFile type: text (optional)

Creates a trace file containing details about the optimization process. Including the file-
path is optional. The file will appear in the CurrentDataDirectory, usually the same
directory as the model unless changed, if you omit the path.

The traceFile can be extremely helpful when debugging convergence issues, i.e., why
didn’t the optimization find a solution, or didn’t find the solution I expected it to find?

Examples:
DefineOptimization(...,TraceFile: "c:\ana_models\mytracefile.log")

DefineOptimization(...,TraceFile: "mytracefile.log")

The traceFile is written only when a model is solved by an algorithm that repeatedly
evaluates the model, which generally means that a non-linear search algorithm must be
used. The TraceFile parameter is ignored when solving linear or quadratic problems via
simplex or Barrier methods.

Tip To produce a traceFile for a linear or quadratic problem, specify Engine:"GRG Nonlinear"
to force the use of a non-linear search algorithm. Remove this setting once you’ve
finished your debugging.

Engine Settings Each optimizer engine has a list of setting commands. You can pass setting commands
to the optimizer engine using the Parameter and Setting parameters. These are text val-
ues that must be enclosed in quotation marks.

See Control Settings chapter for details on available settings.

You can set parameters for the optimization engine using the following syntax:
SettingName: "setting_name", SettingValue: setting_value

The parameter name and setting name must be inside quotes since they are text strings
passed directly to the optimization engine. To change more than one setting, Setting-
Name and SettingValue must be arrays that have exactly one common index.

See Settings chapter for a full list of available settings and value ranges.

 Analytica Optimizer Guide 79

Chapter Optimizer Function Reference7

OptSolution(Opt, Decision, PassNonFeasible)
The OptSolution() function causes the optimization problem to be solved and returns
optimized values of the decision variables. Analytica does not change the values of the
input decision nodes, nor does it reveal the optimization results when you evaluate the
optimization node.

Parameters:
Opt type: variable

Identifies the node defined using DefineOptimization().

Decision type: variable (optional)

The Decision parameter identifies the decision input node containing the desired val-
ues. If you omit the Decision parameter, OptSolution lists all scalar decision variables
as a flattened 1-D array using .DecisionVector as an local index.

If you have more than one decision node, it is usually convenient to have a separate
OptSolution counterpart for each input node. This way, your optimized results will be in
the same format as the input decision nodes.

PassNonFeasible type: boolean (optional)

If omitted or set to 0 (FALSE) OptSolution() will be «null» if no feasible solution is
found. When set to 1 (TRUE), OptSolution() will return the last computed solution
before infeasibility was determined.

OptObjective(Opt, PassNonFeasible)
The OptObjective() function causes the optimization problem to be solved and returns
the value of the objective at the final solution. If multiple optimizations are performed,
OptObjective returns an array along extrinsic indexes.

Parameters:
Opt type: variable

Identifies the object defined using DefineOptimization().

PassNonFeasible type: boolean (optional)

If omitted or set to 0 (FALSE) OptObjective() will be «null» if no feasible solution is
found. When set to 1 (TRUE), OptObjective() will return the objective value corre-
sponding to the last computed solution before infeasibility was determined.

OptObjectiveSa(Opt, Decision)
For LP problems only. Performs sensitivity analysis on objective value relative to deci-
sion variables. The optimal solution for an LP occurs at the intersection of some subset
of constraints, which is a vertex in the simplex of feasible solutions. This set of con-
straints is often referred to as the basis of the solution. If we were to increase or
decrease one linear objective coefficient slightly, the value of the objective would
change, of course, but over some range of values the optimal solution would remain at
the same vertex (basis). OptObjectiveSa() computes the the range (i.e., lower and
upper limit) over which each linear objective coefficient can be changed without causing
a change in the basis for the optimal solution. The result is indexed by a local index
.Range having values ["lower","upper"].

80 Analytica Optimizer Guide

Chapter Optimizer Function Reference7 Optimization Status Functions

Parameters:
Opt type: variable

Identifies the object defined using DefineOptimization().

Decision type: variable (optional)

If Omitted, the function will return sensitivies for relative to all scalar decision variables
flattened into a 1-D local index named .DecisionVector. If the Decision parameter is
included, it will return sensitivities for that decision with the same dimensionality as the
decision along with the .Range index.

Optimization Status Functions
Optimization status functions can reveal important details such as the selected engine
matrix coefficients, and other information that may be helpful with troubleshooting.

OptStatusNum(Opt) / OptStatusText(Opt)
Returns the status number as an integer and corresponding text message, respectively,
of the optimization problem Opt. It is wise to examine the status before evaluating Opt-
Solution() to avoid an error message. Possible results are shown in the table below.

Status
Number Status Text

-3 Invalid status.
-2 Ignore status. Used when dummy result code needs to be overridden.
-1 Invalid license status. (License expired, missing, invalid, etc.)
0 Optimal solution has been found.
1 The Solver has converged to the current solution.
2 “No remedies” status. (All remedies failed to find better point.)
3 Iterates limit reached. Indicates an early exit of the algorithm.
4 Optimizing an unbounded objective function.
5 Feasible solution could not be found.
6 Optimization aborted by user. Indicates an early exit of the algorithm.
7 Invalid linear model. Returned when a linearity assumption renders incorrect.
8 Bad data set status. Returned when a problem data set renders inconsistent.
9 Float error status. (Internal float error.)

10 Time out status. Returned when the maximum allowed time has been exceeded. Indicates an early exit of the
algorithm.

11 Memory dearth status. Returned when the system cannot allocate enough memory to perform the optimization.
12 Interpretation error. (Parser, Diagnostics, or Executor error.)
13 Fatal API error. (API not responding.)
14 The Solver has found an integer solution within integer tolerance.
15 Branching and bounding node limit reached. Indicates an early exit of the algorithm.
16 Branching and bounding maximum number of incumbent points reached. Indicates an early exit of the

algorithm.
17 Probable global optimum reached. Returned when MSL (Bayesian) global optimality test has been satisfied.
18 Missing bounds status. Returned for EV/MSL Require Bounds when bounds are missing.
19 Bounds conflict status. Indicates <=, =>, = bounds conflict with existing binary or all different constraints.
20 Bounds inconsistency status. Returned when the lower bound value of a variable is grater than the upper bound

value, i.e., lb[i] > ub[i] for some variable bound i.
21 Derivative error. Returned when API_Jacobian has not been able to compute gradients.

 Analytica Optimizer Guide 81

Optimization Status FunctionsChapter Optimizer Function Reference7

OptInfo(Opt, "Item", Decision, Constraint, asRef)

OptInfo() is a varsatile function that can reveal any available details of the optimization.
The most common information available through OptInfo() can also be viewed by evalu-
ating the DefineOptimization() function and doulble-clicking the encoded object (e.g.
<<LP>>). This opens a hierarchy of information and click-able reference objects that
reveal finer levels of detail.

Parameters:
Opt type: variable

Identifies the node defined using DefineOptimization().

Item type: text

The characteristic of the optimization you are interested in.

Decision, Constraint type: variable, optional

Optional Decision and Constraint parameters can filter information to be relevant to indi-
vidual decisions and constraints.

asRef A Boolean value (0 or 1). If TRUE (1), the result will be encoded in a click-able refer-
ence object.

The following table shows the relevance of various information items to optimization
engines, along with a description of the information revealed.

22 Cone overlap status. Returned when a variable appears in more than one cone.
999 Exception occurred status. Returned when an exception has been caught by try/catch top-level.

1000 Custom base status. (Base for Solver engine custom results.)
1102 The quadratic constraints are non-convex, the SOCP engine cannot solve this problem.

Status
Number Status Text

Item

LP Q
P

Q
C

P
N

LP Description

"All"

Returns a compregenive view inside the optimization, listing most items shown here.
You can see the same information by double-clicking the Optimization object
displayed when the DefineOptimization() function is evaluated:
(«LP», «NLP», etc.)

"DecisionVector" Lists all scalar decision variables in a one-dimenansional list.
"ConstraintVector" Lists all scalar scalar constraints in a one-dimenansional list.
"Decisions" Lists the names of each structured decision array in the optimization.
"Constraints" Lists the names of each structured constraint array in the optimization.
"ObjCoef" Lists scalar objective linear coefficients.
"Q" Displays the matrix of coefficients in the quatratic objective matrix

"Lhs"

Displays the matrix of linear constraint coefficients. You may optionally specify
«constraint» to obtain the coefficients for just one constraint corresponsing to all
scalar decision variables. Or you may specify both «decision» and «constraint» to get
the coefficients for one decision and one constraint.

82 Analytica Optimizer Guide

Chapter Optimizer Function Reference7 Optimization Status Functions

"LhsQ"

Displays the matrix of quadratic constraint coefficients for QCP programs. Dense
matrixes may be too large to fit in memory for some large QCPs. You may optionally
specify «decision» and/or «constraint» to obtain the quadratic coefficients for just that
structured decision and constraint.

"Rhs"

Displays right-hand side coefficients for all scalar constraints. You may optionally
specify <<constraint>> to obtain the coefficients for just one constraint corresponsing
to all scalar decision variables. Or you may specify both <<decision>> and
<<constraint>> to get the coefficients for one decision and one constraint. For a linear
or quadratic constraint, the RHS will be the constant term. There is no guarantee of
the sign, since it depends on how DefineOptimization re-arranges the constraint when
it processes the coefficients. For a non-linear constraint, Rhs will usually be 0. For a
range constraint, e.g., a <= f(x) <= b, the far right constant (b) is returned. It is better to
use "constraintLb" and "constraintUb" for range constraint

"ConstraintUb" Upper bound for each scalar constraint. You may optionally specify «constraint» to
obtain the values for a single structured constraint.

"ConstraintLb" Lower bound for each scalar constraint. You may optionally specify «constraint» to
obtain the values for a single structured constraint.

"Sense"
Shows the inequality operator for each scalar constraint (’<=’,’<=’,’=’) or ’R’ for Range
(lb & ub). You may optionally specify «constraint» to obtain the values for a single
structured constraint.

"Lb" Lower bound for each scalar variable. You may optionally specify «decision» to obtain
the value for a single decision array.

"Ub" Upper bound for each scalar variable. You may optionally specify «decision» to obtain
the value for a single decision array.

"IntegerType"
The type of all scalar decision variables. Optionally you may specify «decision» to get
the integer type(s) for a single decision array. Possible values are:
(’Continuous’,’Integer’,’Boolean’,’Grouped Integer’, or ’Semi-Continuous)’

"Group"
Applies only to a grouped integer variable, returns the group number for each scalar
decision variable. You may optionally specify «decision» to obtain the groups for a
single decision array.

"Maximize"
Indicates whether the optimization maximizes an objective (’TRUE’) or minimizes an
objective (’FALSE’), or whether there is no objective at all for a constraints-only
problem (’null’)

"Engine" Indicates the engine chosen by Analytica or by user override.
"Settings" Displays a list of engine setting names and corresponsing setting values.

"Type" The problem type. This matches the object displayed when DefineOptimization() is
evaluated: (’LP’,’QP’,’QCP’,’CQCP’,’NCQCP’,’NLP’,’NSP’)

"Intrinsic Indexes" Displays a table of indexes of Decision and Constraint arrays that are intrinsic to the
optimization.

"Extrinsic Indexes"

Displays a table of indexes of Decision and Constraint arrays that are abstracted,
resulting in multiple optimizations. You may optionally specify either <<decision>> or
<<constraint>> to get the extrinsic indexes for a single array. This option is very useful
when an index is abstracted unexpectedly. The Extrinsic Indexes display can point
you to the source of the extra dimension, just like Stephen Hawking.

"Decision Intrinsic
Indexes"

Lists all decision arrays in the optimization, and for each, a set containing the indexes
that are intrinsic to the decision variable. You may optionally select a single decision
node by specifying <<decision>>.

"Decision Extrinsic
Indexes"

Lists all decision arrays in the optimization, and for each, a set containing the indexes
that are extrinsic to the decision variable. You may optionally select a single decision
node by specifying <<decision>>.

"Objective Dims"

Lists all dimensions of the Objective that warrant array abstraction, resulting in an
array of optimizations. Since Parametric indexes of Decision variables are ignored by
the optimization, they are not listed in the OptInfo() result even though they can be
seen in the evaluation of the Objective array.

Item

LP Q
P

Q
C

P
N

LP Description

 Analytica Optimizer Guide 83

Optimization Status FunctionsChapter Optimizer Function Reference7

OptEngineInfo("Engine", "Item", asRef)
The SolverInfo function provides information about a specific optimizer engine, or about
the solver engines that are currently installed and ready for use.

Parameters:
Engine type: text

The name of a solver engine. The following are included with Analytica:

• "Lp/Quadratic"

• "SOCP Barrier"

• "GRG Nonlinear"

• "Evolutionary"

Various add-on engines can be purchased separately. These include:

• "LSLP"

• "LSGRG"

• "LSSQP"

• "Knitro"

• "OptQuest"

• "MOSEK"

• "XPress"

• "Gurobi"

The engine parameter can be specified as "All" to obtain the indicated information for
every installed engine.

Item type: text

Item Type Description

"SettingNames" numeric Array of control setting
names

"MaxSetting" numeric upper bounds for setting
"MinSetting" numeric lower bounds for setting
"Default" numeric default value for setting

"EngineName" text
The engine name (null
without error if engine
not installed)

"DLL" text
File path to solver
engine’s DLL, "" for built-
in engines

"TrialPeriod" numeric
number of days intil
Frontline solver trial
license expires

84 Analytica Optimizer Guide

Chapter Optimizer Function Reference7 Optimization Status Functions

OptShadow(Opt, Constraint, PassNonFeasible) and

Note:The OptShadow() function applies only to LP and QP type problems with
continuous decision variables and linear constraints.

If a constraint is relaxed, i.e., by increasing the right-hand side, bi, by one unit, how
does this impact the objection function? This is referred to as the shadow price, or
dual value, of the constraint. A shadow price is valid only for small changes in bi (the
actual range for which it is valid can be obtained from the OptRhsSa() function), and is
computed by the function

OptShadow(Opt)

where Opt is a linear program object returned by DefineOptimization(). The result is
indexed by .ConstraintVector. Mathematically, the shadow price is given by this
equation.

This is the partial derivative of the objective function relative to the constraint RHS coef-
ficient.

"ProblemTypes" boolean
A list of the problem
types handled by each
engine

"MaxVars" numeric
Maximum number of
decision variables
supported by engine

"MaxIntVars" numeric
Maximum number of
integer variables
supported by engine

"MaxConstraints" numeric
Maximum number of
constratints supported
by engine

"MaxVarBounds" numeric
Maximum number of
variable bounds
supported by engine

"Milliseconds" numeric Time spent in
computation

"Iterations" numeric Number of iterations
engine has performed

"Calls" numeric
Number of function
evaluations that have
occurred

"Jacobians" numeric
Number of Jacobian
evaluations that have
occurred

"Hessians" numeric
Number of Hessian
evaluations that have
occurred

Item Type Description

Shadowi
 Obj∂
bi∂

-------------=

 Analytica Optimizer Guide 85

Optimization Status FunctionsChapter Optimizer Function Reference7

Warning:Not all linear programming packages use the same convention for the sign
of shadow prices. If you have used the LINDO package, note that the
convention used by Analytica Optimizer differs from the sign produced by
the LINDO package.

OptReducedCost(Opt, Decision, PassNonFeasible)
Note:The OptReducedCost() function applies only to LP type problems with

continuous decision variables.

How far can a coefficient in the objective function be increased (in a minimization pro-
gram) or decreased (in a maximization program) before the objective function changes?
When a decision variable has a non-zero value in the optimal solution, any change in
the objective function coefficient changes the objective value, so for those decision vari-
ables the answer would be zero. But for decision variables that are zero, the coefficient
can change until that variable eventually enters the basis. This amount is known as the
reduced cost (or dual value) of the variables and is returned by the function

OptReducedCost(Opt)

The result is indexed by .DecisionVector.

The shadow price and reduced cost are known as dual values, the shadow price being
a dual to the solution in the original (or “primal”) problem, and the reduced cost being a
dual to the slack price in the original problem. To each problem in the standard form
(see “Parts of a Linear Program (LP)” on page 17) there corresponds a dual linear pro-
gram given by this.

maximize b1 y1 + b2 y2 + … + bm ym

such that
a11 y1 + a21 y2 + … + am1 ym >= c1

…

a1n y1 + a2n y2 + … + amn ym >= cn

The new variables in this program, y1,y2, …,ym, are the shadow prices, and the slack
value for each constraint is the reduced costs in the primal problem. Note that the vari-
ables in the primal problem correspond to constraints in the dual problem, and con-
straints in the primal problem correspond to decision variables in the dual problem.

OptObjectiveSa(Opt, Decision)
Note:The OptObjectiveSa() function applies only to LP type problems with

continuous decision variables.

If we change a coefficient in the objective function, the solution (x1, …,xn) continues to
be the optimal solution as long as the coefficient remains within a certain range. Note
that the solution point is the same, but the value of the objective function at the optimum
is affected. This range can be computed with this function.

OptObjectiveSa(Opt: OptType; Decision: optional)

The first parameter, Opt, is a linear program defined using DefineOptimization().
When called with only a single parameter, the range is computed for all decision vari-
ables, and the result is indexed by the linear program variable index .DecisionVector.
If the range for only a single decision variable (or a small subset) is required, the second

86 Analytica Optimizer Guide

Chapter Optimizer Function Reference7 Optimization Status Functions

parameter, Decision, is used to indicate the decision variable for which the sensitivity is
to be computed.

The result returned from OptObjectiveSa() is dimensioned by a local index, .range:=
['lower','upper']. Thus, to get the smallest value for each coefficient in the objec-
tive that would continue to produce the same solution, you would use an expression like
this.

Var sa:= OptObjectiveSa(Opt) DO

sa[.range='lower']

When a coefficient can be changed an arbitrary amount without changing the solution
basis, the corresponding entry in the result returned by OptObjectiveSa() is
-INF for the lower value or +INF for the upper value.

OptRhsSa(Opt, Constraint)
Note:The OptRhsSa() function applies only to LP type problems with continuous

decision variables.

The sensitivity of the right-hand side coefficients can be computed using this function.
OptRHSSa(Opt: LpType; constraint: Optional)

This computes the range over which the coefficient in the RHS can vary without chang-
ing the basis of the solution. In other words, over the returned range, the set of con-
straints with zero slack remains the set of constraints with zero slack (i.e., the critical
constraints).

The result is indexed by a local index, .range:= ['lower', 'upper'], containing the
smallest and largest values for the corresponding RHS coefficient. If the optional sec-
ond parameter is not specified, the range is computed for all variables and the result is
indexed by .ConstraintVector. If the range is needed for only a single coefficient, the
second parameter specifies a Constraint node, and only the range for that constraints in
the designated array are computed.

When a coefficient can be changed an arbitrary amount without changing the solution
basis, the corresponding entry in the result returned by OptRhsSa() is
-INF for the lower value or +INF for the upper value.

OptSlack(Opt, Constraint, PassNonFeasible)
When you have a constraint

ai1 x1 + ai2 x2 + … + a1n xn <= bi

the slack (or surplus) for that constraint is the positive value that, when added to the
LHS, makes both sides equal, that is

ai1 x1 + ai2 x2 + … + a1n xn + slacki = bi

The constraints that have zero slack are of particular interest, since they are instrumen-
tal in constraining the optimum. If these constraints are relaxed (e.g., by increasing bi),
a larger maximum value can be obtained. However, as critical constraints are relaxed,
other constraints might become relevant. For the constraints, the non-zero slack gives
an indication of how close they are to becoming critical.

The slack for each constraint is obtained from this function.

 Analytica Optimizer Guide 87

Optimization Status FunctionsChapter Optimizer Function Reference7

OptSlack(Opt)

It takes as input the object returned from DefineOptimization() and returns an array
indexed by .ConstraintVector, containing the slack at the optimum for each con-
straint.

OptFindIIS(Opt, newLp)
Note:The OptFindIIS() function applies only to LP type problems with continuous

decision variables.

Computes and returns the irreducibly infeasible subset (IIS) of the constraints. This is
meaningful when LpStatus(Opt)=2 (“no feasible solution”), and is useful for identifying
what portions of your constraint formulation make the problem infeasible.

When the optional parameter, newLp, is specified, returns a new <<LP>> object having
the subset of constraints (still infeasible). The components of this object can be
accessed using OptInfo().

OptWriteIIS(Opt, filename, format)
Writes an irreducibly infeasible subset (IIS) of a linear or quadratic program to a file,
including only a subset of constraints that is infeasible, but with the property that if any
single constraint is removed, the resulting problem will be feasible. The format is the
same as that used by LpWrite().

Format values:

• "LP" (or 1): CPLex LP format

• "MPS" (or 2): a legacy format used infrequently

• "LPFML" (or 3): Open Solver Interface4

OptRead(Opt, DecisionVector, ConstraintVector, format)
Reads a linear or quadratic program definition from file filename, previously written by
OptWrite() and returns an opaque «LP» or «QP» object. The optional DecisionVector
and ConstraintVector are the corresponding indexes for the LP, and must be of the
same size as the problem read in. The optional format parameter can be "LP" (default),
"MPS", or "LPFML" to indicate the type of file being read.

•

4. Also synonymous with "OSI" and "OSIL"

88 Analytica Optimizer Guide

Chapter Optimizer Function Reference7 Optimization Status Functions

OptWrite(Opt, filename, format)
Writes a text description of a Linear Program (LP) or Quadratic Program to a file with
the specified filename. Note that if lp is an array of LP problems, and the filename does
not share the same dimension, the file written by OptWrite() contains the result of only
the last lp.

Chapter 8 Control Settings

This chapter shows you how to:

• Specify Optimizer engine settings in DefineOptimization()

• Determine what setting are available for each engine,
defaults, and possible range

• Determine size capacities for installed engines

• Control termination criteria during optimization

• Select search algorithms

• Specify numeric precision

90 Analytica Optimizer Guide

Chapter Control Settings8 Selecting the optimization engine

Controlling the search
The optimization engine exposes several settings that you can change to influence how
the search for the optimum proceeds and when it terminates. The specific collection of
available settings is a function of which engine is used to solve the optimization, so that
if you install and use an add-on engine, other than the engine that comes standard with
Analytica Optimizer, the possible settings might be different. The OptInfo() function can
be used to view current values for a problem.

To see this, define a variable as:
OptInfo(Opt, "Settings")

Where Opt identifies the variable containing the DefineOptimization() function.

Settings can be changed for a particular problem by specifying values for the
SettingName and SettingValue parameters to DefineOptimization(). The first sub-
section below describes how you specify and view settings, while the subsequent
sub-sections detail particular settings used by engines the come standard with Analyt-
ica Optimizer.

Selecting the optimization engine
Four optimization engines come standard with Analytica Optimizer:

• LP/Quadratic:
The LP/Quadratic engine uses a dual simplex method combined with branch-and
bound for mixed-integer constraints, with a variety of integer cut-set procedures.
This is generally the engine of choice for LPs and mixed-integer LPs. For hard
mixedinteger LPs, however, the Evolutionary engine uses a very different approach
and might be worth trying.

• SOCP Barrier:
The Second Order Cone Barrier engine uses interior point methods designed
specifically for quadratically constrained convex problems. The GRG Nonlinear
engine is often a good alternative for thi type of problem, especially if the constraints
end up being non-convex.

• GRG Nonlinear:
The Generalized Reduced Gradient solver is suitable for smooth non-linear
problems. If gradients and Jacobians can be analytically determined, the speed of
this method will be dramatically faster.

• Evolutionary:
Best suited for non-smooth problems the evolutionary engine creates a population
of potential solutions and keeps the best ones.. By default, the Evolutionary engine
does not use gradient information. However, if the LocalSearch setting is on, then it
optimizes sample points before adding them to the population using various
techniques including gradient-based search.

 Analytica Optimizer Guide 91

Examining engine capabilitiesChapter Control Settings8

The following matrix shows engine compatbility for each problem type:

If you have purchased other add-on engines, other options might also be available to
you. You can obtain a full list of installed engines and the problem types supported by
each by evaluating the following Analytica expression.

OptEngineInfo("All","ProblemTypes")

To explicitly select the engine to be used, include the Engine parameter to
DefineOptimization().

Engine : Optional Text

For example:
DefineOptimization(..., Engine: "Evolutionary")

If you do not specify the engine, Analytica selects an appropriate engine based on the
properties of the problem that you specified. However, if the engine does not perform
satisfactorily on that problem, you might obtain better results with a different engine.

To determine what engine is actually used on a problem, evaluate this Analytica expres-
sion.

OptInfo(Opt, "Engine")

Here Opt is the object returned by DefineOptimization().

Examining engine capabilities
Information about the limits on the maximum number of variables or constraints allowed
by each installed engine can be accessed using this expression:

OptEngineInfo("All",["MaxVars","MaxIntVars","MaxConstraints"])

LP
/Q

ua
dr

at
ic

S
O

C
P

 B
ar

rie
r

G
R

G
 N

on
lin

ea
r

E
vo

lu
tio

na
ry

LP Linear Program
QP Quadratic Program (linearly constrained)
QCP Quadratically Constrained Program 1

1.You may not know whether your QCP is convex when you formulate it, and Define-
Optimization’s quadratic analysis does not determine convexity. Testing for convexity
can be more computationally intensive than solving the problem, so if you think SOCP
Barrier is the preferred engine, you can attempt to solve it using SOCP Barrier. During
the solution, it may succeed, or it may detect the non-convexity and terminate without
a feasible solution. Always check OptStatusText().

CQCP Convex QCP
NCQCP Non-Convex QCP
NLP Non-Linear Program (smooth)
NSP Non-Smooth Program

92 Analytica Optimizer Guide

Chapter Control Settings8 Specifying settings

This returns a table indexed by .ProblemType, .Engine and the limit type, e.g.:

The problem types displayed include are:

Specifying settings
If you want to change the value for a single control setting, you can specify values for
two optional parameters, settingName and settingValue, to DefineOptimization(),
providing the text name of the setting to settingName, and the numeric value to set-
tingValue. For example, if you want to set the Scaling parameter to 1, you would mod-
ify your call to DefineOptimization() as follows.

DefineOptimization(.., settingName: "Scaling", settingValue: 1)

To alter more than one control setting, you need to supply arrays to these parameters.
The arrays passed to settingName and settingValue should have a single common
index. If the index of the array passed to settingValue is a list of labels, where the index
labels contain the name of each control setting, then you only need to include the set-
tingValue parameter.

It is often convenient to specify control settings in a self-indexed edit table. The follow-
ing steps illustrate this:

1. Drag a variable node to your diagram, title it Opt Settings.

Element Description

LP linear program

QP quadratic objective, linear constraints

QCP quadratic with convex quadratic constraints
(solvers designed specifically for quadratics treat this as
if the problem is convex)

NLP smooth nonlinear

NSP non-smooth nonlinear

 Analytica Optimizer Guide 93

Examining available settingsChapter Control Settings8

2. In the definition pane, set the definition type to Table.

3. In the Index Chooser dialog, select Opt Settings (Self) as the table index.

4. Click the row heading cell, and change Item 1 to Scaling.

5. With the row header still selected, press down-arrow to add a row.

6. Change the second row header cell to MaxTime.

7. Enter 1 into the first table body cell.

8. Enter 30 into the second body table cell.

9. In your call to DefineOptimization(), insert a setting parameter as follows.
DefineOptimization(..., settingValue: Opt_Settings)

The Optimizer scales parameters and terminates after 30 seconds if the optimum has
not been found. A self-indexed table set up in this fashion makes it easy to adjust multi-
ple control settings if the need arises.

Examining available settings
The following function returns the set of control settings used for a problem.

OptInfo(opt, "Setting")

Replace opt with the name of the variable holding the result from DefineOptimiza-
tion().

You can also access the range of allowed values for each setting, as well as the default
value, using OptInfo() or OptEngineInfo(). OptInfo() is used when you have a problem
instance, OptEngineInfo() is defined when you know the name of the engine but don’t
have a problem instance.

The range (min/max) of possible values for each setting, and the default value, can be
obtained using these — first case using an existing problem instance, second case
using the engine name:

OptInfo(opt,["MinSetting","MaxSetting","Defaults"])

OptEngineInfo("LP/Quadratic",["MinSetting","MaxSetting","Defaults"])

94 Analytica Optimizer Guide

Chapter Control Settings8 Termination controls

Termination controls
Iterations Specifies the maximum number of iterations (pivots) by the simplex algorithm during the

optimization. If this is exceeded, OptStatusNum() returns 3 (Iterates limit reached. Indi-
cates an early exit of the algorithm.). Maximum number of generations in Evolutionary
solver. Maximum number of gradient descent steps by GRG Nonlinear. If the problem
has integer or grouped integer domains, it is preferred to use the MaxSubproblems set-
ting instead of Iterations.

Default: no limit

MaxSubproblems Applies only to problems with integer or grouped integer domains. Places a limit on the
number of subproblms the Branch & Bound algorithm explores before pausing and
prompting the user to stop or continue.

Default: no limit

MaxIntegerSols Applies only to problems with integer or grouped integer domains. Places a limit on the
number of integer solutions the Branch & Bound algorithm explores before pausing and
prompting the user to stop or continue.

Default: no limit

MaxTime Maximum number of seconds the Optimizer spends on the problem. If exceeded, Opt-
StatusNum() is 10 (Time out status. Returned when the maximum allowed time has
been exceeded. Indicates an early exit of the algorithm.).

Default: no limit

MaxTimeNoImp The maximum number of seconds that the Optimizer continues without finding any
improvement in the best solution.

Default: 30 seconds

Allowed range: positive

IntTolerance In a MIP optimization, if the branch-and-bound algorithm can determine that the best
solution found so far is within this relative tolerance of the true optimal, it terminates the
search and return the best solution found so far. The bound is relative, meaning a value
of 10% guarantees a solution within 10% of the optimal. Often, the branch-and-bound
algorithm quickly locates a nearly optimal solution, but then spends a large amount of
refining its best solution to the true optimum. Specifying a non-zero gap tolerance can
eliminate this additional search, thus in some cases drastically reducing computation
time. The gap is computed as the absolute value of the difference between the best
solution so far, and the best bound on the optimum, divided by the best bound on the
optimum. With zero gap (default), the search continues until the entire search space is
eliminated so that the global optimum is reached.

Default: 0%

Allowed range: 0 to 1

Convergence The evolutionary solver stops with status “Solver has converged to the current solution”
when nearly all members in the current population have very similar fitness values. This
stopping criteria is satisfied when 99% of the population members all have fitness val-
ues within Convergence tolerance of each other.

The fitness value is a combination of the objective function value and a penalty for con-
straints still violated. If you think the evolutionary solver is terminating too quickly, you
can make this tolerance smaller, but you might also want to increase MutationRate or
PopulationSize in order to increase the diversity of trial solutions.

 Analytica Optimizer Guide 95

Algorithm selectionChapter Control Settings8

Default: 10-4

Allowed range: 0 or 1

Tolerance If the relative (i.e., percentage) improvement observed during the previous MaxTi-
meNoImp seconds does not exceed this value, then evolutionary solver terminates.
See MaxTimeNoImp.

Default: 0

Allowed range: 0 to 1

MaxTimeNoImp Controls the amount of time (in seconds) that the evolutionary solver is willing to spend
without making any significant progress. If the relative improvement during this time has
not exceeded the setting specified by Tolerance, it terminates with status (Solver can-
not improve the current solution) or (Solver could not find a feasible solution).

Default: 10-5

Allowed range: 10-9 to 10-4

MaxFeasibleSolutions The maximum number of feasible solutions found by the Evolutionary algorithm before
terminating.

Default: no limit

Allowed range: positive

Algorithm selection

Preprocessing
Scaling When this is True, the Optimizer attempts to rescale decision variables and constraints

internally for the simplex algorithm, which usually leads to be reliable results and fewer
iterations. A poorly scaled model, in which values of the objective, constraints, or inter-
mediate results differ by several orders of magnitude, can result in numeric instabilities
within the Optimizer when scaling is turned off, due to the effects of finite precision com-
puter arithmetic.

Default: False

Allowed range: 0 or 1

Presolve When this is True, the LP/Quadratic engine performs a presolve step to detect singleton
rows and columns, remove fixed variables and redundant constraints, and tighten
bounds, prior to applying the simplex method.

Default: True

Allowed range: 0 or 1

Engine: LP/Quadratic

PreProcess Turns on or off all integer pre-processing (on by default).

Default: 1

Allowed range: 0 or 1

Engine: LP/Quadratic

96 Analytica Optimizer Guide

Chapter Control Settings8 Algorithm selection

StrongBranching This setting applies to integer and mixed-integer problems. When this is on, the Opti-
mizer estimates the impact of branching on each integer variable of the objective func-
tion prior to beginning the branch and bound search. It does this by performing a few
iterations of the dual simplex method after fixing each variable. This “experiment” pro-
vides the search with an estimate of which integer variables are likely to be most effec-
tive choices during the branch and bound search. Although the time spent in this
estimation process can be moderately expensive, the cost is often regained many times
over through a reduction in the number of branch-and-bound iterations that must be
explored to find an optimal integer solution.

Default: 1

Allowed range: 0 or 1

Engine: LP/Quadratic

Debugging
SolveWithout Means "Solve Without Integer Constraints." When this is True, any integer domain con-

straints are ignored, and the continuous, and the continuous version of the problem is
solved instead. The effect is the same as changing the domain to Continuous while
leaving the variable bounds in, but can be more convenient in some cases when debug-
ging.

Default: True

Allowed range: 0 or 1

IISBounds Determines whether variable bounds should be included in the infeasibility search con-
ducted by OptFindIIS() or OptWriteIIS(). When set to 1, only a subset of the scalar
constraints along the .ConstraintVector index is considered. When set to 0, variable
bounds can be eliminated in order to find an IIS with a greater number of constraints.
This parameter is only used by OptFindIIS() when the second optional parameter,
newLp, is True. When newLp is True, OptFindIIS() returns a new «LP» object, from
which you can use OptInfo() to access the list of constraints and list of variable bounds
present in the IIS. When newLp is False, since only a subset of the .ConstraintVector
index is returned, OptFindIIS() relaxes only constraints, leaving variable bounds in tact.

Default: 0

Allowed range: 0 or 1

Numeric estimation
Derivatives The Derivatives setting controls how derivatives are computed. These values are pos-

sible:

• 1 = forward: This is the default if Jacobian and gradient parameters are not
supplied. The Optimizer estimates derivatives using forward differencing, i.e.,

• 2 = central: The Optimizer estimates derivatives using central differencing, i.e.,

• 3 = jacobian: The Optimizer computes derivatives using the supplied Jacobian
and gradient expressions. This is the default if these are supplied.

• 4 = check: The Optimizer computes derivatives using the supplied Jacobian
expression and also estimates the Jacobian using finite differencing. If they don’t

x()∂
∂ f x Δ+() f x()–

Δ
-----------------------------------≈

x∂
∂ f x Δ+() f x Δ–()–

2Δ
--≈

 Analytica Optimizer Guide 97

Algorithm selectionChapter Control Settings8

agree to within a small tolerance, the optimization aborts with OptStatusNum() =
67 (“error in evaluating problem functions”). This option is useful for testing whether
the Jacobian is accurate.

StepSize The step size used to estimate derivatives numerically. This is the value in the esti-
mates listed in the preceding Derivatives description.

Default: 10-6

Allowed range: 10-9 to 10-4

SearchOption Controls how the gradient-based search determines the next point to jump to during
search:

• 0 = Newton: Uses a quasi-Newton method, maintaining an approximate Hessian
matrix for the reduced gradient function.

• 1 = Conjugate-gradient: Use a conjugate gradient method, which does not
require the Hessian.

Default: 0

Allowed range: 0 or 1

Estimates The Estimates setting controls the method used to estimate the initial values for the
basic decision variables at the beginning of each one-dimensional line search:

• 0 = linear: Uses linear-extrapolation from the line tangent to the reduced
objective function.

• 1 = quadratic: Extrapolates to the extrema of a quadratic fitted to the reduced
objective at its current point.

Default: 0

Allowed range: 0 or 1

RecognizeLinear When set to 1, the Optimizer attempts to detect automatically decision variables that
influence the objective and constraints in a linear fashion. It can then save time by
pre-computing partial derivatives for these variables for the rest of the search. This
aggressive strategy can create problems when a dependence changes dramatically
throughout the search space, particularly when a decision variable is near linear around
the starting point, but the gradient changes elsewhere in the search space. When the
solution is reached, the Optimizer recomputes the derivatives and verifies them against
the assumed values. If they do not agree, the status text “The linearity conditions
required by this solver engine are not satisfied” is returned.

Engine: GRG Nonlinear

Default: 0 (select default)

Allowed range: 0 or 1

SOCP barrier search
In addition to the many search control settings available of linear programs (covered in
the previous chapter), a few additional settings can be used to control the search when
solving quadratically constrained problems using the SOCP Barrier engine.

These parameters are set using the settingName and settingValue parameters to
DefineOptimization(), as described in “Specifying settings” on page 92.

SearchDirection Controls the search direction on each iteration of the SOCP Barrier engine. The Power
class method is a technique with the long-step barrier algorithm leading to a polynomial

Δ

98 Analytica Optimizer Guide

Chapter Control Settings8 Algorithm selection

complexity. The dual scaling method uses HKM (Helmberg, Kojima, and Monteiro) dual
scaling in which a Newton direction is found from the linearization of a symmetrized ver-
sion of the optimality conditions. Either of these can be further modified by a predic-
tor-corrector term.

Default: 0 (off)

Allowed range: 1 = Power class, 2 = Power class with predictor-corrector, 3 = dual
scaling, or 4 = dual scaling with predictor-corrector.

Engine: SOCP Barrier

PowerIndex This parameter is used to select a particular search direction when the SearchDirec-
tion is set to 1 or 2.

Default: 1

Allowed range: non-negative integer

Engine: SOCP Barrier

StepSizeFactor The relative step size (between 0 and 1) that the SOCP Barrier engine can take towards
the constraint boundary at each iteration.

Default: 0.99

Allowed range: 0.00 to 0.99

Engine: SOCP Barrier

GapTolerance The SOCP Barrier Solver uses a primal-dual method that computes new objective val-
ues for the primal problem and the dual problem at each iteration. When the gap or dif-
ference between these two objective values is less than the gap tolerance, the SOCP
Barrier Solver stops and declares the current solution optimal.

Engine: SOCP Barrier

Default: 10-6

Allowed range: 0 to 1

FeasibilityTolerance The SOCP Barrier engine considers a solution feasible when the constraints are satis-
fied to within this relative tolerance.

Engine: SOCP Barrier

Default: 10-6

Allowed range: 0 to 1

Evolutionary search controls
PopulationSize Controls the population size of candidate solutions maintained by the Evolutionary

engine, or the number of starting points for MultiStart in the GRG Nonlinear engine.
MultiStart has a minimum population size of 10. If you specify 0, or any number smaller
than 10, then the number of starting points used is 10 times the number of decision vari-
ables, but no more than 200.

Engine: GRG Nonlinear, Evolutionary

Default: 0 (automatic)

Allowed range: 0, or integer >= 10

 Analytica Optimizer Guide 99

Algorithm selectionChapter Control Settings8

MutationRate The probability that the Evolutionary Optimizer engine, on one of its major iterations, will
attempt to generate a new point by “mutating” or altering one or more decision variable
values of a current point in the population of candidate solutions.

Engine: Evolutionary

Default: 0.075

Allowed range: 0 to 1

ExtinctionRate This determines how often the Evolutionary engine throws out its entire population,
except for the very best candidate solutions, and starts over from scratch.

Engine: Evolutionary

Default: 0.5

Allowed range: 0 to 1

RandomSeed Both engines use a pseudo-random component in their search for an optima. Thus, the
final result can differ each time an optimization of the exact same problem is performed.
By setting the random seed, you can ensure that the same sequence of pseudo-random
numbers is used, so that the same result obtains every time the same problem is
re-evaluated. If you do not specify the random seed, Analytica uses its internal random
seed, so that when you first load a model and evaluate results in a fixed order, you get a
predictable result. Setting RandomSeed to 0 causes the pseudo-random generated to
be seeded using the system clock. Any positive value sets the initial seed to a fixed
number.

Engine: GRG Nonlinear, Evolutionary

Default: (use Analytica’s random seed)

Allowed range: non-negative integer

Feasibility When set to 1, the Evolutionary engine throws out all infeasible points, and keeps only
feasible points in its population. When set to 0, it accepts feasible points in the popula-
tion with a high penalty in the fitness score, which tends to be useful when it has a hard
time finding feasible points.

Default: 0

Allowed range: 0 or 1

LocalSearch Selects the local search strategy employed by the Evolutionary engine. In one step, or
generation, of the algorithm, a possible mutation and a crossover occur, followed by a
local search in some cases, followed by elimination of unfit members of the population.
This parameter controls the method used for this local search. The decision for whether
to apply a local search at a given generation is determined by two tests. First, the objec-
tive value for the starting point must exceed a certain threshold, and second, the point
must be sufficiently far from any already identified local extrema. The threshold is based
on the best objective found so far, but is adjusted dynamically as the search proceeds.
The distance to local optima threshold is based on distance travelled previous times the
local optima was reached.

There is a computational trade-off between the amount of time spent in local searches,
versus the time spent in more global searches. The value of local searches depends on
the nature of your problem. Roughly speaking, the Randomized method is the least
expensive and the gradient method tends to be the most expensive (i.e., with more
time devoted to local searches rather than global search).

Engine: Evolutionary

100 Analytica Optimizer Guide

Chapter Control Settings8 Algorithm selection

Default: 0

Allowed range: 0 to 3
1 = Randomized Local Search: Generates a small number of new trial points in the
vicinity of the just-discovered “best” solution. Improved points are accepted into the
population.
2 = Deterministic Pattern Search: Uses a deterministic “pattern search” method to seek
improved points in the vicinity of the just-discovered “best” solution. Does not make use
of the gradient, and so is effective for non-smooth functions.
3 = Gradient Local Search: Uses a quasi-Newton gradient descent search to locate an
improved point to add to the population.

FixNonSmooth Determines how non-smooth variables are handled during the local search step. If set,
then only linear and nonlinear smooth variables are allowed to vary during the local
search. Because gradients often exist at most points, even for discontinuous variables,
leaving this off can still yield useful information in spite of the occasional invalid gradi-
ent.

Engine: Evolutionary

Default: 0

Allowed range: 0 or 1

Mixed-integer controls

Integer branch and bound
IntCutoff If you can correctly bound the objective function value for the optimal solution in

advance, this can drastically reduce the computation time for MIP problems, since the
branch-and-bound algorithm to prune entire branches from the search space without
having to explore them at all. For a maximization problem, specify a lower bound, and
for a minimization problem, specify an upper bound. If you specify this parameter, you
need to be sure that there is an integer solution with an objective value at least this
good, otherwise the Optimizer might skip over, and thus never find, an optimal integer
solution.

Default: no bounding

UseDual When True, the LP/Quadratic engine uses the dual simplex method, starting from an
advanced basis, to solve subproblems generated by the branch-and-bound method.
When False, it uses the primal simplex method to solve subproblems. Use of dual
simplex often speeds up the solution of mixed-integer problems.

The subproblems of an integer programming problem are based on the relaxation of the
problem, but have additional or tighter bounds on the variables. The solution of the
relaxation (or of a more direct “parent” of the current sub problem) provides an
“advanced basis” which can be used as a starting point for solving the current subprob-
lem, potentially in fewer iterations. This basis might not be primal feasible due to the
additional or tighter bounds on the variables, but it is always dual feasible. Because of
this, the dual simplex method is usually faster than the primal simplex method when
starting from an advanced basis.

Default: 2

Allowed range:
1 = Primal
2 = Dual

 Analytica Optimizer Guide 101

Algorithm selectionChapter Control Settings8

ProbingFeasibility Probing is a pre-processing step during which the solver attempts to deduce the values
for certain binary integer variables based on the settings of others, prior to actually solv-
ing a subproblem. While solving a mixed-integer problem, probing can be performed on
each subproblem before running a constrained simplex. As branch-and-bound fixes one
variable to a specific binary value, this can cause the values for other binary variables to
become determined. In some cases, probing can identify infeasible subproblems even
before solving them. In certain types of constraint satisfaction problems, probing can
reduce the number of subproblems by orders of magnitude.

Default: 0

Allowed range: 0 or 1

BoundsImprovement This strategy attempts to tighten bounds on variables that are not 0-1 or binary vari-
ables, based on values that have been derived for binary variables, before subproblems
are solved.

Default: 0

Allowed range: 0 or 1

OptimalityFixing This strategy attempts to fix the values of binary integer variables before each subprob-
lem is solved, based on the signs of coefficients in the objective and constraints. As with
BoundsImprovement and ProbingFeasibility, this can result in faster pruning of
branches by the branch-and-bound search; however, in some cases optimality fixing
can yield incorrect results. Specifically, optimality fixing creates incorrect results when
the set of inequalities imply an equality constraint. Here is an example:

Constraint Ct1 := X + 2*Y + 3*Z <= 10

Constraint Ct2 := X + 2*Y + 3*Z >= 10

This implies an =10 constraint. You must also watch out for more subtle implied equali-
ties, such as where it is possible to deduce the value of a variable from the inequalities.
Such equalities must be represented explicitly as equalities for OptimalityFixing to
work correctly.

Default: 0

Allowed range: 0 or 1

PrimalHeuristic This strategy attempts to discover a feasible integer solution early in the
branch-and-bound process by using a heuristic method. The specific heuristic used by
the LP simplex solver is one that has been found to be quite effective in the “local
search” literature, especially on 0-1 integer programming problems, but which not guar-
anteed to succeed in all cases in finding a feasible integer solution. If the heuristic
method succeeds, branch-and-bound starts with a big advantage, allowing it to prune
branches early. If the heuristic method fails, branch and bound begins as it normally
would, but with no special advantage, and the time spent with the heuristic method is
wasted.

Default: 0

Allowed range: 0 or 1

LocalHeur,
RoundingHeur,

LocalTree

These strategies look for possible integer solutions in the vicinity of known integer solu-
tion using a local heuristic (“local search heuristic” or “rounding heuristic”), adjusting the
values of individual integer variables. As with the PrimalHeuristic, finding an integer
solution can help improve bounds used by the search, and thus prune off portions of the
search tree.

Engine: LP/Quadratic

Default: 0

102 Analytica Optimizer Guide

Chapter Control Settings8 Algorithm selection

Allowed range: 0 or 1

FeasibilityPump An incumbent finding heuristic used by branch-and-bound to find good incumbents
quickly.

Engine: LP/Quadratic

Default: 1

Allowed range: 0 or 1

GreedyCover Another incumbent finding heuristic used by branch-and-bound to find good incumbents
quickly.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

Cut generation control
Cut generation options are available for the LP simplex method and is used when solv-
ing integer or mixed-integer LP problems.

A cut is an automatically generated constraint that “cuts off” some portion of the feasible
region of an LP subproblem without eliminating any possible integer solutions. Many dif-
ferent cut methods are available each of which are capable of identifying different forms
of constraints among integer variables that can be leveraged to quickly reduce the fea-
sible set, and thus prune the branch-and-bound search tree. However, each of these
methods requires a certain amount of work to identify cut opportunities, so that when
opportunities are not identified, that effort can be wasted. The defaults are set in ways
that represent a reasonable trade-off for most problems, but for hard integer problems,
you can experiment with these to find the best settings for your own problem. You might
find that some methods are more effective than others on your particular problem.

MaxRootCutPasses Controls the maximum number of cut passes carried out immediately after the first LP
relaxation is solved. This has an effect only if one of the cut method options is on. If this
is set to a value of -1, the number of passes is determined automatically. The setting
MaxTreeCutPasses is used for all iterations after the first.

Engine: LP/Quadratic

Default: -1 (automatically determined)

Allowed range: -1or more

MaxTreeCutPasses Controls the maximum number of cut passes carried out at each step of the solution
process with the exception of the first cycle. This setting is used only if at least one cut
method is on. Each time a cut is added to a problem, this can produce further opportuni-
ties for additional cuts, hence cuts can continue to be added until no more cuts are pos-
sible, or until this maximum bound is reached.

Engine: LP/Quadratic

Default: 10

Allowed range: 0 or more

GomoryCuts Gomory cuts are generated by examining the inverse basis of the optimum solution to a
previous solved LP relaxation subproblem. The technique is sensitive to numeric round-
ing errors, so when used, it is important that your problem is well-scaled. It is recom-
mended that you set the Scaling settings to 1 when using Gomory cuts.

 Analytica Optimizer Guide 103

Algorithm selectionChapter Control Settings8

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

MaxGomoryCuts This is the maximum Gomory cuts that should be introduced into a given subproblem.

Default: 20

Allowed range: non-negative

GomoryPasses The number of passes to make over a given subproblem looking for possible Gomory
cuts. Each time you add a cut, this can present opportunities for new cuts. It is actually
possible to solve an LP/MIP problem simply by making continual Gomory passes until
the problem is solved, but typically this is less efficient than branch and bound. How-
ever, that can be different for different problems.

Default: 1

Allowed range: non-negative

KnapsackCuts Knapsack cuts are only used with grouped-integer variables (whereas Gomory cuts can
be used with any integer variable type). These are also called lifted cover inequalities.
This setting controls whether knapsack cuts are used.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

MaxKnapsackCuts The maximum number of knapsack cuts to introduce into a given subproblem.

Default: 20

Allowed range: non-negative

KnapsackPasses The number of passes the solver should make over a given subproblem, looking for
knapsack cuts.

Default: 1

Allowed range: non-negative

ProbingCuts Controls whether probing cuts are generated. Probing involves setting certain binary
integer variables to 0 or 1 and deriving values for other binary integer variables, or tight-
ening bounds on the constraints.

Engine: LP/Quadratic

Default: 1

Allowed range: 0 or 1

OddHoleCuts Controls whether odd hole cuts (also called odd cycle cuts) are generated. This uses
a method due to Grotschel, Lovasz, and Schrijver that apply only to constraints that are
sums of binary variables.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

MirCuts, TwoMirCuts Mixed-integer rounding cuts and two mixed-integer rounding cuts.

Engine: LP/Quadratic

104 Analytica Optimizer Guide

Chapter Control Settings8 Algorithm selection

Default: 0

Allowed range: 0 or 1

RedSplitCuts Reduce and split cuts are a variant of Gomory cuts.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

SOSCuts Special ordered sets (SOS) refer to constraints consisting of a sum of binary variables
equal to 1. These arise common in certain types of problems. In these constraints, in
any feasible solution exactly one of the variables in the constraint must be 1, and all the
others zero, such that only n permutations need to be considered, rather than .

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

FlowCoverCuts Controls whether flow cover cuts are used.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

CliqueCuts Controls whether clique cuts can be used, using a method due to Hoffman and Pad-
berg. Both row clique cuts and start clique cuts are generated.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

RoundingCuts A rounding cut is an inequality over all integer variables formed by removing any contin-
uous variables, dividing through by the greatest common denominator of the coeffi-
cients, and rounding down the right-hand side.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

LiftAndCoverCuts Lift and cover cuts are fairly expensive to compute, but when they can be generated,
they are often very effective in cutting off portions of the LP feasible region, improving
the speed of the solution process.

Engine: LP/Quadratic

Default: 0

Allowed range: 0 or 1

Coping with local optima
MultiStart When turned on, the GRG engine restarts at multiple starting points, following the gradi-

ent from each to its corresponding local optima. Starting points are selected randomly
between the specified lower and upper variable bounds, and clustered using a method
called multi-level single linkage. The solver selects a representative point from each
cluster, and then continues to successively smaller clusters based on the likelihood of

2n

 Analytica Optimizer Guide 105

Numeric tolerance and precisionChapter Control Settings8

capturing undiscovered local optima. Best results are obtained from MultiStart when
your variable upper and lower bounds are finite with as narrow range as possible. If
finite bounds are not specified, you must set RequireBounds to 0. PopulationSize
controls the number of starting points. TopoSearch can be set for a more sophisticated
method of selecting starting points.

Engine: GRG Nonlinear

Default: 0 (off)

Allowed range: 0 or 1

RequireBounds When MultiStart is used to select random starting positions, points between the bounds
specified for each variable are sampled. If finite bounds on some variables are not
specified, then MultiStart can still be used, but is likely to be less effective because
starting value must be selected from an infinite range, which is unlikely to cover all pos-
sible starting points, and thus is unlikely to find all the local optima. When Require-
Bounds is on, as it is by default, an error results if you have not specified finite bounds
on variables and have selected the MultiStart method, so as to remind you to specify
bounds. If you really intend to use Multistart without finite bounds on the variables, you
must explicitly set RequireBounds to 0.

When using the Evolutionary engine, finite bounds are also important in order to ensure
a appropriate sampling for an initial population. Although it can still function without
bounds, the infinite range that must be explored can dramatically slow down amount
required to find a solution, and thus it is recommended that you always specify finite
upper and lower bounds when using the Evolutionary engine. If RequireBounds is 1
(the default) when no bounds are specified, an error is reported in order to encourage
the use of bounds.

Engine: GRG Nonlinear, Evolutionary

Default: 1 (on)

Allowed range: 0 or 1

TopoSearch Only used when MultiStart is 1. When set to 1, the MultiStart method uses a topo-
graphic search method that fits a topographic surface to all previously sampled starting
points in order to estimate the location of hills and valleys in the search space. It then
uses this information to find a better starting points. Estimating topography takes more
computing time, but in some problems that can be more than offset from the improve-
ments in each GRG search.

Engine: GRG Nonlinear

Default: 0 (off)

Allowed range: 0 or 1

Numeric tolerance and precision
ReducedTol The optimal or reduced cost tolerance. The simplex method looks for a variable to enter

the basis that has a negative reduced cost. Decision variables whose reduced cost is
less than the negative of this tolerance are candidates for entering the basis during the
simplex search.

Default: 10-5

Allowed range: 10-9 to 10-4

106 Analytica Optimizer Guide

Chapter Control Settings8 Numeric tolerance and precision

PivotTol During the simplex algorithm, elements in the solution matrix must have an absolute
value greater than this value to be candidates for pivoting.

Default: 10-5

Allowed range: 10-9 to 10-4

Precision This value specifies how closely the calculated values on the left-hand side of con-
straints must match the right-hand sides in order for the constraint to be satisfied.
Because of the finite precision arithmetic, a left-hand side that would ideally evaluate to
7.0 might compute as 6.9999999. With a precision of 10-6, the constraint A1 >= 7 would
be considered satisfied in this case.

Default: 10-6

Allowed range: 10-9 to 10-4

PrimalTolerance The maximum amount by which the constraints can be violated and still considered fea-
sible.

Engine: LP/Quadratic

Default: 10-7

Allowed range: 0 to 1

DualTolerance The maximum amount by which the dual constraints and still considered feasible.

Engine: LP/Quadratic

Default: 10-7

Allowed range: 0 to 1

Unused
There are a few Optimizer settings that are not used by the standard engines in Analyt-
ica Optimizer, even though they do show up on the list of settings. Some of these are
used by add-on engines (add-on engines have their own set of additional parameters in
general).

Crashing

IntCutoffHigh, deprecated, used IntCutoff

IntCutoffLow, deprecated, use IntCutoff

PrecisionTol

SolutionAccuracy

SolutionResolution

SolutionTol

VariableReordering

	Introduction
	How to use the Analytica Optimizer Guide
	What is the Analytica Optimizer?
	Types of Optimization
	Premium Solver Specifications
	Optimize with uncertain values and Intelligent Arrays
	Compatibility with other Analytica editions

	How do I obtain the Analytica Optimizer?
	Activating Analytica Optimizer
	Installing Optimizer add-on engines
	What’s new in Analytica Optimizer 4.3 and 4.4

	Quick Start
	Introduction to Structured Optimization
	Notation
	The Optimum Can Example
	Decisions
	Constants
	Variables
	Constraints
	Objectives
	The DefineOptimization() function
	Viewing the Optimization Object
	Obtaining the Solution
	Obtaining the optimized Objective value
	Viewing Optimization Status
	Copying Optimized Results to Definitions
	Changing variable types (Domain)
	Setting bounds on decision values
	Using Parametric Analysis with Optimization
	The Initial Guess attribute

	Chapter Summary

	Optimization characteristics
	Introduction
	Parts of an optimization problem: General Description
	Identifying the type of optimization
	Specific Optimization Characteristics
	Parts of a Linear Program (LP)
	Parts of a Quadratic Program (QP)
	Parts of a Quadratically Constrained Program (QCP)
	Parts of a Non-Linear Program (NLP)

	Continuous, integer, and mixed-integer programs
	Solving simultaneous equations

	Optimizing with Arrays
	What if all dimensions of an array are extrinsic?
	Example 1: Beer Distribution LP, Base Case
	Verifying the Optimization Setup
	Evaluate the Optimization node
	Evaluate Status

	Checking the Result
	Optimized Solution as an Array
	Optimized Solution as a List

	Summary: Basic Beer Distribution LP

	Example 2: Beer Distribution with Added Scenario
	Combining Optimization with Intelligent Arrays
	Setting Up the Model
	Verifying the Optimization Setup
	Evaluate the Optimization node and check status

	Checking the result
	Summary: Beer Distribution LP with Added Scenario

	Example 3: Beer Distribution with Limited Routes
	Setting Up the Model
	Checking the Result

	Chapter Summary

	Key Concepts: The Airline NLP example
	Concepts covered in the Airline NLP example
	NLP Characteristics
	Airline NLP Module 1: Base Case
	Using parametric analysis: Airline NLP Module 2
	Optimizing with Uncertainty
	Module 3: Stochastic Optimization (FAST)
	Module 4: Multiple Optimizations of Separate Samples (MOSS)

	Improving Computational Efficiency of NLPs:
	Module 5: Time as an Extrinsic index
	Identifying the Source of an Extrinsic Index
	Module 6: Time as an Intrinsic Index
	Module 7: Embedding an NLP in a Dynamic Loop
	Controlling Engine Selection and Settings

	Logistic Regression Function Reference
	Logistic regression functions
	Logistic_regression(y, b, i, k)
	Probit_regression(y, b, i, k)
	Poisson_regression(y, b, i, k)

	Optimizer Attribute Reference
	Visible and Hidden Attributes
	Domain and Bounds
	Domain and Bounds Expressions
	Intrinsic Indexes
	Initial Guess

	Optimizer Function Reference
	Using Named Parameters
	Primary Optimization Functions
	DefineOptimization()
	OptSolution(Opt, Decision, PassNonFeasible)
	OptObjective(Opt, PassNonFeasible)
	OptObjectiveSa(Opt, Decision)
	Optimization Status Functions
	OptStatusNum(Opt) / OptStatusText(Opt)
	OptInfo(Opt, "Item", Decision, Constraint, asRef)
	OptEngineInfo("Engine", "Item", asRef)
	OptShadow(Opt, Constraint, PassNonFeasible) and
	OptReducedCost(Opt, Decision, PassNonFeasible)
	OptObjectiveSa(Opt, Decision)
	OptRhsSa(Opt, Constraint)
	OptSlack(Opt, Constraint, PassNonFeasible)
	OptFindIIS(Opt, newLp)
	OptWriteIIS(Opt, filename, format)
	OptRead(Opt, DecisionVector, ConstraintVector, format)
	OptWrite(Opt, filename, format)

	Control Settings
	Controlling the search
	Selecting the optimization engine
	Examining engine capabilities
	Specifying settings
	Examining available settings
	Termination controls
	Algorithm selection
	Preprocessing
	Debugging
	Numeric estimation
	SOCP barrier search
	Evolutionary search controls
	Mixed-integer controls
	Cut generation control
	Coping with local optima

	Numeric tolerance and precision

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

