¥ analytica.

User Guide

Analytica 4.1

May 7, 2008

Lumina Decision Systems, Inc.
26010 Highland Way

Los Gatos, CA 95033
Phone: (650) 212-1212 I ,umlna ®
Fax: (650) 240-2230 DECISION SYS is
www.lumina.com

Copyright Notice

Information in this document is subject to change without notice and does not represent a commitment on the part of Lumina
Decision Systems, Inc. The software program described in this document is provided under a license agreement. The software
may be used or copied, and registration numbers transferred only in accordance with the terms of the license agreement. It is
against the law to copy the software on any medium except as specifically allowed in the license agreement. No part of this doc-
ument may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the licensee’s personal use, without the
express written consent of Lumina Decision Systems, Inc.

This document is © 1993-2008 Lumina Decision Systems, Inc. All rights reserved.

The software program described in this document, Analytica, includes code that is copyrighted:
© 1982-1991 Carnegie Mellon University
© 1992-2008 Lumina Decision Systems, Inc., all rights reserved.

Analytica was written using MacApp®: © 1985-1996 Apple Computer, Inc.
Analytica incorporates Mac2Win technology, © 1997 Altura Software, Inc.

The Analytica® software contains software technology licensed from Carnegie Mellon University exclusively to Lumina Decision
Systems, Inc., and includes software proprietary to Lumina Decision Systems, Inc. The MacApp software is proprietary to Apple
Computer, Inc. The Mac2Win technology is technology to Altura, Inc. Both MacApp and Mac2Win are licensed to Lumina Deci-
sion Systems only for use in combination with the Analytica program. Neither Lumina nor its Licensors, Carnegie Mellon Univer-
sity, Apple Computer, Inc., and Altura Software, Inc., make any warranties whatsoever, either express or implied, regarding the
Analytica product, including warranties with respect to its merchantability or its fithess for any particular purpose.

Lumina Decision Systems is a trademark and Analytica is a registered trademark of Lumina Decision Systems, Inc.

Credits

This Analytica User Guide was written and edited by Lonnie Chrisman, Max Henrion, and Richard Morgan, with important con-
tributions from Brian Arnold, Fred Brunton, Adrienne Esztergar, Jason Harlan, Lynda Korsan, Randa Mulford, Rich Sonnenblick,
Brian Sterling, and Eric Wainwright.

Contents

About Analytica 000001

WEICOME! ...ttt s 1
If you don’t read MaNUALS............uviiiiiiiiie e 2
Hardware and software reqUIrEMENTScooiiiieeeiiiriee e ee s 2
Installation and [ICENSE COUEScccuiriiiiiiiiiieiic e 3
EditioNS Of ANGIYTICA. .. .ccciiiiiiii ettt e e e e st r e e e e eaaaes 5
Help menu and electronic doCUMENTAtION............coiiiiiiiiiaiiiiie e 7
Normally, usually, and defaultsS ... 8
Typographic conventions in thisS QUIEoiiiiiiiiii e
User guide Examples folder.........ccccceeiviiiennene

What's new in Analytica 4.1?..........

What's NeW in ANAIYEICA 4.07uiiiieiiiiie e

Chapter 1: ExaminingaModel 17
To open or exit a model
Diagram WindOWcccoeveeiiniieieeenniieeeen,
Classes of variables and other objects
SEIBCHNG NOUES ... ettt e et e e e e snbn e e e e e e e
TRE TOOIDANei et e
Browsing with input and output nodes
The ODJECT WINGOWeiiiiiiiiii ettt ettt e st e e e eben e e e
The ALDULE PANEL ...
Showing values in the ObJect WINAOW..............ooouiiiiiiiiiiiiei e
[110111 0T PP PPPTPPUPPPTN

Chapter 2: Result Tables and Graphs 29

The RESUIt WINAOW.........ooiiiiiiiiiiccie e e 30
Viewing a result as atableooooiiiiii 32
Viewing a reSult @S @ graphi... ... e e 32
UNCEIAINTY VIEBWSeeiieiiitiee ettt ettt e e ettt e e s et bt e e e e e e ssnbree e e e anbbeeeaesanens 33
COMPATNG FESUILS ...ttt e e e e e e e s bbb e e e e e sabneeeeeeanns 38

Chapter 3: Analyzing Model Behavior 41
Varying iNPUL PAraMELEIScoiuuiiiee ettt et e e e e e e e seneeeee s 42
Analyzing model behavior reSUILSeeii i 43

Chapter 4: Creating and Editing a Model . . .
Creating and Saving @ MOUEIeiiiiiii e
Creating and editing NOUEScoouuiiiiieiiieie et e e
DIAWING GITOWSoiiiieieee ettt ettt e e ettt e e e e e bbbt e e e e e anntbee e e e anbreeeaeaanens
How to draw arrows between different modules..............cccovveriiiiniiiiie
AlIBS NOUES ..o e
To edit an attribute ...
To change the class of an object
PreferencCes di@lOgooi i

Chapter 5: Building Effective Models . . .
Creating @ MOEL..........ciiiiiiiie e e e e e e e e
Testing and debugging a model......................
EXpanding YOUr MOGEIoooiiiiiiiie e

Chapter 6: Creating Lucid Influence Diagrams 69
Guidelines for creating lucid and elegant diagramscccoecvieeieeiiiiiiiee e 71
Arranging nodes to make clear diagramscooouurieieaiiiiiiee e 72

Analytica User Guide

Contents

Organizing a module hierarChy ..o 75
Color in iNflueNCe diagramS........ccocuiiiee e e e ee e e e 77
Diagram StYle dialogcoeuveiieiiiiiiieee e e e 78
[N o Te [CTRS] 4 (=0 =1 o o PP EPRTSPPPRPN: 79
Taking screenshots Of diagramScooiuiiieiiiiiiiee s e 80
Chapter 7: Formatting Numbers, Tables, and Graphs 81
NUMDBDET FOIMELS ..ottt ettt e e e as 82
DAL fOMMALS. ... eeieietiie ittt e et sbee e nre s 84
Multiple formats in ONE tabIEeiiiiiii e 86
(17Tl g o T (0] L= TSRS 86
Graph SELUP dIiAlOg.........vviiieiiiiiie e 89
Graph tEMPIALES. .. .eii it e e e e st arae e 96
DG oo)1] T T [T o F PRSP 98
Chapter 8: Creating and Editing Definitions 107
Creating or editing @ definitioncciiiiiiiie e 108
The EXPression POPUP MENUuuuiiiiiiiiiiereeeiiiieeeeessiiaeeeessssbereeesesssseseesssnsressassansns 111
Object FINAEr dialogvvviieieiiiiee et e s 112
Using a function or variable from the Definition menuccccccceiviiiiieeieiiciieneee, 114
Checking for Valid VAIUEScuiiiiiiiiiiee et a e e 115
Chapter 9: Creating Interfaces forEnd Users 119
USING INPUE NOAESvviieie ettt e e e e e e e st et e e s s st e e e e e eensnaaeae s 120
Creating @ ChOICE MENUooiiiiiiiiiie e e st e e eneaee s 121
USING OULPUL NOTESevvieee ettt e e e e e e e et et e e s s nb e e e e e snnsbaaeae s 122
Input and output nodes and their original variablescccccceeiiiiie e 123
USING fOrM MOAUIESoeiiiiiiiiiee e e e e s earaee e e s 123
AdAING ICONS 10 NOUEScciiiiiiii et e e e e s atbeaeeeaas 124
Graphics, frames, and text in @ diagramcooccviiiei i 125
Default and XML model file fOrmatsocoveiiiiiiiiiiiiie e 127
Hyperlinks in model documentationcooiiiiieri i 128
Chapter 10: Using Expressions 131
o] (=111 (o] o =SSP 131
N U401 o= S SRS P PP 132
Boolean OF truth VAIUESoouiiiiiiieciie e e 132
TOXEVAIUBS ...ttt b e et et e e e e nanee s 133
(O] 01T =1 0] £ O T ST P PSPPSR 133
IFQTHEN D ELSE C.uvvvieiiiiiiiie ettt e e e st n e e e eanranaa e s 135
Function calls and ParameterS........cccuuieeeiiiiie e 136
MaALh FUNCHIONS ..ot 136
NUMDBDEIS ANA TEXE.....eeiiiiiieiiiee ettt sttt e e e 138
Exception values INF, NAN, and NULLccccoiiiiiiiiiiiii e 138
RTAT = U4 11T TSP UPPRPRN 139
Datatype FUNCHONSvviiiii e e e et e e e e e s saaaeeeeeas 140
Chapter 11: Arraysand Indexes 143
Introducing INAEXES AN AITAYSvvvieiiiiiiee et eeb e e e e s saareee e 144
IFa THEN b ELSE C WIth @ITayS......ccciiiiiiiiiii ettt e e s aane e e 161
(O3 Vi To I Ta I T To [PRSP RRP 163
Functions that Create INAEXESueiiiiiiiiiie e 166
Defining a variable as an edit tablecccoooiiiiii i 169
Editing @ tADIE ..ooeiiiiiiiiiee e 171

Analytica User Guide

Contents

Splice a table when computed indexes changecccccvveeeeiiciiiie e, 173
Subscript and slice of @ SUDAITAYccooiiiiiie i 174
Choice menus in an edit table............ccooiiiiiiiiiii 176
Shortcuts to navigate and edit atable.........ccccvieiiiiiiiiii 177
Chapter 12: More Array Functions 181
FUNCLIONS that Create @ITAYS........cciiiiiiie e i it ee et e e e st r e e e s erbaeeae s 182
Array-reducing fUNCHIONScoiiiiiiiie e e s aa e e e 185
Transforming fUNCHONS..........oii oo e ebaa e e e 191
Converting between multiD and relational tables............ccccccoivciiiii e, 194
INterpolation fUNCHONSoiiiiiie e e 195
Other array fUNCHIONS.uiiiiiiiiiee et e e e etber e e e e ernnes 197
DetermTable: Deterministic tablescoooviiiiiiiiiii e 199
SUDTADIE ..t 202
MALTIX FUNCHIONS ...ttt b e st naeas 202
Chapter 13: Other Functions 205
TEXE FUNCHONS ...ttt e e sbe e 206
DAte fUNCHIONS ...ttt ettt e et e e e snbe e e 207
Advanced mMath fUNCHIONS...........oiiiii s 209
FINaNCial FUNCLIONSooiiiiiiiii et 210
Financial library fUNCHONS.........coiiiiiiiiii et raae e e 214
Advanced probability fUNCHONSccciiiiiiii e 217
Chapter 14: Expressing Uncertainty 219
Choosing an appropriate distributionccoeiiiiiiiiee e 220
Defining a variable as a distribution ..o 222
Including a distribution in a definition ... 224
Probabilistic CalCUIBLIONoiiiiiiee e s 224
Uncertainty Setup dialogc.uvviiieiiiiiiie e 225
Chapter 15: Probability Distributions 231
Probability diStribUtiONSoiiiiii e 232
Parametric discrete distribUtIONSccuviiiiiiiiiie e 233
Probability density and mass graphscccuuveeeiiiiiiiic e 234
The domain attribute and discrete variablesccoovveiiiiini e 236
Custom discrete probabilitiesS ... 237
Parametric continuous diStribULIONSoociiiiiiiiii e 241
Custom continUOUS AIStHDULIONSeeiiiiiiiiiei e 249
Special probabiliStic fUNCLONScooiiiiii i 251
Multivariate diStrIDULIONS.oiiiiiiiiie e 253
IMPOrtanCe WEIGNTINGcoiiiiie e e e e e e e s aareeaeeean 257

Chapter 16: Statistics, Sensitivity, and Uncertainty Analysis . . 261

StatiStCAl FUNCHIONS ..ottt 262
Weighted statistics and W Parameterc..uiveiiiiiiiee e 268
IMPOItANCE ANAIYSIS ...vvviieiiiiiiiee ettt e e e st e e e e et e e e e e e s snnaaeeeeans 268
Sensitivity analysis fUNCHONS..........coiiiiiii e 270
TOMNAAO CRAIS ...ttt e st e e sabe e e snbeeeea 272
DG Al o] (o] £ PR URPUPRN 275
Yo7 11 (=] g o] (o) ¢ PP SRRP 277
REQIESSION @NAIYSISuvviiiiiiiiiiie et e e a e e e e e 278
uncertainty in regreSSioN FESUILScoiiuiiiie it e e e s ae e 279

Analytica User Guide

Contents

Vi

Chapter 17: Dynamic Simulation
THE TIME INUEX ...eiiiiiiiic e s
Using the Dynamic() function
More about the TiMe INAEXcccciiiiiiiiii s
Initial values fOr DYNAMICccooiiiiiiieeiiiii et
UsiNg arrays in DYNAMIC() .. eeeeeiiuureieeeaiiiiiee ettt e e e e s ntreeee e
Dependencies with Dynamic
uncertainty and DYNAMICccooiiiiiiieeiiiiiee et e e e s aere e e

Chapter 18: Importing, Exporting, and OLE Linking Data
(07] o)V TaTo JF= T o [o1 1S3 1] Vo RSP OPU PO URT P
Using OLE to link results to other applications............ccvevieiiiiiiiiiiiie e
Linking data from other applications into Analytica..........c.ccoocuveeieiiiiiiieneiiiieeeee
IMPOrting @and @XPOITINGooueiieeeeiiiii ettt et e e e ebb e e e s sibeeeeeeas
Printing t0 @ fileooiieee e
Edit table data import/export fOrMaLtcooiuiiiiiiiii e

Chapter 19: Working with Large Models .
Show module hierarchy Preference ...
The OULINE WINAOW........oiiiiiiiiiiecii e
FINAING VariabIes ..o
ManNaging AttriDULES.eiiiiiiiii et
INValid Variables ..o
Using filed modules and liDraries ...
Adding a Module OF IBFaryeeeiii e
Combining models into an integrated Modelcccoviiiiiiiiiiiii e
MaNAGING WINAOWS.......eeiiiiiiiiiiee ettt e e e e st e e e e e s abbr e e e e s anbneeeeeas

Chapter 20: Building Functions and Libraries .
EXaMPIE FUNCHION. ...
Using a function
Creating a function.................
Attributes of a function
Parameter qualifiers...............
LIBIariES ..o

Chapter 21: Procedural Programming
An example of procedural Programmingeeeeiiiieeieeeriiiiiee e
Summary of programming CONSIIUCESoouuiiiiiiiiiiee e
Begin-End, (), and “;” for grouping eXPreSSIiONSccuueeeeeriireeeeeiiiieeeeeesireeeeee s
Declaring local variables and assigning to themccccoooie
For and While [00pS and rECUISIONuuiiiiiiiiiiiee et e e
LOCAI INUEXES ...t
ENsuring array abSIraCtioNc.uueieeeiiiiiieee et
References and data SITUCIUIEScoooviiiiiiiiiiie s
HAaNAIES 10 ODJECES.eiiiiiiee e et
Dialog fUNCHIONS. ..ottt et e e et e e e e sibn e e e e s
Miscellaneous fUNCHIONSccviiiiiiiiii s

Chapter 22: Analytica Enterprise . . .
ACCESSING AAtADASESceeiieeiee e e e
Database fUNCHIONSeooiirieieie et
Reading and Writing teXt fileSoiiiii e
Making a browse-only model and hiding definitions..............ocoooiiiiiini e,

Analytica User Guide

303
304
304
306
306
309
309
310
311
313

315
316
317
317
317
318
323

325
326
327
328
328
331
335
336
340
344
345
348

Contents

HUGE ATTAYS eiiiiiiieieeee ettt ettt e e e e e e e e e s e s s s st b bbbt b e e e e e eeaeaaaeaeaaeeansnnnannn 362
Creating bUttoNS and SCHPLS ...vvviiiiiiiiiie e e e e s eiaraea s 363
Performance Profiler IOrary ... 366
Integrating with other APPlICALIONScoccviiiiiiiier e 368
Appendices L e 371
Appendix A: Selecting the Sample Size 372
Appendix B:Menus 375

FlE MENU ..o e et e e e enaeee e e an 375

Lo 11 101 o 1 PRSP 376

ODBJECE MEBNU....eeiiiii et 377
DEefiNitioN MENUeiiiiiiieiiie e 378

RESUIE MEBNU ...eiiiie e 380
DIAGIAM MENU ...ttt e e et e s nnnee s 381

WINOOW MENU ..ttt ettt e e e 382

HEID MEBNU. ..ttt nree s 382

Right mouse BUttON MENUSociiiiiiieii e 383
Appendix C: Analytica Specifications L. 384
MEIMOIY USAQEeeveeeeeeieiieie e e et e ettt e e e e e e e e s e e e e et e e e e nennne e e s 384
Appendix D: Identifiers Already Used 386
Appendix E: Error Message Types e 387
Appendix F: Forward and Backward Compatibility 389
Appendix G: Bibliography 390
Function List 391
Glossary 393
Index. e 403
Windows and Dialogs 421
QUICK REFEIENCE .. r e e e e e e e e e e ea s 422

Analytica User Guide

Vi

Contents

Viii Analytica User Guide

NiigeYelifeiifelal About Analytica

This introduction explains:

How to use this manual

How to install Analytica

Editions of Analytica

The online help system

Typographic conventions used in this guide
How to access Analytica example models
What's new in Analytica release 4.0
What's new in Analytica release 4.1

Introduction About Analytica

Tip

Click cross references

If you don’t read manuals

This User Guide describes how to use Analytica 4.1. If you are new to Analytica, we invite you to
start with the Analytica Tutorial to learn the essentials. Most people find they can work through the
Tutorial quite rapidly. You might then want to read a few sections of the User Guide listed in the
next section to learn more key concepts. You can consult the rest of this guide as a reference
when you need more depth.

For the most current information on Analytica, visit Anawiki (the Analytica Wiki online at http://
www.lumina.com/wiki). This site includes tips, libraries, and reference materials, along with a
search feature.

If you can't find what you want, or have comments on our documents or software, please email
us at Lumina at support@Ilumina.com. We are always glad to hear from Analytica users.

If you are reading this guide as a PDF document on your computer, you can click the page num-
ber in any cross reference to jump to that page. To return to the previous location, use Acrobat’s
Go To Previous View feature by pressing Alt+left-arrow (might vary depending on your version
of Acrobat).

If you don’t read manuals

Chapter 5:
Building Effective
Models

Chapter 6: Creating
Lucid Diagrams

Chapter 11:
Arrays and Indexes

Chapter 14: Expressing
Uncertainty

Chapter 21: Procedural
Programming

Experienced modelers find most Analytica features intuitive. But, it's helpful to get a good grasp of
some key concepts so you can get up to speed rapidly. Here are a few chapters that you might
find especially helpful to review.

Offers guidelines for creating effective models, distilled from the experience of master modelers. It
offers a practical guide for building effective models that are clear, reliable, and focus on what
really matters — the decisions, objectives, and key uncertainties. These tips are not specific to
Analytica, but we designed Analytica to make them especially easy to follow. See page 61.

Gives tips on how to create influence diagrams that are truly lucid and elegant — and how to
avoid incomprehensible spaghetti. See page 69.

Explains Analytica’s Intelligent Arrays™. After you grasp the essentials, they let you build com-
plex multidimensional models with surprising ease. But, you might find they take a little getting
used to, particularly if you have spent a lot of time with spreadsheets or programming with arrays.
We recommend that even — perhaps especially — experienced modelers review this chapter.
See page 143.

Discusses how to select appropriate probability distributions to express uncertainties. It also pro-
vides an overview of how Analytica computes probability distributions using Monte Carlo and
other random sampling methods, and your options for controlling and displaying probabilistic val-
ues. See page 219.

With Analytica, you can create large and sophisticated models without procedural programming.
But, if you really want to write complex procedural functions, read this chapter to understand Ana-
lytica as a programming language. See page 325.

Hardware and software requirements

To use Analytica, you need the following quite modest minimum configuration:
¢ Intel 486-66 MHz or better (Pentium 500 MHz+ or AMD Athlon recommended).
* 30 MB disk space
e 256 MB RAM (2 GB recommended for large models)
¢ 8-bit color display
* Windows 98, 2000, NT 4, ME, XP, or Vista

It helps to have a faster CPU, and, especially, more RAM for large models. Analytica will benefit
from up to 3 GB RAM if you have it. It is also handy to have a large screen, or even multiple
screens, when working with a large model.

Analytica User Guide

mailto:support@lumina.com
http://www.lumina.com/wiki
http://www.lumina.com/wiki

Introduction About Analytica Installation and license codes

Installation and license codes

License codes

Stale license codes

Expiration dates

When you purchase a
license or upgrade to
another edition

After downloading the Analytica 4.1 installer from http://www.lumina.com, or inserting the Analyt-
ica CD-ROM into your CD or DVD drive, just double-click the installer to start installation. It installs
onto your hard drive the executable software, all documentation as Adobe PDF files, plus a range
of Analytica libraries and example models. If you have installed an earlier release of Analytica,
such as 2.0 or 3.1, the installer leaves it there, so you can run either version.

The setup program asks you to confirm the directory name in which to install Analytica, by default,
C:\Program Files\Analytica 4.1. Most users can accept the default.

You need a license code to activate the software. Lumina emails you a license code when you
download a Player or Trial edition, or when you purchase a copy. If someone else purchased Ana-
lytica for you, you might need to ask that person to forward you the email with your license code.

During installation, Analytica will prompt you for a license code. You can copy and paste the code
from the email into the field, or just retype it. The license code activates the specified edition of
Analytica, e.g., Player, Trial, Professional, Enterprise, or Optimizer.

Each license code goes stale a few days after it is generated. If yours is stale — perhaps,
because you didn't install Analytica right away, or, later, if you want to move Analytica onto
another computer — fear not! Click the URL on the registration screen, or go to
http://www.lumina.com/ana/stale. Provide the requested information, and it will immediately email
you a fresh license code. This mechanism is designed to prevent unauthorized use of old license
codes. Authorized users can always get a fresh license code.

Some license codes — notably, for a Trial or an edition licensed per year — have a limited life,
after which they expire. After expiration, Analytica reverts to the Player edition, so you can still
open, view, and evaluate your models. You just won't be able to make or save changes. Expira-
tion is not the same as going stale. To reactivate Analytica after expiration, you might need to pur-
chase a copy.

You don't need to download and reinstall Analytica again when you purchase a license after test-
ing the free trial, or if you want to upgrade from, say, the Professional to Enterprise edition. Just
select Update License from the Help menu in Analytica and enter your new license code into the
Licensing Information dialog.

Analytica User Guide 3

http://www.lumina.com
http://www.lumina.com/ana/stale

Introduction About Analytica

Tip

To upgrade to a
patch release

To upgrade to a minor
or major release

To uninstall Analytica

Installation and license codes

Analytica® Licensing Information

A valid icense code is required to run Analyhica®.

|F wau recently ardered a free Trial or purchaszed a copy, you should have
received an email with your License code, Fleaze copy and paste vour Code
from the email into the field below, then enter your name and arganization and
press DK,

|F wou don't have a license code, you can get a license code for & free 15-day
Trial edition, or for an unlimited use of the Analytica Plaver at:

hittp: /A luming. com anatrial

Or you can purchaze Analytica at
hittp: /A lumina. com/ analpurchase

Phone: 877-653-6462 [toll-free in the US], or BB0-212-1212
Ernail: mailto:sales@iumin

M ame: [

Organization: |Lumina Decizion Systems

License Code: |

WView Licenze Agreement. ., ‘ Cancel

Analytica Decision Engine (ADE) is a different application from Analytica, and requires a new
installation, even if you already have another edition of Analytica installed.

When you upgrade a licensed copy with a patch release (e.g., 4.1.0 to 4.1.1), simply run the
installer. The fields you entered originally will be filled in, which you can leave unless you wish to
make changes. The installer replaces the older release and reuses your existing license code.

You can install Analytica 4.1 and retain an earlier release, such as Analytica 3.1, on your com-
puter. You need a new license code for the new release. The installer gives you the option of
cleanly uninstalling the earlier release(s) if any are installed on your computer.

After confirming that Analytica 4.1 is working, you usually uninstall the earlier release. To uninstall
the earlier release:

1. From the Windows Start menu, open the Control Panel.
2. Click Add or remove programs.

3. Find Analytica 3.1 (or whichever release you want to remove) and click the Remove button
to start the Wizard.

4. Follow the steps through the uninstall wizard.

Analytica User Guide

Introduction About Analytica Editions of Analytica

Editions of Analytica

Player

Professional

Trial

Power Player

Enterprise

Optimizer

The Analytica Decision
Engine (ADE)

Analytica is available in these editions. See the next page for a list of key features by edition.

Lets you review and run Analytica models without having to purchase a license. With the Player
edition, you can change designated inputs, run the model, view results, and examine selected
model diagrams and variables. It does not let you create new models, make changes other than
to selected inputs, or save models.

Provides most features, including the ability to create, edit, and save models.

A free edition of Analytica that provides the full functionality of Analytica Professional for a limited
time, usually 15 days. After that, it reverts to the functionality of Analytica Player, so you can still
view and run any models you have created, but not save changes.

Like the Player, it lets you review models, change inputs, and view results, and does not let you
create or edit models. Unlike the Player, it does let you save models with changed inputs. It also
supports models that use Enterprise features, including database access, Huge Arrays, and the
Profiler. See Chapter 22, “Analytica Enterprise” for details.

Offers all the features of Analytica Professional, plus support for Huge Arrays, reading and writing
databases, profiling for analysis of computational effort by variable, and obfuscation (encryption)
of sensitive model elements. See Chapter 22, “Analytica Enterprise” for details.

Offers all the features of Analytica Enterprise, plus the Optimizer Library that provides powerful
solver and optimization methods, including linear programming (LP), quadratic programming, and
nonlinear programming (NLP). Optimizer is available as an extension to Analytica Enterprise,
Power Player, and ADE. See the Analytica Optimizer Guide for details.

ADE runs Analytica models on a server computer. It provides an application programming inter-
face (API) to provide access to view, edit, and run models from another application, including a
web server. You can create a user interface to models via a web browser, so that many end users
can view and run a model via the Internet. You need Analytica Enterprise as the development tool
to create models to run with ADE. The ADE Kit includes a license for Analytica Enterprise in addi-
tion to ADE.

Analytica User Guide 5

Introduction About Analytica Editions of Analytica

Compare Analytica features by edition

Editions of Analytica

Features

Player

Power Player
Trial
Professional
Enterprise
ADE

Open models, change inputs, and view results

Save model with changed inputs

Create and edit models

No marking of printout

Hierarchical influence diagrams

Monte Carlo uncertainty analysis

Intelligent Arrays, see page 143

Procedural programming, see page 325

OLE linking with Excel, see page 292

Outline Window, see page 304

Create input and output controls and forms, see
page 120

General function libraries: Math, Array, Distributions,
Special, Statistical, Text

Advanced function libraries: Advanced math,
Financial, and Matrix

Save browse-only models and hide sensitive model
details, see page 360

Huge Arrays™ — dimension up to 100 million, see
page 362

ODBC database access, see page 358

Time and memory profiling, see page 366

Optimizer available

Application programming interface (see ADE User
Guide)

6 Analytica User Guide

Introduction About Analytica

Help menu and electronic documentation

Help menu and electronic documentation

Tip

Content outline F1

Function list

Index

Find

What's new in 4.1?

Select Help from the menu bar to open the Help menu.

Content outling F1

Function list
Index
[=][n]

H _ Find...

Liser guide F1 what's new in 4.1

Cptimizer Optimizer

Tutorial Tukarial

Web kech support Weh kech sUpport

Email tech support Email tech suppart

Reqgister.., Reqister. ..

Conkact Lumina. .. Contact Lumina...

Update license. .. Update license. ..

Abaut Analytica. .. About Analytica, .

Most users see the left-hand version of the menu starting with User guide. The right-hand version
appears if you have Adobe Acrobat Standard or Professional installed, which enable direct links
into sections of a PDF document.

Opens the User Guide showing chapters, sections, and subsections as an expandable outline,
using bookmarks. Press the function key F1 as a shortcut.

Opens a page listing all functions, operators, and other constructs, classified by type. Click a
name to jump to an explanation of how to use it. This is a fast way to find a function if you don’t
know its name.

Opens the User Guide to its alphabetized index. Select the first letter of the term from the book-
mark outline, and click an entry to jump to its explanation.

Opens the Find dialog in Adobe Acrobat so you can search for a term.

Opens “What's new in Analytica 4.1?" in the User Guide.

User Guide F1

Optimizer

Tutorial

Opens this Analytica User Guide as a PDF document in Adobe Reader. Press the function key F1
as a shortcut (see “Online help and electronic documentation”page 8).

Opens the Optimizer Guide (if you have Analytica Optimizer).

Opens the Analytica Tutorial as a PDF document in Adobe Reader.

Web tech support

Email tech support

Register

Contact Lumina

Update license

Opens Lumina’s Analytica tech support web page in your default web browser, with support infor-
mation and links to frequently asked questions.

Starts an email message to send to Lumina tech support using your default email application.

Opens a web page where you can register your copy of Analytica, and copies your license code
into the required field.

Opens a dialog with Lumina contact information: web links, phone numbers, email, and physical
mailing address.

Opens the Licensing Information dialog so you can review your or enter a new license code or
enter a new code to upgrade your copy of Analytica.

Analytica User Guide 7

Introduction about Analytica Normally, usually, and defaults

About Analytica Opens the startup splash screen, mentioning the Analytica Edition, release number, and the
name of the person to whom it is licensed.

Online help and electronic documentation

You can open the Tutorial, User Guide, and Optimizer Guide (when available) from the Help
menu, or press the F1 key to open the User Guide.

You can read and search these PDF documents using the Adobe® Reader available free from
http://www.adobe.com. Some additional features are available if you purchase Adobe Acrobat
Standard or Professional.

i User Guide 4_070907.pdf - Adobe Reader

File Edit WYiew Document Tools Window Help
& L [F) i .
Dk L ER[]imee 3 @i
-
‘ Bookmarks _
|_ Chapter n Creating ang Eating a Hoder Armows batwesn variables In cifferent modules
u Direct methoed one: drawing arrows across windows
'ﬁ Arrow's 1. Opan botn module Diagram sindows and bring to e wop the module Diagram
windows containing the angin vaniable, Buping Grice.
[| Model changes when 2 or the varabie Mortgage ioan 115 expasadin =
creating an arrow 72 Wz ncemean.
3. Draw 3 arow from the origh variabie (Buying brice) to e second varnaoie
[E] Model changes when (Magage ioan moun).
deleting an arrow Saurcn e Dustate
K Influence cycle or loop
=] [| Arrows between variables
in different modules
K Direct method one: :
drawing arrows across
windows
[| Direct method two:
maoving, drawing, and
muoving back Result
AN EMow paints from Buying pce to the Cost to Buy module; @ small amownead paints
El Indirectly drawing an I Mortgage ioan smound 1 Indlcale iat 3 source node ks In 3 different diagram.
arrow
[alias nodes
=E] Editing attributes } :
[attribute changes p—— 1
kSl ey a4
[| Cancel and Undo
=] El Changing the class of a Direct methoed two: moving, drawing, and moving back
node 1. Sde\x.lm'.y\age|'aar.~alrm1.r.mna‘mmvslmnmmm‘mn‘emagm
menu o move ihe Varable Into the FE‘!I‘[cllagralr.
l[l Madule Classes 2. Draw an amow from Buying price 1o Mompage oan smount.
. 3. Move Mortgage loan amount back Into Its moduie by aragging It onto the Cost fo Euy
EHE] Preferencas dialog box modul node.
[| Windows of each kind
K Change identifier “ e Lser Guioe
v

The expandable outline Click a section title to view that section. Click . or [icons to expand and collapse the book-
mark tree for chapters and sections of the outline.

Function list If you can’t remember the name of a function, go to the Function List, after the appendixes. This
chapter lists functions and system variables by functional groups. From here, click a function
name to jump to its full description.

Alphabetical index If the search box finds too many occurrences of a term, try the Index in the bookmarks. It usually
links to the best explanation for each term.

Normally, usually, and defaults

Sometimes this guide says “normally it does this” or “usually it does that.” This isn’t because Ana-
lytica is unpredictable, or because we're just addicted to uncertainty. It's because Analytica has a
lot of preference and style options, and it's often simpler to say “normally” or “usually” when we
mean “with the standard defaults.”

8 Analytica User Guide

http://www.adobe.com/

Introduction About Analytica Typographic conventions in this guide

Typographic conventions in this guide

Example Meaning

behavior analysis Key terms when introduced. Most of these terms are included in
the Glossary.

Diagram Menus and menu commands, window names, panel names,
dialog box names, function parameters.

Sequence() Name of a variable or function in Analytica.

Price - DownPmt Expressions, definitions, example code.

10°7 — 10M In example code, this means that the variable or expression
before the “—” generates the result after it.

Enter, Control+a A key or key-combination on the keyboard. A letter, such as “a”,
can be lower- or uppercase.

Code examples This guide includes snippets of code to illustrate features, for example:
Index N := [1, 2, 3, 4, 5]
Variable Squares := N™2
Sum(Squares, N) —» 55

This code says that there are two objects, an index N and a variable Squares. You would create
these objects in a Diagram window by dragging from the node toolbar into the diagram (see “Cre-
ating and editing nodes’page 49). You would enter the expressions, [1, 2, 3, 4, 5] and N*2
into their definitions (see “Creating or editing a definition”page 108). You would not enter the
assignment “:=". The last line says that the expression Sum(Squares, N) evaluates to the
result 55 after the —. You might include that expression in the definition of third variable.

Array examples We use these typographic conventions to show Analytica arrays.
* Anindex or list and its values

N:
| 1] 2] 3] 4 5
* A one-dimensional array, Squares
Squares p
1 2 3 4 5
1 4 9 16 25
« A two-dimensional array
Index_a w, Index b P
a b c
X value| value | value
\ value| value | value
z value| value | value

¢ Athree-dimensional array
Index_a w, Index_b P, Index_c = ‘displayed value”

a b c
X value| value | value
y value| value | value
z value| value | value

Analytica User Guide 9

Introduction About Analytica User guide Examples folder

User guide Examples folder

The Examples folder distributed with Analytica includes User Guide Examples as a subfolder. It
contains Analytica models used in Chapters 9, 10, 11, 12, 14, 15, 16, and 17. Open these models
to see the examples in more detail.

See Chapter 8 of the Tutorial for a summary of the models in the Examples folder.

What’s new in Analytica 4.1?

User Guide

Installer

User Interface

Images

Diagrams

Graphs and charts

Time formats

Make Importance option

10

Windows Vista

File saving

Here are highlights of new and improved features in Analytica 4.1 added since the release 4.0.
Additional detail can be found on the Analytica Wiki (at http://www.lumina.com/wiki).

A nice introduction to Intelligent Arrays has been added to Chapter 11, “Arrays and Indexes” on
page 143. Intelligent Arrays and intelligent array abstraction are seen by many users as the most
useful features of Analytica, and we hope this new introduction will help you gain mastery of this
powerful functionality.

Analytica 4.1 has an all-new installer. It provides the option of cleanly uninstalling previous
releases while upgrading, provides cleaner upgrades and uninstalls, and runs much faster.

When you copy/paste a bitmap image into a diagram, the image is automatically compressed into
a PNG format to reduce memory and model file size (page 126). The new Change Picture For-
mat dialog, accessible from the Diagram menu, allows you to convert the internal format to other
available formats, including legacy bitmap if it needs to be viewed in Analytica 4.0 or earlier
(page 126).

32-bit bitmap images, and images with transparency and alpha blending, are now supported.
Bitmap images draw much more quickly.

Diagrams can be exported directly to an image file in PNG, EMF, JPEG, BMP, or TIF formats
(page 292).

The Set Diagram Size option on the Diagram menu has been eliminated. It was never very use-
ful.

When you click a data point, a balloon shows the full coordinates of that point at full precision.
Autoscaling is improved when the other axis is manually scaled.

Using a custom format, the time of day (page 209) can now be included as part of a date number
format. The fractional part of an integer indicates the time as a fraction of a full 24-hour day.

The Make Importance option (page 268) creates two nodes: one to hold the uncertain inputs and
one to hold the importance result. Both are now variable nodes, while previously an index node
was used for the inputs. The change was made because an index should contain a one-dimen-
sional result, which is not the case for the inputs. Hence, a variable node is more consistent.

A quick animation when windows are opened has been removed. This animation usually lasts for
about 1/10 of a second, but in the Vista Aero color scheme was taking over 10 seconds.

File Open and Save dialogs are now resizable.

If you haven't set the title of your model, it is set automatically to the file name when saved.

Analytica User Guide

http://www.lumina.com/wiki

Introduction About Analytica What's new in Analytica 4.1?

Excel Integration

Copy/paste

OLE linking

Reading Excel files

Expressions

New functions

Enhancements to
Existing Functions

Cell ranges containing multi-line cells (where one cell contains multiple lines of text) can now be
copied and pasted in both directions.

You can OLE link a named range of cells in an Excel spreadsheet into Analytica (see page 292).
This has the advantage of this is that the Analytica model can automatically adapt when the num-
ber of rows or columns in the named range changes without having to adjust the link itself. OLE
linking from a named range to any other application, even within Microsoft Office itself, doesn't
work in general due to a bug in Excel (at least in Excel 2003), but Analytica now successfully
works around that bug.

The Enterprise Edition now includes three new functions that read directly from an Excel work-
book file: OpenExcelFile, WorksheetCell, and WorksheetRange. These are still considered
experimental in release 4.1, so they don't yet appear on the database Definition menu and are
not documented in this guide. Consult the Analytica Wiki for documentation on these functions
(http://lumina.com/wiki/index.php/Functions_To_Read_Excel_Worksheets).

TextTrim(t) (page 206) removes leading or trailing spaces.
MakeTime(h,m,s) (page 208) returns the fraction of a day represented by a given time.

ComputedBy(X) (page 329) indicates that the value of a variable is computed as a side-effect
during the evaluation of another variable, X.

OpenExcelFile, WorksheetCell, and WorksheetRange read values directly from an Excel work-
book file. These require Analytica Enterprise and are documented on the Analytica Wiki.

IsResultComputed(X) (page 349) tests whether the result for X is already cached.

BesselJ(x,n), BesselY(x,n), Bessell(x,n), and BesselK(x,n) compute Bessel functions. See
page 210.

Functions Sum, Min, Max, Average, and Product now allow multiple indexes to be specified in a
single call when reducing across multiple indexes. For example, Sum(X,1,J,K).

Functions Sum (page 187), Min (page 188), Max (page 187), Argmin (page 188), Argmax
(page 188), Average (page 187), Product (page 187), JoinText (page 207), Irr (page 212), and
Npv (page 212) now ignore any null-valued cells in the array parameter, performing their respec-
tive operation only over the non-null values. Regression (page 278) ignores any data points hav-
ing a null Y value. There is also a new parameter data-type qualifier, OrNull (page 320).

Functions Sum, Min, and Max now accept an optional ignoreNonNumbers parameter
(page 186). For example, Min(X,l,ignoreNonNumbers:True) finds the minimum among the
numeric values of X, ignoring textual or other values.

Functions Sum, Min, Max, Average, and Product accept an optional ignoreNaN parameter
(page 186).

Function Round (page 137) accepts a second optional parameter, Round(x,digits).

DatePart (page 208) has been extended with several new options for accessing the time fields
(hours, minutes, and seconds), and the number of elapsed weeks or week days from either the
date origin or the beginning of the year. The time field offsets (hours, minutes, seconds) are
accepted by the DateAdd function (page 209).

The Today function (page 209) can optionally return the current time as well as date, and also
optionally return the date/time in coordinated universal time (utc) rather than in the local time
zone.

The Irr function (page 212) function finds a solution more reliably when a solution exists.
StudentT (page 247) now supports Latin hypercube sampling.

Shuffle (page 251) accepts an optional Over parameter (for independent random shuffles).

Analytica User Guide 11

http://lumina.com/wiki/index.php/Functions_To_Read_Excel_Worksheets

Introduction About Analytica What's new in Analytica 4.0?

Meta-indexes

Concat (page 197) accepts scalars for its first two parameters when its index is specified. Also,
the result index, K, is now optional.

When x is array-valued, the result of Elasticity(y,x) (page 271) is now different, being now more
consistent with the definition of Elasticity being the percent change in y when x changes by 1%.

DbTable (page 358) now returns Null, rather than NaN, when a numeric value is missing in the
relational table.

When Random (page 252) is evaluated in a sample context, the parameters of the distribution
are now also evaluated in sample context.

Suppose you want a global index to contain a list of identifiers. Analytica’s default evaluation rules
with evaluate those variables when the value of the index is requested. In some cases, you might
really want just a list of handles (i.e., the index is a “meta-index”). The metaOnly attribute

(page 344) can be set to 1 on a global index object that is defined as a list of identifiers to force
this behavior.

What’s new in Analytica 4.0?

User interface

12

Graphs and charts

Tables

These are highlights of new and improved features introduced into release 4.0 since Analytica
3.1

We completely rewrote the graphing and charting engine, adding a wide range of new styles and
options. The Graph Setup dialog (page 89) now has six tabs:

¢ Chart type tab includes stacked bars, filled areas with transparency, using symbol shape
and size to indicate extra dimensions, 3D effects on bar charts, cylinders or boxes, and
changing line width. It lets you swap horizontal (X) and vertical (Y) axes, e.g., to create
horizontal bars for tornado diagrams.

« Axis tab offers log scales, reversed scales, and categorical scale. You can save axis settings
as defaults associated with corresponding index variables. Graphing is much smarter in
choosing which dates to display along an axis — by week, month, quarter, or year.

¢ Style tab lets you change colors of grid and frame — in addition to style of the grid, frame,
tick marks, and key.

« Text tab lets you change the font type, size, style, and color for titles and labels. You can also
rotate labels for axis tick marks to prevent overlaps, say for long text values.

« Background tab now lets you set a color or color gradient for the background of the entire
chart, plot area, or key.

« Preview tab lets you look at the effects of the options you have selected before you decide to
accept them. You can apply new graph settings to the current graph, or as defaults for all
graphs.

Graph style templates (page 96) let you apply and reuse a collection of graph settings, for a
consistent style for a model or your entire organization.

Graphing associates settings with the view so that it changes appropriately when you pivot or
change the uncertainty view.

XY comparison (page 98) now lets you plot one slice against another slice of an array variable
over the Comparison index, as well as one variable against another.

In graphs or tables, you can reorder slicer indexes (any graph indexes not shown on horizontal
axis or key) simply by dragging them (page 89).

You can create smarter end-user interfaces by putting drop-down menus in cells of an edit table,
using Choice() (page 176) to let end users select from a list of options. When viewing a table,
using Find from the Object menu (Control+f) (page 177) lets you search for selected text.

The new SubTable (page 202) function lets you define a variable as a subset of another edit table
— any edit to a subtable makes the same change to its parent table, and vice versa.

Analytica User Guide

Introduction About Analytica What's new in Analytica 4.0?

Number, currency,
dates, and languages

Scroll wheel and
keyboard shortcuts

Influence diagrams

The Application

Auto save

CPU sharing

Multiple screens

Smart table splicing (page 173) controls how an edit table changes if its indexes change, e.g.,
editing a label or adding an item or index. You can specify default values for new cells created by
expanding and index.

Analytica is less U.S.-centric. Number formats (page 82) offer multiple currency symbols and flex-
ible date formats, with format and language of days and months depending on Windows regional
settings. You can paste text containing accents and non-English characters (Ascii>127) into
object attributes and diagram nodes. The date functions DateAdd (page 209), DatePart

(page 208), and Today (page 209) add flexibility for computing dates.

The scroll wheel on your mouse scrolls windows (diagrams, tables, and objects), vertically, or
horizontally when you press Control. Dozens of new keyboard shortcuts (page 177) let you navi-
gate and select cells and regions from tables (like Microsoft Excel). When editing a diagram,
shortcuts Control+1, Control+2, etc., add a new decision node, variable node, etc. Control+e now
opens the script of a button, just like it opens the definition for a variable or function.

To make diagrams neater, use the new Align, Make same size, and Space evenly options from
the Diagram menu (page 72). You can now add web links to a diagram as URLs in a text node.
An optional red flag in node shows which objects have descriptions.

As an alternative to drawing arrows, when you're editing a definition in the Attribute panel below
a Diagram window, Alt+click another node in the diagram to insert its identifier into the definition.

Analytica writes each change to an auto save file, so you won't lose any work after a software or
hardware crash. Next time you start the model, it asks if you want to use the backup or revert to
the previously saved version.

It shares CPU nicely with other applications, and doesn’t hog the CPU when it is active.

Analytica now supports editing diagrams across multiple screens for a larger desktop.

Probability distributions and statistical functions

Discrete or continuous

New functions

Over parameter

Extended functions

Uncertain parameters

Multivariate
Distributions library

When graphing a probability distribution, it is smarter about displaying a probability mass function
for a discrete variable (page 236) or density function for a continuous variable. If needed, you can
override this, by specifying Continuous or Discrete in the Domain attribute, or checking Cate-
gorical in the Axis scale tab in Graph set up.

Random() (page 252) generates single random sample from any distribution. Shuffle(a, i)

(page 251) randomly shuffles an array. PDF(X) and CDF(X) (page 267) return the estimated
probability density or cumulative probability functions as arrays. The system variable IsSampleM-
ode returns true in prob mode, false in mid mode, so you can tell the evaluation mode within a
function.

You can create an array of independent probability distributions over one or more indexes by add-
ing optional Over parameter (page 253) to a univariate probability distribution, e.g., Normal(0, 1,
Over: i, j).

Lognormal (page 243) uses mean and stddev (standard deviation) as an alternative to median
and gsdev (geometric standard deviation). Truncate(x, min, max) (page 251) accepts min and
max threshold parameters and preserves sample ordering, and hence rank correlations. Uni-
form(min, max, integer) (page 241) adds the optional parameter integer to specify that values
be integers in the range. CumDist(p, r, i, smooth) (page 249) adds an optional Smooth parame-
ter to control interpolation.

Many distribution functions are much faster, especially when their parameters are uncertain (hier-
archical distributions). Gamma (page 218), Binomial (page 233), Gammallnv (page 218) are
more accurate for extremely large or small parameter values.

New distributions include MultiUniform (page 256) and UniformSpherical (page 256), general-
ized Dist_reshape (page 255), functions for creating time series with serial correlations, and
uncertainty about regression coefficients.

Analytica User Guide 13

Introduction About Analytica What's new in Analytica 4.0?

Distribution Variations
library

Running index for
statistics

Importance weighting

Weights for statistics

New distributions include Smooth_fractile, Warp_dist, Erlang, Pareto, Rayleigh, Lorenzian,
NegBinomial, InverseGaussian, and Wald.

By default, the running index defining which dimension statistical functions operate over is Run
(page 100), the index over random samples. You can specify a different running index as the last
parameter to any statistical function if you want something other than Run, e.g., Variance(x, i)
(page 263) computes the variance over index i, even if X is not uncertain. This renders obsolete
the Data Statistics Library.ana, previously included with Analytica.

Importance weighting (page 257) is a powerful enhancement to Monte Carlo simulation that lets
you get more information from fewer samples; it is especially valuable for risky situations with a
small probability of an extremely good or bad outcome. Instead of treating all samples as equally
likely, you can set SampleWeighting to generate more samples in the most important areas.
Graphs of probability distributions and statistical functions downweight sample values with Sam-
pleWeighting so that their results are unbiased. You can modify SampleWeighting interactively
to reflect different input distributions and so rapidly see the effects the effects on results without
having to rerun the simulation. In the default mode, it uses equal weights, as before, so you don’t
have to worry about importance sampling unless you want to use it.

By default, statistics functions use SampleWeighting (page 257) when you are using importance
sampling. You can also provide an optional parameter W to a statistical function to specify a non-
default set of weights. For example, Mean(x, w: x > 0) (page 263) gives the mean of x conditional
on X being positive.

New functions and language extensions

14

List of variables

IndexVals

FOR iteration index

Position operator @

Slice assignment

Argmin and Argmax

Trig functions

Rank

RunConsoleProcess

System functions

If you define a variable as a list of variables (page 167), e.g., X = [A, B], Analytica creates the
list variables as the index value of X. This is very convenient for comparing several variables. In a
table view, it usually shows the title of each variable in the index. If you double-click a variable
title, it opens its Object window (page 23). You can add another variable C to the list simply by
drawing an arrow from C to X, or remove it by redrawing the arrow.

If you define X as a list of variables, as above, it saves the list of variables as its index in its Index-
Vals attribute. You can get these with the IndexVals(X) function. If you pass X to a function as an
Index parameter, it uses IndexVals.

In FOR j := x DO e, x can now be any expression that evaluates to an array. It evaluates e with j
set successively to each cell (atom) of x. The value of the FOR expression (page 331) is an array
with the same index(es) as Xx.

You can now subscript an expression (page 174), as in (A+B)[l=x].

@J returns the position (an integer from 1 to n) of each element of index J. X[@J = 2] is equiva-
lent to Slice(X, J, 2). PositionInindex(a, u, i) gives the position n in index i for which af@i=n] = u
(see “@: Index Position Operator’page 190).

x[i=y] := b, now lets you assign to a cell or slice of a local variable X, allowing you to write some
algorithms much more efficiently (see “Assigning to a slice of a local variable”page 330).

The new Argmin(x, i) (page 188) and existing ArgMax(x, i) (page 188) can both now work over
multiple indexes, and return the value or position of the indexes containing the minimum or maxi-
mum value.

We have added the inverse trigonometric functions ArcCos, ArcSin, and ArcTan (page 209),
and hyperbolic functions CosH, SinH, and TanH (page 136). They use or return degrees, not
radians.

Rank (page 192) lets you specify mid, lower, or upper rank in the event of a tie.

RunConsoleProcess (page 368) lets you run another application from Analytica. It can pass
data as function parameters or via data files. It can run a process concurrently with Analytica or
wait for its result to be computed.

GetRegistryValue() (page 349) returns selected values from the computer registry, such as the
default directory for model or data files. ShowPdfFile() (page 349) shows an Adobe PDF file, for

Analytica User Guide

Introduction About Analytica What's new in Analytica 4.0?

TypeOf(X)

Handles

Optional and
repeated parameters

Multiply by zero

example, to open PDF documentation for a model. AnalyticaLicenselnfo returns information
about the license, such as its edition, beta status, expiration date, or user ID.

TypeOf (page 141) returns the type of each atom in X as a text value, including “Number”, “Text”,
“Reference”, or “Null”. If X is a handle, it returns the class of the object pointed to by X.

A handle is a pointer to an object, such as a variable or module. The Inputs, Outputs, or Con-
tains attributes create a list of handles to objects (page 344). With handles, you can write func-
tions that navigate around a model, e.g., to get a list of the inputs or all ancestors of a variable.
The new function Handle(X) (page 344) gives a handle to X instead of its value. HandleFroml-
dentifier(T) (page 344), as you might expect, gives a handle if T is the text identifier of an object.
IndexesOf(A) (page 198) returns a list of handles of the indexes of array A.

The qualifier Optional (page 321) in the parameters of a function specifies that the parameter is
optional. You can also supply a default for when the parameter is omitted. The repeat qualifier “...”
(page 322) lets you define a function that takes one or more parameters of the given type.

0*NaN and O*INF now give a warning and return NaN, consistent with the IEEE 754 and SANE
arithmetic standards. Earlier releases simply returned 0.

Analytica Enterprise Edition

Database functions

MDX hypercube access

MDTable

Performance
Profiler library

These features are available in the Enterprise edition, and can be used from the Power Player
edition.

You can now assign result of DBQuery (page 358) to a local index variable, letting you create a
single variable or function to return a relational table, without having to create auxiliary global
indexes for rows and columns.

The new MdxQuery (page 359) function supports the standard MDX language for querying and
writing to multidimensional OLAP hypercube databases, such as offered by Microsoft SQL Server
Analysis Services. This greatly expands ways to integrate Analytica with business intelligence
and related applications.

Now MDTable (page 195) lets you specify the first N columns of X as coordinates and the rest as
measures, as used in a fact table, the format used to specify OLAP hypercubes. It also lets you
pass it a conglomeration function.

The Performance Profiler library (page 366) now shows a sorted table with memory and time
used by each variable and function. Double-click any object title to open its Object window.

Analytica Optimizer

Generalized
Regression library

The Analytica Optimizer uses the new 7.0 release of the Premium Solver from Frontline Systems.
New features include the Grouped Integer variable type, where a solution must assign a different
integer from 1 to n to each variable in the group. The quadratic programming solver, QpDefine,
now supports quadratic constraints in additional to linear constraints. Solverinfo function returns
information about the current solver. The solvers offer a more flexible option for passing all
parameters as a single array of parameters, labeled by parameter name in the index. You can
add yet more powerful solvers, including OptQuest, Knitro NLP, Mosek SOCP and NLP, and
Xpress LP, QP and MIP (priced separately). See the Optimizer Guide or What's New in Optimizer
4.0 for more.

Offers Logistic Regression, Probit Regression, and Poisson Regression using the Optimizer.
These are described in the Analytica Optimizer manual.

Analytica User Guide 15

Introduction About Analytica What's new in Analytica 4.0?

16 Analytica User Guide

ST (- Examining a Model

This chapter introduces the basics of how to open and view an Analytica
model, generate results, and print them, including:

e Start a model

« Explore the Diagram window
* Classes of objects

* Explore the Object window

« Explore the Attribute panel

* Print the contents of windows

Chapter Examining a Model

To open or exit a model

Models

To open a model

Tip

Tip

18

An Analytica model is a collection of variables, modules, and other objects intended to represent
some real-world system you want to understand. Between sessions, a model is stored in an Ana-
lytica document file with the file type “.ana”.

The simplest way to open an existing model is just to double-click the icon for the model file in the
Windows directory.

& Tutorial Models

File Edit ‘“iew Favorites Tools Help |','
i Back =) T O search [Foders | & 3 X ¥) [
Address |12 C:\Program Files\Luminalanalytica 4,00 Tukorial Models V| Go

(LA I)
Car cosk Faoxes and Rent ws Buy
Hares Analysis

Another way to open a model is to:

1. Start up Analytica by double-clicking the icon of the Analytica application, or selecting
Analytica from the Windows Start menu. Analytica opens a new, untitled model.

2. In the top-left of the Analytica application window, press on the File pull-down menu, and
select Open Model. A directory browser dialog appears to let you to find the model file you
want.

However you start a model, Analytica shows this progress bar as it reads in the model file.

@ Reading from File...

Feading GFS 1.5 ANA

e R

Click the Stop button if you change your mind and decide not to open the model. It stops reading,
resulting in a partially loaded model.

Next, it shows a progress bar as it checks the definitions of variables and functions in the model.

Q. Checking Definitions...

Checking: PTS factor

I Stop

If you click the Stop button, it stops checking. Diagrams might have missing arrows and cross-
hatched nodes indicating unchecked definitions. If you later ask to show the result of a variable, it
checks any variables needed. Thus, clicking Stop simply defers some checking, and causes no
problems with the model.

If the model contains any variables whose definitions are missing or invalid, they are listed in the
Invalid Variables window (page 309). You can still compute results for variables with valid defini-
tions, as long as they don’t depend on variables whose definition is invalid.

Analytica User Guide

Chapter Examining a Model Diagram window

To close amodel To close a model, select Close Model from the File menu. If you have made any changes to the
model, a dialog asks you whether you want to save the changes before closing — except if you
are using the Player Edition, which doesn’t let you save a changed model.

To open another model Analytica can open only one model at a time. To switch to another model, first close the model, by
selecting Close Model from the File menu. Then select Open Model from the File menu. A dia-
log prompts you to locate and open another model.

To exit Analytica To exit (or quit) Analytica, select Exit from the File menu. If you have made any changes to the
model, it prompts you to save your model first (if you are not using the Player Edition).

Diagram window

When you open a model, it shows a Diagram window. This window usually shows an influence
diagram, like this.

[Diagram - Model details M=1E3
Decision Buying price varig[)Ies
Appreciatian -
s
Chance Rate of Objective
variables™] inflzt B
Modules
(3 4| | r [

Each node depicts a variable (thin outline) or module (thick outline). The node shape and color
tells you its class — decision, chance, objective, module, and so on. The arrows in a Diagram
window depict the influences between variables. An influence arrow from variable A to variable
B, means that the value of A influences B, because A is in the definition of B. So, when the value
of A changes, it can change the value (or probability distribution) for B.

In the diagram above, the arrow from Buying price to Cost to buy means that the price of
the house affects the overall cost of purchasing it. The influence diagram shows the essential
qualitative structure of the model, unobscured by details of the numbers or mathematical formulas
that can underlie that structure. For more on using influence diagrams to build clear models, see
Chapter 6, “Creating Lucid Influence Diagrams.”

i

To view results To view the value of a variable, first click its node to select it.Then click the Result button in
the navigation toolbar to open a Result window showing its value as a table or graph. Chapter 2,
“Result Tables and Graphs,” tells you more.

Ti P Ifit needs to calculate the value, it shows the waiting cursor while it computes.

Opening details from a To see more details of a model, double-click nodes in the Diagram window:
diagram Double-click a variable node (thin outline) to open its Object window (page 23).

* Double-click a module node to (thick outline) see its Diagram window, showing the next level
of detail of the model.

Analytica User Guide 19

Chapter Examining a Model Classes of variables and other objects

Going to the parent
diagram

Tip

Seeing remote inputs
and outputs

To see the diagram that contains the active module or variable, click the Parent Diagram
button &% |in the navigation toolbar. The module or variable is highlighted in the parent diagram.

If the active diagram is of the top model, it has no parent diagram, and the Parent Diagram button
is grayed out.

When a variable has a Remote input — that is, it depends on a variable in another module — a
small arrowhead appears to the left of its node. Similarly, if it has a remote output, a small arrow-
head appears to its right. Press on the arrowhead to quickly view and navigate influences
between nodes in different diagrams (modules).

Small arrowhead
indicates that this /| 4 Martgage
variable has remote pavrnents
inputs

To see a list of the inputs (or outputs), remote and local, press the arrowhead on the left (or right)
of the node.

I Mortoage I

v (' Mortgage loan amount .
z Popup menu of inputs

) Mortgage interest rate

To jump to a remote input or output, select it from the list and stop pressing. It opens the Diagram
window containing the remote variable, and highlights its node.

Classes of variables and other objects

20

Decision

Yariahle

Index

Constant

The shape of a node indicates the class of the variable or other object:

A rectangle depicts a decision variable — a quantity that the decision maker can control directly.
For example, whether or not you take an umbrella to work is your decision. If you are bidding on a
contract, it is your decision how much to bid.

An oval depicts a chance variable — that is an uncertain quantity whose definition contains a
probability distribution. For example, whether or not it will rain tomorrow is a chance variable
(unless you are a rain god). And whether or not your bid is the winning bid is a chance variable in
your model, although it is a decision variable for the person or organization requesting the bid.

A hexagon depicts an objective variable — a quantity that evaluates the relative value, desirabil-
ity, or utility of possible outcomes. In a decision model, you are trying to find the decision(s) that
maximize (or minimize) the value of this node. Usually, a model contains only one objective.

A rounded shape (with thin outline) depicts a general variable — a quantity that is not one of the
above classes. It can be uncertain because it depends on one or more chance variables. Use this
class initially if you're not sure what kind of variable you want. You can change the class later
when it becomes clearer.

A rounded node (with thick outline) depicts a module — that is, a collection of nodes organized
as a diagram. Modules can themselves contain modules, creating a nested hierarchy.

A parallelogram depicts an index variable. An index is used to define a dimension of an array.
For example, Year is an index for an array containing the U.S. GNP for the past 20 years. Or
Nation name is an index for an array of GNPs for a collection of nations. Indexes identify the row
and column headers of a table, and the axes and key of a graph (see “Introducing indexes and
arrays’page 144).

A trapezoid depicts a constant — that is, a variable whose value is fixed. A constant is not
dependent on other variables, so it has no inputs. Examples of numerical constants are the
atomic weight of oxygen (16) or the number of feet in a kilometer. It is clearer to define a constant

Analytica User Guide

Chapter Examining a Model Selecting nodes

for each such value you need in a model, so you can refer to them by name in each definition that
uses it, rather than retyping the number each time.

A shape like an arrow tail depicts a function. You can use existing functions from libraries, and
define new functions to augment the functions provided in Analytica. See Chapter 20, “Building
Functions and Libraries.”

This node is a button — when you click a button (in browse mode), it executes its script to per-
form some useful action. You can use buttons with any edition of Analytica, but you need Analyt-
ica Enterprise or Optimizer to create a new button (see “Creating buttons and scripts’page 363).

Selecting nodes

To select a node

To select multiple nodes

To deselect all nodes

The toolbar

Navigation toolbar

To view or change details of a variable or other object in a diagram, you must first select a node
(or a set of nodes). You do this in much the same way as you select files or folders in the Win-
dows File Browser, and most other applications:

Simply click a node once to select it. Selected node(s) are highlighted with reverse color in
browse mode, or with handles (little corner squares) in edit mode.

You can also press the Tab key to select a node. Each time you press Tab, it selects the next
node in the diagram, in the order the nodes were created. Control+Tab cycles through the nodes
in the reverse sequence.

Click a node while pressing the Shift key to add it to the set of selected nodes. You can remove a
node from the selection by clicking it again while pressing Shift.

In edit mode, you can also select a group of nodes by dragging the selection rectangle to enclose
them. Press the mouse button in a corner of the diagram — say top-left — and drag the cursor to
the opposite corner — say bottom right. This shows the selection rectangle and selects all nodes
within the rectangle.

Just click the background of the diagram outside any node.

The toolbar appears across the top of the Analytica application window. It contains buttons to
open various views of the model, and to change between browse and edit modes.

d? £ L Lo o o
§F &£§ &§ §&§ & & & ¥
s F F 5 5 F 5 S
& o = = o Oaf* ol 5
i < I
§ & &£ ¢ g & & ¢
§ ¢ ¢ ¢ § & & &
& Q e T
& &
&
qQ

The first five buttons on the toolbar open a window relating to the variable or the object selected in
the active (frontmost) window:

Parent Diagram button: Click to open the Diagram window (page 19) for the module or model
containing the object in the current active Diagram, Object, or Result window. It highlights the
object you were viewing in the parent diagram. If you are viewing the top-level model, which has
no parent, this button is grayed out. The keyboard shortcut is F2.

Outline button: Click to open the Outline window (page 304). The outline highlights the object
you were previously looking at. The keyboard shortcut is F3.

Object button: Click to open the Object window (page 23) for the selected node in a diagram or
the active module. The keyboard shortcut is F4.

Analytica User Guide 21

Chapter Examining a Model Browsing with input and output nodes

Result button: Click to open a Result window (page 30) (table or graph) for the selected vari-
able. This button is grayed out if no variable is selected. If you have selected more than one vari-
able, it offers to create a compare variable that shows a result combining the values of all the
variables. The keyboard shortcut is Control+r or F5.

Definition button: Click to view the definition of the selected variable. If the variable is defined as

ear a probability distribution or sequence, it opens the function in the Object Finder (page 112); if the
variable is an editable table (edit table, subtable, or probability table), it opens the Edit Table
(page 171) window. Otherwise, an Attribute panel (page 24) or an Object window (page 23)
opens, depending on the Edit Attributes setting in the Preferences dialog (page 58). This button
is grayed out if no variable is selected. The keyboard shortcut is Control+e or F6.

Edit buttons These three buttons control your mode of interaction with Analytica. The shape of the cursor
reflects which mode you are in:

Browse tool: Lets you navigate a model, compute and view results, and change inputs. It does
i.“"J not let you change other variables. See “Browse mode”page 23.

Edit tool: Lets you create new objects, and move and edit existing objects. See “Creating and
& ‘ editing nodes”page 49.

Arrow tool: Lets you draw arrows (influences) between nodes on a diagram. See “Drawing
- arrows”page 51.

Ti P If the model is locked as browse-only, or if you are using the Player or Power Player edition of
Analytica, only the browse tool is available.

Browsing with input and output nodes

When you open a model with input and output nodes, the top-level Diagram window might look
like this (instead of an influence diagram).

Hand tool is highlighted J

to show that you are
owsng || 22| @ per| [|]
°

(- [B]x]]
Input assumptions
Time harizan [years) Buying price Y] 4004
Dizcount rate Yy ear Percent down payment % 20
nput nodes (hiyean payment (%)
Rate of inflation (%lyean [Maortgage interest rate (%fyear)
Manthly rent £ 1200 Appreciation rate [%fyear)
Results
Output node Met present value (%) L~
&l

You can change the values in the input nodes directly. The output node, Net present value,
shows a Calc button. Click it to compute and see its value. Double-click the Model details node
to open a diagram showing details of the model (the influence diagram shown above).

22 Analytica User Guide

Chapter Examining a Model The Object window

Browse mode

An existing model opens in browse mode. In this mode, the browse tool button is highlighted in
the navigation toolbar, and the cursor looks like this .

In the browse mode, you can change input node values, view output node results, and examine
"2!1'7 k| » the model by opening windows to see more detail.

:

Viewing input nodes

An input field lets you see a single number or text value. Click in the box to edit the value. If it's a

ADOK] text value, you must put matching quotes around it (single or double).

A pull-down menu lets you choose from a list of options. Press the menu to see the list.

- Click the List button to open a list of values, usually defining an Index. To change a value, click in
List its cell. For more about lists, see “Editing a list’page 165.

- Click to open an edit table showing an editable array with one or more dimensions displayed as a
Edit Tabl| taple. For more, see “Editing a table”page 171.

Click to view and edit a probability distribution in the Function Finder. For more, see “Probabilis-
tic calculation"page 224.

o
4

Viewing output node values

Click the Calc button to compute and display the value of this output variable. When computing is
complete, it shows a number in this node, or, if it's an array, it changes to the Result button and
opens a Result window showing a table or graph. See Chapter 2, “Result Tables and Graphs” for
more.

Calc

A

Result The Result button shows that an array has been calculated. Click it to open a Result window
showing a table or graph. See Chapter 2, “Result Tables and Graphs” for more.

Opening module details

To see the structure of the model, double-click the module Model details, to display its diagram
window (see “The Object window”page 23).

The Object window

The Object window shows the attributes of an object. All objects have a class and identifier — a
unique name of up to 20 characters. A variable also has a title, units, description, definition,
inputs, and outputs.

Analytica User Guide 23

Chapter Examining a Model The Attribute panel

Class menu Identifier

() Variable Mortoane Units: §
Title: Mortgage loan amount
Expression
popup menu——j Description: Total mortgage (loan) amount received.
(page 111) \
e
Definition: Price + DownPaymt
Editable field _ Inputs: () Downpayimt Do parymert
/ 1 Price Buying price
Double-click an input Outputs:) End_maortgage Mortgage principsl remaining
or output to open its () Interest_pay Interest payment=
ODJeCt WlndOW (1 Dewmert hdortoiane nawmerd

To open an Object Here are some ways to open the Object window for an object X:

window
« Double-click X in a Diagram window.
¢ Select X in its Diagram window and click the Object button | ==|in the navigation toolbar.
¢ Double-click the entry for X in the Outline window (page 304).
« If a Result window for X is displayed, click the Object button in the navigation toolbar.
« Double-click X in the Inputs or Outputs list of a variable in an Object window.

Returning to the parent Click the Parent Diagram button &% |in the navigation toolbar to see the diagram that contains
diagram thjs node, with the node highlighted.

The Attribute panel

The Attribute panel offers a handy way to rapidly explore the definitions, descriptions, or other
attributes of the variables and other nodes in a Diagram window. You can open the panel below
the diagram, and use it to view or edit any attribute of the node you select. It shows the same attri-
butes that you can see in the Object window, and often several other attributes.

24 Analytica User Guide

Ch apter Examining a Model The Attribute panel

[Diagram - Model details

Select node to
see its attribute —f—
below
Appreciation]
g
Hate of
inflation
Drag
S | hd partition to
Key iconis open g™ 4 | | » [Z}— change
Title of the/ Buying price: Definjtion had | e panel height
selected object 400K, =
Drag box to
0 change
-4 panel
/ height and
Value of the Attribute menu from dl_agrr]am
attribute which you select the widt

attribute to show

Click the key icon E to open the Attribute panel. Here are things you can do in this panel:
« Select another node in the diagram to see the selected attribute of a different object.
¢ Click the background of the diagram to see the attributes of the parent module.
¢ Select another option from the Attribute menu to see a different attribute.

< To enter or edit the attribute value, make sure you are in edit mode, and click in the Attribute
panel, and start typing. (Not all attributes are user-editable.)

Analytica User Guide 25

Chapter Examining a Model

Different classes of objects have different sets of attributes.

Showing values in the Object window

el

Buying price:

| Description W |

Biuying price of house,

-~

Class \
Identifier Class

v Title Identifier
Uniks Parameters
Description Title
Definition Iniks
Indexvals v Descripkion
Darnain v Class Definition
Help Identifier Diamain
Check Title Help
Inputs Description Check
Outputs Autharis) Inputs
tMetaonly Created Cukputs
Yalue Help Recursive
Variahles Modules Functions

If you try to see an attribute not defined for an object, it shows its description.

See the “Glossary” for descriptions of these attributes. To display other attributes or to add new

attributes, see “Managing attributes” on page 306.

To close the Attribute panel, click the key icon E again.

Showing values in the Object window

When reviewing a model and trying to understand how it works, it is useful to show the value of a
variable and its inputs in the Object window. To switch on this option, select Show with Values
from the Object menu. The Object window for a variable then shows the mid (deterministic)
value of the variable and each of its inputs.

26

Analytica User Guide

Chapter Examining a Model Printing

Value of |
selected variable

List of inputs, with
units and values —

Atom and array values

Printing

Previewing page breaks
before printing

Scaling printouts

@ Object - Present value of cost to buy g@@|
P _bLry Units: -

Title: Present value of cost ta buy

Description: Total present value of the cash flow related to buying, including the doswn payment,
annual out-of-pocket costs, proceeds of future sale, and forgone interest on the down
payment (opportunity cost).

[i
Definition: Pv_own + Pv_sale + Pv_forgone_interest + Downpaymt + Moving_costs

Value: -170.7K

Inputs: () Downpaymt Dowvn payment ($) = -80K
) Moving_costs Moving costs ($) =-6000
() Pv_forgone_interest Present value of for... =-13.5K
() Pv_own Present value of ow... =-1857K
() Pv_sale Present value of sale (5 =114 4K
Outputs: ¢ Net_present_value Met present value
l L[

If a value has not yet been calculated, it shows a Calc button. Click to compute it. If the resulting
value is an atom — a single number or text value, not an array — it shows the value in the Object
window, as above. If the value is an array, it shows instead a Result button Resut__ |, which you
can click to compute and display the array in a separate Result window.

For more about the Result window, see Chapter 2, “Result Tables and Graphs.”

To print the contents of an active window — Diagram, Outline, Object, Result Table, or Graph
— select Print from the File menu. Selecting Print Setup on the File menu can then set printing
options such as page orientation, paper size, or scaling. Any print settings that you specify are
associated only with the window that was active when you selected Print Setup.

When you select the Print preview command on the File menu, it displays a Preview window to
show what will be printed and where page breaks will occur. You can adjust print settings such as
scaling until you get the desired page breaks. When previewing a result table or graph, you can
toggle the option for showing or hiding the index variable titles.

When viewing a diagram, outline, or Object window, page breaks can be viewed while working by
enabling Show Page Breaks on the Window menu.

You can adjust the magnification of your printouts using the Print Setup command on the File
menu, or by using the Setup button on the Print Preview window, in two ways:

e Adjust to p % of normal size: Use p<100% to shrink output, or p>100% to enlarge it.

« Fit to n page(s) wide by m page(s) tall: Shrinks the output to fit on the specified pages. It
preserves aspect ratio. It does not enlarge, so the actual number of pages printed might be
less than n x m.

Analytica User Guide 27

Chapter Examining a Model

- Paper
Size: JLetter
Source;] Automatically Select :_]
_Settings to S caling -
magnify or shrink & ¢ Adiust toc | 100 % of mormal size

print output

Checkbox to print

the background
color for influence —

diagrams

Printing the background

Printing

Orientation

* Portrait

[~ Appearance

(™ Fitta l_ pagelz] wide by l_ page(z] tal

——— [Print influence diagram background colar,

=] :

" Landscape

(1] Cahcel

There is a checkbox in the Print Setup window for controlling whether a diagram’s background

color is printed. By not printing the background color, one can save on ink or toner. Whether the
background is printed or not is controlled by the Print influence diagram background color check-
box. By default, it does not print the background.

Printing multiple
windows

Diagram window
printing options

Result window
printing options

To print the contents of several windows into a single document, use the Print Report command
in the File menu. It uses the print settings set in Print settings for each window.

Object window
printing options

@ Print Report

—A Print Diagrams:

Al
* Currently open diagrams anly

" Diagrams in current raodule only
" Mone

—= Print Objects:

Al

{* Currently open objects only

" Objects in curent module anly
" Mone

— I? Print Results:

* Cumently open results only
" Mo

Cancel

[Print Dutline [&1l Dbjects)
[Print Outling [Modules Orly]

Frirt

Check Print Outline (All Objects) to print a list of all objects in the model, each in its parent mod-
ule, indented to show the module hierarchy.

Check Print Outline (Modules Only) to print a list of all modules (including libraries and form
nodes), indented to show the module hierarchy.

28 Analytica User Guide

OF-To)(I@” A Result Tables and Graphs

This chapter shows you how to:
« View Result windows as graphs or tables.

* Rearrange or pivot results, exchanging rows and columns, or graph
axes and keys, and slicer dimensions.

« Select an uncertainty view to display probabilistic results.
« Compare two or more variables in the same table or graph.

Chapter Result Tables and Graphs

The Result window

When you open the Result window for a variable, it computes its value if it hasn't previously
cached it, and displays it. If the value is an array or a probability distribution, you can display it as
a table or graph. Here is a Result window with a table and equivalent graph.

Result controls

Index selection area

Uncertainty View [0 Result - Net present value
popup menu Cumulative Probability of et present value (§)
Table view i)l [Netpresentvalue (3) w | [Totals
-
Graph view ——

Cumulative Probability of Het present value ($)
Key:| Het present value (§) |

Cumulative Probability

0 —————

-380K -300K 250K, -200K, 180K, 100K, -50K a 0K, 100K
Met present value ($)

Net present value ($)
— Presentwalue of costto huy — Presentvalue of cost to rent

To open a Result Click the variable node in its influence diagram to select it, and do one of these:

window . .
« Click the Result button | # | in the toolbar, or press key Control-+r.
* Select Show Result from the Result menu.

e Select an uncertainty view option, such as Mid Value, Mean Value, or Cumulative
probability, from the Result menu.

« Inthe Attribute panel below a diagram, select Value or Probvalue from the Attribute menu,
and click the Calc or Result button.

To open a Result window for an output node, simply click its Calc or Result button.

Result controls The Result controls, in the upper-left corner of the Result window include these controls:

Press the Uncertainty View popup menu (page 33), to select how to display an uncertain quan-
tity.
@ Click this button to display the result as a table.

ridw

Click this button to display the result as a graph.
Toggle between the table and graph views using the Table View and Graph View buttons.

Index selection

The Index selection area is the top part of a Result window. For a table, it shows which index
goes down the rows, and which goes across the columns. For a graph, it shows which index is on

30 Analytica User Guide

Chapter Result Tables and Graphs

Title
Slicer index

Slicer menu
Slicer stepper arrows

Row or key index

Column or X axis index
XY button

Totals checkboxes

The default view

the X axis (and sometimes Y axis) and which is in the key. For either view, if the array has too
many dimensions to display directly, it also shows slicers that select the values of the extra
indexes. Each control has a popup menu to let you exchange indexes and rearrange (pivot) the
view.

Title of the result Slicer Slicer Slicer X-Y button
menu value steppers)L
Slicer index for Mid Value of Het pregent value (
third or higher———— guwing price "0k TE
dimensions 2au Ga i
[Rate of inflation (%) w | [—Tatals
™ | Appreciation rate {{%/year)} v |[> [~ &
Row or Col‘umn or Check tota:s for
key index X axis index row or column

The index selection area of a graph or table contains these items (example variables and indexes
in the following text refer to the figure above):

Shows the uncertainty view (mid, mean, etc.), the title of the variable, and its units, e.g., Mid
Value of Costs of buying and renting (%$).

The title, units, and value of any index(es) showing dimensions not currently displayed in the table
or graph.

Press ‘h'.}' for a popup menu from which you can change the slicer value for the results displayed.
Click E or § to cycle up or down through the slicer values.

Shows the title of the index displayed down rows for a table, or in the color key for a graph. Press
to open a menu from which you can select another index.

BATAA W alanm ol Bl anw ot samlenm
Euving price
Appreciation rate ((J)vear)
v Rate of inflation (%)

Popup menu

Shows the title of the index displayed across the columns for a table, or along the X (horizontal)
axis for a graph. Press to open a menu from which you can select another index.

Click @ to plot this variable against one or more other variables, or to plot one slice of this vari-
able against another slice. See “XY comparison”page 98.

Check a box to show row or column totals the table view. If you check Totals for an index and then
pivot it to be a slicer index, “Totals” becomes its default slicer value. This lets you show total val-
ues over the slicer index in the graph or table.

When you first display a result for a variable, by default, it displays it as graph, if possible, and
otherwise as a table. You can change this default in the Default result view in the Preferences
dialog (page 58).

When you display the Result window again, it uses all the options you last selected when you
viewed this variable, including table versus graph, uncertainty view, index pivoting and slicer val-
ues, and any graph settings.

Recomputing results

If you change a predecessor of a variable shown in a Result window, the table or graph disap-
pears from the window and is replaced by a Calculate button.

Analytica User Guide 31

Ch apter Result Tables and Graphs Viewing a result as a table

Mid Value of Het present value {$) T

Calculate

Click Calculate to compute and display the new value.

Viewing a result as a table

Toggle to table view

If a result window shows a graph, click on the top-left to switch to table view.

o, B|[=1ES)

=

Resul | mide | Mid Value of Het present value ($) Index
esult controls — | A ._ Selection
(page 30) I3} Buying price 1> e OOK B4 — 1 area
| Rate of inflation (%) w | [Totals (page 30)
Slicer index | Appreciation rate {(%/year)) I[} [~ Totals
Row index 10 5 L] 10
1iPV Buy 5520K | -5508K | 54.56K| -54E4K| -54.43K
Column index~" | ypy Rent 092 092K 092K 092K 1092K

Row index (down)

Column index

Slicer index(es)

Formatting numbers

Three-dimensional table

The index display options depend on the number of dimensions in the variable.

Use this menu to select which index to display down the rows of the table. Select blank to display
a single row.

Use this menu to select which index to display across the columns of the table. Select blank to
display a single column.

If the array has more than two indexes, the extra index(es) are shown as Slicer menus. The table
shows values only for the slice (subarray) setting the slice index to the shown slicer value. Open
the slicer menu 1!} and select a different slicer value, or click |3 or 4] to step through the slicer
values.

To specify the format for the numbers in a table or along the Y (usually vertical) axis of a graph,
show the graph and select Number Format from the Result menu, or press Control-b. The Num-
ber format dialog (page 82) offers many options, including currency signs, dates, and Booleans.

Viewing aresult as a graph

Toggle to graph view

32

If a result window shows a table, click on the top-left to switch to graph view.

Analytica User Guide

Chapter Result Tables and Graphs

Uncertainty views

@ Result - Net present value

midw [Mid Value of Het present value {$} S
Result controls — | 2| Buying price &
(page 30) Lafll Horizontal Anis:| Appreciation rate {(%./year)} ¥ |
Index selection area — Key:| Rate of inflation (%) hd I
(page 30)

-50kK

-5akK

«E -B0K

@ -Bak
3

5 -T0K

- -T7ak
el
=
a
I
@
1
= B
el
[T}
=

-105kK

-110K

-10 -3 -B -4 -2 0 2 ! 3} g 10
y axis Appreciation rate ({%/year))
Rate of inflation (%
x axis | (%)
=1 =3
key —

The y axis, usually vertical, plots the values of the variable. The x axis, usually horizontal, shows

the value of a selected index. The index display options depend on the number of dimensions in
the variable.

X axis If the array has more than one index, use this menu to select which index to display along the x
axis (usually horizontally).

Key index If the array has more than one index, use this menu to select which index to display in the key,
usually showing each value by color.

Slicer index(es) If the array has more indexes than you can assign graphing roles (such as x axis or key), the
extra indexes are shown as Slicer menus, as in a table view. The graph shows values only for the
slice (subarray) setting the slice index to the shown slicer value. Open the slicer menu {} and
select a different slicer value, or click E or ¢4 to step through the slicer values.

To reorder slicers If the graph has more than one slicer index, you can reorder the slicer indexes simply by dragging
one up or down.

Graph setup options There is a rich variety of ways to customize the graph, including line style (lines, data points, sym-
bols, barcharts, stacked bars, thickness, transparency), axis ranges, log or inverted axes, grid
and tickmarks, background colors, and font color and size. To change these settings, open the
Graph Setup dialog (page 89) and do one of the following:

¢ Select Graph Setup from the Result menu.
« Double-click anywhere on a graph in the Result window.

Uncertainty views

Every variable has a certain or deterministic value, which we term its mid value. Some variables,
notably chance variables and variables that depend on chance variables, can also have an uncer-
tain or probabilistic value, which we term its prob value. A mid value is computed using the mid
value of each variable it depends on or the median of any probability distribution. The mid value of
a result is not necessarily the median of its probability distribution, but usually close.

Analytica User Guide 33

Ch apter Result Tables and Graphs Uncertainty views

34

Mid value

Tip

Mean value

The Result window offers seven uncertainty views, including the mid value (which is not uncer-
tain) and six ways to display a prob value. You can select the uncertainty views from a menu in
the top-left corner of a Result window. Or you can select a variable, and select an uncertainty
view option from the Result menu.

M Result - Costs of buying and r Disgram ¥indow Help

Show Result ChrH-R
v mid MidValue Fril Currently selected i
e uncertainty view [v Mid Yalue
L option Mean Value
Bt Shatistics Skatistics

---- Probability Bands

|, Probability Drensity Probability Density
L~ Currulative Probability Curmulative Probability
[Sample Sample

renting ($)

Uncerkainty Opkions,., CrrlHH

Uncertainty View popup menu from

. Result menu uncertain
Result window ty

view options

The checkmark indicates the currently selected view.
Here we illustrate each uncertainty view using the chance variable, Rate_of_inflation,
defined as a normal distribution with a mean of 2.5 and a standard deviation of 1:
Chance Rate_of_inflation := Normal (2.5, 1)
The mid value is the deterministic value, computed by using the median instead of any input prob-

ability distribution. It is computed very quickly compared to uncertain values. It is the only option
available for a variable that is not probabilistic.

@ Result - Rate of inflation |Z E|E|
Mid Value of Rate of inflation {%/year) ﬂ
53]
Lall
25 &
| (4

A mid value is much faster to compute than a prob(abilistic) value, since it doesn’t use Monte Carlo
simulation to compute a probabilistic sample. It is often useful to look first at the mid value of a
variable as a quick sanity check. Then you might select an uncertainty view, which causes its prob
value to be computed if it has not already been cached.

An estimate of the mean (or expected value) of the uncertain value, based on the random (Monte
Carlo) sample.

Analytica User Guide

Uncertainty views

Chapter Result Tables and Graphs

1 Result - Rate of inflation [Z|[E|fg|

Mean Value of Rate of inflation (*c/vear) “i
1.3
Lall
25 2

Ti P The mean and the other uncertainty views below are estimates based on the Monte Carlo (or Latin
hypercube) sample. The precision of these estimates depends on the sample size and the
sampling method. A larger sample size gives higher precision and takes more time and memory
to compute. You can modify the sample size (page 372) and sampling method in the Uncertainty
setup dialog (page 225) from the Result menu.

Statistics A table of statistics of the uncertain value, usually, the minimum, median, mean, maximum, and
standard deviation, estimated from the random sample. You can select which statistics to show in
the Statistics tab (page 228) of the Uncertainty Setup dialog from the Result menu.

[Result - Rate of inflation [Z|[E|fz|
Statistics of Rate of inflation (%:/year) M

i [~ Totals
| ¥ [~

Min 10,7905 o
Median 25
Mean 25
Max 57N
Std. Dev. 09993

| [/

Probability bands An array of percentiles (fractiles) estimated from the random sample, by default the 5%, 25%,
50%, 75%, and 95%iles. You can select which percentiles to show in the Probability Bands tab
(page 228) of the Uncertainty Setup dialog from the Result menu.

9 Result - Rate of inflation
Probability Bands of Rate of inflation (... o

Probability » | [Totals

T L____<p

0.05 0.5585 e
0.25 1.826
0.5 25
0.75 3174
.95 4.141

| (4

Probability density Select probability density to display the uncertain distribution as a probability density function

(PDF).

Analytica User Guide 35

Chapter Result Tables and Graphs Uncertainty views

36

Probability mass
function

Cumulative probability

For a probability density function, it plots values of the quantity over the X (usually horizontal)
axis, and probability density on the Y (vertical axis). Probability density shows the relative proba-
bility of different values. High values show probable regions; low values show less probable
regions. The peak is the mode, the most probable value. If the density is zero, it is certain that the
quantity will not have values in that range.

1. Result - Rate of inflation Z E| f$__<|
Probability Density of Rate of inflation (... ﬂ
Lall
0.4 -
gE." 0.3
0 'n]
8502
2a -
o 0.1 -
EI S B I | | | I I "Il_ll_|
-1 0 1 2 3 4 i G
Rate of inflation (“%/year)

If you select Probability density for a discrete variable, it displays the variable as a probability
mass function (PMF) in a bar graph with the height of each bar indicating the probability of that
value.

@ Result - Poisson(5) : E|E|
Prohability Mass of Poisson(3) ﬂ
Horizontal Axis:l Possible Values v |

Lall

Probability

o1 2 I 4 45 B I8 9 10 12

Peisson(5)

Usually, it figures out whether to use a probability density or mass function. Very rarely, you might
need to tell it the domain is discrete. See “The domain attribute and discrete variables”page 236,
“Is the quantity discrete or continuous?”page 220, and “Probability density and mass
graphs”page 234 for more.

The cumulative probability distribution (CDF) plots the possible values of the uncertain quantity
along the X (usually horizontal) axis. The Y value (usually height) of the graph at each value of X
shows the probability that the quantity is less than or equal to that X value. The CDF must start at
a probability of 0 on the extreme left and increase to a probability of 1 on the extreme right, never
decreasing.

The steeper the curve, the more likely the quantity will have a value in that region. The PDF is the
slope (first derivative) of the CDF. Conversely, the CDF is the cumulative integral of the PDF.

Analytica User Guide

Chapter Result Tables and Graphs

0.9
n.s
0.7
0.6
0.4
0.4
0.3
0.2
0.1

Cumulative Probability |3 EE

) Result - Rate of inflation
Cumulative Probability of Rate of inflation (Y./year)

-1 0 1 2 3 4
Rate of inflation (%u/year)

Uncertainty views

EBX

g

Sample A sample is an array of the random values from the distribution generated by the Monte Carlo
sampling process. The sample is the underlying form used to represent each uncertain quantity.
All the other uncertainty views use statistics estimated from the sample. The sample view gives
more detail than you usually want. You will likely want to view it mainly when verifying or debug-

ging a model.

[Result - Rate of inflation

Sample of Rate of inflatien (%:/vear)
[meration (Run) w | [Totals
=
| hdl 4

B[(=lES

B = & N o Y ==

-
=

21
3281
2396
2235
3376
2092
1.483
3.087
3167
2132

Analytica User Guide

37

Chapter Result Tables and Graphs Comparing results

Like any other graph, you can display a sample as a table by clicking to see the underlying
numerical values.

x| sample of Rate of inflation oy
i) | teration (Run) w | [Totals

Ll ¥ | g

1 Result - Rate of inflation ._ §|E|

4,803 -
2509
3805
3237
3539
2oz
1804
234
1.746 il

B8 = &, oM o Y -

Comparing results

It's easy to compare directly two or more variables in one table or graph.

1. Select the variables together in the diagram, using Shift+click to add each to the selection, or
dragging a selection rectangle around them.

1 Diagram - Out of pocket costs to own Z

i

2. Click
3. Click OK in the confirmation dialog.

in the navigation toolbar, or press Control+r.

Question

::’2 Da vou want ko compare more than one result?

(04 | Cancel |

This creates a new variable with a default identifier, Comparel, with a list of the selected vari-
ables.

38 Analytica User Guide

Ch apter Result Tables and Graphs

Comparing results

9 'Diagram - Out of pocket costs to own

| 4

| LA
Compare1: Definition il |E v |
Irterest_payments
Froperty_taxes
Maintenance_by_yvear
Principal_payments

The result of Comparel is a graph containing an index containing the titles of the variables being
compared. This is the Sel T index of the Comparel. It also includes all the indexes of the array
variables being compared — in this case, Time and Buying Price.

@ Result - Compare]

midw | Mid Value of Compared S
[1:2]| Buying price (30| 300k 151
Lafll Horizontal A:is:l Time vl I{ey:| Comparel VI
D —
-2000 4
- -4000
o -6000 -
s 3000
o
E =10k, 4
=12k
Lk
-16kK
=18k T T T T T 1
1] b 10 15 20 28 a0
Time
Compare1
" Interest payments " Maintenance by vear
= Property taxes Principal payments

This helps clarify how the interest payments reduce (become less negative) as the principal pay-
ments on the mortgage increase (become more negative).

Analytica User Guide 39

Chapter Result Tables and Graphs Comparing results

40 Analytica User Guide

Analyzing Model Behavior

This chapter shows you how to perform a parametric analysis on a
model by:

» Selecting variables as parameters
« Specifying alternative values for the parameters
« Examining the results

Chapter Analyzing Model Behavior Varying input parameters

A potent source of insight into a model is examining the behavior of its outputs as you systemati-
cally vary one or more of its inputs. This technique is called model behavior analysis. Each input
that you vary systematically is called a parameter, and so this technique is also known as para-
metric analysis. Analytica makes it simple to analyze model behavior in this way. All you have to
do is to assign a list of alternative values to selected input parameter. When you view the result of
any output, Analytica computes and displays a table or graph showing how the output values vary
for all combinations of the input values.

This chapter describes how to select variables as parameters, how to specify alternative values
for the parameters, and how to examine the results.

Varying input parameters

42

Which inputs to vary?

How many values to
assign?

Creating a list

The first step in analyzing model behavior is to select one or more input variables as parameters
and to assign each parameter a list of possible values.

You can vary any numerical input variable of your model, including decision and chance vari-
ables. Often you will want to vary each decision variable to see which value gives the best results
according to the objectives. You might also want to vary some chance variables to see how they
affect the results. It is often best to look first at the decision or chance variables that you expect to
have the largest effect on the model outputs. In complicated models, you might want to start with
an importance analysis, to identify which chance variables are likely to be most important. (See
Chapter 16, “Statistics, Sensitivity, and Uncertainty Analysis.”) You can then select the most
important variables as the parameters to vary to analyze model behavior.

Usually it is best to assign a list of three alternative values to each parameter — a low, medium,
and high value. In some cases, two values are sufficient. If you have a special interest in a partic-
ular parameter (for example, if you suspect it has a strongly nonlinear effect) you can assign more
than three values to examine in more detail the model behavior as the parameter varies. Natu-
rally, the computation time increases with the number of values.

Change the definition of each parameter to a list, thus:

1. Select the variable by clicking its node in the influence diagram.

2. Display the variable’s definition by clicking the Definition button | in the tools palette, or
press Control+e.

3. Click the expr (Expression) menu above the definition and select the List option. (Do not
select the List of Labels option.)

Taw deductions.

v 80 Eupression v B0 Eupression
B2 List of Labels B3 List of Labels
fE Table .8 Sequence
= F'r_ob.abllfty Tahle T Oiker
& Distribution
= Choice
& Other...

4. A dialog asks for confirmation. Click OK.

?r} Replace current definition with a List?
T

Ok | Cancel |

A list with one item displays, containing the old definition of the variable.

Analytica User Guide

Chapter Analyzing Model Behavior Analyzing model behavior results

Definition:

New one-element list

Click the item to select it.
Type in the lowest value for the variable.
Press Enter and type in the next value.

© N o’

Repeat step 7 until you have all the values you want.

[Object - Buying price Q@]E|
Pricet Units: § —

Title: Buying price

Description: Buying price of house.

Definition: | 100K |
250K |

< a7

Tip When you add an item to a list of two or more numbers, it uses the increment between the last two
numbers to generate the next. If the last two values are 10 and 20, it offers 30 as the next.

For details on how to edit a list, see “Editing a list’page 165.

If you want to create a list of successive integers, use the “_ .” operator, for example:
Decision Year :-= 2000 .. 2010

If you want to create a list of evenly spaced numbers, use the Sequence(x1, x2, dx) function
(page 167), for example:

Decision Quarters := Sequence(2000, 2010, 025)

How many inputs to Typically you should start a model behavior analysis by varying just one input variable, the one
vary you expect to be most important. Vary additional variables one at a time, in order of their
expected importance. If a variable turns out to have little effect, you can restore it to its original
value or probability distribution. If you have many inputs whose effects on model behavior you
would like to explore, vary just a few at a time, rather than trying to vary them all simultaneously.

Each parameter that you vary becomes a new dimension of your output result array. The compu-
tation time and memory needed increase roughly exponentially as you add parameters. More-
over, you might find it hard to interpret an array with more than three or four dimensions.
Remember that the goal is to obtain insight into what affects the model behavior and how.

Analyzing model behavior results

When you have assigned a list to one or more inputs, you can examine their effect by viewing the
result on an output variable. If your model has an objective, start by looking at that variable.

1. Select the variable you wish to view by clicking its node in the diagram.

2. View the result by clicking the Result button i inthe navigation toolbar. The result displays
as a table or graph.

Analytica User Guide 43

Chapter Analyzing Model Behavior Analyzing model behavior results

- B[]
|

midw| Mid Value of Difference between buying and renting
@ Horizontal .ﬁnis:l Appreciation rate (%./year) v |
o | Key:| Buying price ($) w |
200k -
150K -
g e 100K-
% ‘E 50k -
@ a-
'™
So 50K
25 -100K-
b g -150k -
£ 5 200K
a3 -250K-
-300kK -
-350kK T T T 7 T . T T T i
-10 -8 -6 -4 -2 1] 2) G g 10
Appreciation rate (%/year)
Buying price ($)
00K T 2E0K T &DOK -
|

The result is an array with a dimension for each input parameter that you have varied (in this
example, Buying price and Appreciation rate). If an input parameter does not appear as
a dimension of the result, it implies that the result variable does not depend on the input. The
result might also have other dimensions that are not input parameters you have varied — for
example, Time for a dynamic model.

It is generally easiest to look first at the result graph to see the model’s general behavior. You
need to look only at the result table if you want to see the precise numerical values. If you are
varying more than one input parameter, try rearranging the dimensions (see “Index
selection”page 30) to get additional insights into model behavior.

1 Result - Difference between buying and renting Z E|E|

rhidw Mid Value of Difference between buying and renting =
Result graph 2| HorizentatAxisz| Buying price ($) v |

with dimensions . —
reversed Lafll ey:|” Appreciation rate (%/year) v I

200K
150K -
100k -
50k
o-
50k -
-100k -
-1680k -
-200k -
-260k -
-300k

_SSDK T T T T T T T 1
100k 140K 200k 240K 300k 350K 400k 4A0K a00k

Buying price ($)

Difference hetween
buying and renting

Appreciation rate (w/year)

10 -4 0 5 10

44 Analytica User Guide

Chapter Analyzing Model Behavior Analyzing model behavior results

Understanding
unexpected behavior

Understanding
model behavior

If you find the model’'s behavior unexpected or inexplicable, you might want to look more deeply
into how the behavior arises. An easy way to do this is simply to look at the results for other vari-
ables between the input(s) and the output(s) in which you're interested. You can work forward
from an input towards the output, or backward from the output towards the inputs. Look at the
behavior of each intermediate variable, and see if you can understand why the inputs affect it the
way they do.

Typically, the reason for unexpected behavior will quickly become clear to you. It might be that
some intermediate relationship has an effect different from what you expected. There might be an
error in a definition. In either case, this kind of exploration can be very revealing about the model.
You might end up improving the model or gaining a deeper understanding of the system it repre-
sents.

By examining result graphs, you can learn if each input affects the output, if the effect is linear or
non-linear, and if there are interactions among inputs in their effect on the output. Below are some
typical graph patterns and their qualitative interpretations.

< A horizontal line shows that changes in the input over the specified range have no effect on
the output.

105
g
g
74
g
]
4

My objective

3_
24

D 1 1 I I I 1 I 1
1 1.4 2 24 3 34 4 4.4 il

Y input

« A straight line shows that the output depends linearly on the input — provided that you have
specified more than two different values for the input.

6.5 5

B

5.5

5_

4.4 1

4

My objective

3.8 1

3_

25 T T T
1 1.5 2 24 3 348 4 14 A

Y input

¢ A bent or curved line shows that there is a nonlinear dependence. (If you have only two
values for the input, the graph will be a straight line even if there is a nonlinear dependence.)

Analytica User Guide 45

Chapter Analyzing Model Behavior Analyzing model behavior results

7
B L
2 bl
7, yd
Z
e 3
—
s o
! __——'—'-""-'_'-_
0
1 15 2 25 3 35 4 45 5
Y input

46 Analytica User Guide

STl (-1 Creating and Editing a
Model

This chapter shows you how to:
¢ Create a new model
« Save changes
¢ Create and edit nodes
« Draw arrow connections between nodes
* Create aliases
« Edit attributes
« Change the class of an object
« Work with the Preferences dialog

Ch apter Creating and Editing a Model

Creating and saving a model

To start a new model Start Analytica like any Windows application by selecting Analytica from the Windows Start
menu or double-clicking the Analytica application file. A new, untitled model opens.

If you are already running an Analytica model, you can also select New Model from the File
menu. Since one instance of Analytica can’t run two models at once, it needs to close the existing
model. If you have changed it, it first prompts you to save it.

The model’'s The model's Object window shows information about the model, such as the author(s), and cre-
Object window ation and save dates; it also includes space for a description of the model's purpose.

When you start a new model, it displays the Object window for the new model, initially untitled.
First, type these attributes:

e Title: A word or phrase to identify the model, typically up to 40 characters. Usually the
identifier of the project is set automatically to the first 20 characters of the title, substituting
underscores (_) for spaces or other characters that are not letters or numbers.

¢ Description: One or several lines of text describing the purpose of this model, and any other
important information about the model or project that all users of the model should know.

¢ Author(s): Windows usually fills in the name of the Windows user as the default. You can
edit or add to this if you like.

Blank Diagram window

@ Object - Test model

Testmodel

Title: Te=t model

Description: To demonstrate and test creation of a new model

Author(s): ||

Attributes Created: Tus, May 22, 2007 3.08 PN

Last Saved:

File info: (net 2aved vet)

1y 1y (7

After adding these attributes into the Object window, bring the Diagram window to the top using
one of these methods:

« Click the Parent Diagram button S&|.

or
¢ Click anywhere in the Diagram window behind the Object window.
You are now ready to draw an influence diagram for the new model.

48 Analytica User Guide

Chapter Creating and Editing a Model Creating and editing nodes

Creating and editing nodes

To begin editing a diagram, if you are not already in edit mode, click the edit tool k I This dis-
plays the node toolbar as an extension of the navigation toolbar.

x | = ol @ o &l alm T m
\ |

I
Node toolbar

Nodes Buying price Apprfac::tmn Buy or rent

Cost to Buy

d.';'a_->| i

-

K

feor|

The edit tool is
highlighted to show
that it is selected

@ Diagram - Model

EEIX

Costs of buying

: ' and renting
Time horizen : :

Selected node\

For a description of each node shape (or class), see “Classes of variables and other
objects”page 20.

The node toolbar is displayed
when either the edit tool or
arrow tool is selected

Create anode To create a new node, press the mouse button with the cursor over the node class you want in the
node toolbar, and drag the node to the location you want in the diagram. When creating a new
node, you can type a title directly into it.

Edit a node title To edit the title of an existing node:

1. Make sure you are in edit mode.
2. Click the node once to select it.

3. Click the node’s title. (Pause momentarily between mouse clicks to prevent them being
interpreted as a double-click, which would open the node’s Object window.)

4. Type in a new title to replace the old one. Or click a third time to put a cursor into the existing
title where you can add text. Or double-click to select a word to replace.

5. After editing the title to your satisfaction, click outside the node (or press Tab or Alt-Enter) to
accept the new title.

Analytica User Guide 49

Chapter Creating and Editing a Model Creating and editing nodes

Identifiers and titles

Making an identifier
from atitle

Automatic update when

50

identifier changes

Show identifiers
instead of titles

Select a node

Move a node

Move a node to
another module

If the node is too small for the title text, it expands the node vertically to fit. It can accept a title of
up to 128 characters, but it's usually best not to have titles longer than about 40 characters.

Click a node once to select it, showing its handles — small black squares at its corners.

o —]
e =l

You can edit the title when
the node looks like this

Variable Time
Horizon from
this Month

N

The node is resized
to fit the text

Every object has a unique identifier of up to 20 characters. An identifier must start with a letter,
and contain only letters, digits, or underscores (_). Formulas in the definition of a variable or func-
tion refer to other variables or functions by their identifier.

Most objects also have a title, which is usually displayed in its diagram node. A title can contain
any number of characters of any type, including spaces. A title should be a meaningful word or
phrase. Avoid obscure acronyms. It's usually best to keep a title to under 50 characters.

By default, when you enter a title, it also generates an identifier for the object consisting of the first
20 characters of the title, using underscore (_) to replace any character that is not a letter or num-
ber. If the first character is not a letter, it substitutes A, because identifiers must start with a letter.
Identifiers, unlike title, must be unique. So, if by chance an object exists with the same identifier, it
appends a number to the new identifier to keep it unique.

If you edit the title again, it usually asks if you want to change the identifier to match the changed
title. Generally, it's best to have them match. But, sometimes you might want to retain the original
identifier. You can change this default behavior by unchecking Change identifier when title
changes in the Preferences dialog from the Edit menu (page 58).

If an identifier changes, Analytica automatically updates any definitions referring to that identifier it
to use the new version, and so keeps the model consistent.

If you want, you can edit an identifier directly in the Object window or Attribute panel, like any
other user-editable attribute.

By default, it shows the title of each node in a diagram or result window. To show the identifiers
instead, select Show by Identifier from the Object menu, or press Control+y to toggle this
behavior.

To select a node, single-click it. Handles indicate that you have selected the node. To deselect a
selected node, click anywhere outside of it.

handles ~C . — .
S Time horizon
— 4

To select or deselect multiple nodes, press and hold the Shift key while selecting the nodes. You

can also select a group of nodes by dragging a rectangle around them. Move the cursor to a cor-
ner of the diagram (not in a node), press the mouse button, and drag the mouse to draw a rectan-
gle. When you release the button, all the nodes completely inside the rectangle are selected.

To move a node, press the right mouse button on the node (not on a handle) and drag it to where
you want it.

You can also adjust the position of one or more selected nodes with the arrow keys (up, down,
left, right). By default, each arrow press moves the node(s) by eight pixels. If you uncheck Snap-
to-grid in the Diagram menu, each arrow press moves the node(s) by one pixel.

Simply drag the node onto the module until the module becomes highlighted. When you release
the mouse button, the node moves into the module. It has the same location in the diagram of the
new module that it had in the old one.

Analytica User Guide

Chapter Creating and Editing a Model Drawing arrows

Change the size
of anode

Delete a node

Cut, copy, and
paste nodes

Duplicate nodes

Alternatively, double-click the module to open its Diagram window. Move the Diagram windows
so both you can see both the node and the new diagram. Then drag the node to the desired loca-
tion in the new diagram.

Click the node to show its handles. Then drag a handle until the node is the size you desire. By
default, it fixes the center of the node at the same location, and expands or contracts its four cor-
ners. This keeps node centers aligned with the grid. If you want to move one corner, leaving the
opposite corner fixed, uncheck Resize Centered in the Diagram menu.

Select the node(s) and choose Clear from the Edit menu, or press the Delete key. It asks you to
confirm your intention because deleting cannot be undone. Sometimes it is better to create a
module and title it Trash. (There is a Trash library with a suitable icon.) Then you can drag nodes
into it — and still retrieve them, just in case.

You can use the standard Cut (Control+x), Copy (Control+c), and Paste (Control+v) commands
from the Edit menu on one or more nodes. If you cut a node, you can paste it just once. If you
copy a node you can paste it as many times as you wish.

Select the node(s) and choose Duplicate Nodes from the Edit menu (or press Control+d). This is
equivalent to using Copy and Paste, but without writing to the clipboard. Duplicating a node cre-
ates a new object identical to the original, but it adds a number to its identifier to make it unique
and locates it below and to the right of the original node.

Duplicating a set of nodes retains the same dependencies among the duplicated nodes as exists
among the origin nodes. For example, suppose you have three variables:

Variable X = 100

Variable Y = X"2

Variable Z := X +Y

If you duplicate Y and Z, but not X, you get two new variables:
Variable Y1 = X~2
Variable 71 := X + Y1

Note that (a) it appends “1” to the identifiers to make them distinct from their original nodes, and
(b) the definition of Z1 refers to the unduplicated X and the duplicated variable Y1.

Drawing arrows

Draw an arrow

Tip

To remove an arrow

Use the arrow tool to draw or remove arrows (influences) between variable nodes. Drawing an
arrow from variable or function A to B puts A in the list of inputs of B. This makes it conveniently
available to select from the inputs menu when creating or editing the definition of B (see “Creating
and Editing Definitions”page 107).

To draw an arrow, first click the arrow icon —* |in the toolbar to select the arrow tool. In arrow
mode, the cursor changes to this arrow icon when over a diagram window.

1. Drag from the origin node (which highlights) to the destination node (which also highlights).
2. Release the mouse button, and it draws the arrow.

To speed up drawing arrows from multiple nodes to a single destination, select all the origin
nodes. Then drag from any origin node to the destination node. When you release the mouse, it
draws arrows from all the origin nodes.

Some arrows are hidden. They do not appear even when you try to draw them. For example, by
default, arrows to and from indexes and functions are not shown. You can change these settings
in the Diagram Style dialog (page 78) and Node Style dialog (page 79).

« Click the arrow to select it, then press the Backspace or Delete key, or

« Just redraw the arrow from the origin node to the destination node. If the origin variable is
used in the definition of the destination, it asks if you really want to remove it.

Analytica User Guide 51

Chapter Creating and Editing a Model

Tip

Influence cycle
or loop

Arrows linking to
module nodes

Drawing arrows

When you enter or edit a definition (page 108), Analytica automatically updates the arrows into
the variable to reflect those other variables that it mentions (or does not mention).

Aninfluence cycle occurs when a variable A depends on itself directly, where A — A, or indi-
rectly so that the arrows form a directed circular path, e.g., A—>B - C —> A.

If you try to draw arrows that would make a cycle, it warns and prevents you. The exception is if at
least one of the variables in the cycle is defined with the Dynamic function, and contains a time-
lagged dependence on another variable in the cycle, shown as a gray arrow (see Chapter 17,
“Dynamic Simulation”).

When there are arrow between variables in different modules, they are reflected by arrows to and
from the module nodes.

ﬁ\h+m

¢|ojo|sjaln|7|m|

The arrow tool is

that it is selected Q. Diagram - Model D@gl

Arrow from variable

52

Buying price Buy or rent

Appreciation
rate :

Rate of inflation

Cost to Buy

to module A e MR ey e SRR
Costs of buying
and renting

... | costtoRent | - .

Arrows between variable and module nodes are illustrated below.

Arrow from module to__]
variable

Arrow from variable node to variable node

Rate of Appreciation Indicates that the target variable
inflation l rate depends on the origin variable.

Arrow from variable node to module node

Indicates that at least one variable in the
target module depends on the origin variable.

Out-of-pocket Indicates that the target variable depends on
costs to own at least one variable in the origin module.

Analytica User Guide

Ch apter Creating and Editing a Model

How to draw arrows between different modules
Arrow from module node to module node

Double-headed arrow between module nodes

Small arrowhead to the right or left of a variable node

Indicates that the target module contains at
least one variable that depends on at least
one variable in the origin module.

Indicates that each module contains at least
one variable that depends on at least one
variable in the other module.

Indicates that the variable has a remote input
or output — a variable that is not inside the
displayed variable’s module (see “Seeing
remote inputs and outputs” on page 20).

input arrow output arrow

How to draw arrows between different modules

There are four methods to draw arrows between nodes in different modules. Suppose you want to

draw an arrow from the variable Buying price to the variable Mortgage loan amount in
another module.

S d Destination
ource node node

@ Diagram - Model EE)X)

9 Diagram - Cost to Buy|

Anpreciation
rate

Rate of n1'|a Cost to Buy

Buy or rent

Costs of buying
and renting

Cost to Rent

EX3

Draw arrow The most direct method works when you can arrange the diagrams so that both the origin and
across windows destination nodes are visible on screen at the same time:

1. Inarrow mode | ™ | press on the origin node, Buying price, so that it highlights.

2. Drag an arrow to the destination node, Mortgage loan amount, which also highlights, and
release the button.

Analytica User Guide 53

Chapter Creating and Editing a Model Alias nodes

Move nodes to same
diagram to link them

Copy the identifier of
the origin into the
definition of the
destination

Make an alias node in
the other diagram

Alias nodes

54

Tip

Make Alias command

If, as in this illustration, the destination module appears in the origin diagram, the arrow points
from the origin node Buying price to the destination module Cost to Buy; a small arrow-
head appears on the left edge of destination node Mortgage loan amount, showing that it has
an input node from another diagram.

Buying price

Rate of inflation

Small arrowhead indicates
that this variable has
remote inputs

A second method is to move one of the nodes into the diagram containing the other. Then you
simply draw an arrow between them in the usual way. Finally, you move the node back to the dia-
gram it came from. This is convenient if you have large diagrams and a small screen so that its
hard to arrange the two diagrams so that both nodes are visible at the same time.

Copy the identifier of the origin variable, open the definition of the destination variable, and paste
itin (see “Creating or editing a definition"page 108). When the definition is complete and
accepted, it automatically draws the arrows to reflect the relationships.

If the origin node and destination module are in the same diagram, you can draw an arrow directly
between them. This makes an alias node of the origin in the destination diagram. Then you can
simply draw an arrow from the alias to the destination node. You can use a similar method when
the origin module and destination node are in the same diagram. Drawing an arrow between them
creates an alias of the destination in the origin module. See the next section for more about
aliases.

An alias is a copy of a node, referring to the same variable, module, or other object as the original
node. It's often useful to display an alias node in a different module than its original node. For
example, if module M1 contains variable X, and X has outputs in another module M2, it's often use-
ful to add an alias of X in M2 to display the influence of X on its outputs explicitly. This makes it
easy to draw arrows from X to or from other variables in M2.

A variable or other object can have only one original node, but an unlimited number of alias
nodes.

An alias node is identified by its title being shown in italics.

You can create an alias directly with the Make alias command, or indirectly by drawing an arrow
to or from a module node. These methods are described below.

Select the original node. Then choose the Make Alias option from the Object menu (or press
Control+m). The alias node appears next to the original node. You can then drag it into another
module.

Original node

Alias node (title is in italics)

Analytica User Guide

Chapter Creating and Editing a Model Alias nodes

Draw arrow between Draw an arrow from the original node to a module node, or from a module node to the original
variable and module npode. This creates an alias in the module. For example, draw an arrow from the variable Buying
price to the module Cost to Buy.

Buying price

Cost to Buy

It displays an arrow between the nodes.

Buying price

T to Buy

Draw arrow between two Draw an arrow from one module node Cost to Buy to another module Total Cost.
modules

Cost to Buy | Total Cost

This creates a new variable node with a default name, such as Val, in the first module Cost to
Buy, with an alias of Val in the second module Total Cost.

EBX

[Diagram - Cost to Buy

=]

M Diagram - Total Cost

An alias is like An alias looks and behaves like its original node, except the fact that its label is in italics. You can
its original select it, double-click it to open it Object window, move, resize, edit its label, and draw arrows to

Analytica User Guide 55

Chapter Creating and Editing a Model To edit an attribute

How alias and
original can differ

Tip

Input and output nodes

are aliases

or from it, just like any other node. The alias and original show the same title — if you edit the title
in one of them, it automatically changes in the other.

On the other hand, the properties of the node — rather than the object that it depicts — can differ
between the original and its alias. You can modify one node’s location (obviously) and size, its
color (using the Color palette), and its styles using the Node Style dialog.

If an alias and its original node are in the same diagram, it displays any arrows to or from only the
original node, not the alias. If the alias is in a different module, it displays arrows connecting it to
other nodes in that module, as they would be displayed if it were the original node.

Input nodes (page 120) and output nodes (page 122) are kinds of alias nodes that have special
style properties.

To edit an attribute

56

Cancel and undo edits

Attribute changes

You can edit most attributes of an object directly in the Attribute panel (page 24) or in the Object
window (page 23). User-editable attributes include identifier, title, description, units, and defini-
tion. See next section on how to change class. Some attributes you cannot edit because they are
computed, including inputs, outputs, and value.

To edit an attribute, first display it in the Attribute panel or Object window for the object, and
make sure you are in edit mode. Then:

1. Clickinthe Attribute field. A blinking text cursor and dotted outline around the attribute indicate
that the attribute is editable.

2. Use standard text-editing methods to edit it — type, copy and paste, and use the mouse to
select text or move the cursor.

3. To save the changes, click anywhere outside the Attribute field, press Enter, or display
another attribute.

To cancel changes while editing an attribute, press the Esc (escape) key to revert to the previous
version. Except when editing a definition, click to cancel changes. To cancel changes after
you have just made and accepted them, select Undo from the Edit menu (or press Control+z).

All displays of an object use its same attributes, so any change to an attribute affects all views
that display that attribute. For example, any change to a title appears in other diagram nodes,
object windows, or result views referring to that object by title. Any change to a definition causes
the redrawing of arrows to reflect any changes in dependencies.

Analytica User Guide

Chapter Creating and Editing a Model

To change the class of an object

To change the class of an object

v () Variable) pPp—
[Decision W Object - Mortgage loan amount E]E|g|
{_ Chance () Variable ¥ | Mortgags Units: = 1=
2 Objective Titled Mortgage loan amount
£ Index
/T Constant » Total mertgage (lean) amount recsived.

& Determ e W

You can press on the class of a variable or module in an Object window or Attribute panel to
open a popup menu. The options depend on whether the node is a variable or a module.

Variable classes @ Model Definition: Price + DownPaymt
v O Module Inputs: () Downpaymt Down payment
@ Module [Price Buying price
2 Library
T Library Outputs: () End_morigage Mertgage principal remaining
B r () Interest_pay Interest payments
om () Payments Mortgage payments
Module classes () Princ_pay Principal payments made on mertgage T

Tip

| (4

To change class, just select another option from the menu. The shape of the node and other
class-dependent properties change automatically.

You cannot change the class of a function, and you cannot change a variable into a module, or
vice versa.

For more, see “Classes of variables and other objects”page 20.

Module Subclasses

All modules contain other objects, including sometimes other modules. There are several different
subclasses of module:

Model: Usually the top module in a module hierarchy, saved as a separate file (document with
extension .ana). Any nondefault preferences (see “Preferences dialog’page 58), uncertainty
options (see “Uncertainty Setup dialog”page 225), and graph style templates are saved with the

Module: A collection of nodes displayed in a single diagram. A standard module contains a set of
other nodes, and is usually part of the module hierarchy within a model or other module type.

Filed module: A module whose contents are saved in a file separate from the model that con-
tains it. A filed module can be shared among several models, without having to make a copy for

Library: A module that contains functions and sometimes variables. Read-in libraries are listed in
the Definition menu below the built-in libraries, with a hierarchical submenu listing the functions

@
model, but not other module types.
O
@
each model. See page 309.
o
they contain, giving easy access. See page 323.
o

Filed library: A library saved in a file separate from the model that contains it. A filed library can
be shared among several models, without having to make a copy for each model. See page 309.

Form: A module containing input and output nodes. You can easily create input and output nodes
in a form node by drawing arrows from their original node to the form (for inputs) or from the form
to the variable for outputs. See Chapter 9, “Creating Interfaces for End Users.”

Analytica User Guide 57

Chapter Creating and Editing a Model Preferences dialog

Preferences dialog

Use the Preferences dialog to inspect and set a variety of preferences for the operation of Analyt-
ica. All preference settings are saved with the model. To open the Preferences dialog, select
Preferences from the Edit menu.

T Preferences |z|

— Windows of each kind:
" Ore anly
o+ Ay number

9 Result windows

Default result view: ———

F ¢ Tabke
ﬂ {» Graph

]

— Change Identifier:
v when tile changes

<]

Check. vanable clazs

20 characters v Check walue bounds
v &sk before renaming v Show undefined: 7773
[Flag nodes w/descriptions
_‘?mr Opens: [Show module higrarchy
L D!Jie':t wind.ow ¥ Show result warnings
@ Limgem sl gl [Usge Return to enter data
v Safe Intermediates

Iv Maintain Becovery |nfo .
v Auto recompute outgaing

OLE links
[Use Excel date arigin

Cahcel 0k

Windows of each kind Use the options in this box to control how many windows of various kinds are displayed at once
(see “Managing windows”page 313).

One only Check this box to close an existing window (if there is one) whenever
you open a new window.

Any number Check this box to keep all windows open until you explicitly close them.

Result windows Enter a value in this field to indicate the number of Result windows that

you can keep open simultaneously. The default (and minimum) number
is 2; the maximum number is 20.

Change identifier Use the options in this box to control the changing of identifiers. See “Creating and editing nodes”
on page 49 for a description of how identifiers are initially assigned.

When title changes Check this box to change a variable’s identifier whenever you change
its title. Analytica uses up to the number of specified characters (20 by
default, range from 2 to 20), replacing spaces and returns with an
underscore character (_), and omitting anything between parenthe-
ses.

If the box is not checked, the identifier is changed only when you
explicitly edit it.

Ask before renaming Check this box to see a confirmation dialog before automatic changing
of a variable’s identifier.

58 Analytica User Guide

Chapter Creating and Editing a Model Preferences dialog

{ep- | Opens

Maintain
Recovery Info

Tip

Default result view

Checkboxes

These radio buttons control where you view the definition of a selected object, when you
click | | in the toolbar, press Control+e, or when you choose to edit a variable from a warning
message:

Object window Open the Object window (page 23) and select the definition text.
Diagram attribute Open the Attribute panel (page 24) on the appropriate Diagram win-
panel dow and select the definition text.

When this checkbox is checked (the default), Analytica saves each change to a recovery file,
starting from the last point at which the model was saved. If the application terminates unexpect-
edly due to a software or hardware problem, the next time you start Analytica, it detects the recov-
ery file and displays a dialog offering to resume the model where you left off, including all
changes.

The only reason to switch off this option is when you are editing huge edit tables, in which case,
this feature can slow down editing and consume significant disk space for the recovery file.

Unlike the other preference settings, this is stored as a user setting, and is not stored with the
model.

Even when Maintain Recovery Info is checked, we recommend you save your model at frequent
intervals.

Select the radio button to specify which view you prefer as the default when you first display the
Result window (page 30) for a variable.

Display result as a table.

Display result as a graph.

If you change the view in a result window, it uses that view next time you open that result.

Check variable class Display a warning if:

» A variable whose class is not Chance contains a probability
distribution.

» A constant depends on another variable (other than indexes to an
edit table).

* Anindex has a value that is not a one-dimensional array, or is an
array with another index.

Check value bounds Evaluate check attributes for variables that have them. See page 115.

Show undefined Nodes without a valid definition display with cross-hatching:
SMortgage Ioan Node is filled with diagonal pattern:
amount the definition is missing or is
Wy syntactically incorrect
Flag nodes Show a red triangle in the upper-right corner of nodes that have text in
w/descriptions their description attribute:

Node is flagged with a red triangle to

indicate that it has a description
Buying price .
g 4|
Buying price: | Description W% |
Buying price of house.
Show module Show a hierarchy bar at the top of each Diagram window showing its
hierarchy nesting level. See page 304.

Analytica User Guide 59

Chapter Creating and Editing a Model

60

Show result warnings

Use Return to enter
data

Safe Intermediates

Auto recompute out-
going OLE links

Use Excel date origin

Maintain recovery info

Analytica User Guide

Preferences dialog

If checked, it stops evaluation and shows a warning message, when it
encounters a warning condition. If unchecked, it continues without dis-
playing a warning.

A standard MS Windows keyboard has a Return key located on the
alphanumeric section of the keyboard, and a separate Enter key
located on the numeric keyboard. When this checkbox is unchecked
(the default), the Return key starts a new line in a multi-lined text field
(such as a definition) while the Enter key or Alt-Return signal that the
data entry is complete. When checked, these are reversed, with Enter
or Alt-Return starting a new line and Return completing the entry of
data.

Analytica ensures that all intermediate arrays generated during evalu-
ation are fully rectangular. By default this is checked. If unchecked,
some large models — especially those using dynamic simulation —
run faster, sometimes dramatically so. Very occasionally, unchecking
can cause incorrect results. If speed is an issue, compare results with
this box checked and unchecked. If the values are the same, uncheck
this checkbox to improve performance.

Analytica automatically recomputes and updates OLE-linked tables
whenever model changes affect them. With large models, it is some-
times best to uncheck this box to avoid immediate time-consuming
recomputation after each small change. See page 291.

When this is unchecked, Analytica represents dates as a number indi-
cating the number of days since January 1, 1904. When this is
checked, is uses January 1, 1900, the same as Excel for Windows.

When checked, Analytica keeps a log of all changes since the last time
you saved your model. In the event of an application or system crash,
or power outage, Analytica can usually recover all your changes since
the model was saved. Having this on can slow things down if you are
making changes to really large tables or images.

Building Effective Models

This chapter shows you how to build models that are:
* Focused
e Simple
e Clear
¢ Comprehensible
* Correct

Chapter Building Effective Models Creating a model

Creating useful models is a challenging activity, even for experienced modelers; effective use of
influence diagrams can make the process substantially easier and clearer. This chapter pro-
vides tips and guidelines from master modelers (including Newton and Einstein) on how to build a
model that is effective, one that focuses on what matters, and that is simple, clear, comprehensi-
ble, and correct. The key is to start simple and progressively refine and extend the model where
tests of initial versions suggest it will be most important.

Most of the material in this chapter, unlike the other chapters in this guide, is not specific to Ana-
lytica. These guidelines are useful whether you are using Analytica, a spreadsheet, or any other
modeling tool. However, Analytica makes it especially easy to follow these guidelines, using its
hierarchical influence diagrams, uncertainty tools, and Intelligent Arrays.

These guidelines have been distilled from many years of experience by master modelers, using
Analytica and a variety of other modeling software. However, they are general guidelines, not
rules to be adhered to absolutely. We suggest you read this chapter early in your work with Ana-
lytica and revisit it from time to time as you gain experience.

Creating a model

62

Identify the objectives

Identify the decisions

Below are general guidelines to help you build models that provide the greatest value with the
least effort.

What are the objectives of the decision maker? Sometimes the objective is simply to maximize
expected monetary profit. More often there is a variety of other objectives, such as maximizing
safety, convenience, reliability, social welfare, or environmental health, depending on the domain
and the decision maker. Utility theory and multi-attribute decision analysis provide an array of
methods to help structure and quantify objectives in the form of utility. Whatever approach you
take, it is important to represent the objectives in an explicit and quantifiable form if the objectives
are to be the basis for recommending one decision option over another.

It is a useful convention to put the objective variable or variables (hexagonal nodes) on the right of
the diagram window, leaving space on the left side for the rest of the diagram.

The most common mistake in specifying objectives is to select some that are too narrow, by con-
centrating on the most easily quantifiable objective — typically, near-term monetary costs — and
to forget about the other, less tangible objectives. For example:

« When buying software you might want to consider the usability and reliability of different
software packages, as well as long-term maintenance, not just cost and performance.

< In pricing a product, you might want to consider the long-term effects of increased market
share in developing new customers and markets and not just short-term revenues.

¢ In selecting a medical treatment, you might want to consider the quality of life if you survive
the treatment, and not just the probability of survival.

For an excellent guide on how to identify and structure objectives, see Value-Focused Thinking
by Ralph Keeney (see “Appendix G: Bibliography”page 390).

The purpose of modeling is usually to help you (or your colleagues, organization, or clients) dis-
cover which decision options best meet your (or their) objectives. You should aim, therefore, to
include the decisions and objectives explicitly in your model.

Analytica User Guide

Chapter Building Effective Models Creating a model

Link the decisions to the
objectives

Move from the
qgualitative to the
guantitative

A decision variable is one that the decision maker can affect directly — which computer to buy,
how much to bid on the contract, which medical treatment to choose, when to start construction,
and so on. Occasionally, people want to build a model just for the sake of furthering understand-
ing, without explicitly considering any decisions. Most often, however, the ultimate purpose is to
make a better decision. In these cases, the decision variables are where you should start your
model.

When starting a new influence diagram, put the decision variables — as rectangular nodes — on
the left of the diagram window, leaving space for the rest of the influence diagram to the right.

Capacity of
new factory

The decisions and objectives are the starting and ending points of your model. When you have
identified them, you have reduced the diagram construction to the process of creating the links
between the decisions and objectives, via intermediate variables. You might wish to work forward
from the decisions, or backward from the objectives. Some people find it easiest to alternate,
working inward from the left and the right until they can link everything up in the middle.

Capacity of
new factory

Price of
product

It helps to identify the decisions and objectives early in model construction, to keep the focus on
what matters. There can be a bewildering variety of variables in the situation that might seem to
be of potential relevance, but, you only need to worry about variables that influence how the deci-
sions might affect the objectives. You can ignore any variable that has no effect on the objectives.

Focus on identifying the variables that make clear distinctions — variables whose interpretations
won't change with time or viewer. Extra effort here will be repaid in model accuracy and cogency.

An influence diagram is a purely qualitative representation of a model. It shows the variables and
their dependencies. It is usually best to create most or all of the first version of your model just as
an influence diagram, or hierarchy of diagrams, before trying to quantify the values and relation-

ships between the variables. In this way, you can concentrate on the essential qualitative issues

of what variables to include, before having to worry about the details of how to quantify the rela-

tionships.

When the model is intended to reflect the views and knowledge of a group of people, it is espe-
cially valuable to start by drawing up influence diagrams as a group. A small group can sit around
the computer screen; for a larger group, it is best if you have the means to project the image onto
a large screen, so that the entire group can see and comment on the diagram as they create it.
The ability to focus initially on the qualitative structure lets you involve early in the process partici-
pants who might not have the time or interest to be involved in the detailed quantitative analysis.

Analytica User Guide 63

Chapter Building Effective Models Testing and debugging a model

Keep it simple

Reuse and adapt
existing models

Aim for clarity
and insight

With this approach, you can often obtain valuable insights and early buy-in to the modeling pro-
cess from key people who would not otherwise be available.

Perhaps the most common mistake in modeling is to try to build a model that is too complicated or
that is complicated in the wrong ways. Just because the situation you are modeling is complicated
doesn’'t necessarily mean your model should be complicated. Every model is unavoidably a sim-
plification of reality; otherwise it would not be a model. The question is not whether your model
should be a simplification, but rather how simple it should be. A large model requires more effort
to build, takes longer to execute, is harder to test, and is more difficult to understand than a
smaller model. And it might not be more accurate.

“A theory should be as simple as possible, but no simpler.” Albert Einstein

Building a new model from scratch can be a challenge. If you can find an existing model for a
problem similar to the one you are now facing, it is usually much easier to start with the existing
model and adapt it to the new application. In some cases, you might find parts or modules of
existing models that you can extract and combine to address a new problem.

To find a suitable model to adapt, you can start by looking through the example models distributed
with Analytica. If there is an Analytica users’ group in your own organization, it might collect a
model library of classes of problems of interest to your organization.

You can also check the Lumina wiki for Analytica libraries, templates, and example models (http:/
/lumina.com/wiki).

“If I have seen further than [others] it is by standing upon the shoulders of Giants.”
Sir Isaac Newton

The goal of building a model is to obtain clarity about the situation, about which decision options
will best further your objectives, and why. If you are already clear about what decision to make,
you don't need to build a model, unless, perhaps, you are trying to clarify the situation and explain
the recommended decisions for others. Either way, your goal is greater clarity. This goal is
another reason to aim for simplicity. Large and complicated models are harder to understand and
explain.

Testing and debugging a model

64

Test as you build

Test the model
against reality

Even with Analytica, it is rare to create the first draft of a model without mistakes. For example, on
your first try, definitions might not express what you really intended, or might not apply to all con-
ditions. It is important to test and evaluate your model to make sure it expresses what you have in
mind. Analytica is designed specifically to make it as easy as possible to scrutinize model struc-
tures and dependencies, to explore model implications and behaviors, and to understand the rea-
sons for them. Accordingly, it is relatively easy to debug models once you have identified potential
problems.

With Analytica, you can evaluate any variable once you have provided a definition for the variable
and all the variables on which it depends, even if many other variables in the model remain to be
defined. We recommend that you evaluate each variable as soon as you can, immediately after
you have provided definitions for the relevant parts of the model. In this way, you'll discover prob-
lems as soon as possible after specifying the definitions that might have caused them. You can
then try to identify the cause and fix the problem while the definitions are still fresh in your mem-
ory. Moreover, you are less likely to repeat the mistake in other parts of the model.

If you wait until you believe you have completed the model before testing it, it might contain sev-
eral errors that interact in confusing ways. Then you must search through much larger sections of
the model to track them down. But if you have already tested the model components indepen-
dently, you've already removed most of the errors, and it is usually much easier to track down any
that remain.

The best way to check that your model is well-specified is to compare its predictions against past
empirical observations. For example, if you're trying to predict future changes in the composition
of acid rain, you should try to compare its “predictions” for past years for which you have empirical
observations. Or, if you're trying to forecast the future profitability of an existing enterprise, you
should first calibrate your model for past years for which accounting data is available.

Analytica User Guide

http://www.lumina.com/wiki
http://www.lumina.com/wiki

Chapter Building Effective Models Testing and debugging a model

Test the model against
other models

Have other people
review your model

Test model behavior and
sensitivities

Celebrate and learn
from unexpected
behavior

Document as you build

Often you don’t have the luxury of empirical measurements or data for the system of interest. In
some cases, you're building a new model to replace an old model that is out-of-date, too limited,
or not probabilistic. In these cases, it is usually wise to start by reimplementing a version of the old
model, before updating and extending it. You can then compare the new model against the old
one to check for discrepancies. Of course, differences can be due to errors in the new model or
the old model. When you have resolved any discrepancies, you can be confident that you are
building on a foundation that you understand.

If the model is hard to test against reality in advance of using it, and if the consequences of mis-
takes could be catastrophic, you can borrow a technique that NASA uses widely for the space
program. You can get two independent modelers (or two modeling teams) each to build their own
model, and then check the models against each other. It is important that the modelers be inde-
pendent, and not discuss their work ahead of time, to reduce the chance that they both make the
same mistake. For a sponsor of models for critical applications in public or private policy, this mul-
tiple model approach can be very effective and insightful. The competition keeps the modelers on
their toes. Comparing the models’ structure and behavior often leads to valuable insights.

It's often very helpful to have outside reviewers scrutinize your model. Experts with different views
and experiences might have valuable comments and suggestions for improving it. One of the
advantages of using Analytica over conventional modeling environments is that it's usually possi-
ble for an expert in the domain to review the model directly, without additional paper documenta-
tion. The reviewer can scrutinize the diagrams, the variables, their definitions and descriptions,
and the behavior of the model electronically. You can share models electronically on diskette,
over a network, or by electronic mail.

Many problems become immediately obvious when you look at a result — for example, if it has
the wrong sign, the wrong order of magnitude, or the wrong dimensions, or if Analytica reports an
evaluation error. Other problems, of course, are not immediately obvious — for example, if the
value is wrong by only a few percentage points. For more thorough testing, it is often helpful to
analyze the model behavior by specifying a list of alternative values for one or two key inputs (see
Chapter 3, “Analyzing Model Behavior”), and to perform sensitivity analysis (see Chapter 16,
“Statistics, Sensitivity, and Uncertainty Analysis”). If the model behaves in an unexpected way,
this can be a sign of some mistake in the specification. For example, suppose that you are plan-
ning to borrow money to buy a new computer, and the net value increases with the interest rate
on the loan; you might suspect a problem in the model.

If analyzing the behavior or sensitivities of your model creates unexpected results, there are two
possibilities:

* Your model contains an error, in that it does not correctly express what you intended.

* Your expectations about how the model should behave were wrong.

You should first check the model carefully to make sure it contains no errors, and does indeed
express what you intended. Explore the model to try to figure out how it generates the unexpected
results. If after thorough exploration you can find no mistake, and the model persists in its unex-
pected behavior, do not despair! It might be that your intuitions were wrong in the first place. This
discovery should be a cause for celebration rather than disappointment. If models always
behaved exactly as expected, there would be little reason to build them. The most valuable
insights come from models that behave counter-intuitively. When you understand how their
behavior arises, you can deepen your understanding and improve your intuition — which is, after
all, a fundamental goal of modeling.

Give your variables and modules meaningful titles, so that others — or you, when you revisit the
model a year later — can more easily understand the model from looking at its influence dia-
grams. It's better to call your variable Net rental income than NRI123.

It's also a good idea to document your model as you construct it by filling in the Description and
Units attributes for each variable and module. You might find that entering a description for each
variable and explaining clearly what the variable represents helps to keep you clear about the
model. Entering units of measurement for each variable can help you avoid simple mistakes in
model specification. Avoid the temptation to put documentation off until the end of the project,
when you run out of time, or have forgotten key aspects.

Analytica User Guide 65

Chapter Building Effective Models Expanding your model

Most models, once built, spend the majority of their lives being used and modified by people other
than their original author. Clear and thorough documentation pays continuing dividends; a model
is incomplete without it.

Expanding your model

Extend the model by
stages

Identify ways to improve
the model

Discover what parts are
important to guide
expansion

Simplify where possible

66

The best way to develop a model of appropriate size is to start with a very simple model, and then
to extend it in stages in those ways that appear to be most important. With this approach, you'll
have a usable model early on. Moreover, you can analyze the sensitivities of the simple model to
find out where the key uncertainties and gaps are, and use this to set priorities for expanding the
model. If instead you try to create a large model from the start, you run the risk of running out of
time or computer resources before you have anything usable. And you might end up putting much
work into creating an elaborate module for an aspect of the problem that turns out to be of little
importance.

There are many ways to expand a model:
* Add variables that you think will be important.
* Add objectives or criteria for evaluating outcomes.

« Expand the number of decision options specified for a decision variable, or the number of
possible outcomes for a discrete chance variable.

« Expand a single decision into two or more sequential decisions, with the later decision being
made after more information is revealed.

« For a dynamic model, expand the time horizon (say, from 10 years to 20 years) or reduce the
time steps (say, from annual to quarterly time periods).

« Disaggregate a variable by adding a dimension (say, projecting sales and costs by each
division of the company instead of only for the company as a whole).

« Start with a deterministic model, then add probabilistic inputs to make the model probabilistic.

Before plunging in to one of these approaches to expanding a model, it's best to list the alterna-
tives explicitly and think carefully about which is most likely to improve the model the most for the
least effort. Where possible, perform experiments or sensitivity analysis to figure out how much
effect alternative kinds of expansion can have.

Changing the size or numbers of dimensions of tables is a difficult and time-consuming task in
conventional modeling environments. Analytica makes it relatively easy, since you only need to
change those definitions that directly depend on the dimension (for example, the edit tables), and
Analytica propagates the needed changes automatically throughout the model.

A major advantage of starting with a simple model is that you use it to guide extensions in the
ways that will be most valuable in improving the model’s results. You can analyze the sensitivities
of the simple model (for example, using Importance Analysis, page 268) to identify which
sources of uncertainty contribute most to the uncertainty in the results. Typically, only a handful of
variables contribute the lion’s share of the overall uncertainty. You can then concentrate your
future modeling efforts on those variables and avoid wasting your energy on variables whose
influence is negligible.

Early intuitions about what aspects of a model are important are frequently wrong, and the results
of the sensitivity analysis might come as a surprise. Consequently, it's much safer to base model
development on sensitivity analysis of simple models than to rely on your intuitions about where

to spend your efforts in model construction.

When you have identified the most important variables in your simple model, there are several
ways to reduce the uncertainty they contribute. You can refine the estimated probability distribu-
tion by consulting a better-informed expert, by analyzing more existing data, by collecting new
data, or by developing a more elaborate model to calculate the variable based on other available
information.

There’s no reason that a model must grow successively more complex as you develop it. Sensi-
tivity analysis might reveal that an uncertainty or submodel is just not very important to the results.
In this case, consider eliminating it. You might find that some dimensions of a table are unimport-

Analytica User Guide

Chapter Building Effective Models Expanding your model

ant — for example, that there’s little difference in the performance of different divisions. If so, con-
sider aggregating over the divisions and eliminating that dimension from your model.

Simplifying a model has many benefits. It becomes easier to understand and explain, faster to
run, and cheaper to maintain. These savings can afford you the opportunity to extend parts of the
model that are more important.

Analytica User Guide 67

Chapter Building Effective Models Expanding your model

68 Analytica User Guide

O FTo (I Creating Lucid Influence
Diagrams

This chapter offers guidelines for creating influence diagrams that are
clear and comprehensible by careful arrangement of nodes, well-
designed module hierarchies, and judicious use of color. It also
describes how to adjust and align nodes, and customize styles for
nodes and diagrams. Options include which arrows to show, node sizes,
colors, text size, and font family.

Ch apter n Creating Lucid Influence Diagrams

Hierarchical influence diagrams can provide a lucid display of the essential qualitative structure of
a model, uncluttered by quantitative details.

Years Annual
owned appreciation
Buying price -
Down Loan
Payment

Reductmn et annual

It is also possible to create impenetrable spaghetti!

Principal

, 3 , ayments et annual

house COs
Interest
D yments
Red uction Interest rate apprecmn
Marginal tax |n taxes GWF‘-d
rate

Property -
taxes

70 Analytica User Guide

Buying price

Down
Payment

Maintenance

Chapter n Creating Lucid Influence Diagrams Guidelines for creating lucid and elegant diagrams

Guidelines for creating lucid and elegant diagrams

When aesthetics are involved, rules cannot be hard and fast. You can adapt and modify these
guidelines to suit your particular applications and preferences.

Use clear, meaningful Aim to make each diagram stand by itself and be as comprehensible as possible. Each node title
node titles can contain up to 255 characters of any kind, including spaces. Use clear, concise language in

titles, not private codes or names (as are often used for naming computer variables). Mixed-case
text (first letter uppercase and remaining letters lowercase) is clearer than all letters uppercase.

Poor object titles Good object titles

Use consistent Diagrams usually look best if most of the variable nodes are the same size.
node sizes

Inconsistent node sizes Consistent node sizes

Node sizes will be uniform if you set the default minimum node size in the Diagram Style dialog
(page 78) to be large enough so that it fits the title for nodes. When creating nodes, it uses this
default size unless the text is too lengthy, in which case it expands the node vertically to fit the
text. For more information on how to adjust node sizes see “Adjust node size”page 72.

To make nodes the same size, select the nodes (Control+a selects all in the diagram), and select
Make same size > Both from the Diagram menu (or press = key twice).

Use small and large Sometimes, it is effective to make a few special nodes extra large or small. For example, start and
nodes sparingly end nodes, which can link to other models, often look best when they are very small. Or you can
make a few nodes containing large input tables or modules containing the “guts” of a model larger

to convey their importance.

Analytica User Guide 71

Ch apter E Creating Lucid Influence Diagrams

Arrange nodes
from left to right
(or top to bottom)

Buying price
Decision variables
on the left
Down
Payment

Tolerate spaghetti
at first...

...reorganize later

Arranging nodes to make clear diagrams

People find it natural to read diagrams, like text, from left to right, or top to bottom.® Try to put the
decision node(s) on the left or top and the objective node(s) on the right or bottom of the diagram,
with all of the other variables or modules arranged between them.

You might need to let a few arrows go counter to the general flow to reduce crossings or overlaps.
In dynamic models, time-lagged feedback loops (shown as gray arrows) might appropriately go
counter to the general flow.

Objective variable on the right

It can be difficult to figure out a clear diagram arrangement in advance. It is usually easiest to start
a new model using the largest Diagram window you can by clicking the maximize box to have the
diagram fill your screen. You might want to create key decisions and other input nodes near the
left or top of the window, and objectives or output nodes near the right or bottom of the window.
Aside from that, create nodes wherever you like, without worrying too much about clarity.

When you start linking nodes, the diagram can start to look tangled. This is the time to start reor-
ganizing the diagram to create some clarity. Try to move linked nodes together into a module.
Develop vertical or horizontal lines of linked nodes. Accentuate symmetries, if you see them.
Gradually, order will emerge.

Arranging nodes to make clear diagrams

72

Adjust node size

If you have nodes of different sizes, you can make them more consistent by selecting Adjust Size
(Control+t) from the Diagram menu. All of the selected nodes are resized to the default minimum
node size, or the minimum size needed to enclose each node’s title, whichever is larger.

You can also resize several nodes by the same amount simultaneously by following these steps:

1. Select the nodes to resize.

2. Resize one of the selected nodes by dragging one of its handles. All other selected nodes are
also resized.

Selected nodes can also be set to be the same width, height, or size. To set the size of selected
nodes to be the same size use the Make Same Size submenu in the Diagram menu. The options
are:

* Make Same Size Width — Sets all the selected nodes to the width of the widest node.
* Make Same Size Height — Sets all the selected nodes to the height of the tallest node.

« Make Same Size Both — Sets all the selected nodes to the width of the widest node and the
height of the tallest node.

1. Orright to left for models in Arabic or Hebrew.

Analytica User Guide

Ch apter n Creating Lucid Influence Diagrams

Align to the grid

Arranging nodes to make clear diagrams

It usually looks best when the centers of the nodes are aligned along a common horizontal or
vertical line, so that many arrows are exactly horizontal or vertical. The square grid of 9x9 pixel
blocks underlying each diagram makes this easy. When the grid is on (the default), each node
that you create or move is centered on a grid intersection. This default makes it easier for you to
position nodes so that arrows are exactly horizontal or vertical when nodes are aligned vertically
or horizontally.

To turn the grid off in edit mode, uncheck Snap to Grid from the Diagram menu. When the grid is
off in edit mode, the grid is still visible, and you can move the nodes pixel by pixel.

Buying price
Buying price
Down
Payment T
Payment

Align selected nodes

Poor alignment Good alignment

If nodes are not centered on a grid point, re-center them by following these steps:
1. Select all nodes in the diagram with the Select All (Control+a) command from the Edit menu.
2. Select Align Selection To Grid from the Diagram menu (Control+j).

To line up selected nodes with each other, use the Align submenu in the Diagram menu. You can
align selected nodes in the following ways:

« Align the left edges.
« Align the centers left and right — this aligns the centers horizontally.
« Align the right edges.

« Align the left and right edges — this makes all the selected nodes the same width and aligns
them so that their left and right edges match up. All nodes are set to the width of the widest
node.

Buying
price

Rate of inflation

Discount rate

Buying
price

Buying
price

Buying price

Rate of inflation

Discount rate

Rate of inflation

Rate of inflation

Discount rate

Discount rate

/'

Align left edges

Align left and

Align right edges
gnng 9 right edges

Align centers left
and right

« Align the top edges.

< Align the centers up and down — this aligns the nodes so that their centers are at the same
vertical height.

« Align the bottom edges.

Analytica User Guide 73

Chapter n Creating Lucid Influence Diagrams

Distributing nodes

Choosing which
node is in front

_ Hide less
important arrows

Keep diagrams compact

74

Arranging nodes to make clear diagrams

i B —

Align top Cost to Buy

edges

Rate of inflation

Costs of buying
and renting

Align centers | . ' .
up and down |. { Rats af inflation Cnasrzsd ?:-fzr?tli]r!:;g
Align bottom

edges Costs of buying

Rate of inflation

Cost to Buy and renting

L A
To distribute selected nodes evenly, use the Space Evenly submenu in the Diagram menu. You

can distribute selected nodes so that the centers are evenly spaced vertically (Space Evenly
Across) or horizontally (Space Evenly Down).

By default, text and picture nodes are behind arrows, and arrows are behind all other types of

nodes (decision, chance, variable, etc.). If nodes overlap, the more recently created node is on
top of the older node. You can change this order by selecting a node(s) and using the Send to
Back and Bring to Front options from the right-click menu.

Sometimes so many nodes are interrelated that it is hard or impossible to arrange a diagram to
avoid arrows crossing each other or crossing nodes. It might be helpful to hide some arrows that
show less important linkages. For example, indexes and functions are often connected to many
other variables; that's why arrows to and from them are switched off by default.

You can hide all of the arrows linking indexes, functions, or modules, or the grayed feedback
arrows in dynamic models, using the Set Diagram Style command from the Diagram menu in
the Diagram Style dialog (page 78). You can also hide the input or output arrows from each
node individually, using the Set Node Style command in the Node Style dialog (page 79).

Screen space is valuable. To save space, keep nodes close together, leaving enough space
between them for the arrows to be visible.

When first creating a diagram, use plenty of space. Your diagram window can be as large as your
monitor screen. Using this space, first find a clear arrangement, which minimizes arrow crossing
and avoids node overlaps. Then, you can usually make the diagram more compact by moving the
nodes closer together and moving the entire diagram closer to the upper-left corner of the win-
dow. Finally, you can reduce the window size to fit the diagram.

Analytica User Guide

Ch apter n Creating Lucid Influence Diagrams Organizing a module hierarchy

Buying price -

Down
Payment

A spread-out diagram

Buying price

Down
Payment

A compact diagram

Organizing a module hierarchy

In addition to properly arranging the nodes in a single diagram, you can also improve the clarity of
your models by using module hierarchies effectively.

Group related nodes in When assigning nodes to diagrams, the goal is to put groups of nodes that have many links
the same diagram among them in the same diagram, and to separate them from other groups with which they have
few or no links. For example, the diagram below shows that a group of nodes related to annual
housing costs have been organized into the Annual costs module within the larger model.

Analytica User Guide 75

Chapter E Creating Lucid Influence Diagrams Organizing a module hierarchy

76

Use 10 to 20 nodes
per diagram

Buying price

Down
Payment

Reduction
in taxes

Sometimes you have a good idea of how to group nodes before you create them. In such cases,
it is easy to create the modules first, and then create and link the nodes in groups in each module.

In other cases, it might not be obvious which groupings work best. It is then often best to create all
the nodes in a single large diagram. After drawing all the arrows, you might have a confusing spa-
ghetti diagram. At this point, try to move the nodes around to identify groups containing 5 to 15
nodes, with many links within each group and fewer links between groups. When you arrive at a
satisfactory grouping, create a module node for each group and move the group of variables into
its own module.

When creating a hierarchy of diagrams for a model with 100 variables, you could create a single
module with 100 nodes, 10 modules with an average of 11 nodes each, 20 modules with 6 nodes
each, or 50 modules with 3 nodes each.?

A module containing more than 20 nodes often looks overwhelmingly complicated, unless there
are strong regularities in the structure. On the other hand, if modules have fewer than 5 nodes,
you need so many modules that it is easy for users to get lost.

The range of 10 to 20 nodes per diagram is a good general goal. But don't feel too constrained by
it if a few diagrams are outside this range.

Contrast the module hierarchy in the simplified model (page 75) with the spaghetti (page 70).
The relationships among objects are much easier to see and understand in the model with 10
nodes in the top-level module and 12 nodes in the embedded module than in the complicated
model with 24 top-level nodes.

2. Each module also creates a new node, so the total number of nodes is the number of variables plus the
number of modules.

Analytica User Guide

Color in influence diagrams

Ch apter n Creating Lucid Influence Diagrams

Color in influence diagrams

Color can greatly improve the clarity and appeal of diagrams. The diagram’s background and its
nodes have light colors by default. You can change the colors to meet your preferences.

Use colors judiciously Light colors work best because its easier to see the black arrows and text over light backgrounds.
Analytica’s default colors provide a light neutral color for the background and a slightly stronger
color for the nodes.

Garish or uncoordinated colors can be distracting. It generally looks messy to have nodes in
many different colors. Sometimes it's useful to use color coding beyond the default colors by class
of node. For example, you might want to color all input nodes to identify them clearly.

Recoloring nodes To apply colors to nodes or the background:

or background) .
1. In edit mode, select Show Color Palette from the Diagram menu.

@ Color Palette PE

Diagram color: CJ Other...

2. Select the node or nodes you want to recolor, or to recolor the background, just click the
background. The current color of the node(s) or background appears in the single square at
the top of the color palette.

3. Click a color square to apply the new color to the nodes or background.
For a wider range of colors, click Other to display a full color chart.

Grouping nodes It often improves the look and clarity of a user interface to group related nodes in rectangular
with a text box poxes with a contrasting color, white in this case.

W Diagram - Market Model E|E| g|
Product Lifecycle Decisions B
BI=E (entire mgrket} -

hkt. Price El
Size
Marketing budget ()| 50M w |

Growth Mature | Dedlin
Fhase | FPhase | Phase Product costs
0 & time
- Yearly Fixed Cost (541 5M
Growth Mature De=cline |
Years Years Years Startup Cost (%) 20M
Growth phase (years) Unit Cost (S/unit) 300
Mature phase (years) Discountrate (%hyr) 15%
Decline phase (years) 3
Results

Mature market size @#fyr)[Normal | Cash Flow E$} mid
Mominal market share Net Present Value E$}- i

EXi | »[]

To create a grouping rectangle using a text box:

1. With the diagram in edit mode, create a text node by dragging from ‘ T on the node toolbar
onto the diagram.

2. Type atitle into the text node, or leave it blank as desired.

Analytica User Guide 7

Chapter n Creating Lucid Influence Diagrams Diagram Style dialog

Tip

3. Move and resize the node to enclose the group of inputs or outputs. You might find it
convenient to deselect the Resize centered option from the Diagram menu.

4. With the node selected, open the Set Node Style dialog from the Diagram menu, check the
Border and Fill color options (and Bevel, if you like), and click OK.

5. Select the Color palette from the Diagram menu, and click the preferred color for the node,
e.g., white.

Usually, text nodes appear behind all other nodes, which is what you want for organizing groups.
But if a node is not in the back and is obscuring other items, you can select Send to Back from
the right-click button menu.

The background color of a diagram also applies to the background color of any modules contained
in the diagram — unless you explicitly override the default by setting a different background color
for each submodule. Similarly, the color you apply to a module node also applies to any submodule
nodes inside the module — unless you override the default by recoloring any submodule node(s).

Diagram Style dialog

78

Show arrows to/from

Default node size

Font Style

Use the Diagram Style dialog to display or hide arrows for specified node classes, set the node
size, and customize the font size and typeface for nodes. To display the Diagram Style dialog,
select Set Diagram Style from the Diagram menu.

@ Diagram Style [

— Show arrows to/from:
(I?lagfram at(rOW [Indexes v Modules
isplay options

play op I Functions v Dynamic

— Default node size:

Drag this anchor to
set default node size—

Diagram font — Font Style:
style options size: [IEH [w | Font:[Alba ~]

Cancel QK

Check the corresponding boxes to display (or hide) arrows that go to and from nodes of each
type, Indexes, Functions, Modules, and Dynamic. Dynamic (page 282) controls the display of
time-lagged dependencies to variables defined with Dynamic, usually displayed as gray arrows.

By default, diagrams show arrows to and from modules and dynamic, but not indexes and func-

tions. Showing more arrows can clutter some diagrams with criss-crossing arrows. But, showing
fewer arrows makes important dependencies (influences) invisible. The best balance depends on
the model.

Drag the handle in this box to set the default node size. When you create a new variable or select
the Adjust Size command from the Diagram menu, it tries to make the node this size — if the
node title is too large, it expands the node vertically until it fits. It is usually best to size the default
to include at least two lines of text at the selected font size. Input and output nodes do not use this
default; they extend horizontally to fit their text plus field or button.

To change the default font size, use the menu or type in a font size (in typographic points). Select
the default typeface from the font menu.

Analytica User Guide

Chapter n Creating Lucid Influence Diagrams Node Style dialog

Overriding diagram
defaults

The Diagram Style dialog sets defaults for the diagram and for any modules contained in that
diagram. You can override these defaults for particular nodes with the Node Style dialog (below),
or for a submodule by using the Diagram style dialog for the submodule.

Node Style dialog

To open the Node Style
dialog

Input arrows

Output arrows
Label

Border

Fill color

Bevel

Tip

Font style

The Node Style dialog lets you customize the display of one or more nodes in a diagram. You can
display or hide incoming and outgoing arrows, the text label, border, fill color, and bevel, and
change the typeface and font size. These options override any defaults set for in the Diagram
Style dialog.

1. Select one or more nodes in a diagram.

2. Choose Set Node Style from the Diagram menu or the right-click menu.
3. Select the options for which you want to override the default styles.
4. Click OK.
@ Node Style X
— Display:
Checkb
gra;,aecd O?J); Input amows v Label v Fill color
¥ Output amows W Bonder [Bevel
— Example:
Time
horizon
— Font Style:
i sz diagram fort " Use custom fort

Cancel QK

Check to display arrows into this node.

Check to display arrows out of this node.

By default, input and output arrows are not displayed for index and function nodes.
Check to display the title in the node. By default, this is checked for all nodes.
Check to display a thin black border around the node.

Check to display the color in the node. Otherwise the node appears transparent, and any nodes
or arrows under it are visible.

Check to show a bevel effect around the node. By default, this is checked only for button nodes.

By default, text nodes, input and output nodes do not show arrows, border or fill color.

A grayed out checkbox indicates that this option is not the same for all selected nodes. If you leave
it unchanged (gray), each node keeps its current setting. If you change it (on or off), it changes all
nodes to the new setting.

To override the default diagram font, select Use custom font. Then you can select the font size
and typestyle.

Analytica User Guide 79

Chapter n Creating Lucid Influence Diagrams Taking screenshots of diagrams

Taking screenshots of diagrams

Use browse mode

Switch off
cross-hatching

Diagram colors

Exporting diagrams
as images

80

These are some tips for taking good screenshots of influence diagrams and other Analytica win-
dows for use in other documents or printing.

When making screen captures of a Diagram window, select browse mode ™ | rather than the
edit or arrow mode to switch off the background grid, which makes the diagram clearer.

By default, the nodes of undefined variables show a cross-hatched pattern around the title. To
remove this pattern, uncheck Show undefined in the Preferences dialog (page 58) from the Edit
menu.

Use white for the background if you plan to print screenshots of the diagram on a black and white
printer at less than 600 dpi (dots per inch). The Print command allows you to leave out the back-
ground color, if any.

To create an image file of your influence diagram, select Export from the File menu. The image
can be stored in a variety of formats such as BMP, JPEG, TIFF, PNG, and EMF.

Analytica User Guide

O Tl (-IgrAl Formatting Numbers,
Tables, and Graphs

This chapter shows you how to:

« Control the display of numbers, including Booleans and dates, in
tables and graphs.

« Select styles and options for graphs.

Ch apter Formatting Numbers, Tables, and Graphs

Number formats

82

Format types

The Number format dialog lets you control the format of numbers to display in result tables and
graphs — including dates and Booleans. You can select options like the number of decimal digits,
currency signs, and commas to separate thousands. The default number format is suffix, which

uses a letter following the number, such 10K to mean 10,000 (where K means Kilo or thousands).

The number format of a variable is used wherever the value of that variable appears —in a result
table, graph, input field, or output field. The number format of an index applies wherever that
index is used, including row or column headers of a table, or along an axis of a graph that uses
that index.

You can enter a number into an expression or table in any format, no matter what output format it
uses — except for dates, where you need to specify a date format, so that it interprets 10/10/
2007, for example, as a date, not two divisions.

To set the number format for a variable:

1. Select a variable by showing its edit table, result table, or graph, or by selecting its node in a
diagram. To apply the same format to several variables, select their nodes together in a
diagram.

2. Select Number format from the Result menu, or press Control+b, to show this dialog.

Chance W

Suffic Example:

ExEDnential $123456.79 $-123456.79

Integer : . -

Pearcent Decimal digits: |2 ¥ Show currency symbol

Date -
Enolean [Show trailing zeroes Symbal: |$ -

[~ Thousands separatars
FPlacement |$-# -

Apphy Cancel

3. Select the format type you want from the list on the left (see “Format types” on page 82).

Select options you want, such as Decimal digits, Show trailing zeroes, Thousands separators,
or Show currency symbol, from checkboxes, menus, and fields on the right. The options
available depend on which format you selected.

5. View the example at the top of the dialog to see if the format is what you want.
6. If so, click the Apply button.
Choose one of these number formats:

Format Description Example

Suffix A letter after the number specifies powers of ten (see 12.35K
below for details)

Exponential Scientific or exponential notation, where the number 1.235e04
after the “e” gives the powers of ten

Fixed Point A decimal point with fixed number of decimal digits 12345.68

Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs

Suffix characters

Tip

Tip

Maximum precision

Format Description Example
Integer A whole number with no decimals 12346
Percent A percentage 12%

Date Date and date-times (see below for details) 12 Jan 2007
Boolean Displays 0 as False, any other number as True True, False

Suffix is Analytica’s default format. It uses a conventional letter after each number to specify pow-
ers of 10: 12K means 12,000 (K for kilo or thousands), 2.5M means 2,500,000 (M for Mega or mil-
lions), 5n means 0.000,000,005 (n means nano or billionths). Here are the suffix characters:

Power of 10 Suffix Prefix Power of 10 Suffix Prefix
1072 % percent

10° K Kilo 103 m mil

108 M Mega or Million 106 H micro (mu)

10° GorB Giga or Billion 10°° n nano

1012 T Tera or Trillion 1012 p pico

101° Q Quadrillion 1015 f femto

Note the difference between “M” for Mega or Million and “m” for milli (1/1000). This is the only
situation in which Analytica cares about the difference between uppercase and lowercase.
Otherwise, it is insensitive to case (except when matching text values).

In suffix format, it displays four-digit numbers without the “K” suffix — e.g., 2010, not 2.010K —
which works better for years. For suffix, integer, or fixed point formats, it uses exponent format for
numbers too large or small — e.g., numbers larger than 10° in integer or fixed point format, or
larger than 108 in suffix format.

The maximum number of digits including decimal digits is 15 (14 for fixed point and percent); the
maximum precision is 15 digits (9 for integers).

Number format options

Decimal digits

Show trailing zeroes

Thousands separators

Show currency symbol

The number of digits to show after the decimal point.

Check to show trailing zeroes in decimals, e.g., 2.100 instead of 2.1, when decimal digits are set
to 3.

Check to show commas between every third digit of the integer part, e.g., 12,345.678, instead of
12345.678.

Check to show a currency symbol. Select the symbol and placement from these menus.

Analytica User Guide 83

Ch apter Formatting Numbers, Tables, and Graphs

W Show currency symbol

Date formats

v Show currency symbol

Syrbal: |$ <

Symbol:
Flacement: Flacement:
Cancel Cancel
(#3)
reqional

Placement controls the relative location of the currency symbol, e.g., $200 or 200DM, and
whether to use a minus sign -$200 or parentheses ($200) to indicate a negative number.

Regional settings

If you select the last entry, regional, from the Symbol or Placement menu, it uses, respectively,

the regional currency or placement settings set for your computer. You can modify these settings
in the Regional and Language options available from the Windows Control Panel.

Date formats

A date is a number shown in date format. The date number represents the date as the number of
days since the date origin, usually Jan 1, 1904. The fractional part, if any, represents the time-of-

day as a fraction of a 24-hour day.

YWariahle fzz

Formats:

Example:

Suffix
Exponential
Fixed Point
Integer " Shart
Percent © Abhrey
Boolean £ Lang

f* Custom:

Cancel

1 February 2005

(Mt
(o, MMM dld, vinnd
fwvwraro, MMM dd, sannd)

d i

Apply

The Date format in the Number Format dialog offers these options:

Short: e.g., 8/5/2006
Abbrev: e.g., Aug-5-2006

Long: e.g., Thursday, 05 August, 2006
Custom: Use an existing custom format or set up a new one, as shown in the table below.

84 Analytica User Guide

Chapter Formatting Numbers, Tables, and Graphs Date formats

Date format codes

Tip

Interpreting
input dates

Regional and
language settings

Date format Displays as

dd-MM-yy 05-08-08

'QQYYYY Q2 2008

www, d MMM yyyy Thu, 5 Aug 2008

wwww, d of MMMM, yyyy Thursday, 5 of August, 2008
d-MMM-yyyy hh:mm:ss tt 5-Aug-2008 03:45:22 PM
MM/dd/yy H:m:s 08/05/08 15:45:22

Custom date format uses these letter codes, conventional for Microsoft Windows.

Code Description Example

d numeric day of the month as one digit 1,2,..31

dd numeric day of the month as two digits 01,02, ...31

ddd ordinal day of month in numeric format 1st, 2nd, ... 31st

dddd ordinal day of month in text format first, second, ... thirty-first
Dddd capitalized ordinal day of month First, Second, ... Thirty-first
WWW weekday in three letters Mon, Tue, ... Sun

WWWW weekday in full Monday, Tuesday, ... Sunday
M month as a number 1,2,..12

MM month as two-digit number 01,02, ...12

MMM month as three letter name Jan, Feb, ... Dec

MMMM month as full name January, February, ... December
q quarter as one digit 1,2,3,4

vy year as two digits e.g., 99, 00, 01

yyyy year as four digits e.g., 1999, 2000, 2001

h hour on a 12-hour clock 1,2,..12

H hour on a 24-hour clock 01,..23

hh hour on a 12-hour clock as two digits 01,02,..12

HH hour on a 24-hour clock as two digits 00,01, ...23

m minutes 0,1,..59

mm minutes as two digits 00, 01, ... 59

S seconds 0,1,..59

Ss seconds as two digits 00,01, ...59

tt AM or PM AM, PM

To show literal text within the date, enclose it in quotes, e.g., "q~q — q2.

If you specify any date format for an input variable or edit table, you can enter dates in any
acceptable date format. For example, a variable with a date format, interprets 1/5/2008 as 5
January, 2008 on a computer setto USA region or 1 May, 2008 elsewhere. Without the
date format, it would interpret 1/5/2008 as (1 divided by 5) divided by 2008! A date-time can be
entered as e.g., 1-May-2008 15:30:20 orMay 1, 2008 3:30:20 PM.

The language for day and month names and the formats used for Short and Long dates depend
on the regional settings for Windows. In the U.S., you might see a short date as 9/12/2008, but in
Denmark you might see 12.9.2008. You can review and change these settings in Regional and
Language options available from the Windows Control Panel. These apply to Analytica and all
standard Windows applications. To modify settings, click the Customize button and select either
the Date tab or Languages tab. For example, if you set the language to Spanish (Argentina), a
variable with the Long date setting, the date displays as:

StartDate — Sabado, 03 de Febrero de 2008

Analytica User Guide 85

Chapter Formatting Numbers, Tables, and Graphs Multiple formats in one table

Date numbers
and the date origin

Range of dates

Date arithmetic and
functions

where
Variable StartDate := MakeDate(2008, 2, 3)

Analytica represents a date or date-time as a date number, that is, the number of days since the
date origin. By default, the date origin is Jan 1, 1904, as used by most Macintosh applications,
including Excel on Macintosh, and all releases of Analytica on Macintosh and Windows up to
Analytica 3.1. If you check Use Excel date origin in the Preferences dialog, the date origin is Jan
1, 1900, as used by default in Excel on Windows and most other Windows software.

With Use Excel date origin checked, the numeric value of dates are the same in Analytica and
Excel for Windows for dates falling on or after 1 Mar 1900. Because of a bug in Excel, in which
Excel incorrectly treats Feb 29, 1900 as a valid day (1900 was not really a leap year), dates falling
before that date do not have the same numeric index in Analytica as they do in Excel.

When using models containing dates or date functions from Analytica releases 3.1 or earlier, you
should keep Use Excel date origin unchecked. If you want to paste or link values from Excel or
other Windows software to or from Analytica, you should check this option.

Analytica can handle dates from 1 CE to well beyond 9999 CE (CE means Common Era or Chris-
tian Era, and is the same as AD). Dates earlier than the date origin are represented as negative
integers. Dates use the Gregorian calendar, so years divisible by 4 are leap years and those divis-
ible by 100 are not leap years, except those divisible by 400 which are leap years.

You can simply add an integer n to a date to get the date n days ahead using the MakeDate(),
MakeTime(), DatePart(), DateAdd(), and Today() functions (page 210).

Multiple formats in one table

Graphing roles

86

Usually, the same number format applies to all numbers in a table (except its index values in col-
umn or row headers, which use the format set for the index variable). Sometimes, you might want
to use different formats for different rows (more generally, slices) of a table. You can do this if you
define the table as a list of variables, for example:

Index Years := 2007..2012

Variable DollarX := Table(Years)(-...) { Formatted as dollars }
Variable PercentX := DollarX/40JK { Formatted as percent }
Variable MultiformatX := [DollarX, PercentX]

MultiformatX —

mid> | Mid Value of Multiformatx

[fi-2] Multiformaty w | [Totals
T M Rrr——T A

2007 2008 2009 2010 2011 2012
Dollarx| §10432 §11234 §12034 §r091 $12234 §21,201
PercentX| 2508% 2808% 3009% 4273% 30.50% 53%

| (4

This table uses the number format set for each variable responsible for a row here — as long as
you don’t override their settings by setting a format for MultiformatX.

0 Result - MultiformatX Q@@I
iyl

A graphing role is an aspect of a graph or chart used to display a dimension (or index) of an
array value; they include the horizontal axis, vertical axis, and key. A simple key uses colors, but
you can expand it to include a symbol shape and size for each data point. When the array has too
many dimensions to assign them all graphing roles, you can assign the extra indexes as slicer
dimensions, from which you can select any value to display. For each available role, a graph
shows a menu from which you can select the index you want to assign to that role. The flexibility

Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs Graphing roles

of being able to directly assign graphing dimensions (such as indexes) to roles on the graph helps
you find the best way to communicate multidimensional results. Graphing roles can display a con-
tinuous numerical scale or a discrete numerical or categorical scale — except for symbol size,
which must be numerical.

This example shows projections of U.S. energy consumption made by two organizations, the U.S.
Energy Information Administration (actual) and the Alliance for Renewable Energy (fictional). The
horizontal axis is set to Energy source, the key (color) is set to Organization, leaving the Year
as a slicer, from which we have selected 2025.

W Result - US Energy consumption projections

el

il Matural Gas Coal Muclear Povwer Hydropower Biomass Other Renewahble

projections (Quads/year)

US Energy consumption

Energy source

Organization
B Us Energy Infarmation Administration [l Alliance for Renewsahle Energy

Analytica User Guide 87

Ch apter Formatting Numbers, Tables, and Graphs Graphing roles

88

Here we have changed graphing roles, assigning Year to the horizontal axis, Energy source to
the color key, and Organization to the symbol key, leaving no need for a slicer.

® Result - US Energy consumption projections

i Mid Value of US Energy consumption projections {Quads year) =

E Horizontal Axis: Color Key:
Lal Symbol key:| _Organization v |

14
10
4

55
- 50
[
28 15
o =
:'G
oS 35
=] a0
=
25
=c
w O 20
$ g
@ o
5%

I:I T T 1 T 1 T T T 1 T 1
2003 2004 2008 2010 2013 2015 2018 2020 2023 2025 2028 2030

Year
Energy source Organization
= il Hydropower & L5 Energy Information Administration
B Hatural Gas B Biomass B Alliance for Renewahle Enargy

B Coasl Other Renewable
Muclear Power

In this version, the color key and symbol key both show the Organization index. The index
Energy source is not assigned a visible graphing role, so shows up as a slicer. It is set to Totals,
to show total over energy sources for each organization.

@ Result - US Energy consumption projections

mhidw Mid Value of US Energy consumption projections (Quads/year) =Y
[i=]| energy source T+ *Totals” o

)| torizontal Avis:| Year W] ColorKey:| Organization w |
Symbol Key:| Organization |

c 135

o

=] 130)_;-—‘
Ewt 125 -

J =@

-] @

c? 120 -

E%E 115 o 0
p 106 TS i

= 100 4

2003 2005 2008 20|1D 2013 2015 2018 20200 2023 2025 2028 2030
Year

Organization
=& IS5 Energy Information Administration 8- Alliance for Renewable Energy

These are the graphing roles available.

Vertical axis The vertical direction, labeled along the left edge of the graph. By default, it shows the actual val-
ues in the array — other roles usually show values of an index. All graphs use this role, but the

Analytica User Guide

Chapter Formatting Numbers, Tables, and Graphs Graph setup dialog

Horizontal axis

Key

Color key and

symbol key

Symbol size key

Slicers

Vertical Axis menu only appears if you have set Swap horizontal and vertical in the Graph
setup dialog (page 89) or for XY graphs (page 98).

The horizontal direction, labeled with numbers or text along the lower edge of the graph. It always
appears, except when you set Swap horizontal and vertical for a 1D array. In the table view, it
becomes the column headers.

Defines the color of lines or symbols. By default, it appears for the second index, if the array has
more than one dimension. The key appears below the graph — unless reset in the Style tab of
the Graph setup dialog (page 89). In the table view, it becomes the row headers.

If you check Use separate color/symbol keys in the Graph setup dialog (page 89) (available for
the two line styles that show symbols), it expands the key into two graphing roles, color key and
symbol key. Each has its own role menu, letting you assign a second and third index.

If you further check Allow variable symbol size, it adds symbol size as a fourth graphing role. You
can specify the range of sizes from smallest to largest in typographic points, corresponding to
smallest and largest values of the corresponding index. (It only works for a numerical index.)
Symbol key and symbol size key do not appear in the table view.

If the array has a dimension not assigned to a visible graphing role, it appears as a slicer — a
menu above the graph. The value you select from a slicer menu applies to the entire graph, so the
graph does not show values for other elements of the slicer. You can also select “Totals” from a
slicer to show the total over all numerical values over that index. Slicers appear the same in the
table as in the graph view. If you have more than one slicer, you can reorder them from top to bot-
tom, in edit mode, simply by dragging a slicer up or down.

Graph setup dialog

To open the Graph setup
dialog

The Graph setup dialog lets you apply a wide variety of graphing styles and options to the
selected graph, or as the new defaults for all graphs in this model. It also lets you use or define
graph templates, to apply a standard collection of styles and options to a graph.

When you display the result of a variable, it shows it as a table or graph, according to how you last
viewed it. The first time you view a result, it appears as a graph, unless you changed the default
result view in the Preferences dialog.

When displaying a graph, Analytica uses the default graphing settings, unless you have selected
other settings for it. You can modify these with the Graph setup dialog.
First display a graph. Then do one of these:
e Select Graph Setup from the Result menu.
¢ Select Graph Setup from the right mouse button menu.
« Double-click the graph in the Result window.
The graph setup dialog has six tabs. All tabs show the template panel and these three buttons:
< Apply: Apply any changes to settings to the current graph, and close the dialog.

« Set Default: Save any changed settings on the current tab as the default for all graphs, and
close the dialog. It does not affect any settings that you have not changed since you opened
the Graph setup dialog. Changing a default affects all graphs that use the default, but not
graphs for which you override the default (in the past or future).

* Cancel: Close the dialog without changing or saving anything.

Analytica User Guide 89

Chapter Formatting Numbers, Tables, and Graphs Graph setup dialog

Chart Type tab
This tab shows options for modifying the style and arrangement of the graph.
Graph setup g|
Chart Type IAHi$ Hange&] Style] Text] Backgroundl F'review]
Line shyle:
~ [Swap horizonkal and vertical
N [3D effects
o N
o~ o o Line style settings:
[Areafil ———
~ .]
. Line thickness: |———
i — . — - [Use separate color # symbol keys
[Allows variable symbol size
Swmbol zize; |7
Style template: |G iobal Defaul |
Apply | Set Default Cancel
Line style
P Line segments join the data points.

P Line segments, with a symbol at each data point.
A symbol at each data point with no lines.
A pixel at each data point, with no line.

1 r A histogram or step function, with a vertical line and horizontal line from
each data point to the next.

= — A bar centered on each x value, with height showing the y value. Forces the
graph to be discrete.

Swap horizontal and Check this box to exchange the x and y axes, so that x axis is vertical and y axis is horizontal. If x
vertical values are discrete with long labels, swapping axes gives a more easily legible bar graph.

3D effects Check to use three-dimensional style to view graphs. For a bar graph line style, it offers the
choice of Box or Cylindrical shapes for the bars.

Line style settings Displays when you select a line style showing lines.

« Area fill: Check to fill in the area beneath each line with a solid color. If there are multiple
lines, the graph has a key index. It draws the fill areas from last to first element of the key
index, which works well if the y values are sorted from smallest to largest over the key index.
Otherwise, later values obscure earlier ones. Here’s an example.

90 Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs Graph setup dialog

0 Result - Energy capacity and load

midw| pid Value of Energy capacity and load {MW)
@ Horizontal A:l:is:| Infrastructure design life - I KE}ﬂl Energy capacity and load (MW) v I

1.8
1.6
1.4
1.2

0.e
0.6
0.4
0.2

Energy capacity and load
(M)

a 1 2 3 4 A G 7 g g 10
Infrastructure design life
Energy capacity and load (MW)

[Yariahle load [Right-sized capacity
n Peak load Full capacity from start a

e Transparency: Drag the cursor to change transparency of fill colors between opaque and
transparent. Transparency lets you see fill lines and areas that would otherwise be obscured
behind others.

¢ Line thickness: Select the thickness of lines to display. (Only for styles that show lines.)

« Use separate color/symbol keys: Check to display two key index roles, one indicated by color
and the other by symbol type or size.

< Allow variable symbol size: Check to have the size of symbols vary with their value.
¢ Symbol size: Enter a number to specify size of symbols in typographic points.

* Min symbol size and Max symbol size: If you check Allow variable symbol size, use these
fields to specify the range of symbol sizes from smallest and largest.

Bar graph settings Displays when you select Bar graph line style:

¢ Stacked bars: Check to show bars stacked one on top of the other over the key index,
instead of side by side. The values for each bar are cumulated over the key index.

¢ Variable origin: Check if you want to set the origin (starting point) for each bar other than zero
(the default). The graph then displays a Bar Origin menu to let you select the bar origin.

< Bar overlap: With stacked bars, they overlap 100%. You can specify partial overlap between
0 and 100%.

Axis Ranges tab

This tab lets you control the display for each axis, vertical and horizontal, including scaling, range,
and tickmarks.

Analytica User Guide 91

Chapter Formatting Numbers, Tables, and Graphs Graph setup dialog

Autoscale

Max and Min
Include zero

Approx. # ticks
Reverse order

Categorical

Log scale

Set default

Style tab

92

Graph setup El
Chart Type Axiz Ranges lSl_l.JIe] Text] Backgmund] F'leviewl
Scalex Scale for: |
v Autoscale [Autoscale
>< [Include zero [Include zem
Approg. # ticks: |10 Appros, # ticks: (10
[Reverse order [Rewverze order
[Categorical [Categorical
[Logscale I Log scale

Uncheck this box if you want to specify the range for the axis, instead of letting Analytica select
the range automatically to include all values.

The maximum and minimum values of the range to use when you have unchecked Autoscale.
Check if you want to include the origin (zero) in the range.

Specify the number of tick marks to display along the axis. Analytica might not match the number
exactly, in the interests of clarity.

Check this box if you want to show the values ordered from large to small instead of the default
small to large.

Treat this axis as categorical. Usually, Analytica figures out the quantity is categorical without
help. Occasionally, if the values are numerical, you might want to control it yourself. See “Proba-
bility density and mass graphs”page 234.

Check if you want to display this on a log scale. This is useful for numbers that vary by several
orders of magnitude. It uses a “double log” scale with zero if the values include negative and pos-
itive numbers.

If you have changed settings for an axis that is an index of the variable being graphed, clicking
this button applies these changes to that index for all graphs that use that index. For example, if
the scale is the Index Time, you can use this to change the Time scale (e.g., start and end year)
for every graph that displays a value over Time, unless you want to override that default in
another graph.

The Style tab lets you modify the display of the style and color of the grid, frame, and tick marks,
and where to display the key.

Graph setup Pz|
Chart Type] Auiz Banges Stle]Text] Eau:kgru:uund] Preview]

Grid: Frame: Tick marks: Dizplay kew:

~ Mone " Mone £ Mone " Mane
{+ Bottarn & left anly '

W ocooo i+ . L

R Al sides " Right

o oL " Battom
" lrwward

f'“

= -JjEEEEtI» i & Dutward I Show border

Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs

Grid

Frame

Tick marks

Display key

Text tab

Font

Size
Color

Bold, ltalics, and
Underline

Graph setup dialog

Select the radio button to control the display of the grid over the graphing area. You can also
select the color. A light or medium gray is often a good choice.

Select the radio button to control the display of the lines framing the graphing area. You can also
select the color for the frame. It is usually best to make the frame the same color as the grid, or a
darker shade of the same color.

The top radio buttons control where to show tick marks. The lower ones control how they are dis-
played.

Select the radio button to control where to display the key on the graph. Select the Show border
checkbox to display an outline rectangle around the key.

The Text tab lets you change the font, size, style, and color on the graph for the text of axis titles,
axis labels (i.e., numbers or text identifying points along each axis), key titles, and key labels (i.e.,
identifying values in the key).

Graph setup E|
Chart Type] iz Hanges] Sile Text l Backgmund] F'review]

Az titles: Az labels:

Font: |.-’-'l.rial ﬂ Fant: |.-’-‘«ria| j

Size: |14 : [v Bald Size: |12 : v Bold

= - [Italics = = [Italics
K.y title: ey labels:
Font: | ﬂ Fant: | j

=
Color: -Z|

Az Label R otation:
“ertical label ratation: i [Adapt dizplayed font sizes to graph height

Horizortal label rotation: |0

=

I—_l
Color: -ZI

171x]
1]

Select the font family. Graphic designers recommend using the same font for all text, which you
can easily do by leaving all except axis titles as “(Same as axis titles).”

The size in typographic points. Set to 0 if you want that type of text to not display.
Select the color.

Check these boxes to add bold, italic, and underlined formats to the text.

Analytica User Guide 93

Ch apter Formatting Numbers, Tables, and Graphs Graph setup dialog

et i Value of ¥
_.J’____.--""
—
--""'J: !
ﬂ"__,_.-h-—-'"
—"
B 10
4= 25
Ais Label oo ftle Ky label i title

Axis Label Rotation Enter a number from -90 to 90 degrees to rotate the labels for each axis. For example, for a bar
graph with many long labels along the horizontal axis, they won't all fit. By rotating them by 45 or
90 degrees, you can make them all fit without getting truncated.

Adapt displayed font If you check this box, the font size automatically adjusts when you make the graph window larger

sizes to graph height or smaller. This can be useful when you give a demo and want to expand graphs so they are eas-
ily readable to people at the back of the room. The font sizes match those specified at the default
graph height of 300 pixels.

Background tab

This tab lets you control the fill color, gradient, or pattern on the graph background. The main area
covers the entire graph window (exclusive of the top area containing indexes). The plot area is the
rectangle showing the graph values. If you leave or set the Fill to None for the Plot area or Key
area, they show the same fill settings (if any) as the Main area.

Graph setup z|

Chart Typel Az Hangesl Shyle I Test Background |Preview|

— Main area: —Plat area:
Fil | Gradient | R [Nore |
Calar 1: I j

Gradient style: - -

—key area:

Fill: INDnE ;I

Fill Select from:
« None: No fill. Default to blank (white) background.
¢ Solid: Use a solid fill with the selected Color 1.

94 Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs Graph setup dialog

Preview tab

« Gradient: Use a gradient of color, going from Color 1 to Color 2, in the direction you specify
in Gradient style.

« Hatch: Use a hatched fill using the selected Hatch Style with Color 1 and Color 2.

Graphic designers recommend avoiding hatched backgrounds, and using solid or gradient back-
grounds with pale colors, if at all. The data should not be overwhelmed by the background.

This tab shows the graph using the current settings so that you can see their effects before you
decide to Apply or Cancel them.

Graph setup |X

Chart Typel Az Hange&l Shyle I Text I Background Preview I

Categorical and Continuous Plots

Distinctions regarding whether your results are treated as being categorical, continuous, or dis-
crete impact how the data is plotted. Analytica usually infers the appropriate distinctions, but
occasionally you might need to provide explicit setting information.

The discrete vs. continuous distinction is determined by the domain attribute, and determines
whether probability plots are density and cumulative density plots (continuous) or probability
mass and cumulative probability (discrete) plots.

The categorical vs. continuous distinction determines how a graphing axis is laid out. Continuous
dimensions require numeric values. The determination of whether a graphing dimension is cate-
gorical or continuous is partially determined by the domain attribute. However, the values actually
occurring in the dimension are determined by the chart type (bar or non-bar chart) and by the Cat-
egorical checkbox in the axis range setting.

Exporting graph image type

You can export a graph as an image file in most common formats, including BMP, JPEG, TIFF,
PNG, and Enhanced Windows Metafile (EMF):

1. Display the graph the way you want.
2. Select Export from the File menu, to open the Save Graph Image as file browser dialog.

Analytica User Guide 95

Chapter Formatting Numbers, Tables, and Graphs Graph templates

File name: |I:ast_by_phase_by_pe2 ﬂ Save |
Save as type: |BMP [* EMP.*.DIB " ALE) ~| Cancel

BMP [*.BMP DIB:* BLE]

JPEG [*JPG:" JPEG* JPE “.JFIF]

TIFF [TIF TIFF]

PMG [*.PHNG]

Enhanced "Windows Metafile [*.emf,” wrnf ", ewrnf]

3. If you want to change the defaults, edit the File name and select the Save as type, i.e., the
file format.

4. Click Save.

Graph templates

Graph templates let you apply a collection of graph settings to several graphs, or even to all the
graphs in a model. Analytica 4.1 includes several standard templates. You can also define your
own templates to create standard graphing styles for a model, project, or an entire organization.

To use a graph style template

To apply an existing graph template to a graph:

1. Double-click your graph to open the Graph setup dialog.
2. From the Style template menu at the bottom of the dialog, select the template you want.

3. To see what the templates look like, click the Preview tab. As you select each template from
the Style template menu, it applies it to the selected graph. All template settings are reflected
in the settings in the other tabs.

4. If you want to modify any other settings beyond what the template specifies, you can do so
now.

5. When you are happy with the results (check them in the Preview tab), click Apply, or if you
don't like any of them, click Cancel.

To stop using a graph style template

If you have a graph that uses a template T, and you want to unlink it from the template, change
the Style Template menu back from T to Global Default. It asks “Do you want to retain these
styles for this graph?” If you answer yes, it copies the template settings to be local for this vari-
able, so it looks the same, but future changes to the template have no effect. If you answer no, it
removes the template settings from this graph so it reverts to the global defaults.

To define a new graph style template

96

To create a new graph template so you can reuse a collection of graph settings for other vari-
ables:

1. Openthe Graph setup dialog by double-clicking the graph with the settings you want to reuse,
or if you want to save only new settings, open it for a new variable.

2. If you want to modify or add any settings, make those changes. You can also make a new
template with changes to an existing template. In that case, select the existing template and
click Apply template.

Click the Preview tab to see what all settings look like.
From the Style Template menu, select New Template.
Type in a name for the template.

Click the Set Template button.

You have now created a new template, which will be saved with the model. You can apply this
template to any graph in the model.

o gk~ w

Analytica User Guide

Chapter Formatting Numbers, Tables, and Graphs Graph templates

To modify a graph style template

Tip

To modify an existing graph style template T:

1. Open the Graph setup dialog by double-clicking a graph for variable V.

If variable V does not already use template T, select T from the Style template menu.
Modify any Graph settings you want for T.

Check the effect in the Preview tab.

When satisfied, click Set Template.

ok~ wb

Any changes you make to a template affect all variables that use it, except for any local settings
that override them for a particular variable.

Combining local, template, and model default settings

Local

Graph template

Model defaults

Tip

You can apply graph settings, and most uncertainty settings, at three levels:

Clicking Apply in the Graph setup or Uncertainty Setup dialog applies any settings you have
modified in the dialog to the current variable. These settings override any global or template set-
tings.

By selecting a style template in the Graph setup dialog and clicking Apply, you apply the tem-
plate settings to the current variable. The template overrides any global settings, but not local set-
tings.

Clicking Set Default in the Graph setup or Uncertainty Setup dialog changes the global
defaults for the model for any settings you have modified in the dialog.

If you change a global setting by clicking Set default, that setting changes for all graphs that do
not override it by a template or a local setting.

The Uncertainty sample tab of the Uncertainty Setup dialog is an exception. Settings on that
tab — e.g., Sample size — are always defaults that affect the entire model. They cannot be local
and are not saved in a graph template.

Saving defaults as a template model

Analytica comes with a wide variety of standard defaults for graph settings, uncertainty options,
preferences, diagram style, and more. If you want to save nonstandard default settings for these,
perhaps also including graph templates and libraries so that you can use them for new models,
the easiest method is to create a new template model:

1. Find or build a model that has all the default settings you want, including any graph settings,
uncertainty settings, preferences, diagram style, graph templates, and user-defined attributes.
It could also contain any libraries that you want in all the new models.

2. Select Save as from the File menu to save the model under a new name, e.g.,
Template.ana.

3. Delete all the contents of the model that you won’t need for new models.
4. Select Exit from the File menu and save the model.

Whenever you want to start a new model using these defaults, double-click Template.ana, and
save the model under a new name. To protect your template model from you accidentally chang-
ing it by saving a new model over it with the same name:

1. Inthe Windows Finder, open the folder containing Template .ana.

2. Right-click Template.ana, and select Properties.

3. Check the Read-only attribute, and click OK.

Analytica User Guide 97

Chapter Formatting Numbers, Tables, and Graphs XY comparison

Graph templates and setting associations

Chart type and
uncertainty views

Settings for discrete
Vs. continuous

Axes and indexes

Uncertainty options and
graph templates

Graph settings from the Chart type tab are associated with particular uncertainty views. For
example, if you set Line style to symbols only (instead of the default pixel per data point) for a
Sample plot, that line style applies to any sample plot, but not to other uncertainty views Mid,
Mean, Statistics, PDF, or CDF. Thus, you can set a different Style setting for each uncertainty
view, except Mid, Mean, and Probability Bands, which share the same style.

Analytica maintains separate line-style settings for continuous and discrete (categorical) plots.
So, pivoting a continuous dimension to the x-axis to replace what was a discrete dimension can
change the plot from a bar graph to line graph, and uses the corresponding settings.

If the horizontal axis is an index (as it usually is), any settings on the Axes Ranges tab apply to
that index only. For example, suppose variable Earthquake_damage is indexed on the horizon-
tal axis by Richter_scale. You set Richter_scale to Log scale, and save into a template T.
If you use template T for another variable Y also indexed by Richter_scale, it also displays
Richter_scale onalog scale. But, if Y is notindexed by Richter_scale, the axis setting has
no effect.

A graph template also saves non-default settings made in the Uncertainty setup dialog tabs:
Statistics, Probability bands, Probability density, or Cumulative probability. These settings
apply to the corresponding uncertainty view of any variable using the template. Changes to the
Uncertainty sample tab, however — e.g., to Sample size —set global defaults, which affect the
entire model. They are not associated with particular variable, or saved in a graph template.

Changing the global default

To rename a graph

XY comparison

98

Global defaults are the default settings used by every graph unless overridden in the Graph
setup dialog for that graph or by a template that it uses. If the Style Template menu says Global
default, it means that the graph uses the global defaults with no template.

To modify the global defaults:

1. Select a new variable with no graph settings, or a graph whose settings you want to make the
global default.

Double-click the graph to open Graph setup dialog.

If you want, make further changes to the settings, and review them in the Preview tab.
From the Style template menu, select Global Default, if it isn't already selected.
Click Set default button.

o kr wbn

Note: Changes to global defaults change all existing and new graphs that use those defaults;
that is, all that are not overridden by any graph settings specifically set for that graph or
by a template that it uses.

style template

1. Open the Graph setup dialog, by double-clicking a graph.

In the Style template menu, select the graph template you want to rename.
Click the Style template menu to select the old name.

Type in the new name.

Click Set template.

S

Note: The template “name” is actually its Title attribute, not its identifier. So, renaming a
template does not affect any variables that use it.

When you display a standard (non XY) graph of a variable, V, it plots the values of V up the verti-
cal (y) axis against an index of V along the horizontal (x) axis. If V has more than one dimension,
you can choose which index to plot horizontally from the Horizontal Axis menu. In contrast, with

Analytica User Guide

Chapter Formatting Numbers, Tables, and Graphs XY comparison

XY comparison you can plot V against another variable, U, along the horizontal (x) axis, over a
Common Index of V and U. You can also plot one slice of V against another slice over a Com-
parison Index. (See “Scatter plots”page 277 to use XY comparison for scatter plots.)

XY comparison sources dialog

This dialog lets you set options for XY comparison and extends or adds menus to the XY graph
described below.

XY comparison sources ﬁl

From thiz dialog, zelect zource walues to compare on your graph. To create an =Y araph, select a
value to uze az the horizantal-coordinate. This may be anather variable, or it may be a single colurn of
your result.

After you select sources here, they can quickly be assigned to araphing roles [zuch as the harizontal awis)
wvia pulldown selections in the rezult window. You must be in edit mode to add or change sources.

[v Usze comparizon indes

Check the option if pou would like ta plot ohe colurn of your results
againzt another column. From the result window, you specify which
index defines the columng - this iz called the Comparison Indes.

[v Usze anaother variable

The following are other variables that can be azzigned to the horizontal axiz, or other rales, of paur
araph. These should thare a "common index" with your main result.

Add...

Remaove
Qg Cancel

To open the dialog Click the XY button in top-right corner of Result window (graph or table). You must be in edit or
arrow mode, so it is not available in Analytica editions or models confined to browse mode.

Use comparison index Check this box if you want to compare one slice of the variable against another slice, slices
selected from the comparison index. The graph shows the Comparison Index menu from which
you can select the index you want. The Vertical Axis and Horizontal Axis menus then offer
slices from the comparison index so that you can choose which two slices to plot against each
other.

Use another variable Check this box if you would like to compare the base variable by plotting it against one or more
other variables (or simple expressions). When you check it, the following items appear:

Add Click this button to open the Object Finder dialog to select a variable against which to plot the
base variable. You can also use the Object Finder to select a function or operation from one of
the relevant libraries. You can add up to five items.

Remove Select a item from the list of other variables, and click this button to remove it from the list of vari-
ables for comparison.

Menus added to XY Comparison graph

An XY comparison graph adds a Common Index and, sometimes, a Comparison Index to the
usual graphing roles menus on a graph or table.

Analytica User Guide 99

Ch apter Formatting Numbers, Tables, and Graphs XY comparison

Comparison index

Common index

[Result - x Q@IFE
rnidw Mid Value of x Comparison Index: &

@ Common Index: | i
Lafll Horizontal Axis:
Vertical Axis:

100
a0 e

60
_.-'""-——

40 e
20 el

-40 0 a0 100 150 200 250 300 3580 400 450 500 5450
c

This menu lists the indexes of the base variable. The Horizontal Axis and Vertical Axis menus
each let you choose a slice from the selected comparison index to plot against each other. It
appears on the graph when Use comparison index is checked in the XY comparison sources
dialog.

This defines the correspondence among the variables or slices to be plotted against each other.
Each value of the common index identifies a data point on the graph, with vertical (X) and hori-
zontal (Y) values from the variables or slices you have selected for those graphing roles. For a
scatter plot, the common index should be Iteration (Run). It appears on the graph when one or
both checkboxes on the XY comparison sources dialog are selected.

If Use another variable is checked in the XY comparison sources dialog, Common Index is an
index in common to the base variable and other variable(s). If the variables have more than one
index in common, Common Index is a menu from which you can choose the index you want.

If Use comparison index is checked in the XY comparison sources dialog, Common Index
shows the index(es) of the base variable not selected for Comparison Index. Common Index is
a menu if the variable has more than two indexes — leaving more than one for Common Index.

Example: Plot one variable against another

100

For example, suppose you have an index and two variables:
Index Degrees := Sequence(0, 360, 5)
Variable V := Sin(Degrees)

Variable U = Cos(Degrees)

For a standard graph of V against its index, Degrees, select V from the diagram and click the
Result button (Control+r). Repeat with U to display the graph for U against Degrees.

Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs

1. Result - ¥

Mid Value of V

Horizontal Axis:| Degrees W

XY comparison button

Mid Value of U

Horizontal Axis:| Degrees W

1 . 1
0.8 0.8
064 \ 05 \ ,/
0.4 0.4
024/ A 02 h /-
- 0 1“-\ = 0 A jr
-0.2 % -0.2
-0.4 -0.4
05 A r 05 L z
. Jr . ‘l._
-1 -1
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Degrees Degrees

XY comparison

For these graphs, we selected the symbol plus line line style (page 90) from Graph setup to

show the data points for each value of Degrees.
With XY Comparison, you can graph U against V, instead of against its index Degrees:
Change to edit mode. In the Graph window for U, click the XY button in the top-right corner

1.

2.
3.

(above) to open the XY Comparison sources dialog.

XY comparison sources

From this dialog, select zource values to compare on your graph. To create an = graph, select a
value to uze az the horizontal-coordinate. This may be anaother variable, or it may be a single column of
yaur result,

After pou zelect sources here, they can quickly be aszigned to graphing roles [such as the horizontal axis]
via pulldown selections in the result window, You must be in edit mode to add or change sources.

[Use comparison index

Check the option if pou would like to plot one column of your results
againzt another colurnn, From the result window, pou specify which
index defines the columng - this iz called the Comparizon Indes.

Iv Use anather variable

The fallowing are other vanables that can be azsighed to the hanizantal awiz, ar other roles, of your
araph. These should share a "'common index" with your main result.

Add...

[Femere |
Cancel

Select the checkbox Use another variable.
Click the Add button to open the Object Finder dialog.

Analytica User Guide

101

Ch apter Formatting Numbers, Tables, and Graphs XY comparison

@ Object Finder, X

LiIJrar_v:| Current Module VI Find... |

7 Degreesi Degrees J
) u U

Cancel (1]

4. Selectthe variable V, and click OK. You can now see V listed in the XY comparison sources
dialog.

Iv Use anather variable

The following are other vaniables that can be azsigned to the honizontal axis, or other rales, of wour
araph. These should share a “'common ndex" with your main result.

W W Add...

[

5. Click OK.

midw | Mid Value of U =y
@ Commeon Index: Degrees

Ll Horizontal Axis: EI

1
0.8
0.6
04 .
0.2
> 0
0.2
-0.F
-0.8 —

-1

-1 -08-06-04-02 0 02 04 06 08 1
v

The graph of U now plots the values of U on the vertical (y) axis against corresponding values of
V on the horizontal (x) axis. By “corresponding” we mean for each value of Degrees, in the Com-
mon Index. If U and V had more than one index in common, it would show a menu from which

you could select the index you want.

102 Analytica User Guide

Ch apter Formatting Numbers, Tables, and Graphs

Example: Compare variables using comparison index

XY comparison

You can also use XY comparison to compare one slice of a variable against another slice of the
same variable. This is especially useful when you combine several variables as a list. Let's add a

third variable to U and V defined above:
Variable W := Sin(2*Degrees)

The parameter 2*Degrees creates a sine curve with twice the frequency. Here is an easy way to

create a list to compare several variables.

M Diagram - XY comparison sample model

-

EXR |

o

[

1. Select the three nodes for the variables to compare, U, V, and W, and click Result (Control+r).
When it prompts “Do you want to compare more than one result?” click OK.

It creates a new variable Comparel, and shows the standard (not XY) graph comparing U, V,

and W against index Degrees.

@ Result - Compare1

Bi=]/Eq

midw] Mid Value of Compare |
|
! P
. A >, A pd
T 044008 Y rd
bt i b Nod. N
g 0 N N A
2 b K 4l i
o ™, F. A 4
9 45 Y i - LY s
T -4 Mol A
A N Ll St
0 50 100 150 200 2580 300 350 400
Degrees
Compare1
— N =l =W

3. Make sure you are in edit mode. In the graph window for Comparel, click the XY button in the

top-right corner to open the XY comparison sources dialog.

Analytica User Guide

103

Ch apter Formatting Numbers, Tables, and Graphs XY comparison

XY comparison sources El

From this dialog, zelect zource values to compare on your graph. To create an = graph, select a
value to uze az the horizontal-coordinate. This may be anather variable, or it may be a single column of
yaur result,

After pou zelect sources here, they can quickly be assigned to graphing roles [such as the honzontal axis)
via pulldown selections in the result window, You must be in edit mode to add or change sources.

W Lse comparison index

Check the option if pou would like to plot one column of your results
againzt another colurn, From the result window, pou specify which
index defines the columng - thiz iz called the Comparizon Index.

I Use anather variable

Cancel

4. Select the checkbox Use comparison index and click OK.

@ Result - Compare1

midw | Mid Value of Compared =
@ Comparison Index:| Comparel

| Commeon Index: Degrees

Horizontal Axis: EI
Vertical Axis: IE'

o~ oW o o Y
rd o, el Y
a4 17 = o X
o 18 ot e /
B N - B s
-1

-1 -08 -06 -04 -02 0 02 04 06 08 1
Y

This sideways figure 8 results because W is a sine wave with twice the frequency of V. You can
select other pairs of variables to compare, from U, V, and W, from the Vertical and Horizontal
Axis menus — for example, changing to W against V puts the figure 8 the right way up.

104 Analytica User Guide

Chapter Formatting Numbers, Tables, and Graphs XY comparison

9 'Result - Compare1
Mid Value of Compare1 =

Comparison Index:, Comparel

Lol Common Index: Degrees

Horizontal Axis: El
Vertical Axis: El

e e
- ,--’j
0.4 i o
= a T Sy

- e

0.6 i |

-1 S e
-1 -08 -06 -04 -02 0O 02 04 06 08 1

W

You can also select Degrees from the Horizontal Axis menu to revert to a standard (hon XY)
graph of the selected variable against Degrees.

Analytica User Guide 105

Ch apter Formatting Numbers, Tables, and Graphs XY comparison

106 Analytica User Guide

ST (Il Creating and Editing
Definitions

This chapter shows you how to:
¢ Create definitions
« Edit definitions
¢ Use the Object Finder
¢ Check the validity of a variable’s value

Chapter E Creating and Editing Definitions Creating or editing a definition

This chapter introduces the tools for creating and editing mathematical models by giving each
variable a formula that defines how to compute its value in its definition. The definition of a vari-
able can be a simple number, text, a probability distribution, or a more complicated expression. It
can also be a list or table of numbers or other expressions. Subsequent chapters present more
details about using mathematical expressions, arrays, and probability distributions.

Creating or editing a definition
To create or edit the definition of a variable, first be sure that the edittool Xk |is selected. Select
the variable of interest and do any of the following:
« Click| = | in the toolbar, or press Control+e.
* Select Edit Definition from the Definition menu.
« Double-click the variable to open its Object window. Then click in the definition field.
¢ Click the key icon Bto open the Attribute panel of the diagram. Select Definition from the
Attribute popup menu. Then click in the definition field.

Attribute panel

Mortgage loan amount: Definition w |lear W X[Inputs

/
() Diown payment
[Buying price |

e

Definition Variable
field title

expr popup

Cancel Accept /
menu

button button

Inputs popup mlenu

0 Oiject - Mortgage loan amount
-

Title:

cription: Total mortgy

Definition: / \

Object window Inputs: () Downgsymt Down Pxgent
1 Prics Frice
) Down payment
[Buying price

I [

If you have drawn arrows into this variable from other variables (Down_payment and

Buying_price in this example), they appear in the menu. Select an input to paste its
identifier into the definition. (The menu doesn't appear if the variable has no inputs.)

Ti P Ifyou are editing in the Attribute panel, a handy way to insert the identifier of a node into the
definition is to click the node while pressing the Alt key. This only works for nodes in the same
diagram.

To edit a definition that is a simple number, text, or other expression:

1. Select the definition.

2. Editit by typing, by deleting, or by using the standard text editing operators — that is, Copy
(Control+c), Cut (Control+x), and Paste (Control+v).

See Chapter 10, “Using Expressions,” for the syntax of numbers, operators, simple expressions,
and mathematical functions.

You can change the definition to one of several commonly used expressions with the Expression
popup menu (page 111).

108 Analytica User Guide

Chapter E Creating and Editing Definitions Creating or editing a definition

Special editing key
combinations

Parenthesis matching

Comments in definitions

Tip

Identifiers

These special mouse and key combinations are useful when editing a definitions:

Key or key combination Action

double-click Selects the entire identifier containing the cursor.
option-click a node Inserts identifier of the node at the cursor position.
left-arrow <, right-arrow — Moves cursor one character left or right.

up-arrow, down-arrow Moves one line up or down.

Control+left-arrow, Moves to the beginning or end of the next word or identifier.
Control+right-arrow

Alt+Control+left-arrow, Moves the cursor from the adjacent parenthesis to the next
Alt+Control+right-arrow matching parenthesis, left or right.

If you also press Shift with any arrow movements, it selects the text between old and new cursor
positions for copy/paste operations, etc.

Analytica expressions sometimes contain several levels of nested parentheses. To help keep
parentheses clear, when you place the cursor just to the right of a parenthesis, it makes it and its
matching parenthesis bold. This works for left or right parentheses, square brackets, or curly
brackets (used for comments). It helps you see whether you have the right number and types of
parentheses in complex expressions, without resorting to counting.

The Alt+Control+arrow keys also help. For example, pressing Alt+Control+right-arrow when the
cursor is at A moves the cursor to B. Then pressing Alt+Control+left-arrow moves it back again:

c* - (lnUniform(1Ff,1)) HX™(1/K)

A B

It is wise to document your models generously. Usually, it's best to document what a variable or
function represents in its Description attribute, and also explain its algorithm if it's not obvious.
For complex, multiline definitions, it's also useful to insert comments within the definition. Com-
ments can also be used to disable portions of expressions while debugging.

Enclose comments in curly brackets:
Variable X = -b*Sqrt(B”"2 - 4*A*C)/A { Positive quadratic root }
You can insert a comment at any point in an expression where whitespace is allowed. Analytica

ignores anything inside a comment when parsing or evaluating an expression. If you start a com-
ment with “{" , then your comment cannot contain the “}” character within the comment.

Analytica does not preserve comments in the cells of an edit table — so it's not worth entering
comments there.

To refer to the value of another variable, use its identifier. To place a variable’s identifier at the
insertion point in the definition, do any of the following:
« If the variable is an input, select it from the Inputs popup menu.

« Type in the variable’s identifier. To see all nodes in the active diagram labeled by their
identifiers (instead of their titles), select Show By Identifier from the Object menu
(Control+y). (Note that entering Control+y a second time switches the diagram back to
displaying the nodes by their titles.)

¢ Select Paste Identifier from the Definition menu and use the Find button or identifier menu
items in the Object Finder dialog (page 112).

« If the definition is being edited from the Attribute panel, you can insert the identifier of a
variable in the same module window by holding down the Alt key and clicking the node. The

Analytica User Guide 109

Chapter n Creating and Editing Definitions Creating or editing a definition

identifier of the clicked node is inserted at the caret position. This shortcut isn’t available from
the Object window or for nodes is different modules.

Functions You can paste functions at the insertion point by doing either of the following:

« Select Paste Identifier from the Definition menu to open the Object Finder dialog
(page 112).

¢ Select the function from its library in the Definition menu (page 114).

Syntax check After entering or editing a definition, press Alt-Enter or click the accept button to perform a
syntax check of the revised definition and accept the changes.

Click the cancel button to cancel your changes.

The definition warning icon [[T] appears next to the definition if it is not syntactically correct. Click
the icon to see a message about what might be wrong.

0 Object - Mortgage loan amount |'._| |’E|E|
Mortgage_lean_ameount Units: 2 =

Title: Mertgage lean amount
Description: Total mertgage {lean) amount received.

e w |X][7] [Inputs ¥ | 1

Definition | _@

Warning icon —_| Definition: ;

O Z
Te <

I!."Iortgage loan amount: \@| Definition il ||Eﬁﬁwf v | X|t/|

A definition’s syntax check can reveal syntax errors (page 387). For example, if a definition con-
tains text that is not an identifier, the following dialog appears.

0 Question

The Defintion of Mortgage_loan_amount containg an undefined |dentifier,
‘Downpayment’. Do you want to create a new Y anable annpaymentﬁ

Edit Definition Cancel Create Vanable

Automatically updating the diagram

After you give a variable a valid definition, the influence diagram containing that variable might
change.

Cross-hatching Normally, any node whose definition is missing or invalid displays with a cross-hatch pattern.

disappears _
Cross-hatch pattern: the definition is
[missing or is syntactically incorrect

After you enter a valid definition, the cross-hatching disappears and the node becomes clear.

Node is clear: the definition
i is syntactically correct

You can remove cross-hatching even from invalid variables by unchecking Show Undefined in
the Preferences dialog from the Edit menu.

110 Analytica User Guide

Chapter E Creating and Editing Definitions The Expression popup menu

Arrow updating After you enter or edit a definition, it ensures that the arrows going into the node to properly reflect
its inputs. It adds an arrow from any extra variable you mentioned, and removes an arrow from

any variable you didn’t use in the definition.

The Expression popup menu

Click expr to see the Expression popup menu. The expr menu shows the type of the definition,

which is an empty expression in the following figure.

M Object - Mortgage loan amount E|E| E|
Meortgage Units: = —

Title: Mertgage lean amount
Description: Total mortgage (lean) amount received.

[enr_w | X]¥7] [inputs ¥ |

Definition: ;|

W 807 Eypression
Inputs: () Downhaymt
[Frics B Lst
B3 List of Labels

= Table
= Probability Tahle
4 Distrbution

= Cheice

it Other..

expr popup menu

Use this popup menu to change the definition to one of several common kinds of expressions.
The entries in this menu depend on the class of the node being defined.

W BAIY ression | B0 i
= 1 current definition type 1 Bxpression
B Lst B Lst
B List of Labels B3 List of Labels
2.7 Sequence &= Table
™ Cther i F‘l-'ob-abilirty Table
4 Distribution
= Choice
¥ Cther...
Expression Shows the definition as a mathematical expression, even if it was
defined using the other expression types in this popup menu. See
page 131.
List Creates an ordered set of expressions or numbers. See page 165.
List of Labels Creates an ordered set of text labels. See page 164.
Sequence Creates a list of numerical values. See page 163.
Table Creates an array of numbers or expressions. See page 164.

Probability Table Creates an array defining probabilities (numbers or expressions) across

the domain of a discrete (chance) variable. See page 238.

Distribution Creates an uncertain definition by selecting a function from the Distribu-
tion System library. See page 222.

Choice Creates a popup menu for choosing one or all elements from a list. See
page 121.

Analytica User Guide

111

Chapter n Creating and Editing Definitions Object Finder dialog

Other Opens the Object Finder dialog, which is described in the next section.
Changes the definition to the function or variable that you select from the
Object Finder. See page 112.

Object Finder dialog

The Object Finder dialog lets you browse built-in functions, your own library functions, and all the
objects in your model to insert into a definition. You can open the Object Finder dialog in two
ways:
« To insert the desired function or identifier at the cursor position in the definition, select Paste
Identifier from the Definition menu.

or
« To replace the entire definition with the desired function, select Other from the expr menu.

e Expression

= Lst
B List of Labele
& Table
= Probability Table
v 4 Digtribution
= Choice

Find button for
searching for
model objects

HIEAs Ul O Object Finder

menu
Library:| Math
Abz (X o
Arctan (X

Contents of

31 () () e () B

selected library Cos (X
Degress (Fadianz |
Exp [H)
Fartorial [0 -
X
Parametersto { — ceil (| N
selected function
Returns the smallest intsger that iz greater than or egqualto X J

Description of
selected function |

Cancel oK

112 Analytica User Guide

Chapter E Creating and Editing Definitions Object Finder dialog
Select the desired set or library from the Library menu.

Identifier menu items ——— 4 ayzilable
All Modules

[AMel Ml Current Module

Contents of the
selected library
(e.g., Math)

Operators b
System Variables ——vl

i Matrix
Find button for)
searching for Text Functions
model objects — | Financial

AbaX) reh
Advanced Math
Optimizer
Database |

These are the top items in the Library menu:

Found Objects Objects found from Find button (see below)

All Available All objects and functions, from model and built-in
All Modules Objects from all module in the models

Current Module Objects in the current module

Inputs Inputs to the selected node

Use the Find button to search for an object by its identifier or title.

Find what Object?

|c||:|wn
by ™ Identffier

Cancel Find

The Found objects library in the Object Finder dialog then lists all objects whose identifier or
title matches in their first n characters (the n characters you type into the search box).

To use a function, identifier, or system expression in a definition, select it. For a function, enter the
required parameters in the parameter fields.

Analytica User Guide 113

Ch apter n Creating and Editing Definitions

Using a function or variable from the Definition
menu

@ Object Finder X

Library:[Math w |

Find... |

Radians
Round

Sin

Tod LA T, FOE] ~

EEE |

X
Sqr Iia

SqriX) returnz the =quare of X, which iz X * X J

Cancel

Click OK to place the function, identifier, or expression in the definition.

Definition:

X

Sqri9)

w

Using a function or variable from the Definition menu

The Definition menu lists built-in libraries of functions, system variables, and operators, as well
as any libraries you have added. It shows these as a hierarchical menu that so you can rapidly
find what you need and paste it into the definition you are editing. To find and paste a function or

114

other object from a library:

1. Move the cursor to the place in the definition that you want to insert a function or other item.

2. From the Definition menu, select the library you want, and then the function or other item.

Result Diagram Window Help

Show Definition Ctrl+E

Show Time

Show Invalid Variables

Math 3
Array 4
cernul
Special 4 Beta
Statistical 3 Binomial
Operators » Certain
System Variables 3 Chancedist
Matrix 4 Chisquared
Text Functions 3 Cumdist
Financial 3 Exponential
Advanced Math 4 Fractiles
Optimizer 4 Gamma
Database 3 Geometric
Hypergeometric
Logistic
Lognaormal

Analytica User Guide

Chapter E Creating and Editing Definitions Checking for valid values

3. This pastes the item function into the definition, along with its formal parameters or operands,
if any, each enclosed in angle brackets << >>.

e w | K]

Definition: MNearmalf 1

4. Now edit each parameter or operand to replace it with the appropriate identifier or expression.
As usual, you can type it, select an item from the expr menu or the Inputs menu, or paste
another object from the Definitions menu.

Checking for valid values

Displaying the
check attribute

Defining the check

You can create an automatic check on the validity of the value of a variable by setting its check
attribute. For example, to check that the value of Percent_damage is between 0 and 100, set its
check attribute:

Check:= Percent_damage>=0 AND Percent_damage<=100

If the check attribute evaluates to False, whenever the variable is evaluated, it shows a warning
dialog and the opportunity to edit the definition.

You can always view and edit the check attribute in the Attribute panel, if you open it below a
diagram. If you want to view or edit it in Object windows, you must first cause it to be shown:

1. Select Attributes from the Object menu to open the Attributes dialog (see “Managing
attributes”page 306).

W Attributes X

Class:l () Variables VI

[
Value
Check attribute v Inputs
w Outputs
w Domain
Check
lMetaonly
Help "'l

Cancel oK

2. Scroll down the attribute list and find Check.

Click Check once to select it, and a second time to add a checkmark next to it. The checkmark
indicates that the attribute is displayed in the Object window.

4. Click OK.
Now the check attribute appears in Object windows for all variables. You can also set it to appear

for functions by repeating the steps above but selecting Functions from the Class menu in the
Attributes dialog.

Either open the Object window for the variable, or open the Attribute panel below the diagram
and select Check from the Attribute menu. Enter a Boolean (logical) expression in the Check
field that returns true (1) if the value is acceptable, or false (0) if not. The expression should refer
to the variable by its identifier or as Sel f. For example, to check that the value for the Lifetime
of a car is more than 0 and less than 12 years, define the check to match one of the following
samples.

Check: (Lifetime = 0)And (Lifetime <12}

Analytica User Guide 115

Chapter E Creating and Editing Definitions Checking for valid values

Triggering a check

Cell-by-cell validation in
edit tables

If a check fails

Custom error messages

116

Check: (Self=0j4nd (Self <12)

If the Check expression refers to another variable, it makes a dependency from the variable
being checked to the variable mentioned. It usually shows an arrow from that variable.

If a variable X depends on no other variables, or if it is defined as an edit table and does not oper-
ate over the indexes of the table, it performs the check whenever you change its input value or a
cell of the edit table. Otherwise, it performs the check each time it evaluates the checked variable
X — that is, when you first view a result for X or a variable on which X depends. If you view or
compute a probabilistic value for X, it warns if any sample value of X fails the check. More gener-
ally, if the value of the Check expression is an array, it fails if any atom in the array is false (0). If
you compute first its mid value of X and then its prob value, it causes two evaluations, one check
on the mid value and a second on the prob value.

If you change the definition of X or any variable on which it depends, including any variable men-
tioned in its Check expression, it performs the check again next time you view X or a variable that
depends on it.

When you define a check attribute for a variable defined as an edit table, Analytica will test and
flag each cell individually as long as the check attribute does not operate over any of the table
indexes and the values in the edit table cells do not have the potential of triggering a lengthy eval-
uation. Cells that fail the validation are displayed with a red background when viewing the edit
table, a message balloon appears with a tail pointing to the bad cell when an out-of-range entry is
first entered. If the check expression operates over a table index, this feature is disabled and the
check is performed only after the final entries are stored.

m

{7 | Edit Table of Manual portfolio
x ~

v [~Pp

Integrated Subsystem=s
Dharmic Me=ssaging
XYZ Acronymics
Microgravity Aerobics
Quantum Recycling
Open Source Genomics
Hyperspace Storage

= o O P =

& Cell entry is out of allowed range
This cell Fails the check: Self=0or Self=1

| (4

If any cell in the table contains a general expression that references other variables, then the cell-
by-cell checking is disabled. This is to prevent the possibility of a delay for the user if a large part
of the model must be evaluated; therefore, the cell-by-cell checking is only appropriate for tables
where expressions would not be entered. If the check expression operates over any table index,
such as Sum(Self,Projects)<5, then this would indicate that the check is a validation on the
table as a whole, rather than on individual cells, and in this case the cell-by-cell checking is again
disabled. When disabled, checks are validated at evaluation time as would occur with non-edit
table variables.

If a check fails — evaluates to False — the warning dialog offers the option of editing the vari-
able’s definition, cancelling, or continuing. If you continue, it does not perform the check again
unless you change the definition of the variable or a variable it depends on.

The default warning when a check fails shows the Check expression. This is OK for modelers,
but might be obscure for end users. If you call the Error() function (page 348) in the check, it dis-
plays the message you pass to Error() instead of the default warning. Using this, you can craft a
more helpful message. The warning gives the same options.

Analytica User Guide

Chapter E Creating and Editing Definitions Checking for valid values

Age: [check w |
Self = 0 and Self < 2 and Errur(’ll'his iz My error mes=age’)

Warning:
- Thiz is my error message.

Do you want to stop evaluating and edit the definition?

fes Mo Cancel

To disable checking You can disable all value checking by unchecking Check value bounds in the Preferences dialog
(page 58) from the Edit menu. This checkbox is checked by default.

Analytica User Guide 117

Ch apter n Creating and Editing Definitions Checking for valid values

118 Analytica User Guide

Chapter 9

Creating Interfaces for End
Users

This chapter shows you how to create a user interface containing input
and output nodes for easy access for other people who might use your
model. It also describes how to design a clear user interface, apply
icons and graphics, and include hyperlinks to web pages.

Chapter n Creating Interfaces for End Users Using input nodes

For a complex model, you can make it easier to use, especially by other people, by creating a
user interface. A user interface is simply a diagram containing input and output nodes. These
inputs and outputs are selected variables that users can change (inputs) or view (outputs). By
gathering input and output nodes into a single user interface diagram, users have quick access
from a central window, even if the underlying variables are located in other parts of the module
hierarchy.

Input nodes allow the user to see and change the values of variables directly in a diagram. Input
nodes can be a field to enter a number or text value, a button that opens an edit table or probabil-
ity distribution, or a pull-down menu. Output nodes show atoms (single numbers or text values) in
the diagram, and show a button for uncertain or array-valued variables, so that users can open
tables or graphs with a single click.

Input and output nodes are a kind of alias node linked to the original node. These nodes usually
show the title and units of a variable to the left of the input or output field or button.

M Diagram - Pricing Model

Market Size {units/year}
Market Share (%)

Competitor Price (5}

Manufacturing Cost ($)

Marketing Expense (5} 200 w

m Cash Flow [airyr}mid =

A

(34|

| ol

Users of your model can then easily view and modify input variables, and view the results, without
navigating the details of the model, unless they wish to.

This diagram shows input nodes on the left side and output nodes on the right side. To see the
details of the model, you would double-click the Detai I's node to open up its diagram.

See Chapter 1, “Examining a Model.”

Using input nodes

120

Aninput node lets you, or your end user, see and easily change the value of a variable directly in
the diagram, without opening an Attribute view or Object window (see “Browsing with input and
output nodes”page 22). In browse mode you can change only the values and definitions of input
nodes.

An input node is an alias of a variable that you want to treat as an input to the model (see “An
alias is like its original’page 55).

The type of definition of the original variable determines the appearance of the input node. If you
want your users to be able to change the type of definition, instruct them on how to open an Attri-
bute view or Object window and use the expr menu (page 222).

Input field

A single number or text value (scalar) displays as an input field. You can have Analytica check if
the input value is acceptable by using the Check attribute (page 115); the check is performed on
input of a new value.

Analytica User Guide

Chapter H Creating Interfaces for End Users Creating a choice menu

List

=
m
o
[

Creating an input node

Ti

©

Input popup menu

A choice displays as an input popup menu. To create an input menu for an input node, see “Cre-
ating a choice menu” on page 121.

List
A list or list of labels displays as a List button. See “Creating an index” on page 163.

Edit table

An edit table displays as an Edit Table button. See “Defining a variable as an edit table” on
page 169.

Probability distribution

A probability distribution displays a button with the name of the distribution. See “Defining a vari-
able as a distribution” on page 220.

To create an input node from a variable:

1. Make sure you are in edit mode.
2. Select the variable.

3. Select Make Input Node from the Object menu. The input node appears in the same diagram
next to the selected node.

4. Move the input node to the location you want.
5. Adjust the size of the node.

To make several input nodes at once, select the nodes and then choose Make Input Node.

Creating a choice menu

Creating a menu from a
list

For the classes of nodes that can be used for parametric analysis, such as decision and chance,
the expr menu includes the Choice option. The Choice option provides a way to offer the user a
choice of selecting one or all values from a list.

If the original variable is already defined as a list of numbers or labels, create a popup menu to
select from the list as follows:

1. Show the definition of the variable as a list, either in the Attribute view or the Object window.

2. Click the expr menu and select the Choice option. Click OK to the question “Replace current
definition with a Choice?” and click OK again to “Replace current definition?” when prompted.

v B0 Expression
B Lst
E=3 List of Labels
= Table
= Probability Table
4 Distribution
= Cheice

i Cther...

3. The Object Finder dialog displays with parameter I=Self and n=0. Click OK.

The definition field of the original variable now displays as a popup menu, and in browse mode,
the input node displays as a popup menu. The original definition (list of numbers or labels) is now
available as the domain of the variable — the possible outcomes. In the expression view, the
popup menu displays as the Choice() function (page 176).

Analytica User Guide 121

Chapter E Creating Interfaces for End Users

Tip

Tip

Creating a new
definition

Using output nodes

To define Varl as a popup menu of another variable Var2, that is defined as a list, select Choice
from the expr menu, and set the first parameter to 1=Var2 in the Object Finder dialog).

To hide the All option on the popup, enter inclAl I=False as the third parameter in the Object
Finder dialog.

If a variable has no previous definition, when you select Choice from the expr menu, a domain
(possible outcomes) of List of labels is created, with one element in the list.

To change the domain to List of numbers, press the Domain popup menu and select List of
numbers.

Edit the list of values as you would edit a list of labels or list of numbers (see page 165).

S=1ES

[Object - Buying price

Title: Buying price

Units: =

Description: Buying price of house,

Definition:
Domain: | List of Numbers W |
| 100K|
250K|
500K

Note: The values in the domain are evaluated deterministically.

Using output nodes

61.73 mid

Calc

Creating an output node

122

An output node gives you, or your end user, rapid access to a selected result in the model. You
can use output nodes to focus attention on particular outputs of interest.

An output node displays a result value in the view style — i.e., whether table or graph, the indexes
displayed, and the uncertainty view — last selected for display and saved with the model. It also
shows the uncertainty view icon (see “Uncertainty views” on page 33).

If the result is a single value (mid value or mean), it displays directly in the output field.

If the result is a table, the output node displays a Result button. Click the button to display the
table or graph.

After you display the table or graph, you can use the result toolbar to change the view.

If the value of an output has not yet been computed, the Calc button appears in the node. Click
the Calc button to compute and display the value.

To create an output node from a variable:

1. Make sure you are in edit mode.

2. In a Diagram window, select the node of the variable for which you wish to create an output
node.

3. Select Make Output Node from the Object menu. The output node appears in the diagram
next to the selected node.

4. Move the output node to the location you want.
5. Adjust the size of the node.

Analytica User Guide

Chapter H Creating Interfaces for End Users Input and output nodes and their original variables

Resizing controls

The view style of the output result (table or graph) is the format you last set for it (see “Formatting
Numbers, Tables, and Graphs” on page 81).

Drag corners to resize node

,M
E{ﬁlyinngrice (S)| A==

o

-

Drag left or right to resize
control

You can resize input and output nodes by dragging their corner handles, just like other nodes. But
for these, its usually most convenient to deselect Resize centered from the Diagram menu so
you can align them either along their right edges, or both edges.

You can also drag the left edge of the control field, button, or menu left or right to change its width.
This is especially useful for choice menus when you want to expand the width to be large enough
for the widest menu option.

When using a pull-down menu containing long text values, you might want to adjust the pull-down
control as necessary to accommodate your longest text value. Input and output nodes contain
text and graphics, in addition to the control itself. The node resizing handles that appear as small
black squares at the corners of the node adjust the size of the bounding rectangle that holds all
these items, but does not change the width of the control itself. To change the width of a control (a
pull-down menu, textedit box, or button), position the mouse over the left edge of the control,
depress the mouse button and drag the cursor to the left or right.

Input and output nodes and their original variables

The title and units of an input or output node are obtained from the original node. To edit them,
edit the title and units of the original node (see page 56). If you edit the title or units of the original
node, the input or output node’s title or units changes to match the original.

By default, an input or output node shows its original node’s title (label) in the original font, with no
node outline or arrows. The node takes its color from its original node when the node is created.
Later changes to the original node color do not change the color of the input or output node.

To change the appearance of an input or output node alone, use the Set Node Style and Show
Color Palette options from the Diagram menu (see “Node Style dialog” on page 79 and “Recolor-
ing nodes or background” on page 77). When you use these options to change the appearance of
an input or output node, its original node does not change. Similarly, using these options to
change the appearance of an original node does not affect its previously created input or output
node.

Using form modules

Creating a form module

It is often helpful to group input and output nodes into a single diagram for easy access by model
users. The form module makes it easy for you to create input and output nodes in the form by
drawing arrows between the form and variables.

1. Make sure a diagram window is active with the edit tool selected.

Drag the module icon from the node toolbar and position it in the diagram.

Type in a title for the module — for example, User interface.

Open the Attribute panel at the bottom of the diagram window.

With the new form module still selected, press to open the Attribute popup menu, and select
Class.

a kM wn

6. The class Module appears in the Attribute panel. Press to open a popup menu of module
classes.

Analytica User Guide 123

Chapter n Creating Interfaces for End Users Adding icons to nodes

output nodes in a form

7.

@ Mode!
O Module
@ Module
¥ Librany
0 Library
v B Fom

Select Form from the menu.

Creating input and An input or output node is an alias to another variable in the model. Creating an input or output

module

node is similar to creating an alias node (page 54). To create a set of input and/or output nodes in
the form module:

1.

Adjust the diagram(s) on your screen so the form node and the source variables for the input
or output nodes are all visible — they might be in the same or different diagrams.

In the toolbar, click -+ | to enter arrow mode.

To create an input node for variable X, draw an arrow from the form node to X. It creates
an input node for X inside the form module.

To create an output node for variable Y, draw an arrow from Y to the form node. It creates
an output node for Y inside the form module.

When you have finished creating input and output nodes, double-click the form node to open
its diagram window.

In the toolbar, click X |to enter edit mode.

Rearrange and resize the input and output nodes for clarity. It is sometimes clearest to
arrange the input nodes on the left side and the output nodes on the right side.

A form module is like any other module, except when you draw arrows into or out of a form mod-
ule, it creates outputs or inputs, instead of normal alias nodes in the module. But, you can also
create standard variables and modules inside a form. If you have too many nodes to fit comfort-
ably in a single diagram, you might wish to organize them into additional modules (which need not
be forms) to enclose related groups of inputs and outputs.

Adding icons to nodes

You can add an icon to any node in a diagram. The Icon window contains an enlarged space that
you can use for creating or editing an icon.

124

Opening the Icon To add an icon:

window

1.
2.
3.

Make sure that the edit tool is selected.
Select the node that you wish to illustrate.
Choose Edit Icon from the Diagram menu to open the Ilcon window.

Analytica User Guide

Graphics, frames, and text in a diagram

Chapter H Creating Interfaces for End Users

@ Icon - Annualized housing cost El@|g|

The same node with an icon added.
Adjust the size of the node as
necessary to show the icon and title.

Drawing or editing You can draw or edit the icon one pixel at a time using mouse clicks, or you can draw lines by
anicon holding down the mouse button as you drag the cursor.

« To make a dark pixel light or a light pixel dark, click the pixel.

« To draw a line or curve hold down the mouse button while you move the cursor. If the starting
pixel of the line or curve is black the line or curve is black; if the starting pixel of the line or
curve is white the line or curve is white.

« To set the node’s icon, click the Accept button [].

« To restore the original icon in the window (or to clear the window if there was no previous
icon), click the Revert button [].

You can copy and paste an icon from one place in a model to another using the standard Copy
(Control+c) and Paste (Control-v) commands. You can delete an icon from a node by selecting it
and using the Cut (Control+c) command or the Delete key.

Graphics, frames, and text in a diagram

Adding graphics You can add a graphic image created in another application to any node or to the diagram back-
ground. Both color bitmaps and PICT graphics can be pasted in.

Analytica User Guide 125

Chapter n Creating Interfaces for End Users Graphics, frames, and text in a diagram

126

Converting image
formats

Adding a frame

Adding text

To paste in a graphic:

1. Copy (Control+c) the graphic to the clipboard from within a graphics application.
2. Make sure that the edit tool is selected in Analytica.

3. Select the node or the diagram window where you want the graphic to appear.
4. Paste (Control+v) the graphic from the clipboard.

When you paste a graphic into the diagram window, a special node of class picture is created.
Picture nodes can be placed on top of variable, module, and function nodes.

To remove a graphic, select it and press Delete, or choose Clear from the Edit menu.

Some applications post bitmap graphics on the system clipboard in compressed image formats
such as PNG or JPEG. When Analytica recognizes a compressed format, it imports the image
and stores it internally in that format. Unfortunately, most applications post images only as full
uncompressed bitmaps. Large uncompressed bitmaps can consume a lot of space and result in
very large model files; therefore, when Analytica 4.1 pastes an uncompressed bitmap, it converts
it and stores it internally as compressed (lossless) PNG format. Any transparency and alpha
blending present in the original image are preserved by this conversion.

Earlier releases of Analytica do not recognize these compressed bitmap formats. If someone else
loads your model in Analytica release 4.0 or earlier, these images will not display. If you want your
bitmap images to display when your model is loaded into Analytica 4.0 or earlier, you must con-

vert them back into the Legacy Bitmap format after it has been pasted into your model. To do this:

¢ Make sure the edit tool is selected.

« Select the image node to convert.

e Select Change Picture Format from the Diagram menu.

« Inthe Change Picture Format dialog, select the new format to use.

These steps can be used to convert any image into any desired internal image format. In some
cases, certain conversions can further reduce the amount of memory (and thus model file size)
consumed by the image. Legacy Bitmap files might lose some information in the image (such as
transparency and alpha blending), and might consume much more space.

Images that are stored in the Mac PICT format do not display from Analytica Web Publisher
(AWP) and cannot be rendered by the Analytica Decision Engine (ADE). Images in this format
might be present in older Analytica models. Using the above steps, these images should be con-
verted to EMF if you intend to post your model on AWP or render them from ADE.

You can create a rectangular frame for nodes in a diagram in either of the following ways:

« Paste a graphic into the diagram window to create a picture node, then delete the graphic.
This leaves a blank picture node. Use the Node Style dialog (page 79) to display the border
of the node. Other nodes can be placed on top of this node.

« Create a decision node and leave the title blank. Give it a definition of O (or any number) to
remove the cross-hatch pattern. Use the Node Style dialog (page 79) to hide the label and fill
color. Create this frame first, then create the nodes to be framed and place them in the frame.
If you create a framing decision node after you create the nodes to be framed, the nodes are
“under” the framing decision node; they are visible, but you cannot select them. To place the
decision node underneath the other nodes, select the decision node while in edit mode, right
mouse click and select the Send to Back command from the pop-up menu.

« Create a text node by dragging a text node from the text button | T | on the toolbar. Use the
Node Style dialog (page 79) to add a fill color and border to the node.

To add text to a diagram, drag a text node from the text button lﬂ on the toolbar to the diagram
and enter the desired text. This creates a new node with a special class text. Use the handles to
resize the node, and use the Node Style dialog (page 79) to change the font or to change the
background from transparent to filled.

Analytica User Guide

Chapter H Creating Interfaces for End Users Default and XML model file formats

Default and XML model file formats

Analytica supports two formats for saving models — the default format and an XML format. Both
formats are fairly easy-to-read text files, which you can view and edit in standard text editors and
word-processor applications. (See examples below.)

Analytica normally saves a new model in the default format. You can change to the XML format in
by checking Save in XML Format in the Save as dialog when you first select Save from the File
menu, or whenever you select Save as. It remembers and reuses the format you select in future
sessions.

Sample default The default format lists each object with each attribute on a separate line. The first line gives its
file format class and identifier. Subsequent lines give each attribute name, followed by “” followed by the
attribute value. Here is part of a sample model file in the default format:

{ From user Richard Morgan, Model Sample_old_file_format ~~
at Jun 1, 2007 3:56 PM}
Softwareversion 4.0.0

Model Sample_old_file_format
Title: Sample of old file format
Author: Richard Morgan

Date: Jun 1, 2007 11:55 PM
Savedate: Jun 1, 2007 3:56 PM

Objective Net_income

Title: Net income

Units: $ millions

Definition: Revenues - Expenses
Nodelocation: 304,64,1

Variable Revenues

Title: Revenues

Units: $ millions

Definition: 700 * (1+ 0.10)"(Year - 2003)
Nodelocation: 176,32,1

Variable Expenses

Title: Expenses

Units: $ millions

Definition: Table(Year)(750,750,780,800,850)
Nodelocation: 176,96,1

Close Sample_old_file_format

Sample XML Here is part of the same model, saved in the XML format:
file format <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ana user="Richard" project="Sample_XML_file_format" generated=" Jun

1, 2007 3:57 PM" softwareversion="4.0.0" software="Analytica'">

<model name="Sample_XML_file_format'>
<title>Sample XML file format</title>
<author>Richard Morgan</author>
<date> Jun 1, 2007 11:55 AM</date>
<saveauthor>Richard Morgan</saveauthor>

Analytica User Guide 127

Chapter n Creating Interfaces for End Users Hyperlinks in model documentation

<savedate>Fri, Jun 1, 2007 3:57 PM</savedate>
<fileinfo>0,Model Sample_XML_file_format,
2,2,0,1, C:\Documents\Upgrade guide\Netincome example XML.ANA
</fileinfo>

<objective name="Net_income'>
<title>Net income</title>
<units>$ millions</units>
<definition>Revenues - Expenses</definition>
<nodelocation>304,64,1</nodelocation>
<nodesize>48,24</nodesize>
<valuestate>2,313,273,197,250,0,MIDM

</valuestate>

<numberformat>1,D,4,2,0,1</numberformat>
</objective>

<Variable name="Revenues''>
<title>Revenues</title>
<units>$ millions</units>
<definition>700 * (1+ 0.10)~(Year - 2003)
</definition>
<nodelocation>176,32,1</nodelocation>
<nodesize>48,24</nodesize>
</Variable>
<Variable name="Expenses''>
<title>Expenses</title>
<units>$ millions</units>
<definition>Table(Year)(750,750,780,800,850)
</definition>
<nodelocation>176,96,1</nodelocation>
<nodesize>48,24</nodesize>
</Variable>
</model>
</ana>

Hyperlinks in model documentation

A description, or other text attribute of a variable or other object, can contain a hyperlink to any
web page. This is useful for linking to detailed explanations, data, or references for a model, or
even to related downloadable Analytica models. In browse mode, hyperlinks appear convention-
ally underlined in blue. When you click a hyperlink, your computer shows the indicated web page
in your default web browser.

To define or edit a hyperlink, enter edit mode, and use a standard HTML link syntax of the form

Click here

When you switch to browse mode, the HTML code displays as a hyperlink.

128 Analytica User Guide

Ch apter H Creating Interfaces for End Users

Hyperlinks in model documentation

In edit mode

@ Object - Lumina products

Lumina_products Units:
Title: Lumina preducts

Description: ; For mere details about Lumina <a href="
heresia=

Definition: | Analytica Profezsional |
Analytica Enterprize
ADE

hitpadiweed e lumina. com™=click

In browse mode

9 ' Object - Lumina products

() Variable Lumina_products Units:
Title: Lumina products

Description: For more details about Lumina click here

=
Definition: |.&na|y‘tica Professional |

|.&nal\,r'tiu:a Erterprise
|aDE

Analytica User Guide 129

Ch apter E Creating Interfaces for End Users Hyperlinks in model documentation

130 Analytica User Guide

Chapter 10

Using Expressions

The definition of each variable is an expression, such as

(- B + Sqrt(B"2 - 4*A*B))/(2*A)
This chapter describes the elements of an expression, and their syntax,
including:

« Literal values, including numbers, Boolean or truth values, and text
values

< Arithmetic, comparison, and logical operators, suchas +-/*"<>=
AND OR

e IFaTHEN b ELSE c

« Function calls and parameters and math functions
* Exception values INF, NAN, and NULL

« Warnings

« Datatype functions

Chapter Using Expressions Numbers

Numbers

Integers

Precision

Largest and smallest
numbers

The definition of a variable or function is an expression, such as:
(-B + Sqrt(B”2 - 4*A*B))/(2*A)
An expression can consist of or contain a literal number (including Boolean or date), a text value,

an identifier of a variable, an arithmetic expression, a comparison or logical expression, 1F THEN
ELSE, or a function call, such as Sqrt(B).

See Chapter 21, “Procedural Programming,” for details on more advanced constructs, such as
BEGIN ... END statements, For and While loops, local variables and assignments.

You can enter a number into an expression using any available number formats in (see “Number
formats” on page 82), including:

2008, 12.345, 0.00123, 5.3E20, 5.3E-20, $100,000

Suffix format uses a letter or symbol suffix to denote a power of ten, such as:
25K, 200M, 123p, 20%

Suffix format provides a simple, familiar way to specify large or small numbers. See “Suffix char-
acters” (page 83) for details.

You can usually enter numbers using most number format types directly into an expression no
matter what number format was specified for the variable defined by the expression. The excep-
tions are:

1. You may use commas to separate groups of three digits, such as 123,456.00, only if the
expression consists of that single number. If the number is part of an expression with other
elements, such as 12*123,456, you may not use comma separators because the syntax
would be ambiguous. You should use simply 12*123456.

2. You may use date formats, such as 10/11/2008 or 11-0ct-2008, only for a variable
specified as having the specified date number format. Otherwise, for example, it would
interpret 10/11/2008 as an expression with two divide operators:

(10/11)/2008

Analytica treats integers and real numbers both as floating point numbers internally. Using the
default suffix number format, it displays numbers that are very close to integers as integers.

Analytica uses double-precision using 8 bytes to represent each floating point number. This
means that the maximum internal precision of numbers is 15 significant digits. Some calculations,
especially those that involve small differences between large numbers or large numbers of addi-
tions, might result in less precision than this maximum.

Analytica can represent positive numbers between about 10-320 and 1.797 x10%3%8_|f a calcula-
tion would result in a number smaller than about 10'320, it rounds it down zero:

171071000 —» O

If the result would be larger than 1.797 x10*3%8 it returns INF (infinity):
1071000 — INF

For more, see “Exception values INF, NAN, and NULL” on page 138.

Boolean or truth values

132

A Boolean or truth value can be True and False, or, equivalently, the number 1 or 0. For exam-
ple:

False OR True — True

1 AND 0 —» False

1 0RO — True

Analytica User Guide

Chapter Using Expressions Text values

Text values

Operators

Arithmetic operators

It actually treats every nonzero number as True. For example:
2 AND True — True
Boolean values are represented internally as the numbers 1 and 0. By default, a Boolean result

displays as 0 or 1. To display them as False or True, change the number format of the variable
to Boolean (see “Number formats” on page 82).

You specify a text value by enclosing text between single quotes, or between double quotes, for
example:

A", "A25", "A longish text - with punctuation.”
A text value can contain any character, including any digit, comma, space, and new line. To
include a single quote(’) or apostrophe, type two single quotes in sequence, such as:
"Isn""t this easy?"
The resulting text contains only one apostrophe. Or you can enclose the text value in double
quotes:
"Don"t do that!"

Similarly, if you want to include double quotes, enclose the text in single quotes:
"Did you say "'Yes"?"

You can enter a text value directly as the value of a variable, or in an expression, including as an
element of a list (see “Creating an index”page 163 and “Expression view”page 164) or edit table
(see “Defining a variable as an edit table’page 169). Analytica displays text values in results with-
out the enclosing quotes. Also see “Converting number to text” on page 138.

For comparison and sort order for text, see “Alphabetic ordering of text values” on page 134.
For functions that work with text values, see “Text functions” on page 206.

For converting between numbers and text, see “Numbers and text” on page 138.

An operator is a symbol, such as a plus sign (+), that represents a computational operation or
action such as addition or comparison. Analytica includes the following sets of standard opera-
tors.

The arithmetic operators apply to numbers and produce numbers:

Operator Meaning Examples

X+y plus 3+2 -5

X-y binary minus 3-2-51

-X unary minus -2 -2

x*y product 3*2 56

x/y or X+y division 32 (= g) 15

XMy to the power of 372=3%5 9
4r5= 4" 52

Analytica User Guide 133

Chapter Using Expressions Operators

Comparison operators Comparison operators apply to numbers and text values and produce Boolean values.

Operator Meaning Examples — (1 =true, 0 = false)

< less than 2<2 - 0
AT <"B* -1

<= less than or equal to 2<=2 -1
"ab"<="ab" - 1

= equal to 100=101 - 0
"AB"="ab®" - 0

>= greater than or equal to 100>=1 -1
"ab®">="cd* —» O

> greater than 1>2 - 0
"A">"ar -1

<> not equal to 1<>2 -1
"A"<>"B" S 1

Alphabetic ordering of When applied to text values, the comparison operators, >, >=, >=, and <, use alphabetic ordering
text values pased on the numerical ASCII codes of the text values. For example:

"Analytica® < "Excel®™ = 1 (True)
Using the numerical (ASCII) representation of the characters, means:
1. Digits precede letters:
9" < A" > 1 (True)
2. Uppercase letters precede lowercase letters:
"Analytica®™ > "excel®™ 2> 0 (False)

If you want to alphabetize without regard to case, use TextUppercase or TextLowerCase to
convert letters to the same case.

TextUpperCase("Analytica®™) < TextUpperCase("excel™) > 1 (True)

3. Letters with accents, umlauts, cedillas, ligatures, and other decoration come after
undecorated letters, hence alphabetic ordering might be different from what you expect.

Sortindex(d, i) sorts text values in d using this ASCII ordering scheme. But, Rank() works only
on numbers, not text values.

Logical operators Logical operators apply to Boolean values and produce Boolean values.

Operator Meaning Examples

bl AND b2 trueif both bl and b2 aretrue, 5>0 AND 5>10 — False
otherwise false

bl OR b2 trueif bl or b2 or both are 5>0 OR 5>10 — True
true, otherwise false

NOT b true if b is false, otherwise NOT (5>0) — False
false

Scoping operator (::) Itis possible that a model created in a previous release might contain a variable or function with
the same identifier as a new built-in variable or function. In this situation, an identifier name
appearing in an expression might be ambiguous.

Prepending : : to the name of a built-in function causes the reference to always refer to the built-
in function. Otherwise, the identifier refers to the user’s variable or function. With this convention,
existing models are not changed by the introduction of new built-in functions.

134 Analytica User Guide

Chapter Using Expressions IF a THEN b ELSE ¢

Example Suppose a model from an older release of Analytica contains the user-defined function
Irr(values, 1).Then:

Irr(Payments, Time) User’s Irr function

:Irr(Payments, Time) The built-in function

Operator binding precedence

A precedence hierarchy resolves potential ambiguity when evaluating operators and expressions.
The precedence for operators, from most tightly bound to least tightly bound is:

1. parentheses ()

2. function calls

3. Not

4. @1,\A\[I]A, #R.

5. Al

6. A[l=x]

7. Attrib of Obj

8. 7

9. - (unary, negative)

10. *,/

11. +, - (binary, minus)

12. m..n

13. <, >, <=, >=, =, <>

14. And, Or

15. & (text concatenation)

16. =

17. If ... Then ... Else, Ifonly ... Then ... Else, Ifall ... Then ... Else
18. Sequence of statements separated by semicolons, sequence of elements or parameters

separated by commas
Within each level of this hierarchy, the operators bind from left to right (left associative).
Examples The following arithmetic expression:
1/2*3-37~2+14
is interpreted as:
(@arzs2)*3)-@B7~r2)+14
The following logical (Boolean) expression:

IFaand b >cord+e < f~gTHEN X ELSE 'y + z

is interpreted as:
IF ((a@aand (b > c)) or ((d + e) < (fF ™ g))) THEN x ELSE (y + 2)

IFa THEN b ELSE c

This conditional expression returns b if a is true (1) or ¢ if a is false (0), for example:
Variable X := 1M
Variable ¥ =1
IF X > Y THEN X ELSE Y »> 1M

returns the larger of X and Y.

It is possible to omit the ELSE clause:
IF X > Y THEN X

Analytica User Guide 135

Chapter Using Expressions Function calls and parameters

If the condition is false, it gives a warning. If you ignore the warning, it returns NULL.

Conditional expressions get more interesting when they work on arrays. See “IF a THEN b ELSE
¢ with arrays” on page 161.

Function calls and parameters

Math functions

136

Position-based
function calls

Name-based
function calls

Abs(x)

Ceil(x)

Floor(x)

Analytica provides a large number of built-in functions for performing mathematical, array, statisti-
cal, textual, and financial computations. There are also probability distribution functions for uncer-
tainty and sensitivity analysis. Other more advanced or specialized functions are described in
Chapter 13, “Other Functions.” The Enterprise edition of Analytica also includes functions for
accessing external ODBC data sources. Finally, you can write and use your own user-defined
functions (see “Building Functions and Libraries” on page 315).

The conventional position-based syntax to call a function uses this form:

FunctionName(paraml, param2, ...)

You follow the function name by a comma-separated list of parameters enclosed between paren-
theses, with the parameters in the specified sequence. In most cases, parameters can them-
selves be expressions built out of constants, variable names, operators, and function calls. Here
are some simple examples of expressions involving functions.

Exp(1) —» 2.718281828459
Sqrt(3"2 + 4"2) - 5

Mod(7, 3) » 1

Pmt(8%, 30, -1000) — $88.83
Normal (500, 100)

Some functions have optional parameters. In that case, you can simply omit the trailing parame-
ters that will use their default values.

Analytica also offers name-based parameter syntax as an alternative for calling most functions:
You name each parameter, followed by a colon (:) and the value passed to that parameter. Since
the parameters are named, you can list them in any order. For example, this function has four
parameters, of which you can provide any two to define the distribution:

Lognormal (median, gsdev, mean, stddev)

Calling it using name-based syntax:
Lognormal (mean: 10, stddev: 1.5)

is equivalent to the following using position-based syntax, which uses commas to indicate that the
first two parameters are omitted:

Lognormal(, , 10, 1.5)
because mean and stddev (standard deviation) are the third and fourth parameters. Name-

based syntax is useful for functions with many optional parameters. It's usually easier to read
name-based function calls because you don’t need to remember the ordering of the parameters.

These functions can be accessed from the Math library from the Definition menu.

Returns the absolute value of x.
Abs(180) — 180
Abs(-210) — 210

Returns the smallest integer that is greater than or equal to x.
Ceil(3.1) » 4 Ceil(5) —» 5
Ceil(-2.9999) —» -2 Ceil(-7) » -7

Returns the largest integer that is smaller than or equal to x.

Analytica User Guide

Chapter Using Expressions

Round(x)

Exp(x)

Ln(x)

Logten(x)

Sqr(x)

Sqrt(x)

Mod(x, y)

Factorial(x)

Cos(x), Sin(x), Tan(x)

Arctan(x)

Degrees(r), Radians(d)

Floor(2.999) —» 2
Floor(-2.01) —» -3

Floor(3) —» 3
Floor(-5) —» -5

Returns the value of x rounded to the nearest integer.
Round(1.8) —» 2 Round(-2.8) —» -3
Round(1.499) —» 1 Round(-2.499) —» -2

Returns the exponential of x, e raised to the power of x.
Exp(5) — 148.4
Exp(-4) —» 0.01832

Returns the natural logarithm of x, which must be positive.
Ln(150) — 5.011
Ln(Exp(5)) —» 5

Returns the logarithm to the base 10 of x, which must be positive.
Logten(180) — 2.255
Logten(10 ™ 30) — 30

Returns the square of x.
Sqr(5) —» 25
Sqr(-4) — 16

Returns the square root of x.
Sqrt(25) —» 5
Sqgrt(-1) —» NAN

Returns the remainder (modulus) of x/y.
Mod(7, 3) —» 1
Mod(12, 4) > O
Mod(-14, 5) —» -4

Returns the factorial of x, which must be between 0 and 170.
Factorial(6) —» 120
Factorial(0) —» 1

If x is not an integer, it rounds X to the nearest integer before taking the factorial.

Returns the cosine, sine, and tangent of x, x assumed in degrees.
Cos(180) —» -1
Cos(-210) —» -0.866
Sin(30) —» 0.5
Sin(-45) —» -0.7071
Tan(45) —» 1
Returns the arctangent of x in degrees (the inverse of Tan).
Arctan(0) —» O
Arctan(l) — 45
Arctan(Tan(45)) — 45

See also “Arccos(x), Arcsin(x), Arctan2(y, X)” on page 209.

Degrees gives degrees from radians, and radians gives radians from degrees:
Degrees(Pi/2) —» 90
Degrees(-Pi) —» -180
Radians(-90) — -1.57079633
Radians(180) — 3.141592654

Analytica User Guide

Math functions

Chapter Using Expressions Numbers and text

Numbers and text

Converting
number to text

Tip

Converting
text to number

If you apply the & operator or JoinText() to numbers, they convert the numbers to text values,
using the number format specified for the variable or function in whose definition they appear. You
can use this effect to convert (“coerce”) numbers into text values, for example:

123456789 & *° — "123.5M"

123456789 & "° — "$123,456,789.00"°

"The date is: " & 38345 — "The date is: Thursday, December 25, 2008*

The actual result depends on Number Format setting for the variable or function in whose definition
the expression appears. The first example assumes the default Suffix format. The second
assumes Fixed Point format, with currency and thousands separators checked, and two decimal
digits. The third assumes the Long Date format. Use the Number format dialog on the Result
menu to set the formats.

You can use the Evaluate() function to convert a text representation of a number into an actual
number, for example:

Evaluate("12350") — 12.35K
Evaluate() (page 348) can convert any number format that Analytica can handle in an expression

— and no others. Thus, it can handle decimals, exponent format, dates, True or False, a $ at
the start of a number (which it ignores), and letter suffixes, like K and M.

An alternative method, for converting text to a number is to use the Coerce Number qualifier on a
user-defined function (see “Parameter qualifiers” on page 318). For example, you could define a
user-defined function such as:

ParseNum(X: Coerce Number) := X

Exception values INF, NAN, and NULL

138

INF (infinity)

INF, NAN, and Nul I are system constants that arise in exceptional cases.

Constant Meaning

INF Infinity or a real number larger than can be represented, e.g., 1/0

NAN Not a Number: Actually, the result is known to be “number” but not well
defined, e.g., 070

Null The result of an operation where the desired data is not there, such as

X[1 = "?"], where index I does not have the value "?*

INF is the result of a numerical calculation whose absolute value is larger than largest number
Analytica can represent. This could be an overflow — that is a valid real number greater than
1.797 x10*398;

1071000 — INF

or it could be a division by zero or other result that is mathematically infinite:
1/0 — INF

INF can be positive or negative:
-1 * 1071000 —» -INF

You can use INF as a value in an expression. You can perform useful, mathematically correct
arithmetic with INF, such as:

INF + 10 — INF

INF/Z0 — INF

Analytica User Guide

Chapter Using Expressions Warnings

Warnings

NAN

Null

10 - INF —» -INF

100/0 = INF — True
NAN is the result of a numerical calculation that is an undetermined or imaginary number, includ-
ing numerical functions whose parameter is outside their domain:

INF - INF — NAN

0/0 — NAN

INF/ZINF — NAN

Sqrt(-1)— NAN

ArcSin(2)— NAN
It usually gives a warning if you apply a function to a parameter value outside its range, such as
the two examples above — unless you have pressed “Ignore warnings” (see “Warnings” on
page 139).
Any arithmetic operation, comparison, or function applied to NAN returns NAN:

0/0 <> NAN — NAN

Analytica’s representation and treatment of NAN is consistent with IEEE Floating point standards.
NAN stands for “Not A Number,” which is a bit misleading, since NAN really is a kind of number.

You can detect NAN in an expression using the IsNaN() function (page 140).

Nul'l is a result that is ill-defined, usually indicating that there is nothing at the location requested,
for example a subscript using a value that does not match a value of the index:

Index I :=1..5

X[1=61 — Null
Other operations and functions that can return Nul I include Slice(), Subscript(), Subindex(),
and MDTable().
You can test for Nul I using the standard = or <> operators, such as:

X[1=6] = Null —> True

or you can use IsUndef(X[1=6]).

Warnings can occur during evaluation, for example when trying to take the square root of a nega-
tive number, for example:

Variable X := Sequence(-2, 2)
Variable Y = Sgrt(X) —

0 Question [X|

Waming:
Square root of 3 negative number.

Awaming occumed while evaluating Varable . Do you want to stop
evaluating to edit the definition?

lgnore Wamings Cancel Edit Definition

This Warning dialog gives you the option to ignore this and future warnings. If you select Ignore
Warnings, Y yields:
Y — [NAN, NAN, O, 1, 1.414]

The NAN values can be propagated further into a model.

Analytica User Guide 139

Chapter Using Expressions

Tip

Datatype functions

If you click the Ignore warnings button, it will ignore all warnings from this variable and all other
variables in this and future sessions with this model. Ignoring warnings could lead to you getting
NAN or NULL results for unknown reasons. If this happens, you can switch warnings back on by

checking Show result warnings in the Preferences dialog.

Analytica displays warning conditions detected while evaluating an expression only if the resulting
value assigned to a variable contains an explicit error. In the following example, the NAN resulting
from evaluating Sqrt(X) for negative X does not appear in the result, so it does not display a
warning:

Variable Z = IF X<O0 THEN O ELSE Sqrt(X)

Z —» [0, O, O, 1, 1.414]

Because (X<0) evaluates to an array containing both True (1) and False (0) values, the expres-
sion evaluates Sqrt(X), and generates NAN as for Y above. But, the conditional means that
resulting value for Z contains no NANs, and so Analytica generates no warning when Z is evalu-

ated.

You can also make use of the return value, even if it might be errant, as in the following example:
VAR x := Sqrt(y);
IF IsNaN(x) THEN O ELSE x

The common warning “subscript or slice value out of range” returns Nul I, for example:
Index I :=1..5
X[1=6] — Null

If you want to ignore warnings for a single variable, you can use the IgnoreWarnings() function
around the definition.

Datatype functions

140

IsNumber(x)

IsText(x)

IsNaN(x)

x = NULL

A value can be a number, text, Nul I, or a reference (see “References and data structures” on
page 340 for more on references). Integers, reals, Boolean, and date values, are all represented
as numbers. You can use these functions from the Special library of Definition menu to deter-
mine the type.
Returns True if x is a number, including a Boolean, date, INF or NAN.

IsNumber(0) — True

IsNumber(False) — True

IsNumber (INF) — True

IsNumber("hi") — False

IsNumber(5) — True

IsNumber(*5") — False

IsNumber(NAN) — True

Returns True if x is a text value.
IsText("hello™) — True
IsText(7) — False
IsText("7") — True

Returns True if x is “not a number,” i.e., NAN. INF or regular numbers do not qualify, nor does a

text or Nul'l.

0/0 — NAN

IsNaN(0/0) — True
IsNaN(5) — False
IsNaN(INF) — False
IsNaN("Hello") — False

To test if x is NULL.

Analytica User Guide

Chapter Using Expressions

IsUndef(x)
IsReference(x)
TypeOf(x)

Returns True if x is Nul I, otherwise it returns False.

Returns True if x is a reference to a value.

Datatype functions

Returns the type of expression x as a text value, usually one of **"Number™, *"Text", ""Refer-

ence', or "Nul I"". INF and NAN are both of type ""Number"":
TypeOf(2008) — **Number™
TypeOf("2008") — "Text"
TypeOF(INF) — *"Number"
TypeOf(0/0) — "Number"

Analytica User Guide

141

Chapter Using Expressions Datatype functions

142 Analytica User Guide

ST Ig N Arrays and Indexes

Analytica offers powerful features for working with indexes and arrays,
with one, two, or many dimensions. Collectively, we refer to them as
Intelligent Arrays™. This chapter provides an extended introduction to
the essential concepts, followed by more details on:

« Conditional expressions (page 161)

¢ Creating an index (page 163)

« Editing a list (page 165)

« Functions that create indexes (page 166)

« Defining a variable as an edit table (page 169)

« Editing a table (page 171)

« Selecting a slice or subarray (page 174)

* Choice menus in an edit table (page 176)

« Shortcuts to navigate and edit a table (page 177)
For more, see Chapter 12, “More Array Functions.”

Ch apter Arrays and Indexes Introducing indexes and arrays

Arrays The value of a variable can be a single number, Boolean, text value, or reference — more gener-
ally, an atom — or it can be an array, a collection of such values, viewable as a table with one or
more dimensions. Here’s an array with two dimensions.

rnige

(.2 [~ Totals

Lall N [} [Totals
1 2 3

@ Result - Maintenance cost g@gl
il

Mid Value of Maintenance cost

3 5
small car 300 300 500 1000 1400| |
large car 700 700 700 00 00
Indexes The dimensions of the variable Maintenance_cost are identified by the indexes Car_type
and by Year.
Car type: Year:
stnall car
large car

LAy B S B O R

Intelligent Arrays Each index is a separate variable and can be used as a dimension of many arrays. For example,
other arrays can be indexed by Car type or Year. The fact that Analytica identifies each dimen-
sion by a named index provides the basis for the ease and flexibility with which you can create,
calculate with, and display arrays with one or many dimensions. It lets expressions and functions
work with arrays just the same way they work with single numbers. They automatically generalize
to work with arrays without you having to bother with subscripts and For loops the way you would
with other computer languages. We call this set of features Intelligent Arrays™.

Learning key concepts There are some subtleties to the effective use of Analytica’s Intelligent Arrays. To fully appreciate
them, you might find you need to let go of some of your past experience with spreadsheets or pro-
gramming languages. But, once you grasp the key ideas, they will seem quite simple and natural.
Many Analytica users end up thinking that these features are what make Analytica most valuable.
We recommend that you start by reading through the “Introducing indexes and arrays” below,
which illustrates key concepts and features. You can then refer to the rest of this chapter and the
next chapter, “More Array Functions” on page 181, as needed for details.

Introducing indexes and arrays

In this section, we demonstrate the concepts and features of indexes and arrays by building a
model to compare the costs of three automobiles, including fuel costs, maintenance, depreciation,
and a rebate for a hybrid car. We will end up with a model that looks like this.

144 Analytica User Guide

Chapter Arrays and Indexes Introducing indexes and arrays

M@ Diagram - Car Cost Model 4.0 update

| B

Create an index

Suppose you want to compare the fuel cost of three different vehicles, each with different fuel effi-
ciency. First let's define an index Car_type, listing the three different types of cars as text values.
You create a new index by dragging the index node from the node menu. Type the title Car type
into the node. In its definition attribute, select List of Labels from the expr menu.

v BT Eupression

B List
E= Lizt of Labelz
1.8 Sequence

2 Other...

Type the car types Standard, Hybrid, and SUV (Sports Utility Vehicle) into individual cells of the
index. Press Enter to add the next cell.

e 4|

Car type: [pefinition][«
Hyhbrid

Standard

SLV

Analytica User Guide 145

Chapter Arrays and Indexes Introducing indexes and arrays

Create an edit table Now we create a new variable by dragging it from the node menu, typing its title Miles per
gal lon! into the node, and drawing an arrow to it from the index Car_type.

0 Diagram - Car Cost Model 4.0 update

g4

Miles per gallon: @| Definition il I v & Expression
= List
B2 List of Labels

Table
= Probability Table
A Distribution

= Choice
¥ Other...

Ti P By default, diagrams do not display arrows to or from index nodes after you have drawn them. For
clarity, we display them by checking Show arrows to/from Indexes in the Set Diagram style
dialog from the Diagram menu. See “Diagram Style dialog” on page 78.

In the attribute panel above, we show the definition of Mi les_per_gal lon, and select Table
from the expr menu. This opens the Indexes dialog to let you choose which index(es) to use for
the table dimensions.

Preview: Indexes: [AllYanables Selected Indexes:
[Graph window height il 7 Cartype J
[Graph window width J
[Ohjectid
[Result window height | |

Cahicel ak

It starts with Car_type as the selected index because you drew the arrow from it (see “Indexes
dialog” on page 170). Click OK to accept. An edit table appears, indexed by Car_type, with cells
initialized to O.

{7 | Edit Table of Miles per gallon (milesigallon)
=
a2

Standard o)
Hybrid 0
Y 0

| (4

You can now edit the cells of the table. Type in a number for each Car_type.

1. We apologize to our readers outside the U.S. for using the archaic units, gallons and miles!

146 Analytica User Guide

Chapter Arrays and Indexes

Combine a scalar (OD)
and 1D array

Array abstraction with
arithmetic operators

Define another edit table

Introducing indexes and arrays

AEE)

| =

[Edit Table of Miles per gallon {miles/gallon)
g

=
s il I
Hybrid 45

Standard 25
sSuv 23

This completes the edit table for Miles per gallon.

Now let’s calculate the annual fuel cost for each car type. We create three new variables,
Miles_per_year, Fuel _price, and Fuel _cost and draw the arrows.

Miles per
year

/ [Miles per
/ Rl gallon

Type these definitions for the new variables:

Fuel cost

Miles_per_year := 10K
Fuel_price:= 3.00
Fuel_cost := Fuel_price * Miles_per_year / Miles_per_gallon

Select Fuel _cost and click the Result button to show this result table.

COX

[Result - Fuel cost

midT | Mid Value of Fuel cost =
m o

~
la| " [P
Hybrid $EE7 o
Standard F1,07
suv 1,304

This table for Fuel _cost was computed using Miles_per_gal lon for each Car_type, and
the single (scalar) numbers, 3.00 for Fuel _price and 10K for Miles_per_year. The arithme-
tic operations * and / work equally well when one or both operands is an array as when it is a sin-
gle number — also known as an atom or scalar value. The same is true for +, -, and ~. This is an
example of array abstraction, central to Intelligent Arrays™.

Now let's add in the maintenance costs. We create a new variable Maintenance_cost, defined
as an edit table, based on the Car_type index, just as we did for Mi les_per_gallon.

Analytica User Guide 147

Chapter Arrays and Indexes Introducing indexes and arrays

i ahle 5 BNa < 0 L]
7 Edit Table of Maintenance cost
Car type W
e

1 =P

Hybrid 600

Standard 1000

Suy 1000

4

We now create Operating_cost as the sum of Fuel_cost and Maintenance_cost. Here is
the diagram showing the definition of the new variable.

W Diagram - Car, Cost Model 4.0 update

XN
Operating cost per year: Definition - || e W I

Fuel_cost_per_wear + Maintenance_cost

Operation on two Here is the result.
1D tables with the
same index

'9 Result - Operating cost _
Mid Value of Operating cost X'Yl

B[Cortnev] [T
] gl

Hybrid 1267
Standard F2071
sSuUv 2304

|

Itis the sum of Fuel_cost and Maintenance_cost, both 1D arrays indexed by Car_type, so
the result is also indexed by Car_type. Each cell of the result is the sum of the corresponding
cells of the two input variables.

Make an index as a Now let's add another index, Year, so that we can extend the model to compute the costs for mul-
sequence of numbers tiple years. We create the new index as before. In its definition we enter 2008. .2012, to specify
the start and end year.

148 Analytica User Guide

Chapter Arrays and Indexes

Compound annual
growth of fuel
price by year

Combine two 1D arrays
with different indexes

Introducing indexes and arrays

""" Year © T Maintenance [Cperatingcost |~ -
Cost per wear :
u o
. It
e 4| | e
Year: |Deﬁni‘tion il ||9J€Df il |
2008..2012 =

The value of Year is now the sequence of years from 2008 to 2012. (See “Creating an index” on
page 163 and “Functions that create indexes” on page 166 for other ways to define indexes.)

What happens if Fuel_price changes over time? Let's model Fuel _price starting with its cur-

rent value of 3.00 ($/gallon) multiplied by a compound annual growth rate of 10% per year:
Fuel_price := 3.00 * (1 + 10%)~(Year — 2008)

This expression says that Fuel _Price starts at 3.0 in Year 2008 (when the exponent (Year

— 2008) is zero. For each subsequent year, we raise (1 + 10%) to the power of the number of
years from the start year, 2008 — i.e., standard compound growth. Here’s the result.

CBX]

W Result - Fuel price

midw | pfid value of Fuel price ($igallon) J
i [Totals
| v [P
2008 #3 il
2003 F3.249
2040 F3.409
2011 F3.779
2012 F4.031
| [

Click the graph icon to view this as a graph.

0 Result - Fuel price

midw | pfid value of Fuel price ($igallon)
@ Horizaontsl Axis:
Lol
54 e
E £ 338 —
ffié 36 e
2D 534 —
e 2
§3
2008 2009 2010 2011 2012
Year

Now look at Fuel_cost. Its has three inputs, Mi les_per_year, which is still a single number,
10K, Miles_per_gallon, which is indexed by Car_type, and Fuel_price, which is now
indexed by Year. The result is a two-dimensional table indexed by both Car_type and Year. It
contains every combination of Miles_per_gal lon by Car_type and Fuel_price by Year.

Analytica User Guide 149

Chapter Arrays and Indexes

Result of operation
contains all indexes of
operands

Pivot a table,
exchanging rows and
columns

Introducing indexes and arrays

2 Resull - Fuel.c AE
mid¥ | Mid Value of Fuel cost

[™ Tous

] R e

2008 2009 2010 2011 2012

Hybrid 667 §720 §775 $540 5307
Standard 1,071 1,157 1,250 1,350 1 458
suv 1,304 1 409 1 521 1,543 1,775

This illustrates a general rule for Intelligent Arrays, that the result of an operation contains the
union of the sets of indexes of its operands.

In the table above, it shows Car_type down the rows and Year across the columns. To pivot the
table — i.e., exchange rows and columns — select the other index from the menu defining the
columns (or the rows).

B

0 Result - Fuel cost

mid¥ | Mid Value of Fuel cost

= I Tok

Rows and columns are
just for display of tables

Add a dimension
to an edit table

150

Lt | ¥ [Caropev I~ To:
Hybrid Standard SUV
2008 JEET 1,071 §1,304 B
2009 Frz0 1157 §1 409
2010 FrrG 1,250 1,521
2011 Fad0 ¥1,350 §1 643
2012 Fao7 ¥1 458 1775
| [

(We expanded the window size so that all rows are visible.)

Unlike other computer languages, with Analytica, you don’t need to worry about the ordering of
the indexes in the table. Rows and columns are simply a question of how you choose to display
the table. They are not intrinsic to the internal representation of an array.

Maintenance costs also changes over time, so we need to add Year as dimension. Simply draw
an arrow from Year to Maintenance_cost.

Maintenance
Year
cost

When it prompts “Do you wish to add Year as a new index of the table in Maintenance_cost?”
click Yes. Now open the edit table for Maintenance_cost. It has added Year as a second
dimension, copying the number for each Car_type across the years.

7 Edit Table of Maintenance cost
S

Y e <P
2008 2009 2010 2011 2012
Hybrid 600 600 600 600 600
Standard o0 o0 o0 o0 o0
Suy 00 00 00 00 00

Notice that it shows the same values for each Year, following the rule that a value is constant
over a (previously) unused index. Now you can edit these numbers to reflect how maintenance
cost increases over time.

Analytica User Guide

Chapter Arrays and Indexes

Introducing indexes and arrays

] i ahle 3 £ N3 B CO L |
o ale o Alenance co:

£7 | Edit Table of Maint st

.

Y vew P

2008 2009 2010 2011 2012]

Hybrid GO0 700 00 1200 1200
Standard 500 00 00 1000 1200
suv 00 1000 1200 1400 1600

Combine two 2D arrays

Let’s look at the value of Operating_cost again.
with the same indexes

@ Result - Operating cost per, year

Mid “alue of Operating cost per year o
[~ Toak o
o 2 S

2008 2003 2010 2011 2012
Hybrid F1671 F1857 F2050 F2550 F2658
Medium car FUET F13z20 F1572 F1840 F2107
SUY F2104 F2408 F27z1 F3043 F3378

Since its inputs, Fuel _cost and Maintenance_cost, are both indexed by Car_type and
Year, the result is also indexed by those two indexes. Each cell contains the sum of the corre-
sponding cells from the two input variables. The diagram now looks like this.

[Diagram - Car Cost Model 4.0 update

Fuel cost
per year

f Fuel price .
CAGR :

Maintenance Cperating
cost cost [Er year
Xl |
Operating cost per year: | Diefinition w Ilzlxpr - I

Fuel_cost_per_wyear + Maintenance_cost

A list of numbers
for parametric
sensitivity analysis

Suppose you're not sure how many miles you drive per year. You want to examine three scenar-

ios. You include three values in Miles_per_year by specifying a list of numbers enclosed in
square brackets:

Miles_per_year := [5K, 10K, 15K]

Even though Miles_per_year is not defined as an index node, it becomes an implicit index.

This is an example of model behavior analysis, described in “Varying input parameters” on
page 42.

Combine three
1D arrays with
different indexes

Now all three inputs to Fuel _cost are one-dimensional arrays, each with a different index. Its
result is a three-dimensional table, computed for each combination of three input variables, so
indexed by Miles_per_year, as well as Year and Car_type.

Analytica User Guide 151

Chapter Arrays and Indexes

Introducing indexes and arrays

Pivot a 3D table

Combine a 2D and
3D array with two
common indexes

Propagation of indexes
without changing
downstream definitions

Sum over an index

152

4 Re M
Mid Value of Fuel cost

Lall [~ Toiak

Y [catme T Tous

Hybrid Standard SUV =

2008 $333 F536 JEs2
2009 360 Fara Fro4
2010 388 FE25 el
2011 420 JE7S a2z
2012 433 F7z29 Fas7

The new third index, Mi les_per_year, appears as a slicer index, initially showing the slice for
5000 miles/year. You can click the down-arrow for a menu to choose another value, or click the
diagonal arrows E or ﬁ to step through the values for miles/year. See “Index selection” on
page 30.

You can also pivot a table to display, for example, the Car_type down the rows and
Miles_per_year across the columns, for a selected Year in the slicer.

4] Re el cost per yea m
midw | 4o vvalus of F =t per year =T
i vesr |
o o
=
Miles per year W |> ™ Totals
5000 10K 15K
Hybrid F536 F1.074 H1.607
Mediurm car Fa3z FEET F1,000
SUW FE52 51,204 51,957

When we look at Operating_cost again, it also now has three dimensions. Again the result has
the union of the indexes of its operands.

W] Re Dpera g CO L]

Mid Value of Operating cost
IE) Miles peryear ©F !

o

i

Lall
&~ Year b d |[> [Tatals
2008 2009 2010 2011 2012
Hybrid F933.3 1060 $1189 $1620 $1653| |
Standard $1036 $1179 $1425 F167S $1929
suv $1432 $1704 $1961 a2zl 2487
| (4

It is the sum of fuel cost and maintenance cost, each of which is indexed by Car_type and Year
as before, but now Fuel_cost has the third index, Mi les_per_year. The result contains all
three dimensions.

Note how each time we add an index to an input variable, or change a variable, e.g.,
Miles_per_year, to be a list of values, the new dimensions automatically propagate through
the downstream variables. The results have the desired dimensions (the union of the input dimen-
sions) without any need to modify their definitions to mention those indexes explicitly.

If we want to sum over Year to get the total cost, we define a new variable:

Variable Total_operating_cost := Sum(Operating_cost, Year)

Analytica User Guide

Chapter Arrays and Indexes

X[i = v]: subscript

Name-based
subscripting

When the subscripting
value v is an array

Introducing indexes and arrays

We mention the index Year, over which we want to calculate the sum. But, we do not need to
mention any of the other indexes of the parameter Operating_cost_by_year.

The built-in function Sum(x, i) is called an array-reducing function, because it reduces its
parameter x by one dimension, namely i. There are a variety of other reducing functions, includ-
ing Max(x, i), Min(x, i), and Product(x, i) (see “Array-reducing functions” on page 185). These
functions explicitly specify the index over which they operate. Since they mention it by name, you
don’t need to know or worry about any ordering of dimension in the array.

The subscript construct lets you extract a slice or subarray from an array, say the values for the
Hybrid Car_type:
Total_operating_cost[Car_type =
5 - [=]x)
rnidw Mid Value of Hybrid Operating Costs M

-2 Miles per vear w | [Totals
=
v T ——

"Hybrid®"] —

2008 2009 2010 2011 2012
5000 9333 1080 1169 1520 1653
10K 1267 1420 1575 2040 2107
15K 1500 1780 1966 2460 2560

You can also select multiple subscripts in one expression:
Fuel_cost[year = 2012, Car_type = "SUV", Miles_per_year =
3375

10K] —

For more, see “x[i=v]: Subscript construct” on page 174.

You can list the indexes in any order since you identify them by name. Again you don’t need to
remember which dimension is which. This is called name-based subscripting syntax, in con-
trast to the more conventional sequence-based subscripting. In addition to absolving you from

having to remember the ordering, name-based subscripting generalizes flexibly as you add or

remove dimensions of the model.

The value v in x[i=v] can itself be an array. For example, if you wanted to get the operating cost
only for even years:

Operating_cost[Miles_per_year

10K, Year =

[2008, 2010, 2012]]

), - [B]x]|

rnidw Mid Value of Operating cost by even years =

I | cartype w | [Totalks

Lall s | Operating cost by even years w |[> [Totalz
2008 2010 2012

Hybrid 1267 1575 2107

Standard 1571 2050 2658

Suv 2104 2 3375

Purchase price and To complete the model, let's add the Purchase_price, an edit table indexed by Car_type (just
as we created Miles_per_gallon).

depreciation

Analytica User Guide

153

Ch apter Arrays and Indexes Introducing indexes and arrays

154

IF THEN ELSE
with arrays

g 3 [r r . l 2
[_Edit Table -Purchase price [[0
7 Edit Table of Purchase price
® = [>
7 I
Hybrid 24K

Standard 22K
suv 40K

To annualize this, we compute the annual depreciation, using a depreciation rate of 18% per year
— typical for an automobile:

Variable Depreciation_rate := 18%
Variable Annual_depreciation := Purchase_price * Depreciation_rate *
(1 - Depreciation_rate) ™ (Year - 2008)

It calculates this formula for each Year, raising (1 - Depreciation_rate) to the power of
the number of years from 2008.

@ Result - Annual deprecation El@|g|
Mid Value of Annual deprecation M
[Tk

k| ¥ [vew <[1om

2008 2009 2010 2011 2012
Hybrid 4320 3042 2905 2382 1853] |
Standard 3960 3247 2663 2183 1790
sSuy 7200 5904 48341 3970 3235

I (4

Suppose that there is a government rebate of $2000 when you purchase a hybrid. You could cre-
ate an edit table by Car_type and Year with -$2000 for Hybrid in 2008 and $0 in all other cells.
(The rebate is negative because we are treating the numbers as costs.) A more elegant method is
to define it as a conditional expression based on Year and Car_type:

Variable Hybrid_rebate := IF Year = 2008 AND Car_type = "Hybrid*
THEN -2000 ELSE O

It calculates the expression for each value of the indexes, in this case Year and Car_type, with
this result.

0 Result - Hybrid rebate E|@|g|
Mid Value of Hybrid rebate (%) ﬁ

I o
ba| ¥ [vew <P o

2008 2009 2010 2011 2012 =5
Hybrid -2000]]]]
Standard 0 0 0 0 0
Suy]]]]]

I (4

The subexpression Year = 2008 returns an array indexed by Year containing 1 (true) for 2008
and 0 (false) for the other years. Subexpression Car_type = "Hybrid" returns an array
indexed by Car_type, containing 1 (true) for "Hybrid" and O (False) for the other Car_type.
Therefore, the expression Year = 2008 AND Car_type = "Hybrid" returns an array
indexed by both Year and Car_type, containing 1 (true) only when both subexpressions are
true, that is 1 for Hybrid in 2008 and O for the other cells. The entire 1F expression therefore
returns —2000 for the corresponding top-left cell and O for the others. (See “IF a THEN b ELSE ¢
with arrays” on page 161 for more.)

Analytica User Guide

Chapter Arrays and Indexes Introducing indexes and arrays

Compare a list of
variables

Tip

To summarize the results, it is useful to compare the four types of cost, Fuel _cost,
Maintenance_cost, Purchase_price, and Hybrid_rebate, in one table. Let's make a vari-
able Cost_summary, and first define it as an empty list, i.e., square brackets with nothing
between them yet:

Variable Cost_summary := []

Now draw an arrow from each of the four variables you want to view to Cost_summary, in the
sequence you want them to appear. Each time you draw an arrow into a variable defined as a list,
it automatically adds that variable into the list. (If the origin variable was already in the list, it
removes it again.) Here is the diagram showing the resulting definition for Cost_summary.

ar Costs example

Cost summary: |Deﬁni‘tiun w | =] I
Fuel_cost
Maintenance_cost
Annual_deprecation
Hyhrid_rebate P

|

This diagram does not display arrows from index nodes to avoid confusion with crossing arrows.
We switched these off by restoring Show arrows to/from Indexes to unchecked (the default) in
the Diagram style dialog from the Diagram menu.

The resulting definition is a list of variables (see “List of variables” on page 167).

The result for Cost_summary is four-dimensional, adding a new index, also labeled
Cost_summary, showing the variables in the list.

Analytica User Guide 155

Ch apter Arrays and Indexes Introducing indexes and arrays

Constant value over an

156

index not in array

Totals in a table

Self index

Sum(x, i)

W] Re 0 5 L]
Thice Mid value of Cost summary
iE] cartwe =

] [Miles per year ﬁ
™ Tords

T [P

2008 20039 2010 2011 2012
Fuel cost per year F430 Fa7e Fozs FE75 $7za| |
Maintenance cost [={ulu] oo 200 1200 1200
Annual deprecation 4320 2542 2005 2382 1953
Hybrid rebate -2000 o] u] u] u]

I (4

Note that only Fuel _cost depends on Mi les_per_year. The other three quantities, mainte-
nance, depreciation, and rebate, are expanded over that index in the table, using the same num-
ber for each value of Miles_per_year. This is an example of a general principle: An array that
does not contain index i as a dimension is treated as though it has the same value over each ele-
ment of i when there is a need to expand it to include i as a dimension.

To see the total over the costs and over the Years, check the two Totals boxes next to the row
and column menus.

f] Re D y =
midw | pig Value of Cost summary o
I miles per year TF
Lall| Car type ¥ Hybrid
[cost summary w | I Totals
v | Year - I[) v Totals
ks 2009 2010 2011 2012 Totals
Fuel cost 5333 F360 5354 F420 F453 F1.,856
Maintenance cost| 600 Fron Fa00 §1,200 51,200 Fi4,500
Annual deprecation| 4,320 Fa542 §2,905 52,382 §1.953 15,102
Hybrid rebate | $-2,000 §0 §0 $il §0 $-2,000
Totals| $3,253 F4 602 4,094 F4,002 3,607 F19.558
<l |

The new index containing the titles of the four cost variables in the list is also called
Cost_summary. Thus, the identifier Cost_summary serves double-duty as an index for itself.
This is known as a self index, and can be accessed using the IndexVals() function (see “Index-
Vals” on page 14).
If we want to compute the sum of the four costs, we can use Sum(x, i) to sum array x over index
i. In this case, we sum Cost_summary over its self index, also Cost_summary:

Variable Total_cost_by year := Sum(Cost_summary, Cost_summary)
We also want to compute the average cost per mile over all the years. First we compute total cost
over time, using the Sum() function:

Variable Total_cost := Sum(Cost_summary, Year)
As before, we need to specify the index over which we are summing, Year, but we don’t need to
mention any other indexes, such as Car_type and Miles_per_year, which are irrelevant to
this summation.
Next we calculate the Total _miles over Year:

Variable Total_miles := Sum(Miles_per_year, Year)

Analytica User Guide

Chapter Arrays and Indexes Introducing indexes and arrays

Add a new item to
an index

Expanding index for

other edit tables

[Result - Total miles = [[B)X]
Mid value of Total miles =T
i [Totsk

W v [P

5000 25K =
10K S0k
15K 78K

I (4

Note that Mi les_per_year is not indexed by Year. The principle of Constant value over unused
indexes implies that Mi les_per_year has the same value for each Year. Hence, the result is
the miles per year multiplied the number of years, in this case 5.

Finally, we define:
Variable Cost_per_mile := Total_cost/Total_miles

What if you want to extend this model to include Compact as a fourth Car_type? Open one of
the edit tables indexed by Car_type, say Miles_per_gal lon. Click the last Car_type, SUV,
to select that row (or column), and press Enter or the down-arrow key .. It says “Changing the
size of this index will affect table definitions of other variables. Change data in tables indexed by
Car_Type?” This warns that adding a new Car_type will affect all the edit tables indexed by
Car_type. Click OK, and it adds a new bottom row, with the same label SUV as the previous bot-
tom row, and with value 0. Double-click the index label in this bottom row, and type the new
Car_type, Compact, to replace it. Then enter its value, say 30 (miles/gallon).

I Edit Table of Miles per gallon {miles/gallon)

B |>
s Il —_—

Hybrid 45
Standard 28
suv 23
Compact 30

I (4

Now open the edit table for Maintenance_cost, and you will see a new row for Compact
already added, initialized to O in each cell. You just need to enter numbers for
Maintenance_cost for the Compact car, as shown here.

i anle A BNd e CO L]

7 Edit Table of Maintenance cost

i =

7 [ew__~p

2008 2009 2010 2011 2012 =

Hybrid [=10] oo a00 1200 1200
Standard 200 [=10] a00 1000 1200
sSUv a00 1000 1200 1400 1600
Compact [=10] oo a00 1200 1200

Next enter numbers for the Maintenance_cost for the Compact car.

Then enter a purchase price for the Compact car.

Analytica User Guide 157

Ch apter Arrays and Indexes Introducing indexes and arrays

Automatic propagation
of changes to index

158

[Edit Table of Purchase price
=
i D .4

Hybrid 24K o
Standard 22K
Suv 40K,
Compact 18K

>

Now you've entered the data for Compact Car_type into the three edit tables, and you're done.
All the computed tables automatically inherit the expanded index and do the right thing — without
you needing to make any change to their definitions. For example, Cost_summary now looks like
this.

@ Result - Cost summary E”Elg|
i Mid Value of Cost summary =
E Miles per year +F R
(Ml Cost summary <! “Totals” N
Horizontal Axis:l Year vI Key:l Car type -
10,000
E $8,000
£ .
£ §6,000
: L e PP PP T T T T T T T T TP T T T T T T T Y T FIT T T T T T T T T T T T T TP TTr I [T EIIIITTCIIIIIErY
n F4,000
7]
o §2,000
[&]
1]
2008 2009 2010 2011 2012
Year
Car type
= Hyhbrid — Standard — Sl Compact

Finally, let's compute the net present value cost as the objective, using the reducing function
Npv(discount, x, i). (See “Npv(discountRate, values, i)” on page 212.) We define:

Variable Discount_rate := 12%
Objective NPV_cost := NPV(Discount_rate, Total_cost by year, year)

Here is the final diagram, showing NPV_Cost.

Analytica User Guide

Chapter Arrays and Indexes

Introducing indexes and arrays

@ Diagram - Car Cost Model 4.0 update Q@E|

Cost per

Tatal miles ;
. mile

e 3

" Fuel cost : : : : . ;
PEryear : : : S

— -~ ~_ - | Totalcest |- = - DIi;?;nt

i Operating | ™, — | ; ,

: _ ; Cost per year : : : : : :

"""" _f/ Cost i [Total cost

: : - | summary L byyear

U R o Annual) T U R S
: : Furchaze deprecation : : : : : :
; ; price . ; ; ; ; ; ; ;

"""" Hyhrid rebate
rate
e 4| ' '

NP cost: [Definition w |[ear w]

Miles per
: year

Maintenance
cost

MNpw Discount_rated, Total_cost_by_year, “rear)

0 Result - NPY cost g@gl
isd

mid¥ | Mid Value of HPV cost

@ Horizontal Axis:l Miles per year v I Hey:| Car type - I

$32,000
$20,000
$28.000
$26,000 -
$24.000
$22.000
$20,000
$18.000
$16,000 T —
$14,000
$12,000 T T

4000 &0O00 7OoOo 8000 8000 10K 11k 12K 13K 14K 13K

NPY cost

Miles per year

Car type
= Hyhbrid — Standard s Compact

Monte Carlo sampling Almost any variable in Analytica can be uncertain — that is, probabilistic. Each probabilistic quan-

and Intelligent Arrays tity is represented by a random sample of values, generated using Monte Carlo (or Latin hyper-
cube) simulation. Each random sample is an array indexed by a special system variable Run. The
value of Run is a sequence of integers from 1 to Sample_size, a system variable specifying the
sample size for simulation. See “Appendix A: Selecting the Sample Size” on page 372. For most
operations and functions, Run is just another index, and so is handled just like other indexes by
the Intelligent Arrays. You can see it when you choose the Sample uncertainty view. In other
uncertainty views, such as Mean or CDF, the values displayed are computed from the underlying
sample. See “Uncertainty views” on page 33.

Analytica User Guide 159

Chapter Arrays and Indexes Introducing indexes and arrays

Progressive refinement

of a simple model

Summary of Intelligent

160

Arrays and array
abstraction

General principles of
Intelligent Arrays™

Exceptions to array
abstraction

As we developed this simple model, we refined it by adding indexes progressively. First, we
defined Car_type, then Year, and finally we changed Mi les_per_year from a single value to
a list of values for parametric analysis. Creating Cost_summary added a fourth index, consisting
of the four cost categories. It is often a good idea to build a model like this — starting with a simple
version of a model with no or few indexes, and then extending or disaggregating it by adding
indexes — and also sometimes removing indexes if they don’'t seem important.

This approach to development is sometimes called progressive refinement. By starting simple,
you get something working quickly. Then you expand it in steps, adding refinements where they

seem to be most useful in improving the representation. A more conventional approach, trying to
implement the full detail from the start, risks finding that it's just too complicated, so it takes a long
time to get anything that works. Or, you might find that some of the details are excessive — they
just weren't worth the effort.

Progressive refinement is a much easier in Analytica than in a spreadsheet and most other com-
puter languages — where extending or adding a dimension requires major surgery to the model

to add subscripting and loops. With Intelligent Arrays, to extend or add an index, you only need to
change edit tables or definitions that actually do something with the new index. The vast majority
of formulas generalize appropriately to handle a modified or new dimension without needing any
changes.

Analytica’s Intelligent Arrays make quite easy what would be very challenging in a spreadsheet or
in a conventional computer language which would force you to add loops and subscripts to every
array variable every time you add a dimension.

If you find yourself using a lot of subscripts or For loops (see “For and While loops and recursion”
on page 331), you are probably not using Intelligent Arrays properly. Take the time to understand
them, and you should find that you can greatly simplify your model.

Almost every operator, construct, and function in Analytica supports array abstraction, automati-
cally generalizing as you add or remove dimensions to their operands or parameters. (See
“Ensuring array abstraction” on page 336 for the few exceptions and how to handle them if you
want to make sure that your model fully supports this array abstraction.)

Omit irrelevant indexes: An expression need not mention any index that it does not operate
over.

A value is constant over unused index: A value (atom or array) that does not have i as a index
is treated as constant over each value of the unused index i (has the same value over all values
of i) by any construct or function that operates over that index.

Rows and columns are features of displayed tables, not arrays: You can choose which index
to display over the rows or columns. You (almost) never need to care about the order in which
indexes are used in an array.

The indexes of aresult of an expression contain the union of the indexes of its component
arrays: The result of an operation or expression contains the union of the indexes of any arrays
that it uses — that is, all indexes from the arrays, without duplicating any index that is in more
than one array. There are two unsurprising exceptions:

* When the expression contains an array-reducing function or construct, such as Sum(x, i) or
x[i=v], the result will not contain the index i over which it is reduced.

* When the expression creates an index, the result will also contain the new index.

To be more precise, we can define the behavior of Intelligent Arrays thus: For any expression or
function F(x) that takes a parameter or operand x that might be an array indexed by i, for all val-
ues v inindex i:

F(xLi=vD) = FCOLi=v]
In this way, Analytica combines arrays without requiring explicit iteration over each index.

The vast majority of operators, constructs, and functions fully support Intelligent Arrays — that is,
they generalize appropriately when their operands or parameters are arrays. However, very few

do not accept parameters that are arrays, notably the sequence operator (- .), Sequence() func-
tion, and While loop. When you use these, you need to take special care to ensure that your mod-

Analytica User Guide

Chapter Arrays and Indexes IF a THEN b ELSE c with arrays

els perform array abstraction conveniently when you add or modify dimensions. See “Ensuring
array abstraction” on page 336 for details.

IFa THEN b ELSE ¢ with arrays

To avoid evaluating all
of borc

Omitting ELSE

The IF a THEN b ELSE c (page 135) construct generalizes appropriately if any or all of a, b, and
c are arrays. In other words, it fully supports Intelligent Arrays. For example, if condition a is an
array of Booleans (true or false values), it returns an array with the same index, containing b or ¢
as appropriate:

Variable X = -2..2
If X > 0 THEN "Positive" ELSE IF X < O THEN "Negative" ELSE “"Zero"—
X p
-2 -1 0 1 2
‘Negative' | 'Negative' 'Zero' 'Positive’ 'Positive’

If b and/or c are arrays with the same index(es) as a, it returns the corresponding the values from
b or ¢ according to whether a is true or false:

IF X >= 0 THEN Sgrt(X) ELSE "Imaginary™—
X p

-2 -1 0 1 2
‘Imaginary' | ‘Imaginary’ 0 1 1.414

In this case, the expression Sqrt(X) is also indexed by X. The IF expression evaluates
Sqrt(X) for each value of X, even the negative ones, which return NAN, even though they are
replaced by Imaginary in the result.

When If a Then b Else cis evaluated, the expression a is first evaluated completely. If its
result is true, or if it results in an array where any value in the array is true, then the expression b
is evaluated completely as an array operation, meaning the expression is evaluated for all values
of all indexes contained within b. Similarly, if a is false or a is an array and any element is false,
the expression is c is evaluated in its entirety. Once both are computed, the appropriate values
are picked out of these results according to the result of a. Sometimes, you want to avoid evaluat-
ing elements of b or ¢ corresponding to elements of a that give errors or NULL results, to avoid
wasting computation time on intermediate results that won’t be used in the final result, or because
the computations cause evaluation errors, not just warnings. In such cases, you can use explicit
iteration, using a For or Whi le loop over index(es) of a. See “Begin-End, (), and “;” for grouping
expressions” on page 328.

If you omit the ELSE c part, it usually gives a warning when it is first evaluated.

M Question [X|

Waming:
The expression evaluation is attempting to use the "else” result from an
IF-THEN construct that does not have an ELSE clause.

Awaming occured while evaluating Variable Test. Do you wart to stop
evaluating to edit the definition 3

lgnore Wamings Cancel Edit Definition

If you click Ignore Warnings, it returns NULL for elements for which a is false:
IF X >= 0 THEN Sqrt(X)—
X p

-2 -1 0 1 2
«Null» «Null» 0 1 1.414

Analytica User Guide 161

Chapter Arrays and Indexes IF a THEN b ELSE ¢ with arrays

Tip

Caveats of conditional

side effects

The dimensions of the

result

IFALL a THEN b
ELSE c

IFONLY a THEN b
ELSE c

Summarizing IF, IFALL,

162

and IFONLY

After you have clicked Ignore Warnings, it does not give the warning again, even after you save
and reopen the model.

Usually, you should omit the ELSE c part of an IF construct only in a compound expression (see
“Begin-End, (), and “;” for grouping expressions” on page 328), when the IF a THEN b is not the
last expression, but rather is followed by ";". In this situation, the NULL result is not part of the result
of the compound expression, and it gives no warning, as shown in this example:
BEGIN
VAR A[] := Min([X,YD:
IF A<O THEN A:=0;
Sqrt(A)
END

In the expression above, the empty brackets following A define A as array with no indexes (i.e., as
atomic). Analytica will ensure that within the body of the expression where A is used, A will always
be atomic, even if X or Y are array-valued. To do this, Analytica might need to iterate the expres-
sion. If you feel compelled to embed an assignment inside a THEN or ELSE clause, you should
always make sure that the condition being tested is a scalar and not an array. In this case,
because A has been declared to be 0-dimensional, the expression A<O is guaranteed to be sca-
lar. If you cannot guaranteed that the IF clause will always be scalar, even if other indexes are
added to your model in the future, then you should avoid using assignment from within a THEN or
ELSE clause since Analytica evaluates IF-THEN-ELSE and an array operation. Without the
brackets declaring A to be scalar, the IF clause would say “IF any value of A is less than zero
THEN evaluate the assignment”, so the result would be an array of zeroes even if there is only a
single negative number in X and Y. A better way to encode a conditional assignment, which prop-
erly array abstracts and has the intended effect, is as follows:

BEGIN
VAR A := Min([X,Y]):
= IF A<O THEN O ELSE A;
Sqrt(A)
END

If a is an array containing some True and some False values, IF a THEN b ELSE c, evaluates
both b and c. The result contains the union of the indexes of all operands, a, b, and c. But, ifa is
an atom or array whose value(s) are all true (1), it does not bother to evaluate ¢ and returns an
array with the indexes of a and b. Similarly, if all atoms in a are false (0), it does not bother to eval-
uate b and returns an array with the indexes of a and c. This means that the values in the condi-
tion a can affect whether b and/or ¢ are evaluated, and which indexes are included in the result.

If you don’t want the dimensions of the result to vary with the value(s) in a, use the IFALL con-
struct. This is like the IF construct, except that it always evaluates a, b, and ¢, and so the result
always contains the union of the indexes of all of three operands.

IFALL requires the ELSE c clause. If omitted, it gives a syntax error.

IFALL has the advantage over IF (and IFONLY) that the dimensions of the result are always the
same, no matter what the values of the condition a. The downside is that if a is an array and all its
atoms are True (or all are False), it wastes computational effort calculating ¢ (or b) even though
its value is not needed for the result. IFALL also might waste memory (and therefore also time) by
including the index(es) that are only in ¢ (or b) even though the result has the same values over
those indexes. The standard IF construct might also waste some memory when all of the values
of array a are True (or all are False), because the result includes any index(es) of a that are not
indexes of b (or c), even though the result must be the same over such index(es).

In situations, where this is a concern, you can use a third conditional construct, IFONLY a THEN
b ELSE c. Like IF, when all atoms of a are True (or all False), it evaluates only b (or only c).
But, unlike IF, the result in these cases does include any index(es) of a that are not indexes of
b (or c, respectively). Thus, IFONLY can be more memory-efficient.

In most cases, you can just use IF without worrying about IFALL or IFONLY. The only reason to
use IFALL is when you want to avoid the possibility that the dimensions of results can vary with

Analytica User Guide

Chapter Arrays and Indexes Creating an index

values of inputs. The only reason to use IFONLY is when memory is tight and it's common for
condition a to be all true or all false.

To summarize the differences between these three constructs: If condition a is an atom or array
containing only true (only False) values, IF and IFONLY evaluate only b (only c), whereas IFALL
always evaluates both b and c. The result of IFONLY contains the indexes of only b (only ¢). The
result of IF contains the indexes of a and b (or c). The result of IFALL always contains the
indexes of a, b, and c, and so its dimensions do not depend on the values of a.

If condition a is an array containing mixed true and false atoms, all three constructs behave iden-
tically: They evaluate a, b, and c, and the result contains the union of the indexes of a, b, and c.

IFALL requires the ELSE part. It is optional for IF and IFONLY, but strongly recommended except
when it is one of multiple statements, and not the last, in a compound expression, enclosed in
parentheses or BEGIN ... END.

Creating an index

Anindex is a class of variable used to identify a dimension of an array. The same index can iden-
tify the same dimension shared by many arrays. Sometimes, variables of other classes, such as a
decision, can also be used as an index to identify a dimension of an array. For clarity, use an
index variable whenever possible.

You create an index much like any other variable:

Create an index node 1. Select the edit tool * ‘and open a Diagram window.
2. Drag the parallelogram shape | # | from the node palette to the diagram.
3. Type atitle into the new index node.
4. Open the definition attribute for the new index:

« Either double-click the index node to open its Object window

« Or, select the index node, open the Attribute panel (page 24) and select Definition
(page 108) from the Attribute menu.

5. Press the expr menu above the definition field, to see these options.

v @0 Ewpression

B List
E= List of Labelz
1.8 Sequence

E 2} Other..

(If the variable already has a definition, Analytica confirms that you wish to replace it. Click
OK to replace the definition with a one-element list.)

Define as a List 6. Select List (of numbers) or List of Labels according to whether you want to enter a list of
numbers or text values. It will display a list with one item in the definition field.

List icon for the expr popup
menu

[E ~]

Definition:

New one-element list

7. Click the cell to select it, and Type in a number for List or text for List of Labels.
8. Press Enter or down-arrow to add a cell for the next item. Type in its value.
9. Repeat until you have entered all the values you want.

Analytica User Guide 163

Chapter Arrays and Indexes

Creating an index

@ Object - Buying price = 1B]X]
Buying_price Units: § —

Title: Buying price

Description: Buying price of a house

| 100K |
| 250k |

L soox

Definition:

| (4

Values entered into a list

Autofill alist It gives the first cell of a list the default value of 1 (or the previous definition if it had one). When
you press Enter or down-arrow, it adds a cell adding 1, or the increment between the two preced-
ing cells, to the value of the preceding cell.

Expression view You can display a list or list of labels as a list view, the default view showing as a column of cells,
or as an expression view, showing it as a list of items between square brackets. Select
fear | from the toolbar to show the expression view. For example, here is a list of numbers in
each view.

List view Expression view
[1, 2, 3, 4, 5]

L EER R I NS

List of labels In a list of labels, every value is text. In the expression view, each label is enclosed in single quo-
tation marks.

List view Expression view
JAET— ["Alabama®, "Alaska", "Arizona", "Arkansas”]
Alaska
Arizana
Arkanzas

To include a single quote (apostrophe) as part of the text in a label in expression view, insert two
adjacent single quotes, or enclose in double quotes (see “Text values” on page 133):

[Fcan®"t","won""t","didn""t"]

Mixing numbers A list can include a mix of text and numbers. In both views the text is contained in single quotation
and text marks as shown below.

List view Expression view
1 [1, “Alabama®, 2, "Alaska"]
'‘Alabama’
2
‘Alaska’

164 Analytica User Guide

Ch apter Arrays and Indexes Creating an index

If you attempt to mix numbers and text in a list of labels, all the values are treated as text, as
shown below.

List view Expression view
1 ["1*, “Alabama®, =27, "Alaska"]
Alabatma
2
Alaska

Ti P Alist cell can contain any valid expression, including one that refers to other variables or one that
evaluates to an array. If you are defining an index object, whose sole purpose should be to serve
as an index and not as an array result, then each element should evaluate to a scalar; otherwise,
a warning will result. For general variables, the use of expressions that return array results is often
very useful.

Editing a list
You can edit a list by changing, adding, or deleting cells (list items).

Insert a cell Toinsert a cell anywhere other than at the end of the list, select a cell and choose Insert Rows
(Control+i) from the Edit menu. The value in the selected cell is duplicated in the new cell.

To add a cell at the end of the list, select the last cell and press Enter or the down-arrow key.

To insert several contiguous cells in the middle of the list, select the number of cells you want to
insert and choose Insert Rows (Control+i) from the Edit menu. It duplicates the value of the last
selected cell as the default for the new cells.

Delete a cell To delete one or more contiguous cells, select them and:

¢ Choose Delete Rows from the Edit menu.
¢ Or, just press Control+k or Delete.

Ti P If you add or delete a cell in a list that is an index of one or more edit tables, it will warn you that it
will change the corresponding slices of the tables (see “Editing a table” on page 171).

Navigating a list Use the up and down-arrow keys to move the cursor up and down the list, or simply click the cell
you want.

Defining an index as a sequence

Create alist with the To define an index as a list of equally spaced numbers, it is usually easier to select the Sequence
Sequence option fynction from the expr menu (instead of List).

epr B wpression

v = List
E=2 List of Labelz

f0 Ca

S equUence

¢ Other..

Then it shows the Sequence() function in the Object Finder (page 167).

Analytica User Guide 165

Chapter Arrays and Indexes Functions that create indexes

Tip

W Object Finder X
LiI:-rar_v:l Array b d I Find... |
T TR IR =]

rICE [start, end, stepsi;
Size Ul

)
= Slice (U LR
=5 Sorindex (D0 |
BEr Stepinterp (D&% 1)
25 Suhbindex (AU 1 v|
start end stepsize

Sequence | 1] | =0 | g
SequencelStart, End, Stepsize) returns a list of numbers from Start to End. If J
Stepsize iz not specified, it returns a list of successive integers. Citherwize, it
returns & list of numbers, each differing from the one before by Stepsize. |

Cancel (1] 4

After entering the Start, End, and Stepsize values, click OK; the definition field shows the
Sequence button with its parameters.

Definition: Sequence |{0,50,5)

For more see “Sequence(start, end, stepSize)” on page 167.

To change the start, end, or stepsize parameters of a sequence, click the Sequence button.

To define an index as a sequence of successive integers, you can use the “. .” operator in the
expression view, for example:

Index Year := 2000 .. 2012

See “m .. n" on page 167.

Functions that create indexes

[uq, Up, U3z, ... Uy]

166

Examples

It is usually easiest to define an index as a list, list of labels, or sequence, as described above
(see “Creating an index” on page 163). Sometimes, you need to define an index using a more
general expression, as a list of expressions, a list of variables, or a function such as Subset(),
Concat(), and Sortindex(). This section describes these and other functions that you can use to
create indexes.

A simple way to define an index is specify its definition as a list of values separated by commas
and surrounded by square brackets. The values can be numbers, text values, or other expres-
sions.

[8000, 12K, 15K]
[*VW", “"Honda®, "BMW"]

These lists are equivalent to using the List or List of Labels options in the expr menu, as
described in “Creating an index” on page 163.

Analytica User Guide

Chapter Arrays and Indexes Functions that create indexes

List of variables

Self index

Clickable titles or
identifiers in table

Tip

A list of variables contains identifiers of variables in square brackets, separated by commas. Usu-
ally, the simplest way to create a list of variables is to define the variable initially as an empty list,
for example:

Variable CompareVars := []
When you draw an arrow from a variable, A, into CompareVars, it will automatically add A as the
next item in the list:

CompareVars := [A]

Suppose you draw arrows from B and C, the definition will become:

CompareVars := [A, B, C]
When you draw an arrow from a variable already in the list, it removes it from the list. Suppose we
draw an arrow from B to CompareVars, it will become:

CompareVars := [A, C]

The result of CompareVars is an array of the values of the variables it contains, with a self index,
also called CompareVars, that usually shows the titles of the variables.

If any or all the variables contain arrays, the result contains the union of the indexes of the con-
tained variables. For example if A is an atom (not an array) and C is indexed by c, the result will
be indexed by 1. The slice of CompareVars for A will have the same value of A repeated for each
value of A. See “Compare a list of variables” on page 155 for an example.

The result will contain an extra index, a self index of CompareVars, comprising the list of the
variables.

Usually these display the titles of the variables in a table or graph result. (If you select Show by
Identifier from the Object menu (or press Control+y) it toggles to show the identifiers instead of
titles. If you double-click a title (or identifier) in a table, it will open the Object window for that vari-
able. The values in the self index are actually handles to the variables. See “Handles to objects”
on page 344 for more.

Returns a sequence of successive integers from m to n — increasing if n < m, or decreasing if n
> m. For example:

2003..2006 — [2003, 2004, 2005, 2006]
5 ..1- [5, 4, 3, 2, 1]

It is equivalent to Sequence(m, n).

The parameters n and m must be atoms, that is single numbers. Otherwise, it would result in a
non-rectangular array. See “Functions expecting atomic parameters” on page 337 on how to use
this in a way that supports array abstraction.

Sequence(start, end, stepSize)

Library

Examples

Creates a list of numbers increasing or decreasing from start to end by increments (or decre-
ments) of stepSize. stepSize is optional and must be a positive number. If you omit stepSize, it
uses increments of 1. start, end, and stepSize must be deterministic scalar numbers, not arrays.

You can also select this function using the Sequence option from the expr menu, as described in
“Create a list with the Sequence option” on page 165.

The expression m .. n using the operator **. _** is equivalent to Sequence(m, n, 1).
Array

If end is greater than start, the sequence is increasing:
Sequence(1,5) —

Analytica User Guide 167

Chapter Arrays and Indexes Functions that create indexes

Concat(l, j)

Subset(d)

When to use
Library

Example

CopylIndex(i)

Sortindex(d, i)

168

List view Expression view
[1,2,3,4,5]

LR N] N

If start is greater than end, the sequence is decreasing:
Sequence(5, 1) — [5, 4, 3, 2, 1]

If start and end are not integers, and you omit stepSize, it rounds them:
Sequence(1.2, 4.8) —» [1, 2, 3, 4, 5]

If you specify stepSize, it can create non-integer values:
Sequence(0.5, 2.5, 0.5) —» [0.5, 1, 1.5, 2, 2.5]

Returns a list containing the elements of index i concatenated to the elements of index j. Thus the
number of items in the result is the sum of the number of items in i and the number of items in j.
See “Concat(al, a2, i, j, k)" on page 197 for how to concatenate two arrays.

Index Yearl :-= 2006 .. 2008
Index Years2 := 2009 .. 2010
Index YearsAll :=Concat(i, j) — [2006, 2007, 2008, 2009, 2010]

Returns a list containing all the elements of d’s index for which d’s values are true (that is, non-
zero). d must be a one-dimensional array.

Use Subset() to create a new index that is a subset of an existing index.
Array
Subset(YearsAll < 2010) — [2006, 2007, 2008, 2009]

Makes a copy of the values of index i, to be assigned to a new index variable, global or local. For
example, suppose you want to create a matrix of distances between a set of origins and destina-
tions, which are each the same set of cities:

Index Origins

Definition:= ["London®", “New York®, "Tokyo®, "Paris®, "Delhi™]

Index Destinations

Definition:= Copylndex(Origins)

Variable Flight_times := Table(Origins, Destinations)

If you defined Destinations as equal to Origins, without using Copyindex(), Destina-
tions would be indexed by Origins, and the resulting table would have only one dimension
index. By defining Destinations with Copylndex(), it becomes a separate index, so that the
table has two dimensions.

Assuming d is an array indexed by i, Sortindex() returns the elements of index i, reordered so
that the corresponding values in d would go from smallest to largest value. The result is indexed

Analytica User Guide

Chapter Arrays and Indexes Defining a variable as an edit table

by i. If d is indexed by dimensions other than i, each “column” is individually sorted, with the
resulting sort order being indexed by the extra dimensions. To obtain the sorted array d, use this:

d[i=Sortindex(d, i)]
When d is a one-dimensional array, the index parameter i is optional. When omitted, the result is
an unindexed list. Use the one-parameter form only when you want an unindexed result, for

example to define an index variable. The one-parameter form does array abstract when a new
dimension is added to d.

Library Array

Examples Maint_costs —
Car_type P
VW Honda |BMW

1950 1800 2210

Sortlndex(Maint_costs, Car_type) —

Car_type P
VW Honda BMW
Honda VW BMW

Sortlndex(Maint_costs) —
Sortindex P

| | Honda] VW BMW]

Define Sorted_cars as an index node:
INDEX Sorted_cars := Sortindex(Maint_costs)
Maint_costs[Car_type = Sorted_cars] —

Honda |VW BMW
1800 1950 2210

Unique(a, i)
Returns a maximal subset of i such that each indicated slice of a along i is unique.

When to use Use Unique() to remove duplicate slices from an array, or to identify a single member of each
equivalence class.
Library Array
DataSet —
PersonNum w, Field P

LastName | FirstName Company
1 Smith Bob Acme
2 Jones John Acme
3 Johnson Bob Floorworks
4 Smith Bob Acme

Unique(DataSet, PersonNum) — [1, 2, 3]
Unique(DataSet[Field="Company®], PersonNum) — [1, 3]

Defining a variable as an edit table

To define a variable as an edit table, you choose Table from the expr menu above its definition:

1. Select the variable and open its definition using one of these options:
* Use the variable’s Object window.

Analytica User Guide 169

Ch apter Arrays and Indexes Defining a variable as an edit table

« From the Attribute panel of the Diagram window, select Definition from the Attribute
popup menu.
« Press Control+e.
2. Press the expr menu above the definition field and select Table.

e Eupression

B List

B3 List of Labels
& Probability Table
4 Distribution

= Chaice

¢ Other...

If it already has a definition, click OK to confirms that you wish to replace it.

Question

":) Replace current definition with a Table?

\‘_ﬁ
Ok | Cancel |

3. ltopensthe Indexes dialog so you can select the table’s indexes (dimensions). It already lists
under Selected indexes any index variables from which you have drawn an arrow to this
variable. You can keep them, remove them, or add more indexes.

Indexes for the table

Check to show all variables

Preview: Indexes: Al ariables Selected Indexes:
Values of the City L/ grestings {7 House size J

selected Suburt .
variable Lburhs

Rural |

A lizt of three possible locations for & house)
Cancel Ok
Selected variable Description of selected Move button

variable

4. Select a variable from the Indexes list and click the move button il or double-click the
variable, to select it as an index of the table. Repeat for each index you want.

5. Click OK to create the table and open the Edit Table window (page 171) for editing the table’s
values.

Indexes dialog
The Indexes dialog contains these features (see figure above):

Preview A list of the values of the selected index variable. If the selected variable
is not a list, it says "Can't use as index."

170 Analytica User Guide

Chapter Arrays and Indexes Editing a table

To create an index

To remove an index
from an array

System index variables
Run and Time

Editing a table

The Edit Table window

Edit a cell

All Variables check- If checked, the Indexes list includes all variables in the model. If not

box checked, it lists only variables of the class Index and Decision, plus
the variable being defined (Self) and Time. If you select Self as an
index, the variable itself holds the alternative index values.

Selected Indexes A list of all indexes already selected for this variable.

New index Select to create a new index.

You can create an index variable in the course of creating a table, in the following way:

1. Select new index from the Indexes list in the Indexes dialog.
2. Enter atitle for the index.

Selectnew | Farryyem. |

index
M Create

Enter index title

Click the Create button.

To make the new index an index of the table, click the _*> | button.

Enter the values of the Index in the Edit Table window (see the following section).
Select the index from the Selected Indexes list.

Click the "<« | button.

Removing an index leaves the subarray for the first item in that index as the value of the entire
array.

e o

Analytica includes two system index variables: Run and Time. You can generally treat these vari-
ables like any index variable.

Run is the index for the array of sample values for probabilistic simulation. You can examine the
array with the sample uncertainty mode (page 37) or the Sample() function (page 266).

Time is the index for dynamic simulation (page 281). It is the only index permitted for cyclically
dependent modeling.

To open the Edit Table window, click the Edit Table button in either:
¢ The Object window (page 23)
¢ The Attribute panel (page 24) of the diagram
In the Attribute panel, select Definition (page 108) from the Attribute popup menu.

The Edit Table window looks much like the Result window table view (page 32). The difference
is that you can add indexes and edit the values in cells.

X, - [B]x]|
i Edit Table of Buying Price ($K)
| House location ™ I

><

. ~ | House size b ID
Smiall Large

City 300K OOk,

Suburbs 250K, 400K

Rural 100K 250K,

Click the cell, and start typing to replace what'’s in it. To add to what's there, click three times to get
a cursor in the cell, and type. You can use left-arrow and right-arrow keys to move the cursor. See

Analytica User Guide 171

Chapter Arrays and Indexes Editing a table

Tip

Select a cell

Select arange of cells

Copy and paste a cell or

region

Accept

Cancel

Copy and paste to or
from a spreadsheet

Copy an entire table

“Shortcuts to navigate and edit a table” on page 177 for more. Press Enter to accept the value
and to select the next cell, or click in another cell.

You can enter an expression into a table cell with operations, function calls, and so on. But, if the
expression is complex, it's easier to enter it as the definition of a new variable, and then just type
the name of the variable into the table.

Click the cell once.
Drag the cursor from a cell at one corner of a rectangular region to the cell at the opposite corner.

You can copy a cell or a range (two-dimensional rectangular region) of cells from a table or paste
a cell into a region, just as with a spreadsheet:

1. Select the source cell or region as above, and choose Copy from the Edit menu or press
Control+c.

2. Select the destination cell (or top-left cell of the destination region), and choose Paste from
the Edit menu or press Control+v.

If you select a destination region that is n times larger (width, height, or both) than the source cell
or region, it repeats the source n times in the destination.

Click to accept all the changes you have made to the table. If you close a table, it also
accepts the changes, unless you click [].

Click to cancel all the changes you have made to the table since you opened it or last clicked
:

Copy and paste of a cell or region works much the same from a spreadsheet to an Analytica table
or vice versa. If necessary, you can easily pivot the Analytica table so its rows and columns corre-
spond with those in the spreadsheet. It copies numbers in exponential format with full precision,
no matter what number format is used in the table, so that other applications can receive them
with no problems.

To copy a table, including its row and column headers, click the top-left cell to select the whole
table. You can also copy a table with more than two dimensions: Select Copy table from the Edit
menu. When you paste into a spreadsheet, it includes the name of the table, and all indexes,
including the slicer index(es) for the third and higher dimensions.

Editing or extending indexes in an edit table

172

Edit acell in arow
or column index

Append
arow

Append
a column

Insert arow
or column

One convenient aspect of Intelligent Arrays is that you can edit and extend the indexes of an
array right in the edit table, to change index values, insert or remove rows or columns, or, more
generally, subarrays.

This works for an index defined as a list of numbers or list of labels. If an index is defined in
another way — for example asm .. nor Sequence(x1, x2, dx) — you must edit the origi-
nal index. Either way, all edit tables that use the changed index are automatically modified
accordingly. See “Splice a table when computed indexes change” on page 173 for more informa-
tion.

To edit or extend an index, either you must be in edit mode & ‘ or the index variable you want to
modify must have an input node. See “Creating an input node” on page 121.

Click the cell once to select its row or column. Then double-click the cell to select its contents.
Start typing to replace the text or number. Remember, the same change happens to all tables that
use that index.

Click the bottom element of the row index to select the bottom row, and press the down-arrow
key.

Click the rightmost element of the column index to select the right column, and press the right-
arrow key.

1. Click the row or column header to select the row or column before which you wish to insert a
new one.

Analytica User Guide

Chapter Arrays and Indexes Splice a table when computed indexes change

Delete a row
or column

Tip

Tip

Add an index

Remove an index

Tip

2. Select Insert Rows (or Insert Columns) from the Edit menu, or press or Control+i.

Normally, the new row or column contains zeros. You can change this default with the system
variable Sys_tableCel IDefault. You can also set table-specific default values, using the
TableCel IDefaul t attribute. See “Splice a table when computed indexes change” on page 173
for details.

1. Click the row or column header to select the row or column you wish to delete.
2. Choose Delete Rows or Delete Columns from the Edit menu, or press Control+k.

When you try to add an item to an index or delete an item from an index that is also used by another
edit table, it warns you that “Changing the size of this index will affect table definitions of other
variables.” and gives the option of whether to continue. Adding an item will add a new slice
containing zeros, just as it does for the one you are editing. Similarly, deleting an item will delete
a slice from these other edit table.

If you intend your model to be used by end users with the Player or Power Player editions (that are
fixed in browse mode) or intend to save your model as browse-only (if you have the Enterprise
Edition), you can decide whether you want to allow your end users to be able to edit indexes as
described above. Create an input node for each index that you want to let them change. Or don't
to prevent them from changing an index.

To add an index, use one of these two methods:

« Draw an arrow from the index to the node containing the table. When it asks if you want to
add the index as a new dimension of the table, answer Yes.

« Click # inthe edit table to open the Indexes dialog (page 170). Double-click the index you
want to add, and click OK.

When adding a new dimension to an edit table, it copies the values of the table to each new sub-
array over the new index. Thus, the expanded table has the same values for every element of the
new index. This has no effect on other edit tables.

To remove an index, use one of these two methods:

« Draw an arrow from the index to the node containing the table. When it asks if you want to
remove the index as a dimension of the table, answer Yes.

¢ Or, cIick| F J | in the edit table to open the Indexes dialog (page 170). Double-click the index
you want to remove, and click OK.

When removing a dimension from an edit table, it replaces the entire table by its subarray for the
first value of the index you are removing. It deletes all the rest. Be careful, because you will lose
all the data in the rest of the table! This has no effect on other edit tables.

Splice a table when computed indexes change

A computed index is an index that depends on other variables (that is, not an explicit list of num-
bers or labels). Computed indexes use functions that return indexes, such as Sequence(), Con-
cat(), or Subset(), for example:

Index Year := Start_year .. Horizon_year
Index K := Concat(i, j)
Index S := Subset(Year < 2002)

Splicing is what happens to an editable table (table, determtable, or prob table) when it uses a
computed index that changes because of a change to one of its inputs. The change can cause
slices to be added, deleted, or reordered. By default, if the changed index has an item with the
same value (number or text) as the previous version, all editable tables retain the old data for the
slice identified by that item, even if items are removed, reordered, or added. For example:

Analytica User Guide 173

Chapter Arrays and Indexes Subscript and slice of a subarray

Variable Start_year := 2005

Index Year := Start_year .. (Start_year+2)
Variable Revenues := Table(Year)(100, 200, 300)
Revenues—

Year P

2005 2006 2007
100 200 300

Suppose, you change:
Start_year := 2006

Then by default, Revenues will change to:
Year P

2006 2007 2008
200 300 0

Thus, it loses the cell for 2005. Cells for 2006 and 2007 retain their original values, and it adds a
new cell with default O for the new year, 2008. This is called associational correspondence,
because it retains the association between index label and value, even if the positions change.

Alternatively, if you change one or more index values to new text labels or numbers, it retains the
same values of for the nth slice, even though the index value changes. This is called positional
correspondence, because it retains correspondence where the nth position contains the same

value.

The default splicing behavior is mixed correspondence, preserving associational correspon-
dence where labels are the same, and preserving positional correspondence where possible oth-
erwise. It is possible to change this splicing behavior for each editable table to pure
associational correspondence — retaining values only where index values are the same — or
pure positional correspondence — going only by position in the index, irrespective of index val-
ues. See attribute CorrespondenceMethod in the Analytica wiki for details.

Subscript and slice of a subarray

These constructs and functions let you select a slice or subarray out of an array.

x[i=v]: Subscript construct

174

Indexing by name
not position

This is the most common method to extract a subarray:

x[i = v]
It returns the subarray of x for which index i has value v. If v is not a value of index i, it returns
NULL, and usually gives a warning.

If x does not have i as a index, it just returns X. The reason is that if an array x is not indexed by i,
it means x is constant over all values of i. (The principle is described in “Constant value over an
index not in array” on page 156.)

You can apply the subscript construct to an expression, simply by putting the square bracket
immediately after the expression:

(Revenue - Cost)[Time = 2010]
You can subscript over multiple dimensions, for example:
x[i=v, j=u]
The ordering of the indexes is arbitrary, so you get the same result from:

x[j=u, i=v]

Analytica User Guide

http://lumina.com/wiki/index.php/CorrespondenceMethod

Chapter Arrays and Indexes Subscript and slice of a subarray

Subscript(x, i, v)

Indexing by name means that you don’t have to remember or use any intrinsic ordering of indexes
in an array, such as rows or columns, inner or outer, common to most computer languages.

The value v can be an array with some index other than i of values from the index i. For example,
v might be a subset of i. In that case, the result is an array with the index(es) of v containing the
corresponding elements of x.

This function is identical to the subscript construct x[i=v], using different syntax.

x[@i=n]: Slice construct

Mixing subscript and
slice constructs

Slice(x, i, V)
Slice(x, n)
Tip
Library
Examples

The slice construct has an @ sign before the index. It is different from the subscript construct in
that it refers to the numerical position rather than associating the value of index i. It returns the nth
slice of x over index i:

x[@i=n]
The number n should be an integer between 1 (for the first element of index i) and Size (i) for

the last element of i. If n is not an integer in this range, it returns NULL, and returns a warning
(unless warnings have been turned off).

Like the subscript construct, it can slice over multiple indexes, for example:
x[@i=n, @j=m]
And also like the subscript construct, the ordering of the indexes is arbitrary.

You can mix slice and subscript operations in the same expression in any order:
x[@i=1, j=2, k=3]

This function is identical to the slice construct x[@i=Vv], using different syntax.

If Slice() has only two parameters, and x has a single dimension, it returns the nth element of
x. For example:

Index Quarters := "Q" & 1..4
Slice(Quarters, 2) —» "Q2*
This method is the only way to extract an element from an unindexed array, for example:
Slice(2000..2003, 4) — 2003
It also works to get the nth slice of a multidimensional array over an unindexed dimension, for
example:

Slice(Quarters & * * & 2000..2003, 4) — Array(Quarters, ["Q1 2003",
"Q2 2003", "Q3 2003", "Q4 2003°1)

If x is a scalar, or if x is an array with two or more indexed dimensions and no unindexed
dimensions, Slice(x, n) simply returns x.

Array

Here, Analytica returns the values in Cost corresponding to the first element in Car_type, that
is, the values of VW:
Slice(Cost, Car_type, 1) —
Mpg P
26 30 35
2185 1705 1585

Analytica User Guide 175

Chapter Arrays and Indexes Choice menus in an edit table

Here, n is an array of positions:
Slice(Cost, Car_type, [1, 2]) >

Mpg P
26 30 35
1 2185 1705 1585
2 2810 2330 2210

Preceding time slice: x[Time-1]
x[Time-n] refers to the built-in index Time (see “The Time index” on page 282). It returns the
value of variable x for the time period that is n periods prior to the current time period. This func-
tion is only valid inside the Dynamic() function (page 282).

Choice(i, n, inclAll)
Appears as a popup menu in the definition field, allowing selection of the nth item from i (see
“Creating a choice menu” on page 121). Choice() must appear at the topmost level of a definition.
It cannot be used inside another expression. The optional inclAll parameter controls whether the
"All" option (n=0) appears on the popup (inclAll defaults to True).

Examples Choice(Years, 2) — 1986

If n=0, and inclAll is true, it returns all values of i:

Choice(Years, 0, 1) -
Years P

| | 1985] 1986] 1987] 1988]

Choice menus in an edit table

You can include a drop-down (pull-down) menu in any cell of an edit table to let end users select
an option for each cell. Here is an example, in browse mode.

® Edit Table - Project ratings E”El@l

Edit Table of Project ratings
X |t :
g Criteria W P Worst
Expected value Strategicfit Staff skills Poar -]
Integrated subsystems $1.500000 Fair - Poor W Fair
Acronymics 52500000 [Good w || Excellentw | G00d
Renewable dynamics F3.000000 | Excellentw Good W Outstanding

You use the Choice() function (page 176) in the edit table cells, similar to using Choice to specify
a single menu for a variable:

1. Create a variable X as an edit table, in the usual way, selecting Table from the expr menu
above its definition.

2. Create anindex variable, e.g., k, containing the list of options you want to make available from
the menu(s), usually as a list of numbers or a list of labels.

3. Inthe edit table of X, in edit mode, enter Choice(k, 1, 0) into the first cell that you want
to contain a menu. The second parameter 1 means that the first element of k is the default
option. The third parameter O means that it does not show All as an option, normally what you
want.

4. Copy and paste Choice(k, 1, 0) from the first cell to any others you want also to contain
the menu. You can also use other indexes than k if you want to include menus with other
options. Here is an example viewed in edit mode, with drop-down menus in some but not all
cells.

176 Analytica User Guide

Chapter Arrays and Indexes

Shortcuts to navigate and edit a table

§ Edit Table - Project ratings

£7 | Edit Table of Project ratings
.
i [Cikeiia_~
Expected value Strategic fit Staff skills Public goodwill =]
ntegrated subsystems £1,500000 Choice(Options 300 Choice(Cptions 200 Choice(Options 6 0)
Acronymics $2,500000 Cholce(Oplions 4,0) Cholce{Options 407 Choce(Options 5,00
Renewable cs 3000000 Choice(Opions, 500 Choics{Options 4.0) Choice(Options,1,0)

5. Select X, then select Make Input from the Object menu to make an input node for it. Move
the input node to a good location.

Ti P The variable containing the edit table with menus must have an input node — otherwise, you won't
be able to select from the menus or edit other cells in browse mode.

Shortcuts to navigate and edit a table

These mouse operations and keyboard shortcuts let you navigate around a table, select a region,
and search for text. They are the same as in Microsoft Excel, wherever this makes sense. Con-
trol+Page Up and Control+Page Down are exceptions.

Mouse operations

The current cell is highlighted, or the first cell you selected in a highlighted rectangular region. In a
region, the anchor cell is the corner opposite the current cell. If you select only one cell, the
Anchor and Current are the same cell.

Mouse Click
Mouse Shift+Click

Mouse drag

Mouse wheel

Control+mouse wheel

Click in a cell to make it the current cell.
Select the region from the previous anchor to this cell.

Select the region from the cell in which you depress the left mouse
button to the cell in which you release the button.

Scroll vertically without changing the selection.

Scroll horizontally without changing the selection.

Shortcuts to edit atable These shortcut keys speed up editing a table. Inserting and deleting rows and columns works
only if the index(es) are defined as an explicit list, not if it is computed or a sequence:

Search atable

down-arrow
left-arrow

Control+i

Control+k

Control+v

Control+f

Control+g

Analytica User Guide

If you have selected the last row, add a row.
If you have selected the right column, add a column.

If you have selected a row header, insert a row. If you have selected
a column header, insert a column.

Delete a selected row or column.

Paste copied cells from the clipboard into the table into the selected
region. If you copy a region and have selected a single cell, it pastes
into the region with the current cell as the top-left, if it fits. If you paste
a cell or region into a larger region, it repeats the copied material to
fill out the destination region.

Open the Find dialog to search for text in the table. Search from the
current cell and select the first matching cell, if any.

Repeat the previous Find, starting in the next cell.

177

Chapter Arrays and Indexes

178

Arrow keys

Home key

Page key

Other keys

arrow (right, left, up,
down)

Shift+arrow

Control+arrow

Shift+Control+arrow

End, arrow
End, Shift+arrow

Home

Control+Home
Control+End

Shift+Control+Home

Page Up, Page Down

Control+Page Up,
Control+Page Down

Shift+Page Up,
Shift+Page Down

Shift+Control+Page Up,
Shift+Control+Page
Down

Tab
Shift+Tab
Enter, Shift+Enter

Return

Shift+Return

Analytica User Guide

Shortcuts to navigate and edit a table

Move one cell in the given direction. At the end of row, right arrow
wraps to the start of the next row. At the end of the last row, it wraps
to top-left cell. Similarly, for the other keys.

Move the current cell one cell in the given direction. The Anchor cell
stays put, causing the selected region to grow or shrink. It does not
wrap.

Move to the end of row or column in the given direction.

Move current cell to the end of row or column in the given direction,
leaving the Anchor where it is, causing the selected region to grow
(or flip).

Two key sequence. Same as Control+arrow.

Two key sequence. Same as Shift+Control+arrow.

Move the anchor to the first column, and sets the current cell to be
the anchor (so only one cell is selected). If you are in the row
headers, moves the anchor and current to the first row.

Select the top-left cell in the table. (Selects one cell.)
Select the bottom-right cell in the table. (Selects one cell.)

Select the region between the anchor and the top-left cell. (Leaves
current as top-left.)

Move the current cell up or down by the number of rows visible in the
window, and scrolls up or down to show that cell. (Selects one cell.)

Move the current cell left or right by the number of columns visible in
the window, scrolling horizontally to show the new current cell. (This
is not the same as Excel, in which Control+Page Up, Control+Page

Down toggle between worksheets. Since we don't have worksheets,
these do something else useful.)

Move the current cell by the number of rows or columns that currently
display on the screen, and scroll vertically by one page. Anchor stays
the same, so that the currently selected region expands or shrinks by
one page length.

Same as Shift+Page Up, but horizontally rather than vertically.

Move one cell right. Same as right arrow.
Move one cell left. Same as left arrow.

If editing, accept change, selection remains on cell just edited. If not
editing, but in edit mode, current cell becomes anchor cell and begin
editing that cell.

If editing, accept changes. Move anchor down one cell, wrapping to
top of next column if anchor is at the bottom. Set current cell to
anchor (so only one cell is selected). If not editing, just move, do not
start editing.

If editing, accept changes. Move anchor cell up one cell, wrapping to
bottom of previous column if at top. Set current to anchor, so only one
cell is selected.

Chapter Arrays and Indexes Shortcuts to navigate and edit a table

Control+a Select all (body) cells. If a row/col header is selected, selects all
rows/cols.

Analytica User Guide 179

Chapter Arrays and Indexes Shortcuts to navigate and edit a table

180 Analytica User Guide

O FTolfsIg A More Array Functions

This chapter describes a variety of more advanced array functions,
including functions that:

« Create arrays (page 182)
¢ Reduce the number of dimensions in an array (page 185)

e Transform an array into another with the same dimensions
(page 191)

« Interpolate values from arrays of x and y values (page 195)
e Other array functions (page 197)

« DetermTables (page 199)

e SubTables (page 202)

« Work with matrices (page 202)

Chapter More Array Functions

Example variables

Functions that create arrays

This chapter describes several classes of function and other constructs that work with arrays. If
you have not already ready it, we recommend that you read “Introducing indexes and arrays” on
page 144 in the previous chapter, before reading about the functions in this chapter.

Several examples in this chapter refer to these indexes and array variables:

Index Car_type = ["VW=,

"Honda",

Index Years := 1985 .. 1988
Index Mpg := [26, 30, 35]

Index Time := 0 ..4
Variable Cost :=

Mpg W, Car_type P

VW Honda |BMW
26 2185 2810 3435
30 1705 2330 2955
35 1585 2210 2835

Variable Car_prices :=
Car_type W, Years p

"BMW™]

1985 1986 1987 1988

VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K
Variable Cost_in_time :=
Mpg W, Time p, Car_type = VW

0 1 2 3 4
26 2185 2294 2409 2529 2656
30 2810 2951 3098 3253 3416
35 3435 3607 3787 3976 4175
Mpg W, Time p, Car_type = Honda

0 1 2 3 4
26 2385 2314 2529 2649 2856
30 2910 3041 3238 3343 3526
35 3535 3847 3897 4166 4365
Mpg W, Time p, Car_type = BMW

0 1 2 3 4
26 3185 3294 3409 3529 3656
30 3810 3951 4098 4253 4416
35 4435 4607 4787 4976 5175

Functions that create arrays

Usually, the most convenient way to create an array of numbers or text values is as an edit table.
When viewing the definition of the variable, choose Table from the expr menu to create an edit
table (see “Defining a variable as an edit table” on page 169). If you want to define a table by
explicitly listing its indexes and providing expressions to generate its values or subarrays, you

182

might find Array() more convenient.

Analytica User Guide

Chapter More Array Functions Functions that create arrays

An array @ Object - Car prices

viewed as a
() Variable ¥ | Car_prices Units: 3

table
Title: Car prices

Table - Description:
- g}

Definition: Edit Table Trdsxed by Car type, Wears
P ~ — - _

l dble dr p e L] |_
£7 | Edit Table of Car prices (§)

[Cartype ¥]
= =
Y e b

1985 1986 1987 1988 - |

W 2000 5000 5500 10K]|
Honda 12K 13K 14K 14.5K|
Volkswsgen | 12« 2z PR

If you select expr from the expr menu, it displays it as a table expression in the Definition field
(rather than a separate edit table), listing the indexes and values.

An array
viewed as an

expression i) Variable W | Car_prices 1

Title: Car prices

@ Object - Car prices le@le

Description:

expr menu LE Dl

Definition: TablsiCar_tvpe vears)(
2000,3000,9500, 10K,
2K, 12K 14K, 14,50, —
18K 20K 21K 22K

Array(il,i2, ... in, a)
Assigns a set of indexes, i1, i2, ... in, as the indexes of the array a, with i1 as the index of the out-
ermost dimension (changing least rapidly), i2 as the second outermost, and so on. a is an expres-
sion returning an array with at least n dimensions, each dimension with the number of elements
matching the corresponding index. You can use array to change the index variable(s) from one to
another with the same number(s) of elements. Array() is one of the few places where you actually
need to worry about the order of the indexes in the array representation.

Use Array() to specify an array directly as an expression. Array() is similar to Table() (page 185);
in addition, it lets you define an array with repeated values (see Example 3), and change indexes
of a previously defined array (see Example 4).

Library Array

Example 1 Definition viewed as an expression:
Index Car_type := ["VW", “Honda®, "BMW"]
Array(Car_type, [32, 34, 18])

Analytica User Guide 183

Chapter More Array Functions Functions that create arrays

184

Example 2

Example 3

Example 4

Tip

Definition viewed as a table:
Car_type P

VW Honda BMW
32 34 18

If an array has multiple dimensions, then the elements are listed in nested brackets, following the
structure of the array as an array of arrays (of arrays..., and so on, according to the number of
dimensions).
Definition viewed as an expression:

Array(Car_type, Years, [[8K, 9K, 9.5K, 10K],

[12K, 13K, 14K, 14.5K], [18K, 20K, 21K, 22K]])
Definition viewed as a table:

Car_type ¥, Years P

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

The size of each array in square brackets must match the size of the corresponding index. In this
case, there is an array of three elements (for the three car types), and each element is an array of
four elements (for the four years). An error message displays if these sizes don’t match. See also
“Size(u)” on page 199.

If an element is a scalar where an array is expected, Array() expands it to create an array with the
scalar value repeated across a dimension.

Definition viewed as an expression:
Array(Car_type, Years, [[8K,9K,9.5K,10K], 13K, [18K,20K,21K,22K]])

Definition viewed as a table:
Car_type ¥, Years P

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 13K 13K 13K 13K
BMW 18K 20K 21K 22K

Use Array() to change an index of a previously defined array.
Index Car_model := ["Jetta®, “Accord®", "3207]
Variable Table_a:= Table(Car_type) (32, 34, 18)
Variable Table_b:= Array(Car_model, Table_a) —
Car_model b

Jetta Accord |320
32 34 18

There are some significant disadvantages to using the Array() function to change the index of an
array in the fashion demonstrated in Example 4. Specifically, if a second dimension were later
added to Table_a, the index that the Array() function changes might not be the one you intended.
The preferred method for changing the index, which does fully generalize when Table_a has
many dimensions, is to use the slice operator (see Tip on re-indexing) as follows:

Table_a [@Car_type = @car_model]

Analytica User Guide

Chapter More Array Functions Array-reducing functions

Table(il, i2, ... in) (ul, u2, u3, ... um)

Library

Example 1

Example 2

Example 3

Array-reducing

This function is automatically created when you select Table from the expr menu to create an edit
table. You can view it as an expression in this form in the definition of the variable by selecting
expression from the expr menu. It. creates an n-dimensional array of m elements, indexed by the
indexes i1, i2, ... in. In the set of indexes, 11 is the index of the outermost dimension, varying the
least rapidly.

The second set of parameters, ul, u2 ... um, specifies the values in the array. The number of val-
ues, m, must equal the product of the sizes of all of the dimensions.

Each u is an expression that evaluates to a number, text value or probability distribution. It can
also evaluate to an array, causing the dimensions of the entire table to increase. u cannot be a lit-
eral list.

Both sets of parameters are enclosed in parentheses; the separating commas are optional except
if the table values are negative.

Use Table() to specify an array directly as an expression. Table() is similar to Array() (page 183);
Table() requires m numeric or text values.

A definition created as a table from the expr menu uses Table() in expression view.
Array
Definition viewed as an expression:

Table(Car_type) (32, 34, 18)

Definition viewed as a table:
Car_type P

VW Honda BMW
32 34 18

Definition viewed as an expression:

Table(Car_type, Years)

(8K, 9K, 9.5K, 10K, 12K, 13K, 14K, 14.5K, 18K, 20K, 21K, 22K)
Definition viewed as a table:

Car_type ¥, Years P

1985 1986 1987 1988
VW 8000 9000 9500 10K
Honda 12K 13K 14K 14.5K
BMW 18K 20K 21K 22K

A table created with blank (zero) cells appears in expression view of the definition without the sec-
ond set of parameters:

Table(Car_type, Years)

It looks like this when viewed as an edit table:
Car_type w, Years P

1985 1986 1987 1988
VW 0 0 0 0
Honda 0 0 0 0
BMW 0 0 0 0

functions

An array-reducing function operates across a dimension of an array and returns a result that
has one dimension less than the number of dimensions of its input array. When applied to an
array of n dimensions, a reducing function produces an array that contains n-1 dimensions.
Examples include, Sum(x, i), Product(x,i), Max(x, i), Min(x, i), and others described below. The

Analytica User Guide 185

Chapter More Array Functions Array-reducing functions

186

Examples

Tip

Reducing over an
unused index

Elements that
are ignored

subscript construct x[i=v] and related subscript and slice functions also reduce arrays by a
dimension (see “Subscript and slice of a subarray” on page 174).

The function Sum(x, i) illustrates some properties of reducing functions.

Sum(Car_prices, Car_type) —

Years P
1985 1986 1987 1988
38K 42K 445K 46.5K
Sum(Car_prices, Years) —
Car_type P
VW Honda |BMW
36.5K 53.5K 81K

Sum(Sum(Car_prices, Years), Car_type) — 171K

See “Example variables” on page 182 for example array variables used here and below.

The second parameter, i, specifying the dimension over which to sum, is optional. But if the array,
X, has more than one dimension, Analytica might not sum over the dimension you expect. For this
reason, it is safer always to specify the dimension index explicitly in Sum() or any other array-
reducing function.

If the index, i, is not a dimension of x, Sum(x, i) returns x unreduced (i.e., with the same number
of indexes), but multiplied by the size (number of elements) of i. The reason is that if x is not
indexed by i, it means that it has the same value for all values of i. This is true even if x is an atom
with no dimensions:

Variable x := 5
Sum(x, Car_type) — 15

This is because Car_type has three elements (3 x 5 = 15). For Product:
Product(x, Car_type) — 125

That is, it multiplies x three times (53 = 125).

In this way, if we later decide to change the value for x for each value of Car_type, we can rede-
fine x as an edit table indexed by Car_type. Any expression containing a Sum() or other reduc-
ing function on x works correctly whether it is indexed by Car_type or not.

The array-reducing functions described in this section ignore elements of an array that have the
special value Null. For example, the Average(x,i) function sums all the non-null elements of x
and divide by the number of elements that are not null.

When a NaN value (signifying an indeterminate number) appears as an element of an array, the
result of the function that operates on the array will usually be NaN as well. NaN values result
from indeterminate operations such as 0/0, and the fact that they propagate forward in this fash-
ion helps ensure that you will not accidentally compute an indeterminate result without realizing it.
However, in some cases you might wish to ignore NaN values in an array-reducing operation. The
array-reducing functions Sum, Product, Average, Min, and Max all accept an optional parame-
ter, ignoreNaN that can be set to True. IgnoreNan requires a named-parameter syntax, for
example:

Max(x, i, ignoreNaN:True)
When you operate over an array containing some text and some numeric values, the Sum, Min

and Max functions can be instructed to ignore all the non-numeric values using an optional
ignoreNonNumbers parameter, for example:

Max(x, i, ignoreNonNumbers:True)

Analytica User Guide

Chapter More Array Functions Array-reducing functions

Reducing over The array-reducing functions Sum, Product, Average, Min, Max, ArgMin, and ArgMax all allow
multiple indexes you to specify more than one index as a convenient way to reduce over multiple indexes in a sin-
gle call. For example:

sum(x,i,j,k)
This is equivalent to:
Sum(Sum(Sum(x,1),j),k)

Sum(x, i)
Returns the sum of array x over the dimension indexed by i.
Library Array

Examples Sum(Car_prices, Years) —
Car_type P

VW Honda BMW
36.5K 53.5K 81K

See “Example variables” on page 182 for example array variables used here and below.

Product(x, 1)
Returns the product of all of the elements of x, along the dimension indexed by i.

Library Array

Examples Product(Cost, Mpg) —
Car_type P
VW Honda |BMW

5.905G| 14.47G| 28.78G

Average(x, i)
Returns the mean value of all of the elements of array x, averaged over index i.
Library Array

Examples Average(Car_prices, Car_type)—
Years P

1985 1986 1987 1988
12.67K 14K| 14.83K 15.5K

Max(x, 1)
Returns the highest valued element of x along index i.
Library Array

Examples Max(Car_prices, Years) —
Car_type P

VW Honda BMW
10K 14.5K 22K

To obtain the maximum of two numbers, first turn them into an array:
Max([10, 5]) — 10

See “Example variables” on page 182 for example array variables used here and below.

Analytica User Guide 187

Chapter More Array Functions Array-reducing functions

Min(x, i)
Returns the lowest valued element of x along index i.
Library Array

Examples Min(Car_prices, Years) —
Car_type P

VW Honda BMW
8000 12K 18K

To obtain the minimum of two numbers, first turn them into an array:
Min([10, 5]) —» 5

Argmax(a, i)
Returns the item of index i for which array a is the maximum. If a has more than one value equal
to the maximum, it returns the index of the last one.

Library Array

Example Argmax(Car_prices, Car_type) —
Years P

1985 1986 1987 1988
BMW BMW BMW BMW

Argmin(a, i)
Returns the corresponding value in index i for which array a is the minimum. If more than one
value equals the minimum, returns the index of the last occurrence.

Library Array

Example Argmin(Car_prices, Car_type) —
Years P

1985 1986 1987 1988
VW VW VW VW

CondMin(x: Array[i], cond: Boolean[i]; i: IndexType)
CondMax(x: Array[i], cond: Boolean[i]; i: IndexType)

Conditional Min and Max. CondMin() returns the smallest, and CondMax() returns the largest
values along a given index, i, that satisfies condition cond.

Ti P These functions do not support named parameter syntax.

Library none

Examples CondMin(Cost_in_time, Time>=2, Time)—
Mpg ¥, Car_type P
VW Honda |BMW
26 2409 2529 3409
30 3098 3238 4098
35 3787 3897 4787

Subindex(a, u, i)

Returns the value of index i for which array a (indexed by i) is equal to u. If more than one value
of a equals u, it returns the last value of i that matches u. If no value of a equals u, it returns

188 Analytica User Guide

Array-reducing functions

Chapter More Array Functions

Nul l. If a has index(es) in addition to i, or if u is an array with other indexes, those indexes also
appear in the result.

Library Special

Examples Subindex(Car_prices, 12K, Car_type) —
Years P
1985 1986 1987 1988
Honda «Null» «Null» «Null»

Subindex(Car_prices, 12K, Years) —
Car_type P

BMW
«Null»

VW
«Null»

Honda
1985

If u is an array of values, an array of index values is returned.

Subindex(Car_prices, [12K, 21K], Car_type) —
Subindex ¥, Years P

1985 1986 1987 1988
12K Honda «Null» «Null» «Null»
21K «Null» «Null» BMW «Null»

Positioninindex(a, x, i)

Library

Examples

Tip

More examples and tips

Tip

Returns the position in index i — that is, a number from 1 to the size of index i — of the last ele-
ment of array a equal to x; if no element is equal, it returns 0.

When array a is multidimensional, the result is reduced by one dimension, dimension i.
Array

When the array is one-dimensional:
Index I = ["A", "B", "C"]
Variable A := Array(l, [1, 2, 2])
Positionlnindex(A, 1, 1) > 1
Positionlnindex(A, 2, 1) —» 3
Positionlnindex(A, 5, 1) > O

Positioninindex() is the positional equivalent of Subindex(). It is useful when i contains duplicate
values, in which case Subindex() would return an ambiguous result.

When the array is multidimensional:
Positionlnindex(Car_prices, 14K, Car_type) —
Years P

1985

1986 1987 1988
0 0 2 0

Parameter a is optional. When omitted, it returns the position of x in the index i, or 0 if not found.
The syntax @[i=x] (see “@: Index Position Operator” on page 190) returns the same result as
PositionInindex(,x, i):

Positionlnindex(,"B",1) —»?2

@[= "B*"] » 2

Positionlnindex(,"D",1) —»0

@[1 = D] » O

This is the result when the array parameter is omitted:

Analytica User Guide 189

Chapter More Array Functions Array-reducing functions

PositionInindex(, "Honda®", Car_type) — 2
PositionInindex(, "VW", Car_type) — 1

@: Index Position Operator

The position of value x in an index i is the integer n where x is the n" element of i. n is a number
between 1 and Size(i). The first element of i is at position 1; the last element of i is at position
Size(i). The position operator @ offers three ways to work with positions:

e @i — an array of integers from 1 to Size(i) indexed by i.
e @[i=x] — the position of value x in index i, or O if x is not an element of i.
¢ e[@i=n] - the n' slice of the value of expression e over index i.

Examples Index Car_type :=

| vw]| Honda| BMW

@Car_type —
Car_type P
VW Honda |BMW
1 2 3

@[Car_type="Honda"]— 2
Car_type[@Car_type=2] — "Honda“

More examples Index Time:
and tips
[o af 2 3] 4

Years := Time+2007 —:

| 2007] 2008 2009| 2010] 2011]

@Time —
Time P
0 1 2 3 4

1 2 3 4 5

@[Time=2] —» 3

Time[@Time=3] —» 2
(Time+2007)[@Time=3] — 2009
Years[@Time=3] — 2009

Ti P You can use this operator to re-index an array by another index having the same length but
different elements. For example, suppose Revenue is indexed by Time, this following gives the
same array but indexed by Years:

Revenue[@Time=@Years]

Area(r, i, x1, x2)

Returns the area (sum of trapezoids) under array r across index i between x1 and x2. i must
contain increasing numbers. x1 and x2 are optional; if they are not specified, the area is calcu-
lated across all of i.

190 Analytica User Guide

Chapter More Array Functions

Transforming functions

If x1 or x2 fall outside the range of values in i, the first value (for x1) or last value (for x1) are
used. Area() computes the total integral across i, returning a value with one less dimension than
r. Compare Area() to Integrate() (page 193).

Library Array

Example Area(Cost_in_time, Time, 0, 5000) —»
Car_type ¥, Mpg P

26 30 35

VW 9653| 12.42K| 15.18K
Honda 10.11K| 12.84K| 15.86K
BMW 13.65K| 16.42K| 19.18K

Transforming functions
A transforming function operates across a dimension of an array and returns a result that has
the same dimensions as its input array.
The function Cumulate(x, i) illustrates some properties of transforming functions.

Example Cumulate(Car_prices,Years) —
Car_type ¥, Years P

1985 1986 |1987 |1988
VW 8000 17K| 26.5K| 36.5K
Honda 12K 25K 39K | 53.5K
BMW 18K 38K 59K 81K

The second parameter, i, specifying the dimension over which to cumulate, is optional. But if the
array, X, has more than one dimension, Analytica might not cumulate over the dimension you
expect. For this reason, it is safer always to specify the dimension index explicitly in any trans-
forming function.

Cumulate(x, i)

Returns an array with each element being the sum of all of the elements of x along dimension i up
to, and including, the corresponding element of x.

If x is not indexed by i, Cumulate(x, i) operates as if x were indexed by i, but constant across i.
Using this, a convenient trick for numbering the elements of an index is to use Cumulate(1, i).

Library Array

Example Cumulate(Cost_in_time, Time) —

Mpg w, Time P, Car_type = VW

0 1 2 3 4
26 2185 4479 6888 9417| 12.07K
30 2810 5761 8859 | 12.11K| 15.53K
35 3435 7042 | 10.83K 14.8K| 18.98K
Cumulate(l,Car_type) —
Years P

VW Honda |BMW

1 2 3

See “Example variables” on page 182 for example array variables used here and below.

Analytica User Guide 191

Chapter More Array Functions Transforming functions

Uncumulate(x, i, firstElement)

Library

Example

Cumproduct(x, i)

Rank(x, 1)

192

Library

Example

Library

Examples

Uncumulate(x, i) returns an array whose first element (along i) is the first element of x, and each
other element is the difference between the corresponding element of x and the previous element
of x. Uncumulate(x, i, firstElement) returns an array with the first element along i equal to
firstElement, and each other element equal to the difference between the corresponding element
of x and the previous element of x.

Uncumulate(x, i) is the inverse of Cumulate(x, i). Uncumulate(x, i, 0) is similar to a discrete dif-
ferential operator.

Array

Uncumulate(Cost_in_time, Time) —
Mpg ¥, Time P, Car_type = VW

0 1 2 3 4
26 2185 109 115 120 127
30 2810 141 147 155 163
35 3435 172 180 189 199

Uncumulate(Cost_in_time, Time,0) —
Mpg w, Time P, Car_type = VW

0 1 2 3 4
26 0 109 115 120 127
30 0 141 147 155 163
35 0 172 180 189 199

See “Example variables” on page 182 for example array variables used here and below.

Returns an array with each element being the product of all of the elements of x along dimension
i up to, and including, the corresponding element of x.

Array

Cumproduct(Cost_in_time, Time) —
Mpg w, Time P, Car_type = VW

0 1 2 3 4
26 2185 5.012M| 12.07G| 30.54T| 81.11Q
30 2810 8.292M| 25.69G| 83.57T| 285.5Q
35 3435 12.39M| 46.92G| 186.6T| 778.9Q

Returns an array of the rank values of x across index i. The lowest value in x has a rank value of
1, the next-lowest has a rank value of 2, and so on. i is optional if x is one-dimensional. If i is omit-
ted when x is more than one-dimensional, the innermost dimension is ranked.

If two (or N) values are equal, they receive the same rank and the next higher value receives a
rank 2 (or N) higher. You can use an optional parameter, Type, to control which rank is assigned
to equal values. By default, the lowest rank is used, equivalent to Rank(x,i,Type:-1). Alternatively,
Rank(x,i,Type:0) uses the mid-rank and Rank(x,i,Type:1) uses the upper-rank.

Array

Basic example:
Rank(Mpg) —

Analytica User Guide

Chapter More Array Functions Transforming functions

Integrate(r, i)

Library
Example

Normalize(r, 1)

Library

Mpg P

26 30 35
1 2 3

Rank(Car_prices, Car_type) —
Car_type ¥, Years P

1985 1986 1987 1988
VW 1 1 1 1
Honda 2 2 2 2
BMW 3 3 3 3

See “Example variables” on page 182 for example array variables used here and below.

Optional Type parameter example:
Index I = 1..7
Index RankType := [-1,0,1]
Variable A :=

1>

10 4 9 4 4 1 4

Rank(A,1,Type:RankType) —
Rank_type ¥, | P

1 2 3 4 5 6 7
-1 7 2 6 2 2 1 2 | Lowest rank for duplicates, 2
0 7 3.5 6 3.5 35 1 3.5 | Mid rank for duplicates, 3.5
1 7 5 6 5 5 1 5| Upper rank for duplicates, 5

Returns the result of applying the trapezoidal rule of integration of array r over index i. Integrate()
computes the cumulative integral across i, returning a value with the same number of dimensions

as r. Compare Integrate() to Area() (page 190).

An alternative syntax is Integrate(rl, r2, i), which returns the integral of array r1 over array r2. If
r2 has one dimension, its index must also be an index of r1 and i is optional. If r2 has more than
one dimension, then i is required and must be an index of both r1 and r2.

Array

Integrate(Cost_in_time, Time) —
Mpg ¥, Time P, Car_type = VW

0 1 2 3 4
26 0 2240 4591 7060 9653
30 0 2881 5905 9081 12.42K
35 0 3521 7218 11.1K| 15.18K

Returns an array that is normalized array r, so the area across index i is 1.
Normalize() does not force the values along index i to sum to 1; to make the values sumto 1,
divide r by Sum(r, i).

An alternative syntax is Normalize(r1, r2, i), which returns the normalized array of array r1 over
array r2. If r2 has one dimension, its index must also be an index of r1 and i need not be stated. If
r2 has more than one dimension, then i is required and must be an index of r1 and r2.

Array

Analytica User Guide 193

Chapter More Array Functions Converting between multiD and relational tables

Example Normalize(Cost_in_Time, Time) —
Mpg ¥, Time P, Car_type = W

0 1 2 3 4

26 0.2264| 0.2377| 0.2496| 0.2620| 0.2752
30 0.2263| 0.2377| 0.2495| 0.2620| 0.2752
35 0.2264| 0.2377| 0.2496| 0.2620| 0.2751

See “Example variables” on page 182 for example array variables used here and below.

Converting between multiD and relational tables

The MDArrayToTable() function “flattens” a multi-dimensional array into a two-dimensional rela-
tional table. The MDTable() function does the inverse, creating a multi-dimensional array from a
table of values. Viewing tabular results in a multi-dimensional form via MDTable() often provides
informative new perspective on existing data.

Many external application programs, including spreadsheets and relational databases, are limited
to two-dimensional tables. Thus, when transferring multi-dimensional data between these appli-
cations and Analytica, it might be necessary to convert multi-dimensional data into two-dimen-
sional tables before transferring.

MDArrayToTable(a, i, I)

Transforms a multi-dimensional array, a, into a two-dimensional array (i.e., a table) indexed by i
and |. The result contains one row along i for each element of a. | must contain a list of names of
the indexes of a, followed by one final element. All elements of | must be text values. The column
corresponding to the final element of | contains the cell value. If | does not contain all the indexes
of a, array abstraction creates a set of tables indexed by the dimensions not listed in I.

Before using MDArrayToTable(), you must define the index i with the appropriate number of ele-
ments. The number of elements in i can be either size(a), or the number of non-zero elements
of a (in which case the resulting table contains only the nonzero elements), otherwise an error
results.

If the number of elements in i is equal to the number of non-zero elements of a, MDArrayToTa-
ble() acts like the inverse of MDTable() on a table that contains a row for only the nonzero ele-
ments of the array.

Library Array

Example Rows := sequence(l,size(Cost_in_time))
Cols := ["Mpg","Time", "Car_type", "Cost"]
MDArrayToTable(Cost_in_time,Rows,Cols) —
Rows ¥ , Colsh

Mpg Time |Car_type |Cost
1 26 0 VW 2185
2 26 0 Honda 2385
3 26 0 BMW 3185
4 26 1 VW 2294
5 26 1 Honda 2314
6 26 1 BMW 3294
7 26 2 VW 2409
l4s | 35| 4| BMW | 5175

See “Example variables” on page 182 for example array variables used here and below.

194 Analytica User Guide

Interpolation functions

Chapter More Array Functions

MDTable(t, rows, cols, vars, conglomFn, missingVal)

Returns a multi-dimensional array from a two-dimensional table of values. t is a two-dimensional
array (i.e., a table) indexed by rows and cols. Each row of t specifies the coordinates of a cell in
a multi-dimensional array, along with the value for that cell.

The dimensions of the final result are given by the optional parameter vars. vars must be a list of
index identifiers or index names. The length of cols must be one greater than the length of vars.

If vars is omitted, the dimensions of the final result are specified by the first n-1 elements of cols,
where(n=size(cols)). In this case, the elements of cols must be index identifiers or index
names.

The first n-1 columns of t specify the coordinates of a cell in the result. The final column of t spec-
ifies the value for the indicated cell.

Before using MDTable(), you must define all of the indexes for the result. Each index must include
all values that occur in the corresponding column of t or an error results. The Unique() function is
useful for defining the necessary indexes.

It is possible that two or more rows of t specify identical coordinates. In this case, a conglomera-
tion function is used combine the values for the given cell. The conglomFn parameter is a text
value specifying which conglomeration function is to be used. Possible values are ""'sum"

(default), "'min*", ""'max

, ""average", and ""product".

It is also possible that no row in t corresponds to a particular cell. In this case, the cell value is set
to missingVal, or if the missingVal parameter is omitted, the cell value is set to undefined. Unde-

fined values can be detected using the IsUndef() function.
Library Array
Example Suppose t, rows, and cols are defined as indicated by the following table:

Rows w , Colsh

Car_type |Mpg X
1 VW 26 2185
2 VW 30 1705
3 Honda 26 2330
4 Honda 35 2210
5 BMW 30 2955
6 BMW 35 2800
7 BMW 35 2870

MDTable(T, Rows, Cols, [Car_type, Mpg],
Car_type ¥ , Mpgh

"average®, "n/a") —

26 30 35
VW 2185 1705 n/a
Honda 2330 n/a 2210
BMW nfa| 2955 2835

Notice that in the example, rows 6 and 7 both specified values for Car_type="BMW", Mpg=35. It
uses average as the conglomeration function to combine these.

Interpolation functions

These three functions interpolate across arrays. Given arrays y and x with a common index i,
these functions interpolate a value for y corresponding to value v along the x axis.

Analytica User Guide 195

Chapter More Array Functions

Stepinterp(x, y, v, i)

Returns the element or slice of array y for which v has the smallest value less than or equal to x.
x and y must both be indexed by i, and x must be increasing along index i. If v is greater than all
values of x, it returns the element of y for which x has the largest value.

196

Library

Examples

r*/ .
LA g
.7 e \‘ >~
e - *
///
“
I
Vv
fffff *- - - - - Cubicinterp
- — A — - Linearinterp

Index_a:
[_a[bl ¢
Index_b:
[2] 3]
Array_a:

Index_a w, Index_b P

1 3
a 7 -3 1
b -4 -1 6
c 5 0 -2

Special

Car_type P

——«—— Stepinterp

Linearinterp() and Cubiclinterp() use these variables:

Stepinterp() can be used to perform table lookup.

VW

Honda

BMW

1585

2210

2835

Analytica User Guide

To see the values in Cost corresponding to MPG >= 33:
Stepinterp(MPG, Cost, 33, MPG) —

Interpolation functions

When an optional parameter, LeftLookup, is specified as True, it returns the element or slice of y
corresponding to the largest value in x that is less than or equal to v.

If v is an atom (scalar value), the result is an array indexed by all indexes of a except x’s index. If
v is an array, the result is also indexed by the indexes of v.

If the first parameter x is an index of y, the fourth parameter is optional. Stepinterp(x, y, v) is sim-
ilar to y[x=v] except that y[x=V] selects based on v being equal to x, while Stepinterp(x, y, v)
selects based on v being greater than or equal to x.

Chapter More Array Functions Other array functions

Linearinterp(x, vy, Vv,

Library

Example

Cubicinterp(x, y, v,

Library

Example

Here v is a list of two values:
Stepinterp(MPG, Cost, [28,33], MPG) —

VW Honda BMW
28 1705 2330 2955
33 1585 2210 2935

)
Returns linearly interpolated values of v, given y representing an arbitrary piecewise linear func-
tion. x and y must both be indexed by i, and x must be increasing along i. y is an array of the cor-

responding output values for the function (not necessarily increasing and might be more than one
dimension). v might be probabilistic and/or an array.

For each value of v, Linearinterp() finds the nearest two values from x and interpolates linearly
between the corresponding values fromy. If v is less than the minimum value in X, it returns the
first value in y. If v is greater than the maximum value in X, it returns the last value in y.

Special

Linearinterp(Index_b, Array_a, 1.5, Index_b) —
Index_a W

a b c
2| -25 2.5

)
Returns the natural cubic spline interpolated values of y along X, interpolating for values of v. x
and y must both be indexed by i, and x must be increasing along i.

For each value of v, Cubicinterp() finds the nearest values from x, and using a natural cubic
spline between the corresponding values of y, computes the interpolated value. If v is less than
the minimum value in x, it returns the first value in y; if v is greater than the maximum value in x,
it returns the last value for y.

Special
Cubicinterp(lndex_b, Array_a, 1.5, Index_b) —
Index_ a P
a b c

0.6875| -2.875 2.219

Other array functions

Concat(al, a2, i, j, k)

Library

Examples

Appends array a2 to array al. i and j are indexes of al and a2, respectively. k is the index of the
resulting dimension, and usually consists of the list created by concatenating i and j -

al and a2 must have the same number of dimensions. If they are one-dimensional, the parame-
ters i, j, and k are optional. If they are not specified, the resulting array is unindexed.

If al and a2 are multidimensional, they must have the same non-concatenated indexes.
Array

These examples use these variables:
Index Years :=

| 1985 1986] 1987] 1988

Analytica User Guide 197

Chapter More Array Functions Other array functions

Index More_years:

| 1989] 1990| 1991]

Index All_years := Concat(Years, More_years) —

| 1985| 1986| 1987| 1988 1989] 1990| 1991 |

More_prices: Car_type ¥, More_years P

1989 1990 1991
VW 11K 12K 12.5K
Honda 15K 15.5K 16.5K
BMW 23.5K 25K 27K

Concat(Car_prices, More_prices, Years, More_years, All_years) —
All_years w, Car_type P

VW Honda |BMW
1985 8000 12K 18K
1986 9000 13K 20K
1987 9500 14K 21K
1988 10K 14.5K 22K
1989 11K 15K 23.5K
1990 12K 15.5K 25K
1991 12.5K 16.5K 27K

See “Example variables” on page 182 for example array variables used here and below.

ConcatRows(a: Array[i, j]; 1, J, k: Index)

Library

IndexNames(a)

Library

Example

Takes an array, a indexed by i and j, and concatenates each row, flattening the array by one
dimension. The result is indexed by the Resultindex() function, which must be an index with
size(i) * size(j) elements.

Concatenation

To use this function, you must add the library to your model.

Returns a list of the identifiers of the indexes of the array a as text values.
Array

IndexNames(Car_prices) — ["Car_type~,"Years"]

IndexesOf(a: Array)

Library

Example

IndexValue(i)

198

Returns a list of the indexes of the array a as handles (see “Handles to objects” on page 344).

Itis similar to IndexNames(), except that it returns handles instead of identifiers as text values. It
is possible for an array to have more than one local index having identical names. This is not rec-
ommended, but where it occurs, the index handles returned by IndexesOf() are unambiguous.

Array

IndexesOf(Car_prices) —» [Car_type, Years]

Some variables have both an index value and a result value. Examples include a self-indexed
array; a variable or index defined as a list of identifiers or list of expressions; and a Choice list

Analytica User Guide

Ch apter More Array Functions

Size(u)

Library

Example

Library

Examples

DetermTable: Deterministic tables

with a self-domain. IndexValue(i) returns the index value of i, where (i) alone would return its
result value.

Array Functions

Index L := [i, j, k, "value"]

Index rows := 1..Size(A)

Variable Flat_A := MdArrayToTable(A, rows, IndexValue(L))

Returns the number of atoms (elementary cells) in array u. The size of an atom is 1. The size of
an empty listis 0.

Array Functions
Size(Years) — 4
Size(Car_prices) — 12
Size(10) »> 1

Size([]) » O

DetermTable: Deterministic tables

A DetermTable provides an input view like that of an edit table (see page 171), allowing you to
specify values or expressions in each cell for all index combinations; however, unlike a table, the
evaluation of a determtable conditionally returns only selected values from the table. It is called a
determtable because it acts as a deterministic function of one or more discrete-valued variables.
You can conceptualize a determtable as a multi-dimensional generalization of a select-case
statement found in many programming languages, or as a value that varies with the path down a
decision tree.

The following shows the edit view of a determ table, in which you can enter a different miles per
gallon for each car type. Car_type has been changed from being an index in previous examples
to a decision node here, defined as a Choice, with the Hybrid selected.

] Dete able g5 per gallo L] ¥ Obje 3 1 L]
£ Determ Table of Miles per gallon... Car_type Units: |
T Car type ¥ Title: Cartype
L ~Pp
o Description: The car model to be analyzed.
Hybrid 45 |
Standard 28 Definition:
suv 23
Compact a0 Domain: [List of Labels W |
| Heorict |
|Standard
|5y |
Compact
-
LA | r [

Analytica User Guide 199

Chapter More Array Functions DetermTable: Deterministic tables

When Miles_per_gallon is evaluated, its result contains only the miles per gallon for the
selected car type.

0 Result - Miles per, gallon

43

| (4

In comparison, the result of evaluating a straight table would include all values for all car types.

DetermTable inputs The dimensions of a determtable may be a combination of normal indexes and discrete variables.
Each discrete variable used must have a domain that explicitly contains all possible values, and it
is these values that are used for the dimension in the determtable edit view. The selection occurs
over the discrete variables, so that DetermTable() behaves differently from Table() only when at
least one of the dimensions is a discrete variable. The definition of each discrete variable speci-
fies which value from its domain is selected.

When you define a discrete variable to serve as an input to DetermTable(), it is convenient to
use a choice menu (see “Creating a choice menu” on page 121) with the index for the Choice()
function set to Sel f. You must then set the domain attribute to either List, List of Label, or Index.
The List and List of Labels options allow you to exist all possible values explicitly. An Index
domain pulls the the list of possible values from a separate index object that already contains the
list of possible values.

Creating a DetermTable To define a variable as a determtable:

1. Decide on the inputs — the discrete conditioning variables.
2. Press the expr menu above the definition field and select Other....

e Ewpression

B List

& Table

= Probabiliby Table
v J Distribution

&+ Other...

Analytica opens the Object Finder dialog (page 112).

200 Analytica User Guide

Ch apter More Array Functions

DetermTable: Deterministic tables

3. Select Array from the Library popup menu and select Determtable from the function list.

W Object Finder [X]

Library: | Array - | Fird... |

T T TTT

EEr Cubicinterp (DR, %19 2l

e Cumproduct (1 |

e Cumulate [, 1

=y Determtable CH om0t oum)

e Indexesof]

B2 Indexnames] - |

Determtable Indezes

Determtabled | 12, .In)(ul, b2, ..um) defines a conditional dependency onthe J
outcomes of dizcrete uncertain variables, and returns an array that is reduced
acrozs itz probabilistic indexies). wl, u2, . um give the deterministic outcomes.

|
Cancel ak

4. Click the Indexes button to open the Indexes dialog, which lets you choose discrete
conditioning variable(s).

M Indexes X
Preview: Domains: | A&lYarables Selected Indexes:

Hyhrid) Cost summary J

Stanclard () Miles per gallon (Self) ﬂ

= 7 Wear

Compact 7 new index |

The car model to be analyzed.

Cancel Ok

5. Click OK to accept the indexes and open an Edit Table window.

6. Enter the outcomes corresponding to each outcome of your discrete inputs.

Expression view of a When you select the expression view of a definition that was created as a determtable, it looks
determtable |ike this:

Determtable(il, 12, .. in) (rl, r2, r3, .. rm)

This describes an n-dimensional conditional deterministic table, indexed by the indexes and dis-
crete conditioning variables i1, i2, ... in. The last index, in, is the innermost index, varying the
most rapidly. r1, r2, ... rm are the outcomes in the array.

Converting a Table to a To convert an existing table to a determTable, view either the Object Window or Attribute pane for
DetermTable the variable and use the pulldown to change the definition type to Other.... Answer Yes when
asked to replace the current definition, and the Object Finder dialog (page 112) appears. From
the Array library select DetermTable and press OK.

An alternative way to convert a table to a determTable is to view the table definition in expression
mode and change the first word Table to DetermTable.

Use in Parametric A parametric analysis varies one or more model inputs across several hypothetical values, com-
Analysis puting results for each combination of inputs. Array abstraction makes it very easy to conduct
parametric analyses in Analytica; however, the computational complexity and memory require-
ments scale multiplicatively as you vary more and more input variables simultaneously, resulting
in practicality limits on the number of inputs that can be simultaneously varied.

Analytica User Guide 201

Chapter More Array Functions SubTable

Subscript equivalence

SubTable

SubTable(ali = x])

Determtables provide a useful tool for coping with the complexity / dimensionality tradeoff. You
can select a subset of input variables to vary parametrically, examine your model outputs as these
vary, then re-run your model after selecting a different subset of inputs to vary. Using Choice
menus for the inputs, and determTables for any tables based on those input dimensions, makes it
possible to change your parametric inputs rapidly to quickly explore relationships elucidated by
your model. Obtaining this agility is often a simple matter of converting existing tables to determ-
Tables.

You can achieve the equivalent functionality of DetermTable() without using the DetermTable()
function, but DetermTable is a nice convenience that saves having an extra node in your model.
As an alternative to a determtable, you can create a standard edit table in a variable, A, and then
obtain the desired slice in a second variable, B, by defining it as A[u=u,v=v], where u and v are
the discrete conditioning variables. This works because u and v are both self-indexed (with the
possible values being the self-index values) and also have their own value (the selected value).

The purpose of SubTable is to provide the user an alternative editable view of part of an edit
table. If a variable a is defined as an edit table, a variable b defined as SubTable(a[i=x]) lets the
user use u to view and edit a subarray of a, for which index i of a has value x. Any change you
make to cells of b is reflected in a, and vice versa. The actual values are stored in edit table a.

A subtable can also show subarrays of a in a different order, if x is an array containing some or all
values of i in a different sequence. b can also use different number formats.

A subtable also works if a is defined using any editable table functions, including edit table (table),
probability table (probtable), deterministic table (determtable), or even another subtable.

SubTable() must be the main expression in the definition of a variable. It cannot be a subexpres-
sion or inside a function. Its parameter must be a slice or subscript operator. For example, in the
simplest form:

SubTable(a[i=x])

where X is an element of index i and x is a value of i. Many other variations are also useful includ-
ing:

SubTable(a[i=x])

SubTable(a[i=x, j=y1)

SubTable(a[i=b])

SubTable(a[@i=c])

If the subarray returned by Subtable() is an atom (i.e., a single value with no indexes), you can
edit it in a table view, or, if you define an input node for it, directly as an input field.

Matrix functions

202

A matrix is a square array, that is an array that has two dimensions of the same length. It can also
have other dimensions, not necessarily of the same length. Matrix functions perform a variety of
operations of matrices and other arrays.

Standard mathematical notation for matrix algebra, and most computer languages that work with
matrices, distinguish rows and columns. In Analytica, rows and columns are not basic to an array:
They are just ways you can choose to display an array in a table. Instead, it uses a named index
to label each dimension. So, when using a matrix function, like any Analytica function that work
with arrays, you specify the dimensions you want it to operate over by naming the index(es) as a
parameter(s). For example:

Transpose(X, 1, J)

This exchanges indexes | and J for matrix X. You don’t need to remember or worry about which
dimension is the rows and which the columns. X can also have other indexes, and the function
generalizes appropriately.

Analytica User Guide

Chapter More Array Functions Matrix functions

Dot product of two matrices

The dot product (i.e., matrix multiplication) of MatrixA and MatrixB is equal to:
Sum(MatrixA * MatrixB, i)

where i is the common index.

Example Variable MatrixA:
jv,. i b
1 2 3
a 4 1 2
b 2 5 3
c 3 2 7
Variable MatrixB:
k w, i P
1 2 3
I 3 2 1
m 2 5 3
n 4 1 2

Sum(MatrixA * MatrixB, i) —

kv, jb

a b c
| 16 19 20
m 19 38 37
n 21 19 28

MatrixMultiply(a, aRow, aCol, b, bRow, bCol)

Performs a matrix multiplication on matrix a, having indexes aRow and aCol, and matrix b, hav-
ing indexes bRow and bCol. The result is indexed by aRow and bCol. a and b must have the
specified two indexes, and can also have other indexes. bCol and bRow must have the same
length or it flags an error. If bRow and bCol are the same index, it returns only the diagonal of the
result.

Library Matrix

Example Matrices
C X D
indexl w, index2 P index2 w, index3 P
1 2 a b C
1 1 2 1 3 0 1
2 1 0 2 0 1 1

MatrixMultiply(C, indexl, index2, D, index2, index3) —
indexl w, index3 P

1 2 3
1 3 2 3
2 3 0 1

When the inner index is shared by C and D, the expression Sum(C*D, index?2) is equivalent to
their dot product (page 203).

Ti P The way to multiply a matrix by its transpose is:
MatrixMultiply(A, 1, J, Transpose(A,1,3), I, J)

Analytica User Guide 203

Chapter More Array Functions Matrix functions

It does not work to use MatrixMultiply(A, 1, J, A, J, 1) because the result would have
to be doubly indexed by 1.

Transpose(c, i,)
Returns the transpose of matrix ¢ exchanging dimensions i and j, which must be indexes of the
same size.

Library Matrix

Example Transpose(MatrixA, i, j) —
jv.ib
1 2 3
a 4 2 3
b 1 5 2
c 2 3 7
Invert(c, i, j)

Returns the inversion of matrix ¢ along dimensions i and j.

Library Matrix
Example Set number format to fixed point, 3 decimal digits.
Invert(MatrixA, i, j) —

jwv, i >

1 2 3
a 0.326 -0.034 -0.079
b -0.056 0.247 -0.090
c -0.124 -0.056 0.202

Determinant(c, i, j)
Returns the determinant of matrix ¢ along dimensions i and j.

Library Matrix

Example MatrixA:
jw, i b
1 2 3
a 4 1 2
b 2 5 3
c 3 2 7

Determinant(MatrixA, i, j) — 89

Decompose(c, i, j)
Returns the Cholesky decomposition (square root) matrix of matrix ¢ along dimensions i and j.
Matrix ¢ must be symmetric and positive-definite. (Positive-definite means thatv * C * v > 0,

for all vectors v.)
Cholesky decomposition computes a lower diagonal matrix L such that L * L* = C, where L" is
the transpose of L.

Library Matrix

Example Matrix
Lw, MM
_ 1 2 3 4 5

BiggnRevaltBiBome . v S - S1-HQ+ST gufarvalueDecompy) fequires its main parameter to be
204 An| 2 br Guide 4 3 1

3 v 6 3 v 3 4 v

4 3 1 3 8 4

5 1 3 4 4 7

O FTf:Igel Other Functions

This chapter describes a variety of useful functions from built-in and
added libraries:

¢ Text functions that work with text values, to transform, search, split,
and join them (see page 206)

« Date functions for working with date numbers (see page 207)
« Advanced math functions (see page 209)
¢ Financial functions (see page 210)

« Alibrary of extra financial functions, including functions for valuing
options (see page 214)

« Advanced probability functions (see page 217)

Chapter Other Functions

Text functions

Asc(t)

Chr(n)

TextLength(t)

SelectText(t, m, n)

FindInText(substr, text,
start,caselnsensitive)

TextTrim(t,
leftOnly, rightOnly,
trimChars)

TextReplace(t, t1, t2, all)

Joining Text: a& b

206

These functions work with text values (page 133) (sometimes known as strings), available in the
built-in Text library.

Returns the ASCII code (a number between 0 and 255) of the first character in text value t. This is
occasionally useful, for example to understand the alphabetic ordering of text values.

Returns the character corresponding to the numeric ASCII code n (a number between 0 and
255). Chr() and Asc() are inverses of each other, for example:
Chr(65) > "A-", Asc(Chr(65)) > 65
Asc("A") > 65, Chr(Asc("A™)) > "AT
Chr () is useful for creating characters that cannot easily be typed, such as Tab, which is Chr(9)
and carriage return (CR), which is Chr(13). For example, if you read in a text file, X, you can use
SplitText(x, Chr(13)) to generate an array of lines from a multiline text file.
Returns the number of characters in text t.
TextLength("supercalifragilisticexpialidocious®) —» 34
Returns text containing the mth through the nth character of text t (where the first character is
m=1). If n is omitted it returns characters from the mth through the end of t.
SelectText("One or two", 1, 3) —» "One"
SelectText("One or two", 8) — "two"

Returns the position of the first occurrence of the text substr within the text text, as the number of
characters to the first character of text. If substr does not occur in text, it returns 0.
FindInText() is case-sensitive unless the optional parameter caselnsensitive is true. For exam-
ple:

Variable People := "Amy, Betty, Carla®

FindInText("Amy*", People) —» 1

FindInText("amy®, People) —» 0

FindInText("amy®, People, caselnsensitive:true) — 1

FindInText("Betty", People) —» 6

FindInText("Fred®, People) — O
The optional third parameter, start, specifies the position to start searching at, for example, if you
want to find a second occurrence of substr after you have found the first one.

FindInText("i", "Supercalifragilisticexpialidocious®) — 9

FindInText("i", "Supercalifragilisticexpialidocious®,10) —» 14
Removes leading and trailing spaces from the text. To remove characters other than spaces,
specify the characters to remove in the optional trimChars parameter.

TextTrim(® Hello World ") — "Hello World*

TextTrim(® Hello World *,leftOnly:True) — “Hello World *

TextTrim(" Hello World ",rightOnly:True) —» * Hello World*®

TextTrim(® [One,Two,Three] *,trimChars:" []*) — "One,Two,Three*
If all is omitted or False, it returns text t with the first occurrence of text t1 replaced by t2. If all is
True, it returns text t with all occurrences of text t1 replaced by t2.

TextReplace("StringReplace, StringLength®, *String®, "Text")

— "TextReplace, StringlLength®
TextReplace("StringReplace, StringLength®, "String®, "Text®, True)
— "TextReplace, TextLength*®

The & operator joins (concatenates) two text values to form a single text value, for example:
“"What is the® & " number® & "?°
— “What is the number?*

Analytica User Guide

Chapter Other Functions Date functions

If one or both operands are numbers, it converts them to text using the number format of the vari-
able whose definition contains this function call (or the default suffix format if none is set), for
example:

"The number is " & 108 —» "The number is 100M"
This is also useful for converting (or “coercing”) numbers to text.

JoinText(a, i, separator, Returns the elements of array a joined together into a single text value over index i. If elements of
finalSeparator) 3 are numeric, they are first converted to text using the number format settings for the variable
whose definition contains this function call. For example:
-= [*A", "B", "C"]
JoinText(l, 1) —» "ABC*
= Array(l, ["VW®, "Honda®, "BMW"])
JoinText(A, 1) —» "VWHondaBMW®
If the optional parameter separator is specified, it is inserted as a separator between successive
elements, for example:
JoinText(A, I, ", ") —» "VW, Honda, BMW®
The optional parameter finalSeparator, if present, specifies a different separator between the
second-to-last and last elements of a.
JoinText(A, I, "; ", "; and®") —» "VW; Honda; and BMW*"
SplitText(t, separator) Returns a list of text values formed by splitting the elements of text value t at each occurrence of
separator separator. For example:

SplitText("VW, Honda, BMW®, *, ") — ["VW", “Honda®", "BMW"]
SplitText() is the inverse of JoinText(), if you use the same separators. For example:

Var x:=SplitText("Humpty Dumpty sat on a wall_", * *)

— [“Humpty®, "Dumpty®, "sat®, “on", "a", “wall."]
JoinText(x, , " ") — "Humpty Dumpty sat on a wall."

Ti P Wwith SplitText(), t must be a single text value, not an array. Otherwise, it might generate an array
of arrays of different length. See “Functions expecting atomic parameters” on page 337 on what to
do if you want apply it to an array.

TextLowerCase(t) Returns the text t with all letters as lowercase. For example:
TextLowerCase("What does XML mean?®)
— “what does xml mean?*

TextUpperCase(t) Returns the text t with all letters as uppercase. For example:
TextUpperCase("What does XML mean?%)
— "WHAT DOES XML MEAN?*
TextSentenceCase Returns the text t with the first character (if a letter) as uppercase, and any other letters as lower-
(Text, preserveUC) case. For example:
TextSentenceCase("mary ann FRED Maylene®)
— "Mary ann fred maylene*
TextSentenceCase(SplitText("mary ann FRED Maylene®, * "))
— ["Mary®, "Ann®", "Fred®, "Maylene"]
TextSentenceCase("they are Fred and Maylene®, true)
—"They are Fred and Maylene®

Date functions

These functions work with date and time numbers — that is, the integer portion is number of
days since the date origin, usually Jan 1, 1904, and the fractional portion is the fraction of a day

Analytica User Guide 207

Chapter Other Functions Date functions

elapsed since midnight. See “Date numbers and the date origin” on page 86. A date number dis-
plays as a date if you select a date format using the Number format dialog from the Result
menu.

MakeDate() generates a date number from the year, month, and day. DatePart extracts the year,
month, day, or other information from a date number. DateAdd() adds a number of days, weeks,
months, or years to a date. Today() returns today’s date.

MakeDate(year, month, day)

Examples

Library

MakeTime(h, m, s)

DatePart(date, part)

208

Examples

Library

Examples

Gives the date value for the date with given year, month, and day. If omitted, month and day
default to 1. Parameters must be positive integers.

MakeDate(2007, 5, 15) — 15-May-2007
MakeDate(2000) — 1-Jan-2000

Special Functions

Gives the fraction of a day elapsed since midnight for the given hour, minute and second. The
hour, h, should be between 0 and 23 inclusive. Minutes and seconds should be between 0 and 59
inclusive.

MakeTime(12, 0, 0) —» 0.5
MakeTime(15, 30, 0) —» 0.6458 { 3:30:00 pm }

Special Functions

Given a date-time value date, it returns the year, month, day, hour, minute, or seconds as a num-
ber, according to the value of part, which must be an uppercase character:

« Y gives the four digit year as a number, such as 2006.

* M gives the month as a number between 1 and 12.

* D gives the day as number between 1 and 31.

« W gives the day of the week as a number from 1 (Sunday) to 7 (Saturday).
* H gives the hour on a 24-hour clock (0 to 23).

* h gives the hour on a 12-hour close (1 to 12).

* m gives the minutes (0 to 59).

¢ s gives the seconds (0 to 59.99).

Other date options for part are: YY—-"06", MM—"01", MMM — "Jan®, MMMM — *January",
DD—"09",ddd —» "1st", dddd —» "first", Dddd —» "First", ww — "Mon", wwww —
"Monday", and q — 1 to 4 for number of quarter of the year.

Other time options for part are: HH—»"15%, hh—~"03", mm—"05", and ss—"00".
DatePart can also weeks or weekdays elapsed since the date origin or in the current year.
« wd (or wd+) gives the number of weekdays since the date origin including the indicated day.
« wd- gives the number of weekdays since the date origin not including the indicated day.
« #d gives the day number in the current year
« #w gives the week number in the current year (the week starting on Sunday)
« #wm gives the week number in the current year (the week starting on Monday)

The #w and #wm options consider the week containing Jan 1 to be week 1. Options e#w and e#wm
return the European standard in which week1 is the first week containing at least 3 days.

DatePart(MakeDate(2006, 2, 28), "D") — 28

This makes a sequence of all weekdays between Datel and Date2:

Analytica User Guide

Chapter Other Functions Advanced math functions

Library

Index J:= Datel .. Date2;
Subset(DatePart(J, "W")>=2 AND DatePart(J, "W')<=6)

This computes the number of weekdays between two dates, including both endpoints:
DatePart(date2, "wd+") - DatePart(datel, "wd-")

Special Functions

DateAdd(date, n, unit)

Examples

Library

Given a date value date, it returns a date value offset by n years, months, days, weekdays,
hours, minutes or seconds, according to whether unit is Y, M, D, WD, h, m, or s. If n is negative, it
subtracts units from the date.

DateAdd() is especially useful for generating a sequence of dates, e.g., weeks, months, or quar-
ters, for a time index:

DateAdd(MakeDate(2006, 1, 1), 0..12, "M"™)

— ["1 Jan 2006", "1 Feb 2006", "1 Mar 2006", ... "1 Jan 2007']

If an offset would appear to go past the end of a month, it returns the last day of the month:
DateAdd(MakeDate(2004, 2, 29), 1, "Y") — 2005-Feb-28
DateAdd(MakeDate(2006, 10, 31), 1, "M") — 2006-Nov-30

Since the dates 2005-Feb-29 and 2006-Nov-31 don't exist, it gives the last day of the preced-
ing month.

Adding a day offset, DateAdd(date, n, *'D'),is equivalent to date+n. DateAdd(date, n,
""WD'") adds the specified number of weekdays to the first weekday equal to or falling after date.

Special Functions

Today(withTime, utc)

Library

Returns the current date (or optionally date and time) as a date number — the number of days
since the date origin, usually Jan 1, 1904. Unlike other functions, it gives a different value depend-
ing on what day (and time) it is evaluated. It is most often called with no parameters, Today(), in
which case the result is an integer representing the date in your local time zone. Including the
optional parameter, Today(withTime:True) returns the current time of day in the fractional part.
Today(withTime:true,utc: True) returns the coordinated universal date-time rather than the local
date-time.

Since variables usually cache (retain) their value after computing it, the date could become out of
date if the Analytica session extends over midnight. But, it will be correct again when you restart
the model.

Special Functions

Advanced math functions

Arccos(x), Arcsin(x),
Arctan2(y, X)

These functions can be accessed under the Definition menu Advanced Math command, or in
the Object Finder dialog, Advanced Math library. Functions in this section are generally for more
advanced mathematical users than those found in “Math functions” on page 136. There are addi-
tional advanced math functions covered in “Importance weighting” on page 257.

The inverse trigonometric functions. For each the parameter x is between 0 and 1, and the result
is in degrees. Arccos returns a result between 0 and 180 degrees:

Arccos(l) —» O

Arccos(Cos(45)) — 45

Arcsin returns a result between -90 and 90 degrees:
Arcsin(l) —» 90
Arcsin(Sin(45)) — 45

Analytica User Guide 209

Chapter Other Functions Financial functions

BesselJ(x,n),
BesselY(x,n),
Bessell(x,n),
BesselK(x,n)

Cosh(x), Sinh(x),
Tanh(x)

Lgamma(x)

Arctan?2 gives the arctangent of y/x without losing information about which quadrant the point is
in. The result is the angle in degrees between the x axis and the point (X, y) in the two dimen-
sional plane, in the range (-180, 180):

Arctan2(-1,1) —» -45

Arctan2(0,-1) —» 180

Arctan2(0, 0) »> O

Bessel functions of the first kind (J), second kind (Y), and modified Bessel functions of the first (I)
and second (K) kinds. These are used in engineering applications involving harmonics in cylindri-
cal coordinates. The second parameter, n, is the order of the Bessel function and can be integer

or fractional. When n is non-integer, x must be non-negative. These functions are not exposed on
the Advanced Math library menu.

The hyperbolic cosine, sine, and tangent of x, x assumed to be in degrees.
Cosh(0) —» 1
Sinh(0) - O
Tanh(INF) —» 1
Returns the Log Gamma function of x. Without numeric overflow, this function is equivalent to

In(GammaFn(X)). Because the gamma function grows so rapidly, it is often much more conve-
nient to use LGammay() to avoid numeric overflow.

LGamma(10) — 12.8

Financial functions

210

Parameters

These functions can be accessed under the Definition menu Financial command, or in the
Object Finder dialog, Financial library. The function names and parameters match those in
Microsoft Excel, where they are equivalent. Of course, the Analytica versions support array
abstraction, which makes them more flexible.

The same parameters occur in many of the financial functions. These parameters are described
here. Dollar amounts for both parameters and return values of functions are expressed as the
amount you receive. If you make a payment, the amount is negative. If you receive a payment,
the amount is positive.

rate The interest rate per period. For example, if periods are months, the rate should be
adjusted to the monthly rate, not the annual rate (e.g., 8%/12, or 1.08"(1/12)-1
with monthly compounding).

nPer Number of periods in the lifetime of an annuity.
per The period (between 1 and nPer) being computed.
pv The present value of the annuity. For example, for a loan this is the loan amount

(positive if you receive the loan, negative if you are the lender).

fv The future value of the annuity. This is the remaining value of the annuity after the
final payment. In the case of a loan, for example, this is the balloon payment at the
end (positive if you are the lender, negative if you pay the balloon amount). This
parameter is usually optional with a default value of zero.

pmt The total payment per period (interest + principal). If you receive payments, this is
positive. If you make payments, this is negative.

type Indicates whether payments are due at the beginning or end of each period.

True Payments are due at the beginning of each period, with the first payment due
immediately.

False (default) Payments are due at the end of each period.

Analytica User Guide

Chapter Other Functions Financial functions

Cumipmt(rate, nPer, pv, startPeriod, endPeriod, type)

Returns the cumulative interest paid on an annuity between, and including, startPeriod (shown
as sp in equation below) and endPeriod (shown as ep in equation below). The annuity is
assumed to have a constant interest rate and periodic payments. This is equal to:

ep
Z Ipmt(rate,n,nPer,Pv,0,Type)

n=sp
Example Interest payments during the first year on a $100,000 loan at 8% is:

CumlPmt(8%/12, 360, 100K, 1, 12) — -7,969.81

The result is negative since these are payments.

Cumprinc(rate, nPer, pv, startPeriod, endPeriod, type)

Returns the cumulative principal paid on an annuity between, and including, startPeriod (shown
as sp in equation below) and endPeriod (shown as ep in equation below). The annuity is

assumed to have a constant interest rate and periodic payments. The result is equal to:
ep

Z PPmt(Rate,n,Nper,Pv,0,Type)

n=sp
Example The total principal paid during the first year on a $100,000 loan at 8% is:
CumPrinc(8%/12, 360, 100K, 1, 12) —» -835.36

The result is negative since these are payments.

Fv(rate, nPer, pmt, pv, type)

Returns the future value of an annuity investment with constant periodic payments and fixed inter-
est rate. The result is positive if you receive money at the end of the annuity’s lifetime, and nega-
tive if you must make a payment at the end of the annuity’s lifetime.

Examples You invest $1000 in an annuity that pays 6% annual interest, compounded monthly (0.5% per
month), that pays out $50 at the end of each month for 12 months, and then refunds whatever is
left after 12 months. The amount refunded is:

Fv(0.5%, 12, 50, -1000) — $444.90
You borrow $50,000 at a fixed annual rate of 12% (1% per month). You make monthly payments

of $550 for 15 years, and then pay off the remaining balance in a single balloon payment. That
final balloon payment is (the negative is because it is a payment for you):

-Fv(1%, 15*12, -550, 50000) — $25,020.99
You open a fixed-rate bank account that pays 0.5% per month in interest. At the beginning of each

month (including when you open the account) you deposit $100. The amount in the account at the
end of the each of the first three years is:

Fv(0.5%, [12, 24, 36], -100, 0, True) —
[$1239.72, $2555.91, $3953.28]

Ipmt(rate, per, nPer, pv, fv, type)

Returns the interest portion of a payment on an annuity, assuming constant period payments and
fixed interest rate.

Example The interest you pay in the 24" month on a 30-year fixed $100K loan at an 8%/12 monthly inter-
est rate is (the result of IPmt is negative since this is a payment for you):

—IPME(8%/12, 24, 12*30, 100K) — $655.59

Analytica User Guide 211

Chapter Other Functions Financial functions

Irr(values, i, guess)

Nper(rate, pmt, pv,

Example

Example

Returns the internal rate of return (IRR) of a series of periodic payments (negative values) and
inflows (positive values). The IRR is the discount rate at which the net present value (NPV) of the
flows is zero. The array values must be indexed by i.

If the cash flow never changes sign, Irr() has no solution and returns NaN (not a number). If a
cash flow changes sign more than once, Irr() might have multiple solutions, and returns the first
solution found. The implementation uses an iterative gradient-descent search to locate a solution.
The optional argument, guess, can be provided as a starting value for the search (default is
10%). When there are multiple solutions, the one closest to guess is usually returned. If no solu-
tion is found within 30 iterations, Irr() returns NaN.

To compute the IRR for a non-periodic cash flow, use XIRR().

Earnings: Timep

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M

Irr(Earnings, Time) — 17.15%

fv, type)
Returns the number of periods of an annuity with constant periodic payments and fixed interest
rate.

You invest $10,000 in an annuity that pays 8% annually. Each year you withdraw $1,000. Your
annuity lasts for:

NPer(8%, 1000, -10K) — 20.91 (years)

Npv(discountRate, values, i)

Pmt(rate, nPer, pv,

212

Tip

Example

Example

Returns the net-present value of a cash flow with equally spaced periods. The values parameter
contains a series of periodic payments (negative values) and inflows (positive values), indexed by
i. Future values are discounted by discountRate per period. The NPV is given by:

3 Values[I= j]
(1 + DiscountRate)’

i=1

The first value is discounted as if it is one step in the future. To compute the NPV for a non-periodic
cash flow, use Xnpv().

Earnings: Timep

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M

At a discount rate of 5%, the net present value of this cash flow is:
Npv(5%, Earnings, Time) — $865,947.76

fv, type)
Returns the total payment per period (interest + principal) for an annuity with constant periodic
payments and fixed interest rate.

You obtain a 30-year fixed mortgage at 8%/12 per month for $100K. Your monthly payment is
(note that the result of Pmt() is negative since this is a payment for you):

-Pmt(8%/12, 30*12, 100K) — $733.76

Analytica User Guide

Chapter Other Functions Financial functions

Ppmt(rate, per, nPer, pv, fv, type)

Example

Returns the principal portion of a payment on an annuity with constant period payments and fixed
interest rate.

You have a 30-year fixed $100K loan at a rate of 8%/12 monthly. On your 24t payment, the
amount of your payment that goes towards principal is (note that the result of PPmt() is negative
since this is a payment for you):

-PPmt(8%/12, 24, 12*30, 100K) — $78.18

Pv(rate, nPer, pmt, fv, type)

Example

Returns the present value of an annuity. The annuity is assumed to have constant periodic pay-
ments to you of pmt per period for nPer periods, with a return of rate per period.

To receive $100 per month from an annuity that returns 6%/12 per month for the next 10 years,
you would need to invest (note that the result from Pv() is negative since you are paying to make
the investment):

-Pv(6%/12, 10*12, 100) — $9,007.35

Rate(nPer, pmt, pv, fv, type, guess)

Example

Xirr(values, dates,

Example

Returns the interest rate (per period) for an annuity. The value returned is the interest rate that
results in equal payments of pmt per period over the nPer periods of the annuity.

In general, Rate() can have zero or multiple solutions. The implementation uses an interactive
search algorithm. The optional guess can be provided as a starting point for the search, which
usually results in the solution closest to guess being returned. If no solution is found in 30 itera-
tions, Rate() returns NaN.

You obtain a 30-year mortgage at a supposed 7% annual percentage rate for $100K. To do so,
you pay $2,000 up front in “points”, and another $1,500 in fees. Assuming you hold the loan for its
full term, the effective interest rate of your loan (for you) is:

Rate(30, Pmt(7%, 30, 100K), 100K-3500) — 7.36%

I, guess)

Returns the annual internal rate of return (IRR) for a series of payments (negative values) and
inflows (positive values) that occur at non-periodic intervals. Both values and dates must be
indexed by i. The values array constrains the cash flow amounts, the dates array contains the
date of each payment or inflow, where each date is Analytica’s expressed as the number of days
since Jan. 1, 1904. The rate is based on a 365 day year.

If the cash flow never changes sign, there is no solution and Xirr() returns NaN. If the cash flow
changes sign more than once, Xirr() can have multiple solutions, but returns only the first solution
found. The optional parameter, guess, can be provided as a starting point for the iterative search,
and Xirr() generally finds the solution closest to guess. If not provided, guess defaults to 10%. If
no solution is found within 30 iterations, Xirr() returns NaN.

To compute the IRR for a series of period payments, use Irr().

EarningAmt: Jp

1 2 3 4
-400K -200K 100K 600K

EarningDate: JP

1 2 3 4
July 5,1999 | Dec 1,1999| Jan 21, 2000 | Aug 10, 2001

XIrr(EarningAmt, EarningDate, J) — 9.31%

Analytica User Guide 213

Chapter Other Functions Financial library functions

Ti P EarningDate can be entered by selecting Number Format from the Result menu while editing
the table for EarningDate. From the Number format dialog, select a date format, then enter the
dates.

Xnpv(rate, values, dates, i)

Returns the net present value (NPV) of a non-periodic cash flow with a constant discount rate.
rate is the annual discount rate for a 365 day year. Both values, the cash-flow amounts, and
dates, the date of each payment (negative value) or inflow (positive value), must be indexed by i.

See also Npv().

Example Using the cash flow shown in the example for XIrr() above, the net present value at a 5% discount
rate is:

XNpv(5%, EarningAmt, EarningDate, J) — $42,838.71

Financial library functions

The following functions are not built-in to Analytica, but are located in the Financial library that
comes with Analytica.

Calloption(S, X, T, r, theta)

This function calculates the value of a call option using the Black-Scholes formula. For further
information on the Black-Scholes model for option pricing see Basic Black-Scholes: Option Pric-
ing and Trading by Timothy Falcon Crack.

Parameters ¢ S = price of security now
¢ X = exercise price
e T =time in years to exercise
e r =risk-free interest rate
« theta = volatility of security
Library Financial (add-in library)

Example Calloption(60, 50, 0.25, 0.05, 0.3) —» 3.292
Syntax Calloption(S, X, T, r, theta: Numeric)

Putoption(S, X, T, r, theta)

This function calculates the value of a put option using the Black-Scholes formula.
For further information on the Black-Scholes model for option pricing see Basic Black-Scholes:
Option Pricing and Trading by Timothy Falcon Crack.

Parameters « S = price of security now
* X = exercise price
e T =time in years to exercise
e r =risk-free interest rate
« theta = volatility of security
Library Financial (add-in library)
Example Putoption(50, 50, 0.25, 0.05, 0.3) —» 2.67

Syntax Putoption(S, X, T, r, theta: Numeric)

214 Analytica User Guide

Chapter Other Functions Financial library functions

Capm(Rf, Rm, Beta)

CAPM calculates the expected stock return under the Capital Asset Pricing Model.

For further information on the Capital Asset Pricing Model see Black, F., Jensen, M., and Scholes,
M. “The Capital Asset Pricing Model: Some Empirical Tests,” in M. Jensen ed., Studies in the The-
ory of Capital Markets. (1972).

Parameters ¢ Rf =risk free rate
« Rm = market return

« Beta = beta of individual stock. Beta is the relative marginal contribution of the stock to the
market return, defined as the ratio of the covariance between the stock return and market
return, to the variance in the market return.

Library Financial (add-in library)
Example Capm(8%, 12%, 1.5) — 0.14
Syntax Capm(Rf, Rm, Beta: Numeric)

CostCapme(rOpp, rD, Tc, L)

This function calculates Miles and Ezzell's (M/E) formula for adjusting the weighted average cost
of capital for financial leverage. The M/E formula works when the firm adjusts its future borrowing
to keep debt proportions constant.

Parameters « rOpp = opportunity cost of capital
¢ rD = expected return on debt

« Tc = net tax saving per dollar of interest paid. This is difficult to pin down in practice and is
usually taken as the corporate tax rate.

* L = debt-to-value ratio
Library Financial (add-in library)
Example CostCapme(14%, 8%, 35%, 0.5) — 0.1252
Syntax CostCapme(rOpp, rD, Tc, L: Numeric)

CostCapmm(rAllEq, Tc, L)

This function calculates Modigliani and Miller’s (M/M) formula for adjusting the weighted
average cost of capital for financial leverage. The M/M formula works for any project that is
expected to:

1. Generate a level, perpetual cash flow.
2. Support fixed permanent debt.
Parameters « rAllEq = cost of capital under all-equity financing

e Tc = net tax saving per dollar of interest paid. This is difficult to pin down in practice and is
usually taken as the corporate tax rate.

¢ L = debt-to-value ratio
Library Financial (add-in library)
Example CostCapmm(20%, 35%, 0.4) — 0.172

Syntax CostCapmm (rAllEq, Tc, L: Numeric)

Implied_volatility_c(S, X, T, r, p)

This function calculates the implied volatility of a call option, based on using the Black-Scholes
formula for options.

Parameters « S = price of security now

« X = exercise price

Analytica User Guide 215

Chapter Other Functions

Library
Example

Syntax

Financial library functions

« T =time in years to exercise
e r =risk-free interest rate
e p = option price
Financial (add-in library)
Implied_volatility_c(50, 35, 4, 6%, 15) — 3.052e-005

Implied_volatility_c(S, X, T, r, p: atomic numeric)

Implied_volatility p(S, X, T, r, p)

Parameters

Library
Example

Syntax

Pvperp(C, rate)

Parameters

Library
Example

Syntax

Pvgperp(C1, rate,

Parameters

Library
Example

Syntax

This function calculates the implied volatility of a put option, based on using the Black-Scholes
formula for options.

e S = price of security now
« X = exercise price
e T =time in years to exercise
e r =risk-free interest rate
e p = option price
Financial (add-in library)
Implied_volatility_p(50, 35, 4, 6%, 15) — 9.416e-001

Implied_volatility_p(S, X, T, r, p: atomic numeric)

Pvperp() calculates the present value of a perpetuity (a bond that pays a constant amount in per-
petuity).
e C = constant payment amount
« rate = interest rate per period
Financial (add-in library)
Pvperp(200, 8%) — 2500

Pvperp(C, rate: Numeric)

growth)

Pvgperp() calculates the present value of a growing perpetuity (a bond that pays an amount
growing at a constant rate in perpetuity).

e C1 = payment amount in year 1

e rate = interest rate per period

e growth = growth rate per period
Financial (add-in library)
Pvgperp(200, 8%, 6%) — 10K

Pvgperp(C1, rate, growth: Numeric)

Wacc(Debt, Equity, rD, rE, Tc)

Parameters

216

Wacc() calculates the after-tax weighted average cost of capital, based on the expected return on
a portfolio of all the firm’s securities. Used as a hurdle rate for capital investment.

¢ Debt = market value of debt
« Equity = market value of equity
« rD = expected return on debt

Analytica User Guide

Chapter Other Functions Advanced probability functions

« rE = expected return on equity
¢ Tc = corporate tax rate
Library Financial (add-in library)
Example Wacc(1M, 3M, 8%, 16%, 35%) — 0.133

Syntax Wacc(Debt, Equity, rD, rE, Tc: Numeric)

Advanced probability functions

The following functions are not actual probability distributions, but they are useful for various
probabilistic analyses, including building other probability distributions. You can find them in the
Advanced math library from the Definition menu.

BetaFn(a, b) The beta function, defined as:
i
a-1 b-1
BetaFn(a, b) = J' X T(1=-x)" “dx
0
Betal(x, a, b) The incomplete beta function, defined as:

Betal(x, a, b) = L1 -x)°tdx

1 J'x N
Beta(a, b)/
The incomplete beta function is equal to the cumulative probability of the beta distribution at x. It
is useful in a number of mathematical and statistical applications.

The cumulative binomial distribution, defined as the probability that an event with probability p
occurs k or more times in n trials, is given by:

Pr = Betal(p,k,n—-k+1)

The student’s distribution with n degrees of freedom, used to test whether two observed distribu-
tions have the same mean, is readily available from the beta distribution as:

Student(x|n) = 1-Betal(n/(n+x?),n/2,1/2)

The F-distribution, used to test whether two observed samples with n; and n, degrees of freedom
have the same variance, is readily obtained from Betal as:

F(x,n4, n,) = Betal(n,/(nyx+n,))

Betallnv(p, a, b) The inverse of the incomplete beta function. Returns the value X such that Betal(x, a, b)=p.

Combinations(k, n) “n choose k.” The number of unique ways that k items can be chosen from a set of n elements
(without replacement and ignoring the order).

Combinations(2, 4) —> 6
They are: {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3.4}

Permutations(k, n) The number of possible permutations of k items taken from a bucket of n items.
Permutations(2, 4) — 12

They are: {1,2}, {1,3}, {1,4}, {2,1}, {2,3}, {2,4}, {3,1}, {3,2}, {3,4}, {4.1}, {4,2}, {4,3}

CumNormal(x, mean, Returns the cumulative probability:
stddev)

p = Prix<X]

Analytica User Guide 217

Chapter Other Functions Advanced probability functions

CumNormalinv(p, m, s)

218

Erf(x)

Erfinv(y)

GammaFn(x)

Gammal(x, a, b)

Gammalinv(y, a, b)

for a normal distribution with a given mean and standard deviation. mean and stddev are optional
and default to mean =0, stddev = 1.

CumNormal (1) - CumNormal(-1) — .683

That is, 68.3% of the area under a normal distribution is contained within one standard deviation
of the mean.

The inverse cumulative probability function for a normal distribution with mean m and standard
deviation s. Returns the value X where:

p = Prix<X]

mean and stddev are optional and default to mean = 0, stddev = 1.

The error function, defined as:
2 & ¢
Erf(x) = <=[e dt
Jr'o

The inverse error function. Returns the value X such that Erf(X)=y.
Erfinv(Erf(2)) - 2

Returns the gamma function of x, defined as:

r(x) = j:tx‘l

e 'dt

The gamma function grows very quickly. For example, when n is an integer, GammaFn(n+1) = n!.
For this reason, it is often preferable to use the LGamma() function.

Returns the incomplete gamma function, defined as:
1 *P —th-1
Gammal(x, a, b) = —j et Tdt
I'(a)’g

a is the shape parameter, b is an optional scale factor (default b=1). Some textbooks use
L = 1/a as the scale factor. The incomplete gamma function is defined for x > 0.

The incomplete gamma function returns the cumulative area from zero to x under the gamma dis-
tribution.

The incomplete gamma function is useful in a number of mathematical and statistical contexts.

The cumulative Poisson distribution function, which encodes the probability that the number of
Poisson random events (x) occurring will be less than k (where k is an integer) where the
expected mean number is a, is given by (recall that parameter b is optional).

P(x<k) = Gammal(k, a)

The inverse of the incomplete gamma function. Returns the value x such that
Gammal(x, a, b) =y. b is optional and defaults to 1.

Analytica User Guide

OO (IgN: 3 EXxpressing Uncertainty

This chapter shows you how to:
¢ Choose a distribution
« Define a variable as a distribution
 Include a distribution in a definition
« Use Analytica’s built-in probability distributions

Chapter Expressing Uncertainty Choosing an appropriate distribution

Analytica makes it easy to model and analyze uncertainties even if you have minimal background
in probability and statistics. The graphs below review several key concepts from probability and
statistics to help you understand the probabilistic modeling facilities in Analytica. This chapter
assumes that you have encountered most of these concepts before, but possibly in the distant
past. If you need more information, see “Glossary” on page 393 or refer to an introductory text on
probability and statistics.

Mode ! I Median
P
@
c
]
o}
P
= Lower
8 Tail
o
a
S IR)
\
2 .75 |CEEEEEEEEEEEEE——— |
5 \
c
g |
& Rl cccccoccccocccapon |
g |
5
S 25 |-, | |
£ i |
3 ' ||
' \
0.0 ' ||
! !
I T | | | 1
Lower 25%ile ! 50%ile 75%ile Upper |
Bound Bound

Uncertain quantity X

Choosing an appropriate distribution

With Analytica, you can express uncertainty about any variable by using a probability distribution.
You can base the distribution on available relevant data, on the judgment of a knowledgeable indi-
vidual, or on some combination of data and judgment.

Answer the following questions about the uncertain quantity to select the most appropriate kind of
distribution:

¢ Is it discrete or continuous?

« If continuous, is it bounded?

« Does it have one mode or more than one?

¢ Is it symmetric or skewed?

¢ Should you use a standard or a custom distribution?
We will discuss how to answer each of these in turn.

Is the quantity discrete When trying to express uncertainty about a quantity, the first technical question is whether the

or continuous?

220

quantity is discrete or continuous.

Discrete Continuous

Analytica User Guide

Chapter Expressing Uncertainty Choosing an appropriate distribution

Does the quantity
have bounds?

How many modes
does it have?

A discrete quantity has a finite number of possible values — for example, the gender of a person
or the country of a person’s birth. Logical or Boolean variables are a type of discrete variable
with only two values, true or false, sometimes coded as yes or no, present or absent, or 1 or 0 —
for example, whether a person was born before January 1, 1950, or whether a person has ever
resided in California.

A continuous quantity can be represented by a real number, and has infinitely many possible
values between any two values in its domain. Examples are the quantity of an air pollutant
released during a given period of time, the distance in miles of a residence from a source of air
pollution, and the volume of air breathed by a specified individual during one year.

For a large discrete quantity, such as the number of humans residing within 50 miles of Disney-
land on December 25, 1980, it is often convenient to treat it as continuous. Even though you know
that the number of live people must be an integer, you might want to represent uncertainty about
the number with a continuous probability distribution.

Conversely, it is often convenient to treat continuous quantities as discrete by partitioning the set
of possible values into a small finite set of partitions. For example, instead of modeling human
age by a continuous quantity between 0 and 120, it is often convenient to partition people into
infants (age < 2 years), children (3 to 12), teenagers (13 to 19), young adults (20 to 40), middle-
aged (41 to 65), and seniors (over 65 years). This process is termed discretizing. It is often con-
venient to discretize continuous quantities before assessing probability distributions.

If the quantity is continuous, it is useful to know if it is bounded before choosing a distribution —
that is, does it have a minimum and maximum value?

L] s 10 0 s 10

Exact Lower Bounds Exact Upper Bounds

Some continuous quantities have exact lower bounds. For example, a river flow cannot be less
than zero (assuming the river cannot reverse direction). Some quantities also have exact upper
bounds. For example, the percentage of a population that is exposed to an air pollutant cannot be
greater than 100%.

Most real world quantities have de facto bounds — that is, you can comfortably assert that there
is zero probability that the quantity would be smaller than some lower bound, or larger than some
upper bound, even though there is no precise way to determine the bound. For example, you can
be sure that no human could weigh more than 5000 pounds; you might be less sure whether 500
pounds is an absolute upper bound.

Many standard continuous probability distributions, such as the normal distribution, are
unbounded. In other words, there is some probability that a normally distributed quantity is below
any finite value, no matter how small, and above any finite value, no matter how large.

Nevertheless, the probability density drops off quite rapidly for extreme values, with near expo-
nential decay, in fact, for the normal distribution. Accordingly, people often use such unbounded
distributions to represent real world quantities that actually have finite bounds. For example, the
normal distribution generally provides a good fit for the distribution of heights in a human popula-
tion, even though you might be certain that no person’s height is less than zero or greater than 12
feet.

The mode of a distribution is its most probable value. The mode of an uncertain quantity is the
value at the highest peak of the density function, or, equivalently, at the steepest slope on the
cumulative probability distribution.

mode N modes

Analytica User Guide 221

Chapter Expressing Uncertainty Defining a variable as a distribution

Is the quantity

symmetric or skewed?

A standard or custom

distribution?

Important questions to ask about a distribution are how many modes it has, and approximately
where it, or they, are? Most distributions have a single mode, but some have several and are
known as multimodal distributions.

If a quantity has two or more modes, you can usually view it as a combination of two or more pop-
ulations. For example, the distribution of ages in a daycare center at leaving time might include
one mode at age 3 for the children and another mode at age 27 for the parents and caretakers.
There is obviously a population of children and a population of parents. It is generally easier to
decompose a multimodal quantity into its separate components and assess them separately than
to assess a multimodal distribution. You can then assess a unimodal (single mode) probability
distribution for each component, and combine them to get the aggregate distribution. This
approach is often more convenient, because it lets you assess single-mode distributions, which
are easier to understand and evaluate than multimodal distributions.

A symmetrical distribution is symmetrical about its mean. A skewed distribution is asymmetric. A
positively skewed distribution has a thicker upper tail than lower tail; and vice versa, for a nega-
tively skewed distribution.

Symmetric

Probability distributions in environmental risk analysis are often positively skewed. Quantities
such as source terms, transfer factors, and dose-response factors, are typically bounded below
by zero. There is more uncertainty about how large they might be than about how small they
might be.

The next question is whether to use a standard parametric distribution — for example, normal,
lognormal, or beta — or a custom distribution, where the assessor specifies points on the cumula-
tive probability or density function.

Considering the physical processes that generate the uncertainty in the quantity might suggest
that a particular standard distribution is appropriate. More often, however, there is ho obvious
standard distribution to apply.

It is generally much faster to assess a standard distribution than a full custom distribution,
because standard distributions have fewer parameters, typically from two to four. You should usu-
ally start by assigning a simple standard distribution to each uncertain quantity using a quick judg-
ment based on a brief perusal of the literature or telephone conversation with a knowledgeable
person. You should assess a custom distribution only for those few uncertain inputs that turn out
to be critical to the results. Therefore, it is important to be able to select an appropriate standard
distribution quickly for each quantity.

Defining a variable as a distribution

222

To define a variable as an Analytica probability distribution, first select the variable and open
either the variable’s Object window or the Attribute panel (page 24) of the diagram with Defini-
tion (page 108) selected from the Attribute popup menu.

To define the distribution:

1. Click the expr menu above the definition field and select Distribution.

Analytica User Guide

Ch apter Expressing Uncertainty

Entering a distribution
as an expression

& E wpression

B List

B3 List of Labels

[Table

= Probabiliby Table
v J Distnbution

= Choice
&t Other...

The Object Finder opens, showing the Distribution library.

Defining a variable as a distribution

Library popup menu: Distribution Example probability density,
library is selected indicating parameters

9 Object Finder

Library:[Distribution v | Find. |
Com=hc [Mean, scale, Ovel
Lognormal [median, gsdev, m

Marmal [mes ey, o
Poizzon [Mean, over:over
Probdist (PR, 11 J
Probtakle CH.LIn .. pn) mean
Parameters to the Randam ¢ dist, methad, Ove = |
distribution T ————— mean stddev over
Hormal | 0.105 | 0015 |
Mormal(mean stddey) returns a continuous, normal Gaussian probability -
distribution with the specified mean and the standard devistion, stedey. ﬂ

Select the distribution you wish to use.

3. Enter the values for the parameters. You can use an expression or refer to other variables by

name in the parameter fields.
4. Click OK to accept the distribution.

If the parameters of the distribution are single numbers, a button appears with the name of the
distribution, indicating that the variable is defined as a distribution. To edit the parameters, click

this button.

F . 4

Definition: Seguence 01,201}

Button with the name of the
distribution

Parameters of the distribution

If the parameters of the distribution are complex expressions, the distribution displays as an

expression. For example:
Normal ((Price/Mpy) * Mpg, Mpg/10)

Alternatively, you can directly enter a distribution as an expression:

1. Setthe cursor in the definition field and type in the distribution name and parameters, for

example:
Normal (105, 0.015)

Analytica User Guide

223

Ch apter Expressing Uncertainty

Including a distribution in a definition

2. Press Alt-Enter or click the button.

You can also paste a distribution from the Distribution library in the Definition menu (see “Using a
library” on page 323).

You can edit a distribution as an expression, whether it was entered as a distribution from the Dis-
tribution library or as an expression, by selecting expr from the expr menu.

= List
(e <] & Tatle
Wility value (value to me): Definition hd | ? Ellﬂbl:bllfty T able H
Momal [r 0,05, 0015 v istribution
¢ Other...

Including a distribution in a definition

You can enter a distribution anywhere in a definition, including in a cell of an edit table. Thus, you
can have arrays of distributions.

To enter a distribution:
1. Setthe insertion point where you wish to enter the distribution in the definition field or edit table
cell.
2. Enter the distribution in any of the following ways:
« Type in the name of the distribution.
¢ Paste it from the Distribution library under the Definition menu.
« Select Paste Identifier from the Definition menu to paste it from the Object Finder.
3. Type in missing parameters, or replace parameters enclosed as <<x>>.

Probabilistic calculation

224

Example

Tip

Analytica performs probabilistic evaluation of probability distributions through simulation — by
computing a random sample of values from the actual probability distribution for each uncertain
quantity. The result of evaluating a distribution is represented internally as an array of the sample
values, indexed by Run. Run is an index variable that identifies each sample iteration by an inte-
ger from 1 to Samplesize.

You can display a probabilistic value using a variety of uncertainty view options (page 33) —
the mean, statistics, probability bands, probability density (or mass function), and cumulative dis-
tribution function. All these views are derived or estimated from the underlying sample array,
which you can inspect using the last uncertainty view, Sample.

= Normal (10, 2) —
Iteration (Run) P

1 2 3 4 5 6
10.74 13.2| 9.092| 11.44| 9.519| 13.03

The values in a sample are generated at random from the distribution; if you try this example and
display the result as a table, you might see values different from those shown here. To reproduce
this example, reset the random number seed to 99 and use the default sampling method and
random number method (see “Uncertainty Setup dialog” on page 225).

For each sample run, a random value is generated from each probability distribution in the model.
Output variables of uncertain variables are calculated by calculating a value for each value of
Run.

Analytica User Guide

Chapter Expressing Uncertainty Uncertainty Setup dialog

Example

Tip

:= Normal (5, 1) —
Iteration (Run) M

1 2 3 4 5 6
5.09 4.94 4.65 6.60 5.24 6.96
=A+B >
Iteration (Run) P
1 2 3 4 5 6

15.83 18.13 13.75 18.04 14.76 19.99

Notice that each sample value of C is equal to the sum of the corresponding values of A and B.

To control the probabilistic simulation, as well as views of probabilistic results, use the Uncer-
tainty Setup dialog (page 225).

If you try to apply an array-reducing function (page 185) to a probability distribution across Run,
Analytica returns the distribution’s mid value.

Example:
:= Beta(2, 3)
Mid(X) — 0.3857 and Max(X, Run) — 0.3857
To evaluate the input parameters probabilistically and reduce across Run, use Sample()
(page 266).
Example:
Max(Sample(X), Run) —» 0.8892

Uncertainty Setup dialog

Uncertainty sample

Use the Uncertainty Setup dialog to inspect and change the sample size, sampling method, sta-
tistics, probability bands, and samples per plot point for probability distributions. All settings are
saved with your model.

To open the Uncertainty Setup dialog, select Uncertainty Options from the Result menu or
Control+u. To set values for a specific variable, select the variable before opening the dialog.

The five options for viewing and changing information in the Uncertainty Setup dialog can be
accessed using the Analysis option popup menu.

v Uncertainty Sample
Stahistics
Probability Bands
Probability D enzity
Cumulative Probability

To change the sample size or sampling method for the model, select the Uncertainty Sample
option from the Analysis option popup menu.

Analytica User Guide 225

Ch apter Expressing Uncertainty

Uncertainty Setup dialog

1 Uncertainty Setup

— Analysis option:| Uncertainty Sample b I

(Applies to entire model)

Sample Size: m

Press here to see
additional uncertainty

sample parame

ters. Mare Options

Cancel

Set Default

The default dialog shows only a field for sample size. To view and change the sampling method,
random number method, or random seed, press the More Options button.

M Uncertainty Setup

x

[Analysis option:| Uncertainty

Sample

> |

{Applies to entire model)

sample Size: [IIIER

Sampling method:
{* Median Latin Hypercube

(" Random Latin Hypencube
" Simple Monte Carlo

Randomize method:
{+ Minimal standard

™ L'Ecuyer
" Knuth

Fewer Options

| Random seed: g9 [Reset once

Cancel

Set Default

Sample size

This number specifies how many runs or iterations Analytica performs to estimate probability dis-

tributions. Larger sample sizes take more time and memory to compute, and produce smoother
distributions and more precise statistics. See “Appendix A: Selecting the Sample Size” on

page 372 for guidelines on selecting a sample size. The sample size must be between 2 and
32,000. You can access this number in expressions in your models as the system variable Sam-

plesize.

Sampling method

The sampling method is used to determine how to generate a random sample of the specified

sample size, m, for each uncertain quantity, X. Analytica provides three options:

« Simple Monte Carlo

The simplest sampling method is known as Monte Carlo, named after the randomness
prevalent in games of chance, such as at the famous casino in Monte Carlo. In this method,
each of the m sample points for each uncertainty quantity, X, is generated at random from X
with probability proportional to the probability density (or probability mass for discrete
quantities) for X. Analytica uses the inverse cumulative method; it generates m uniform
random values, u; for 1=1,2,...m, between 0 and 1, using the specified random number
method (see below). It then uses the inverse of the cumulative probability distribution to

226

generate the corresponding values of X,
Xi where P(x < Xi) =y fori=1,2,...m.

With the simple Monte Carlo method, each value of every random variable X in the model,
including those computed from other random quantities, is a sample of m independent
random values from the true probability distribution for X. You can therefore use standard
statistical methods to estimate the accuracy of statistics, such as the estimated mean or

Analytica User Guide

Chapter Expressing Uncertainty Uncertainty Setup dialog

Choosing a sampling
method

Random number
method

Random seed

fractiles of the distribution, as for example described in “Appendix A: Selecting the Sample
Size” on page 372.

¢ Median Latin hypercube (the default method)

With median Latin hypercube sampling, Analytica divides each uncertain quantity X into m
equiprobable intervals, where m is the sample size. The sample points are the medians of the
m intervals, that is, the fractiles

Xi where P(x < Xi) = (i-0.5)/m, for i=1,2,...m.

These points are then randomly shuffled so that they are no longer in ascending order, to
avoid nonrandom correlations among different quantities.

« Random Latin hypercube

The random Latin hypercube method is similar to the median Latin hypercube method,
except that instead of using the median of each of the m equiprobable intervals, Analytica
samples at random from each interval. With random Latin hypercube sampling, each sample
is a true random sample from the distribution. However, the samples are not totally
independent.

The advantage of Latin hypercube methods is that they provide more even distributions of sam-
ples for each distribution than simple Monte Carlo sampling. Median Latin hypercube is still more
evenly distributed than random Latin hypercube. If you display the PDF of a variable that is
defined as a single continuous distribution, or is dependent on a single continuous uncertain vari-
able, using median Latin hypercube sampling, the distribution usually looks fairly smooth even
with a small sample size (such as 20), whereas the result using simple Monte Carlo looks quite
noisy.

If the variable depends on two or more uncertain quantities, the relative noise-reduction of Latin
hypercube methods is reduced. If the result depends on many uncertain quantities, the perfor-
mance of the Latin hypercube methods might not be discernibly better than simple Monte Carlo.
Since the median Latin hypercube method is sometimes much better, and almost never worse
than the others, Analytica uses it as the default method.

Very rarely, median Latin hypercube can produce incorrect results, specifically when the model
has a periodic function with a period similar to the size of the equiprobable intervals. For example:
X:z= Uniform(l, Samplesize)
Y:= Sin(2*Pi*X)
This median Latin hypercube method gives very poor results. In such cases, you should use ran-

dom Latin hypercube or simple Monte Carlo. If your model has no periodic function of this kind,
you do not need to worry about the reliability of median Latin hypercube sampling.

The random number method is used to determine how random numbers are generated for the
probability distributions. Analytica provides three different methods for calculating a series of
pseudorandom numbers.

¢ Minimal Standard (the default method)

The Minimal Standard random number generator is an implementation of Park and Miller’s
Minimal Standard (based on a multiplicative congruential method) with a Bays-Durham
shuffle. It gives satisfactory results for less than 100,000,000 samples.

* L'Ecuyer
The L’Ecuyer random number generator is an implementation of L'Ecuyer’s algorithm, based
on a multiplicative congruential method, which gives a series of random numbers with a
much longer period (sequence of numbers that repeat). Thus, it provides good random

numbers even with more than 100,000,000 samples. It is slightly slower than the Minimal
Standard generator.

¢« Knuth

Knuth's algorithm is based on a subtractive method rather than a multiplicative congruential
method. It is slightly faster than the Minimal Standard generator.

This value must be a number between 0 and 100,000,000 (108). The series of random numbers
starts from this seed value when:

¢ A model is opened.

Analytica User Guide 227

Ch apter Expressing Uncertainty

Uncertainty Setup dialog

¢ The value in this field is changed.

* The Reset once box is checked, and the Uncertainty Setup dialog is closed by clicking the
Accept or Set Default button.

Reset once Check the Reset once box to produce the exact same series of random numbers.

Statistics option To change the statistics reported when you select Statistics as the uncertainty view for a result,
select the Statistics option from the Analysis option popup menu.

W Uncertainty Setup X

 Analysis opﬁon:| Statistics - | —]
¥ Min [+ Standard deviation
W Median [Varance
v Mean | Skewness
v Max [Kurtosis

Cancel Set Default

Probability Bands To change the probability bands displayed when you select Probability Bands as the uncertainty
option view for a result, select the Probability Bands option from the Analysis option popup menu.

@ Uncertainty Setup

— Analysis apﬁon:l Probability Bands v |]

[v¥ 50% (median)
[33% and 67%
[v 25%and 79%
[10% and 90%
Iv 5%and95%

[~ 1% and 99%

[~ 0%and 100%

Cancel Set Default

Probability density To change how probability density or the cumulative probability values are drawn or to change

and cumulative their resolution, select the respective option from the Analysis option popup menu.
probability options

228 Analytica User Guide

Chapter Expressing Uncertainty Uncertainty Setup dialog

Samples per plot point

Equal probability steps

Equal X axis steps

W Uncertainty Setup

— Analysis opﬁon:| Cumulative Probability I
Samples per CDF plot point: ‘ —‘
¢ Equal] — Analysis option:[Probability Density W | —
f" Equal Samples per PDF step interval: m

f» Equal ¥ ads steps
™ Equal weighted probability steps

m " Equal sample probability steps

Cancel Set Default

Analytica estimates the probability density function and cumulative distribution function, like other
uncertainty views, from the underlying array of sample values for each uncertain quantity. As with
any simulation-based method, each estimated distribution has some noise and variability from
one evaluation to the next.

This number controls the average number of sample values used to estimate each point on the
probability density function (PDF) or cumulative distribution function (CDF) curves.

For a small number of samples per plot point (less than or equal to 10), more points are each esti-
mated from fewer sample values and so are more susceptible to random noise. If the quantity is
defined by a single probability distribution, and if you use median Latin hypercube method (the
default), this noise is slight and the curve looks smooth. In other cases, the noise can have a large
effect, and using a larger number of samples per plot point produces a smoother curve. There is a
trade-off; with larger numbers the smoothing can miss details of the shape of the curve. PDFs
might be much more susceptible to random noise than CDFs, so you might wish to use larger
numbers for PDFs than CDFs. Ultimately, to reduce the noise, use a larger sample size (for
details on selecting the sample size, see “Appendix A: Selecting the Sample Size” on page 372).

With this option, Analytica uses the sample to estimate a set of m+! fractiles (quantiles), Xp, at
equal probability intervals, where p=0, q, 2q, ... 1, and g = 1/m. The cumulative probability is plot-
ted at each of the points Xp, increasing in equal steps along the vertical axis. Points are plotted
closer together along the horizontal axis in the regions where the density is the greatest. In the
probability density graph view, the areas under the density function between successive fractiles
are equal because they each represent the same probability, g. The density between two succes-
sive fractiles is plotted at the mid point (on the horizontal axis) of the two fractiles.

With this option, Analytica estimates cumulative probability using equally spaced points along the
X axis. In the probability density graph view, it shows a histogram where the height of each hori-
zontal is estimated as the fraction of the sample values that fall within that X interval.

Analytica User Guide 229

Ch apter Expressing Uncertainty Uncertainty Setup dialog

230 Analytica User Guide

Chapter 15

Probability Distributions

This chapter describes how to define uncertain quantities using proba-
bility distributions, discrete or continuous. You can use standard para-
metric distributions, such as Normal, Uniform, Bernoulli, binomial, or
custom distributions, where you specify points in tables or arrays. You
can also create multivariate distributions over an array of uncertain
quantities.

Chapter Probability Distributions

Probability distributions

The built-in Distribution library (available from the Definition menu) offers a wide range of distri-
butions for discrete and continuous variables. (See “Is the quantity discrete or continuous?” on
page 220 and “Glossary” on page 393 for an explanation of this distinction.) Some are standard
or parametric distributions with just a few parameters, such as Normal and Uniform, which are
continuous, and Bernoulli and Binomial, which are discrete. Others are custom distributions,

such as CumbDist, which lets you specify an array of points on a cumulative probability distribu-
tion, and Probtable (page 239), which lets you edit a table of probabilities for a discrete variable
conditional on other discrete variables.

There are a variety of ways to create arrays of uncertain quantities, or multivariate distributions
(page 253). You may set parameters to array values, specify an index to the optional Over param-
eter, or use functions from the Multivariate library.

Parametric Discrete
« Bernouli() page 233
* Binomial() page 233
* Poisson() page 233
e Geometric() page 234
« Hypergeometric() page 234
e Uniform() page 234

Custom Discrete
« Probtable() page 238
* Determtable() page 239
¢ Chancedist() page 240

Special Probabilistic
e Certain() page 251
« Shuffle() page 251
e Truncate() page 251
« Random() page 252

Parametric Continuous

Uniform() page 241
Triangular() page 242
Normal() page 242
Lognormal() page 243
Beta() page 244
Exponential() page 245
Gammay() page 246
Logistic() page 246
StudentT() page 247
Weibull() page 248
ChiSquared() page 249

Custom Continuous

Cumdist() page 249
Probdist() page 250

232 Analytica User Guide

Multivariate

Normal_correl() page 254
Correlate_with() page 254
Dist_reshape() page 255
Correlate_dists() page 255
Gaussian() page 255

Multinormal() page 255

BiNormal() page 255

Dirichlet() page 255

Multinomial() page 256
UniformSpherical() page 256
MultiUniform() page 256
Normal_serial_correl() page 256
Dist_serial_correl() page 257
Normal_additive_gro() page 257
Dist_additive_growth() page 257
Normal_compound_gro() page 257
Dist_compound_growth() page 257

Ch apter Probability Distributions

Parametric discrete distributions

Parametric discrete distributions

Bernoulli(p)

Defines a discrete probability distribution with probability p of result 1 and probability (1 - p) of
result 0. It generates a sample containing 0s and 1s, with the proportion of 1s is approximately p.

p is a probability between 0 and 1, inclusive, or an array of such probabilities. The Bernoulli distri-
bution is equivalent to:

If Uniform(0, 1) < P Then 1 Else O
Library Distribution
Example The domain, List of numbers,is [0, 1].
Bernoulli_ex:= Bernoulli (0.3) —

@ Result - Bernoulli Example

Probability Density of Bernoulli Example = I
Horizontal A:is:l Possible Values W
Lafl

Probability

Bernoulli Example

% |

Binomial(n, p)

An event that can be true or false in each trial, such as a coin coming down heads or tails on each
toss, with probability p has a Bernoulli distribution. A binomial distribution describes the number of
times an event is true, e.g., the coin is heads in n independent trials or tosses where the event
occurs with probability p on each trial.

The relationship between the Bernoulli and binomial distributions means that an equivalent, if less
efficient, way to define a Binomial distribution function would be:

Function Binomial2(n, p)
Parameters: (n: Atom; p)
Definition: Index 1 = 1..n;
Sum(FOR J := 1 DO Bernoulli(p), i)

The parameter n is qualified as an Atom to ensure that the sequence 1. .n is a valid one-dimen-
sional index value. It allows Binomial2 to array abstract if its parameters n or p are arrays.

Poisson(m)

A Poisson process generates random independent events with a uniform distribution over time
and a mean of m events per unit time. Poisson(m) generates the distribution of the number of
events that occur in one unit of time. You might use the Poisson distribution to model the number
of sales per month of a low-volume product, or the number of airplane crashes per year.

Analytica User Guide 233

Chapter Probability Distributions Probability density and mass graphs

Geometric(p)

The geometric distribution describes the number of independent Bernoulli trials until the first suc-
cessful outcome occurs, for example, the number of coin tosses until the first heads. The param-
eter p is the probability of success on any given trial.

Hypergeometric(s, m, n)

The hypergeometric distribution describes the number of times an event occurs in a fixed number
of trials without replacement, e.g., the number of red balls in a sample of s balls drawn without
replacement from an urn containing n balls of which m are red. Thus, the parameters are:

S The sample size, e.g., the number of balls drawn from an urn without replacement.
Cannot be larger than n.

m The total number of successful events in the population, e.g, the number of red balls in
the urn.

n The population size, e.g., the total number of balls in the urn, red and non-red.

Uniform(min, max, Integer: True)
The Uniform distribution with the optional integer parameter set to True returns discrete distribu-
tion over the integers with all integers between and including min and max having equal probabil-
ity.
Uniform(5, 14, Integer: True) —

—oix

le*| probability Mass of U Jhind|

nﬁ Horizontal Axis:| Possible Values w

0.1
0.09
n.os
0.07
0.06
0.os
0.04
nao3
0.0z
om

Prabability

(B

Probability density and mass graphs

When you select the Probability density as the uncertainty view (page 33) for a continuous
variable, it graphs the distribution as a Probability Density function. The height of the density
shows the relative likelihood the variable has that value.

234 Analytica User Guide

Ch apter Probability Distributions

Probability density and mass graphs

[Result - Rate of inflation

=
=
L

=
[on]
L

Probability
Density

=
.
L

_E
'ﬁ

2 3 4 5 B
Rate of inflation (%u/year)

'
—
=
=

Technically, the probability density of variable X, means the probability per unit increment of X.
The units of probability density are the reciprocal of the units of X — if the units of X are dollars,
the units of probability density are probability per dollar increment

If you select Probability density as the uncertainty view for a discrete variable, it actually graphs
the Probability Mass function — using a bar graph style to display the probability of each dis-
crete value as the height of each bar.

% Result - Poisson(3) Z szl
L~ Probability Mass of Poisson{5) ﬂ
@ Horizontal A:lis:| Possible Values v |

Lall

001 2 3 4 5 B 7 8 9 10 12
Poisson(5)

Similarly, if you choose the cumulative probability uncertainty view for a discrete variable, it
actually displays the cumulative probability mass distribution as a bar graph. Each bar shows
the cumulative probability that X has that value or any lower value.

Analytica User Guide 235

Chapter Probability Distributions

Is a distribution discrete

or continuous?

The domain attribute and discrete variables

@ Result - Poisson(5) Z E|E|
Cumulative Probahility of Poisson(5) &
Horizontal Axis:l Possible Values w |

Lall

Cumulative
Probability

001 2 3 4 5 B T B 9 10 12
Poisson(5)

Almost always, Analytica can figure out whether a variable is discrete or continuous, and so
choose the probability density or probability mass view as appropriate — so you don’t need to
worry about it. If the values are text, it knows it must be discrete. If the numbers are integers, such
as generated by Bernoulli, Poisson, binomial, and other discrete parametric distributions, it also
assumes it is discrete.

Infrequently, a discrete distribution can contain numbers that are not integers, which it might not
recognize as discrete, for example:
Chance Indiscrete := Poisson(4)*0.5

In this case, you can make sure it does what you want by specifying the domain attribute of the
variable as discrete (or continuous). The next section on the domain attribute explains how.

The domain attribute and discrete variables

236

Editing the domain

The domain attribute specifies the set of possible values for a variable. You rarely need to view or
change a domain attribute explicitly. The most common reason to set the domain is for a variable
defined as a custom discrete distribution, especially ProbTable. You can do this by editing it
directly as an index in the probtable view (page 238), so you can usually ignore the information
below. The rare case you need it is to specify a distribution as discrete, when Analytica would not
otherwise figure it out — because it has non-integer numerical value.

By default, the domain type is Automatic, meaning Analytica figures it out when it needs to. Usu-
ally, this is obvious (see previous section). For a discrete quantity, the domain can be a list of
numbers or a list of labels. If the domain is continuous, it means that any number is valid.

You can view and edit the domain like any other attribute of a variable, in the Attribute panel:

1. Select the variable.
2. Open the Attribute panel, and select Domain from the Attribute menu.
3. Select the domain type from the popup menu.

Analytica User Guide

Custom discrete probabilities

Chapter Probability Distributions

0 Diagram - Domain editing

Autornakic

Continuous
. Discrete Mumeric |

. il
o Categorical 3 E
new: Domain b | List of Mumbers :l
Loy v List of Labels
Micd Index
High —

The domain type Automatic: The default, meaning Analytica should figure it out.

Continuous: Any number. All other types are discrete.

Discrete Numeric and Categorical: Discrete but its values are unspecified.
List of Numbers: You specify a list of numbers.

List of Labels: You specify a list of label (text) values, as illustrated.

Index: You enter the name of an index variable, to use its values as the domain, or another
variable to copy its domain values.

4. If you choose List of Numbers or List of Labels, you enter the list values in the usual way
(see “Creating an index” on page 163).

Domain in the You can also view and edit the domain attribute in the Object window if you set it to do so in the
Object window Attributes dialog (see “Managing attributes” on page 306).

@ Object - Weather E|E|g|
VWeather Units:

Title: Weather

Description: Inthis example, there are only two pozsible outcomes: "sunny™ and "rainy". The outcomes are
kept in the "domain” attribute. So the domain for this variable is the list cortaining "sunny" and
"rainy”. For this reason, "Self" must alvways be one of the indexes of a probtable.

Each walue in the probtable is the probakility of one of the possible values occurring. Inthis
example, there iz a "p" chance that the weather will be sunny and & "p-1" chance that the
weeather will be rainy. The probabilities of all possible outcomes must albwvays sumto 1.

Definition: FrobT able incexed by Weather

Domain: | List of Labels bl |

|sunn‘f |
rair

Inputs:) P p

| [

Ti P The domain of a discrete variable should include all its possible values. If not, its probability mass
function might sum to less than 1.

Custom discrete probabilities

These functions let you specify a discrete probability distribution using a custom set of values,
text (label) values, or numbers.

Analytica User Guide 237

Chapter Probability Distributions

Custom discrete probabilities

Probtable(): Probability Tables

238

Create a
probability table

Tip

Tip

To describe a probability distribution on a discrete variable whose domain is a list of numbers or
list of labels, you use special kind of edit table called a probability table (or probtable) (see
“Arrays and Indexes” on page 143).

To define a variable using a probability table:

1. Determine the variable’s domain — number or labels for its possible values.

2. Select the variable and view its definition attribute in the Object window or Attribute panel
(page 24) of the Diagram window.

3. Press the expr menu above the definition field and select Probability Table.

e Ewpression

B List
= Table

v = Probability Table
4 Distribution

= Other...

If the variable already has a definition, it confirms that you wish to replace it.

If the definition of a variable is already a probability table, a ProbTable button appears in the
definition. Click it to open the Edit Table window (see “Defining a variable as an edit table” on
page 169).

4. The Indexes dialog opens to confirm your choices for the indexes of the table. It already
includes the selected variable (Self) among the selected indexes. Other options are
variables with a domain that is a list of numbers or list of labels. Add or remove any other
variables that you want to condition this variable on.

T Indexes |§|
Preview: Domains: | AllYariables Selected Indexes:
7 Vears -] > Westher (Self) =]
7 Wears J
() Y _array
7 hew index T‘ |

Cahcel ak

Selfis required as an index of a probability table. It refers to the domain (possible values) of this
variable.

5. Click the OK button. An Edit Table window appears.

6. Enter the possible values for the domain in the left column. As in any edit table, press Enter
or down-arrow in the last row to add a row. Select Insert row (Control+i) or Delete row
(Control+k) from the Edit menu. If they are numbers, they must be in increasing order.

7. Enter the probability of each possible outcome in the second column. The probabilities should
sum to 1. You may enter literal numbers or expressions.

Analytica User Guide

Chapter Probability Distributions Custom discrete probabilities

Example

Expression view of
probability table

Add a conditioning
variable

Tip

If P is a variable whose value is a probability (between 0 and 1) and the possible weather out-
comes are sunny and rainy, you might define a probability table for weather like this.

Probab able -]

Q
£ Probability Table of Weath...
et g

7 [~

. sunny P
Domam{ rainy (1-P)

The Weather probability table when viewed as an expression, looks like this.
Probtable(Sel) (P, (1-P))

The domain values do not appear in the expression view, and it is not very convenient for defining
a probability table. More generally, the expression view of a multidimensional probability table
looks like this:

Probtable(il, 12, .. in) (pl, p2, p3, .. pm)
This example is an n-dimensional conditional probability table, indexed by the indexes i1, i2, ...

in. One index must be Self. p1, p2, p3, ... pm are the probabilities in the array. m is the product
of the sizes of the indexes i1, i2, ... in.

You might wish to add one or more conditioning variables to a probability table, to create condi-
tional dependency. Each discrete conditioning variable adds a dimension to the table. For exam-
ple, in the Weather probability table (see page 238), the probability of rain might depend on the
season. So you might have Season as a conditioning variable, defined as a list of labels:

Variable Season := ["Winter®, "Spring®, "Summer®, “"Fall"]
Open the Edit Table window by clicking the ProbTable button.

Click the indexes| e |button to open the Indexes dialog.

Click the All Variables checkbox above the left hand list.

Move the desired variable, e.g., Season, to add it as an index.

Click OK to accept the changes.

g krwnhPe

The resulting table is indexed by both the domain of your variable and the domains of the condi-

tionally dependent variables. You need to enter a probability for each cell. The probabilities must
sum to one over the domain of the variable (sunny and rainy in the example), not over the con-
ditioning index(es).

You must have already specified the variables as probability tables, before adding them with the
Indexes dialog.

Determtable(): Deterministic conditional table

Determtable() defines the value of a variable as a deterministic (not uncertain) function of one or
more discrete variables. It gives a value conditional on the value of one or more discrete vari-
ables, often including a probabilistic discrete variable and a discrete decision variable defined as
a list. DetermTable() is described in Chapter 11, “Arrays and Indexes,” on page 199, but we also
include it in this section on discrete probability distributions, even though it is not probabilistic,
because you usually use it in conjunction with Probtable and other discrete distributions. It is an
editable table, like Probtable, but with a single (deterministic) value, number, or text, in each cell.

The Determtable() function looks like an edit table or a probability table, with an index (dimen-
sion) from each discrete variable on which it depends. Unlike Probtable, it does not need a self
index. Its result is probabilistic if any of its conditioning variables are probabilistic.

Analytica User Guide 239

Chapter Probability Distributions Custom discrete probabilities

For the steps to create a determTable, see “Creating a DetermTable” on page 200.

Example In “Create a probability table” on page 238, Weather is defined as a probability table. If P, the
probability of “sunny” is 0.4, then the probability of “rainy” is 0.6. Party_location is a decision
variable with values ["outdoors®™, “porch®,"indoors®]. value_to_me is a determtable,
containing utility values (or “payoffs”) for each combination of Party_location and Weather.

0] Dete ahle of Pa o
/7| Determ Table of Utility of Party {valu...
= | Party Location v I

b
o | Party weather w I[)

B rainy =

outdoors 100 0
porch a0 20
indoors 40 50

Evaluating value_to_me gives the value of each party location, considering the uncertain distri-
bution of Weather. The mean value of value_to_me is the expected utility.

9 ' Result - Utility of Party [value to me) E]E|E|

Mean Value of Rility of Party {value to me) =
iz | Party Location w I [Taotals

=
Lall | -~ |
outdoors 40 o
porch 45
indoors 45

Chancedist(p, a, i)

Creates a discrete probability distribution, where a is an array of outcome values, numbers or
text, and p is the corresponding array of probabilities. a and p must both be indexed by i.

When to use Use Chancedist() instead of ProbTable() when:
e The array of outcome a is multidimensional.

or
* You want to use other variables or expressions to define the outcomes or probability arrays.

Library Distribution

Example Index_b:

| Red| White\ Blue|

Array_q:
Index b P

Red White |[Blue
0.3 0.2 0.5

The domain of the variable is a list of labels: [*Red ", "White*", "Blue™].
Chancedist(Array_q, Index_b, Index_b) —

240 Analytica User Guide

Ch apter Probability Distributions

Parametric continuous distributions

0 Result - Chancedist Example

Prohability Mass of Chancedist Example iy
Horizontal A:is:l Possible Values w
|

Probability

Blue Red White

Chancedist Example

Parametric continuous distributions

Tip

Uniform(min, max)

When to use

Library

Example

To produce the example graphs of distributions below, we used a sample size of 1000, equal
sample probability steps, samples per PDF of 10, and we set the graph style to line. Even if you
use the same options, your graphs can look slightly different due to random variation in the Monte
Carlo sampling.

Creates a uniform distribution between values min and max. If omitted, they default to 0 and 1. If
you specify optional parameter Integer: True, it returns a discrete distribution consisting of only

the integers between min and max, each with equal probability. See “Uniform(min, max, Integer:
True)” on page 234.

If you know nothing about the uncertain quantity other than its bounds, a uniform distribution
between the bounds is appealing. However, situations in which this is truly appropriate are rare.
Usually, you know that one end or the middle of the range is more likely than the rest — that is,
the quantity has a mode. In such cases, a beta or triangular distribution is a better choice.

Distribution
Uniform(5, 10) —

Analytica User Guide 241

Chapter Probability Distributions Parametric continuous distributions

"0 Result - Uniform function Example

Probability Density of Uniform function Example =1 |

0.2
018
016
014
012

0.1
0.08
0.06
0.04
0.0z

Probability Density

4.4] 5.5] 6.5 T 7.A g8 8.4 g 95 10 104

A

Uniform function Example

Triangular(min, mode, max)
Creates a triangular distribution, with minimum min, most likely value mode, and maximum max.
min must not be greater than mode, and mode must not be greater than max.

When to use Use the triangular distribution when you have the bounds and the mode, but have little other infor-
mation about the uncertain quantity.

Library Distribution
Example Triangular(2, 7, 10) —

W Result - Triangular
Probability Density of Triangular ﬁl

0.24
0.224 £
0.z \
0174 s b
0.14 3
0124 £ b
01 <. b
0.074 v hY
0.04 N

0.024

Probability Density

1 2 3 4 3 B 7 B g mo 1
Triangular

Normal(mean, stddev)
Creates a normal or Gaussian probability distribution with mean and standard deviation stddev.
The standard deviation must be O or greater. The range [mean-stddev, mean+stddev] encloses

about 68% of the probability.

When to use Use a normal distribution if the uncertain quantity is unimodal and symmetric and the upper and
lower bounds are unknown, possibly very large or very small (unbounded). This distribution is

242 Analytica User Guide

Chapter Probability Distributions Parametric continuous distributions

Library

Example

particularly appropriate if you believe that the uncertain quantity is the sum or average of a large
number of independent, random quantities.

Distribution
Normal (30, 5) —

[Result - Normal E|
Probability Density of Hormal ﬂ

0.08

0.07

0.06 [h\

0.05

\

0.04

0.03 / \

o / S
_./" S

10 14 20 24 a0 34 40 45 a0
Neormal

Probability Density

Lognormal(median, gsdev, mean, stddev)

When to use

Library

Examples

Creates a lognormal distribution. You can specify its median and geometric standard deviation
gsdev, or its mean and standard deviation stddev, or any two of these four parameters. The geo-
metric standard deviation, gsdev, must be 1 or greater. It is sometimes also known as the uncer-
tainty factor or error factor. The range [median/gsdev, median x gsdev] encloses about 68%
of the probability — just like the range [mean - stddev, mean + stddev] for a normal distribution
with standard deviation stddev. median and gsdev must be positive.

If x is lognormal Ln(x) has a normal distribution with mean Ln(median) and standard deviation
Ln(gsdev).

Use the lognormal distribution if you have a sharp lower bound of zero but no sharp upper bound,
a single mode, and a positive skew. The gamma distribution is also an option in this case. The
lognormal is particularly appropriate if you believe that the uncertain quantity is the product (or
ratio) of a large number of independent random variables. The multiplicative version of the central
limit theorem says that the product or ratio of many independent variables tends to lognormal —
just as their sum tends to a normal distribution.

Distribution

Lognormal (5, 2) —
Lognormal(mean: 6.358, Stddev: 5) —

Analytica User Guide 243

Chapter Probability Distributions Parametric continuous distributions

@ Result - Lognormal

Lo Probability Density of Lognormal

0.16
014 -4
0.12 \

0.1 l\

n.os \'
0.06 \‘
n.o4 \
n.oz \\‘-____

1] 10 20 30 40 a0 60 70 g0 2]
Loghormal

Probability Density

Beta(x, y, min, max)

244

When to use

Library

Examples

Creates a beta distribution of numbers between 0 and 1 if you omit optional parameters min and
max. X and y must be positive. If you specify min and/or max, it shifts and expands the beta dis-
tribution to so that they form the lower and upper bounds. The mean is:

X . .
x (max—min) + min
X+Yy

Use a beta distribution to represent uncertainty about a continuous quantity bounded by 0 and 1
(0% or 100%) with a single mode. It is particularly useful for modeling an opinion about the frac-
tion (percentage) of a population that has some characteristic. For example, suppose you are try-
ing to estimate the long run frequency of heads, h, for a bent coin about which you know nothing.
You could represent your prior opinion about h as a uniform distribution:

Uniform(0, 1)

Or equivalently:
Beta(1, 1)

If you observe r heads in n tosses of the coin, your new (posterior) opinion about h, should be:
Beta(l + r, 1 + n -r)

If the uncertain quantity has lower and upper bounds other than 0 and 1, include the lower and
upper bounds parameters to obtain a transformed beta distribution. The transformed beta is a
very flexible distribution for representing a wide variety of bounded quantities.

Distribution
Beta(5, 10) —

Analytica User Guide

Chapter Probability Distributions Parametric continuous distributions

@ Result - Beta function Example 1

N / AN
0.5 ,/ \\
i

0 0.1 0.2 0.3 0.4 0.4 0.6 0.7 0.8

Probability Density

Beta function Example 1

Beta(5, 10, 2, 4) —

@ Result - Beta function Example 1

Probability Density of Beta function Example 1 =
Lafl

1.8

1 E a—

s AN

. / AN
0.6 /

Di? \

2 22 24 28 28 3 32 34 38

Probability Density

Beta function Example 1

Exponential(r)

Describes the distribution of times between successive independent events in a Poisson process
with an average rate of r events per unit time. The rate r is the reciprocal of the mean of the Pois-
son distribution — the average number of events per unit time. Its standard deviation is also 1/r.

A model with exponentially distributed times between events is said to be Markov, implying that
knowledge about when the next event occurs does not depend on the system’s history or how
much time has elapsed since the previous event. More general distributions such as the gamma
or Weibull do not exhibit this property.

Analytica User Guide 245

Chapter Probability Distributions Parametric continuous distributions

Gamma(a, b)
Creates a gamma distribution with shape parameter a and scale parameter b. The scale parame-
ter, b, is optional and defaults to b=1. The gamma distribution is bounded below by zero (all sam-
ple points are positive) and is unbounded from above. It has a theoretical mean of a-b and a
theoretical variance of a - b2 .When a > b, the distribution is unimodal with the mode
at (a—1)-b . An exponential distribution results when a = 1. As a — o, the gamma distribu-
tion approaches a normal distribution in shape.

The gamma distribution encodes the time required for a events to occur in a Poisson process with
mean arrival time of b.

Ti P Some textbooks use Rate=1/b, instead of b, as the scale parameter.

When to use Use the gamma distribution with a>1 if you have a sharp lower bound of zero but no sharp upper
bound, a single mode, and a positive skew. The Lognormal distribution is also an option in this
case. Gamma() is especially appropriate when encoding arrival times for sets of events. A
gamma distribution with a large value for a is also useful when you wish to use a bell-shaped
curve for a positive-only quantity.

Library Distribution

Examples Gamma distributions with mean=1

@ Result - gamma
L~ Probability Density of gamma

[zl ke[ov]

Probability Density

Logistic(m, s)
The logistic distribution describes a distribution with a cumulative density given by:
F(x) = —2+

—(X-m

1+e °

The distribution is symmetric and unimodal with tails that are heavier than the normal distribution.
It has a mean and mode of m, variance of:

246 Analytica User Guide

Chapter Probability Distributions Parametric continuous distributions

Example

StudentT(d)

Example

and kurtosis of 6/5 and no skew. The scale parameter, s, is optional and defaults to 1.

The logistic distribution is particularly convenient for determining dependent probabilities using
linear regression techniques, where the probability of a binomial event depends monotonically on
a continuous variable x. For example, in a toxicology assay, x might be the dosage of a toxin, and
p(x) the probability of death for an animal exposed to that dosage. Using p(x) = F(x), the logit of p,
given by:

Logit(p(x)) = Ln(p(x) / (1-p(x))) = x/s - m/s

This has a simple linear form. This linear form lends itself to linear regression techniques for esti-
mating the distribution — for example, from clinical trial data.

Logistic(10, 10)

a A=

I
a1

)|

Lo Probability Density of Logistic J
|
0.025
00225 ’{\
&
I 0oz } \
=
by no17a ! \
=] 0014 ! \
£ 00125 1 v
o 0.01 ; \
e 5m Y. N
& 2am
a — et N
-80 -60 -40 -20 il 20 40 B0 a0 100
Logistic

The StudentT describes the distribution of the deviation of a sample mean from the true mean
when the samples are generated by a normally distributed process centered on the true mean.
The T statistic is:

T = (m - x)/(s Sqrt(n))

where x is the sample mean, m is the actual mean, s is the sample standard deviation, and n is
the sample size. T is distributed according to StudentT with d = n-1 degrees of freedom.

The StudentT distribution is often used to test the statistical hypothesis that a sample mean is sig-

nificantly different from zero. If x1. .xn measurements are taken to test the hypothesis m>0:
GetFract(StudentT(n-1), 0.95)

This is the acceptance threshold for the T statistic. If T is greater than this fractile, we can reject

the null hypothesis (that m<=0) at 95% confidence. When using GetFract for hypothesis testing,

be sure to use a large sample size, since the precision of this computation improves with sample

size.

The StudentT can also be useful for modeling the power of hypothetical experiments as a function
of the sample size n, without having to model the outcomes of individual trials.

StudentT(8)

Analytica User Guide 247

Chapter Probability Distributions Parametric continuous distributions

® Result - StudentT

Probability Density of StudentT ﬂ
Lall
0.4
B 035 rjﬂlll'l,
8 3 1
& 07 ey
£ 02] :
2 015
S L
e -] L
o005 i
0
-a -6 -4 -2 1] 2 4 & g8 10
StudentT

Weibull(n, s)
The Weibull distribution has a cumulative density given by:

f(x) = 1—¢e

fort >= 0. It is similar in shape to the gamma distribution, but tends to be less skewed and tail-
heavy. It is often used to represent failure time in reliability models. In such models, f(x) might
represent the proportion of devices that experience a failure within the first x time units of opera-
tion, the number of insurance policy holders that file a claim within x days.

Example Weibull(10, 4) —

@ Result - Weibull M=
Lo Probability Density of Weibull ﬂ

0.9 A
7N
07 7y
0 /
0.4 f

0.3 7 ;

0.2

1 1.4 2 245 3 34 4 4.5 & 5.5
Weibull

| et
ﬂ-"""-.

Probability Density

248 Analytica User Guide

Chapter Probability Distributions Custom continuous distributions

ChiSquared(d)

The ChiSquared() distribution with d degrees of freedom describes the distribution of a Chi-
Squared metric defined as:

.2 n 2
Chi™ =25 1Yi

where each y; is independently sampled from a standard normal distribution and d = n -1. The
distribution is defined over non-negative values.

The Chi-squared distribution is commonly used for analyses of second moments, such as analy-
ses of variance and contingency table analyses. It can also be used to generate the F distribution.
Suppose:

Variable V := ChiSquared(k)
Variable W := ChiSquared(m)
Variable S = (W/K)*(W/m)

S is distributed as an F distribution with k and m degrees of freedom. The F distribution is useful
for the analysis of ratios of variance, such as a one-factor between-subjects analysis of variance.

Custom continuous distributions

Cumdist(p, r, i)

Library

Example

These functions let you specify a continuous probability distribution by specifying any number of
points on its cumulative or density function.

Specifies a continuous probability distribution as an array of cumulative probabilities, p, for an
array of corresponding outcome values, r. The values of p must be nondecreasing and should
start with 0 and end with 1. The values of r must also be be nondecreasing over their common
index. If p is an index of r, or r is an index of p, or if both have the same single index, the corre-
spondence is clear and so you can omit i. Otherwise, if p or r have more than one index, you must
specify the common index i to link p and r.

By default, it fits the cumulative distribution using piecewise cubic monotonic interpolation
between the specified points, so that the PDF is also continuous. If you set the optional parameter
Smooth to False, it uses piecewise linear interpolation for the CDF, so that the PDF is piecewise
uniform.

Distribution

Array_b —
Index_a P

1 2 3
0 0.6 1.0

Array_x —
Index_a W

1 2 3
10 20 30

CumDist(Array_b, Array x) —

Analytica User Guide 249

Chapter Probability Distributions Custom continuous distributions

W Result - Cumdist function Example

Cumulative Probability of Cumdist function Example

0.9 o

0.8
/
0r

0.E

04
//'

0.4
0.3 //

0.2 o
0.1 e

10 12 14 16 18 20 22 24 26 28 30

Cumulative Probability |3 EE

Cumdist function Example

Probdist(p, r, i)
Specifies a continuous probability distribution as an array of probability densities, p, for an array
of corresponding values, r. The values of r must be increasing. The probability densities p must
be non-negative. It normalizes the densities so that the total probability integrates to 1.

Usually the first and last values of p should be 0. If not, it assumes zero at 2r; - R, (or 2rp, - Fp_1).

Either r must be an index of p, or p and r must have an index in common. If p or r have more than
one index, you must specify the index i to link p and r.
It produces the density function using linear interpolation between the points on the density func-
tion (quadratic on CDF).
Library Distribution
Array_p —
Index_a W

1 2 3 4 5 6
0 0.4 0.2 0.5 0.2 0

Array_r —
Index_a W

1 2 3 4 5 6
10 15 20 25 30 35

Probdist(Array_p, Array r) —

250 Analytica User Guide

Ch apter Probability Distributions Special probabilistic functions

[x]]
Qo - [O]X]
Lo Probability Density of Probdist function Example

bl

.08
oo VAR
005 £\ y \
o jf 7 ‘\\

0.02 \
0.01 L ™,

0

Probability Density

745 10 125 15 1758 20 224 25 274 30 325 35 375
Probdist function Example

Special probabilistic functions

Certain(u)

Library

Shuffle(a, i)

Returns the mid (deterministic) value of u even if u is uncertain and evaluated in a prob (probabi-
listic) context. It is not strictly a probability distribution. It is sometimes useful in browse mode,
when you want to replace an existing probability distribution defined for an input (see “Using input
nodes” on page 120) with a non-probabilistic value.

Distribution

Shuffle returns a random reordering (permutation) of the values in array a over index i. If you
omit i, it evaluates a in prob mode, and shuffles the resulting sample over Run. You can use it to
generate an independent random sample from an existing probability distribution a.

If a contains dimensions other than i, it shuffles each slice over those other dimensions indepen-
dently over i. If you want to shuffle the slices of a multidimensional array over index i, without
shuffling the values within each slice, use this method:

a[@i = Shuffle(@i, i1)]

This shuffles a over index i, without shuffling each slice over its other indexes.

Truncate(u, min, max)

Truncates an uncertain quantity u so that it has no values below min or above max. You must
specify one or both min and max.

It does not discard sample values below min or above max. Instead, it generates a new sample
that has approximately same probability distribution as u between min and max, and no values
outside them. The values of the result sample have the same rank order as the input u, so the
result retains the same rank-correlation that u had with any predecessor.

It gives an error if u is not uncertain, or if min is greater than max. It gives a warning if no sample
values of u are in the range min to max. In mid mode, it returns an estimate of the median of the
truncated distribution. Unlike other distribution functions, even in mid mode, it evaluates its
parameter u (and therefore any of its predecessors) in prob mode. It always evaluates min and
max in mid mode.

Analytica User Guide 251

Ch aptel’ Probability Distributions Special probabilistic functions

Examples

Library

Random(expr)

252

Parameters

We define a normal distribution, X, and variables A, B, and C that truncate X below, above, and on
both sides. Then we define a variable to compare A, B, and C and display its result in the probabil-

ity density view:
Chance X := Normal(10, 2)
Chance A := Truncate(X, 7)
Chance B := Truncate(X, , 10)
Chance C := Truncate(X, 8, 12)
Variable Compare_truncated_x := [A, B, C]

1 Result - Compare truncated x

Probability Density of Compare truncated x =
Hey:l Compare truncated x v I
|
0.4
g 035 //
£ 03
g .25
z o /z’
a 015
§ 01 //; i
E .05
EI I T
2 4 B a 10 12 14 16 18
Compare truncated x
Compare truncated x
—a =—nh C
Distribution

Generates a single value randomly sampled from expr, which, if given, must be a call to a proba-
bility distribution with all needed parameters, for example:
Random(Uniform(-100, 100))
This returns a single real-valued random number uniformly selected between -100 and 100. If you
omit parameter expr, it generates one sample from the uniform distribution O to 1, for example:
Random(Uniform(-100, 100)) — 74.4213148
Random() — 0.265569265
Random is not a true distribution function, since it generates only a single value from the distribu-
tion, whether in mid or prob context. It generates each single sample using Monte Carlo, not Latin

hypercube sampling, no matter what the global setting in the uncertainty setup. It is often useful
when you need a random number generator stream, such as for rejection sampling, Metropolis-

Hastings simulation, and so on.
Random has these parameters, all optional.
dist: If specified, must be a call to a distribution function that supports single-sample generation
(see below). Defaults to Uniform(0, 1).
Method: Selects the random number generator of O=default, 1=Minimal standard, 2=L'Ecuyer, or
3=Knuth.
Over: A convenient way to list index(es) so that the result is an array of independent random
numbers with this index or indexes. For example:

Random(Over: 1)

Analytica User Guide

Chapter Probability Distributions Multivariate distributions

Supported distributions

returns an array of independent uniform random numbers between 0 and 1 indexed by I. It is
equivalent to:

Random(Uniform(0, 1, Over: i))

Random supports all built-in probability distribution functions with the exception of Fractiles,
ProbDist, and Truncate. It supports Bernoulli, Beta, Binomial, Certain, ChiSquared, CumDist,
Exponential, Gamma, Geometric, HyperGeometric, Logistic, LogNormal, Normal, Poisson, Stu-
dentT, Triangular, Uniform, Weibull.

It supports these distributions in the Distribution Variations library: Beta_m_sd, Chancedist,
Erlang, Gamma_m_sd, InverseGaussian, Lorenzian, NegBinomial, Pareto, Pert, Rayleigh,
Smooth_Fractile, and Wald, and these distributions from the Multivariate Distributions library:
BiNormal, Dirichlet, Dist_additive_growth, Dist_compound_growth, Dist_serial_correl, Gaussian,
Multinomial, MultiNormal, MultiUniform, Normal_additive_gro, Normal_compound_gro,
Normal_correl, Normal_serial_correl, UniformSpherical, Wishart, and InvertedWishart.

User-defined functions can be used as a parameter to Random, if they are given an optional
parameter declared as:

singleSampleMethod: Optional Atom Number
If the parameter is provided, the distribution function must return a single random variate from the

distribution indicated by the other parameters. The value specifies the random number generator
to use O=default, 1=Minimal standard, 2=L'Ecuyer, and 3=Knuth.

Multivariate distributions

A multivariate distribution is a distribution over an array of quantities — or, equivalently, an array
of distributions. Analytica’s Intelligent Array features make it relatively easy to generate multivari-
ate distributions. There are three main ways:

« To create an array of identical independent distributions, use the Over parameter.

« To create an array of independent distributions with different parameters, pass array(s) of
parameter values to the function.

« To create an array of dependent distributions, use a function from the Multivariate
Distributions library, which lets you specify a dependence as a correlation, correlation matrix,
or covariance matrix.

See the following sections for details.

Over indexes as parameters to probability distributions

If you want to generate an array of identical, independent distributions, the simplest method is to
specify the index(es) in the Over parameter, for example:

Normal (10, 2, Over: K)

generates an array of independent normal distributions, each with mean 10 and standard devia-
tion 2, over index K. All parametric distributions accept Over as an optional parameter. Over
allows multiple indexes if you want to create a multidimensional array of identically distributed
quantities. For example, this generates a three-dimensional array of independent, identically dis-
tributed uniform distributions:

Uniform(0, 10, Over: 1, J, K)

Probability distributions with array parameters

Probability distribution functions fully support Intelligent Arrays. If a parameter is an array, the
function generates an array of independent distributions over any index(es) of the array. For
example:

Index K := ["A", "B", "C"]
Variable Xmean := Table(K)(10, 11, 12)
Variable X := Normal(Xmean, 2)

Analytica User Guide 253

Chapter Probability Distributions Multivariate distributions

Xis an array of normal distributions over index K, each with the corresponding mean. If you define
a normal distribution with two parameters (mean and standard deviation) with the same Index(es)
— in this case, Xmean and Ysd are both indexed by k:

Variable Ysd := Table(K)(2, 3, 4)
Variable Y := Normal(Xmean, Ysdeviation)

it generates an array of normal distributions over index K, each with corresponding mean and
standard deviation. More generally, the result is an array with the union of the indexes of all its
parameters — just the same as all other functions and operations that support Intelligent Arrays.

The custom probability distributions, including ProbTable, ProbDist, and CumDist, expect their
parameters to be arrays of probabilities, probability densities, or values, with a common index. In
this case, the common index is used in generating the random sample and does not appear in the
result. But, if those array parameters have any other indexes, those indexes also appear in the
result, following the usual rules of Intelligent Arrays.

Multivariate Distributions library

This library offers a variety of functions for generating probability distributions that are dependent
or correlated. It is distributed with Analytica. To add this library to your model see “Adding library
to a model” on page 310.

Many of these functions specify dependence among distributions using a rank correlation num-
ber or matrix, also known as the Spearman correlation. Unlike the Pearson or product-moment
correlation, rank correlation is a non-parametric measure of correlation. It is equivalent to the
Pearson correlation on the ranks of the same. It does not assume that the relationship is linear,
and applies to ordinal as well as interval-scale variables. It is therefore a more robust statistic. For
example, it is a more stable way to estimate the relationship between two random samples when
one or both has a long tail — such as a lognormal distribution. In such cases, Pearson correlation
might be misleadingly large (or small) when an extreme sample in the tail of one sample does (or
does not) correspond with an extreme value in the other sample.

The methods provided to generate general multivariate distributions with specified rank correla-
tion, first generate multivariate normal (Gaussian) distributions with specified rank correlation,
and then transform them to the desired marginal distributions. The rank correlations are not
changed by such transformation.

The method for generating the correlated distribution (based on Iman & Conover) works for
median and random Latin Hypercube as well as simple Monte Carlo simulation methods. The
rank-correlations of the results are approximately, but not exactly, equal to the specified rank-cor-
relations. The accuracy of the approximation increases with the sample size.

Create one distribution dependent on another

Normal_correl(m, s, r,y)

Generates a normal distribution with mean m, standard deviation s, and correlation r with uncer-
tain quantity y. In mid mode, it returns m. If y is not normally distributed, the result is also not nor-
mal, and the correlation is approximate. It generalizes appropriately if any of the parameters are

arrays. The result array has the union of the indexes of the parameters.

Correlate_with(s, ref, rc)

Reorders the samples of s so that the result has the identical values to s, and a rank correlation
close to rc with the reference sample, ref.

Example To generate a lognormal distribution with a 0.8 rank correlation with Z, use:
Correlate_with(LogNormal (2, 3), Z, 0.8)

Note: If you have a non-default SampleWeighting of points, the weighted rank correlation
might differ from rc.

254 Analytica User Guide

Chapter Probability Distributions Multivariate distributions

Dist_reshape(x, newdist)

Reshapes the probability distribution of uncertain quantity x, so that it has the same marginal
probability distribution (i.e., same set of sample values) as newdist, but retains the same ranks
as x over Run. Thus:

Rank(Sample(x), Run)
= Rank(Sample(Dist_reshape(x, y)), Run)
In a mid context, it simply returns Mid(newdist), with any indexes of x.

The result retains any rank correlations that x might have with other predecessor variables. So,
the rank-order correlation between a third variable z and x is the same as the rank-order correla-
tion between z and a reshaped version of x, like this:

RankCorrel (x, z) = RankCorrel(Dist_reshape(X, y), 2)

The operation can optionally be applied along an index r other than Run.

An array of distributions with correlation or covariance matrix

Correlate_dists(x, rcm, m, i, j)

Gaussian(m, cvm, i, j)

Given an array x indexed by i of uncertain quantities, it reorders the samples so as to match the
desired rank correlation matrix, rcm between the x[i] as closely as possible. rcm is indexed by i
and j, which must be the same length. It must be positive definite, and the diagonal should be all
ones. The result has the same marginal distributions as x[i], and rank correlations close to those
specified in rcm. In mid mode, it returns Mid(x).

Generates a multivariate Gaussian (i.e., normal) distribution with mean vector, m, and covariance
matrix, cvm. m is indexed by i. cvm must be a symmetric and positive-definite matrix, indexed by
i and j, which must be the same length. It is similar to Multinormal() except that it takes a covari-
ance matrix instead of a rank correlation matrix.

MultiNormal(m, s, cm, i, j)

BiNormal(m, s, i, c)

Generates a multivariate normal (or Gaussian) distribution with mean m, standard deviation s,
and correlation matrix cm. m and s can be scalar or indexed by i. cm must be a symmetric, posi-
tive-definite matrix, indexed by i and j, which must be the same length. It is similar to Gaussian,
except that it takes a correlation matrix instead of a covariance matrix.

A 2D Normal (or bivariate Gaussian) distribution with means m, standard deviations s (>0) and
correlation ¢ between the two variables. The index i must have exactly two elements. s must be
indexed by i.

Other parametric multivariate distributions

Dirichlet(alpha, 1)

A Dirichlet distribution with parameters alpha>0 indexed by i. Each sample of a Dirichlet distribu-
tion produces a random vector indexed by i whose elements sum to 1. It is commonly used to rep-
resent second order probability information.

The Dirichlet distribution has a density given by:
k * Product(x~(alpha-1), i)

where k is a normalization factor equal to:
GammaFn(Sum(alpha, 1))/Sum(GammaFn(alpha), i)

Analytica User Guide 255

Chapter Probability Distributions Multivariate distributions

The alpha parameters can be interpreted as observation counts. The mean is given by the rela-
tive values of alpha (normalized to 1), but the variance narrows as the alphas get larger, just as
your confidence in a distribution would narrow as you get more samples.

The Dirichlet lends itself to easy Bayesian updating, if you have a prior of alpha = 0, and you have
n observations.

Multinomial(n, theta, i)

Returns the multinomial distribution, a generalization of the binomial distribution to n possible out-
comes. For example, if you were to roll a fair die n times, the outcome would be the number of
times each of the six numbers appears. theta would be the probability of each outcome, where
Sum(theta, i)=1, and index i is the list of possible outcomes. If theta doesn’t sum to 1, it is nor-
malized.

Each sample is a vector indexed by i indicating the number of times the corresponding outcome
(die number) occurred during that sample point. Each sample has the property

Sum(result, I) = n

UniformSpherical(i, r)

Generates points uniformly on a sphere (or circle or hypersphere). Each sample generated is
indexed by i, so if i has three elements, the points lie on a sphere.

The mid value is a hit strange here since there isn’t really a median that lies on the sphere. Obvi-
ously the center of the sphere is the middle value, but that isn’t in the allowed range. So, it returns
an arbitrary point on the sphere.

MultiUniform(cm, i, j, Ib, ub)
The multi-variate uniform distribution.

Generates vector samples (indexed by i) such that each component has a uniform marginal distri-
bution, and each component has the pair-wise correlation matrix cm, indexed by i and j, which
must have the same number of elements. cm needs to be symmetric and must obey a certain
semidefinite condition, namely that the transformed matrix [2*sin(30*cov)] is positive semidefi-
nite. (In most cases, this roughly the same as cm being positive semidefinite.) Ib and ub can be
used to specify upper and lower bounds, either for all components, or individually if these bounds
are indexed by i. If Ib and ub are omitted, each component has marginal Uniform(0, 1).

Note: cm is the true sample correlation, not rank correlation.
The transformation is based on:

* Falk, M., “A simple approach to the generation of uniformly distributed random variables with
prescribed correlations,” Comm. in Stats - Simulation and Computation 28: 785-791 (1999).

Arrays with serial correlation

These six functions each generate an array of distributions over an index t such that each distri-
bution has a specified serial correlation with the preceding element over t. They are especially
useful for modeling dynamic processes or Markov processes over time, where the value at each
time step depends probabilistically on the value at the preceding time. Normal_serial_correl()
and Dist_serial_correl() generate arrays of serially correlated distributions that are normal and
arbitrary, respectively. Normal_additive_gro() and Dist_additive_growth() produce arrays
with uncertain additive growth with serial correlation. Normal_compound_gro() and
Dist_compound_growth() produce arrays with uncertain compound growth with serial corre-
lation.

Normal_serial_correl(m, s, r, t)

Generates an array of normal distributions over index t with mean m, standard deviation s, and
serial correlation r between successive values over index t. You can give each distribution a dif-

256 Analytica User Guide

Chapter Probability Distributions Importance weighting

ferent mean and/or standard deviation if m and/or s are arrays indexed by t. If r is indexed by t,
r[t=k] specifies the correlation between result[t=k] and result[t=k-1]. (Then it ignores the first
correlation, rj@t=1].)

Dist_serial_correl(x, r, t)

Generates an array y over time index t where each y[t] has a marginal distribution identical to x,
and serial rank correlation of rc with y[t-1]. If x is indexed by t, each y[t] has the same marginal
distribution as x[t], but with samples reordered to have the specified rank correlation r between
successive values. If r is indexed by t, r[@t=K] specifies the rank correlation between y[@t=k]
and y[@t=k-1]. Then the first correlation, r[@t=1], is ignored.

Normal_additive_gro(x, m, s, r, t)

Generates an array of values over index t, with the first equal to x, and successive values adding
an uncertain growth, normally distributed with mean m and standard deviation s. If we denote the
result by g, r specifies a serial correlation between g[@t = k] and g[@t=k-1]. x, m, s, and r each
can be indexed by t if you want them to vary over t.

Dist_additive_growth(x, g, rc, t)

Generates an array of values over index t, with the first equal to x, and successive values adding
an uncertain growth g, and serial correlation rc between g[@t = k] and g[@t=k-1]. x, g, and rc
each can be indexed by t if you want them to vary over t.

Normal_compound_gro(x, m, s, r, t)

Generates an array of values over index t, with the first equal to x, and successive values multi-
plied by compound growth 1+g, where g is normally distributed with mean m and standard devia-
tion s. It applies serial correlation r between g[@t = k] and g[@t=k-1]. x, g, and rc each can be
indexed by t if you want them to vary over t.

Dist_compound_growth(x, g, rc, t)

Generates an array of values over index t, with the first equal to x, and successive values multi-
plying by an uncertain compound growth g, and serial rank correlation rc between g[@t = k] and
g[@t=k-1]. x, g, and rc each can be indexed by t if you want them to vary over t.

Uncertainty over regression coefficients

For a description of RegressionDist(), RegressionNoise(), and RegressionFitProb(), see
“Uncertainty in regression results” on page 279.

Importance weighting

Importance weighting is a powerful enhancement to Monte Carlo and Latin hypercube simula-
tion that lets you get more useful information from fewer samples; it is especially valuable for risky
situations with a small probability of an extremely good or bad outcome. By default, all simulation
samples are equally likely. With importance weighting, you set SampleWeighting to generate
more samples in the most important areas. Thus, you can get more detail where it matters and
less where it matters less. Results showing probability distributions with uncertainty views and
statistical functions reweight sample values using SampleWeighting so that the results are unbi-
ased.

You can also modify SampleWeighting interactively to reflect different input distributions and so
rapidly see the effects the effects on results without having to rerun the simulation. In the default
mode, it uses equal weights, so you don’t have to worry about importance sampling unless you
want to use it.

Analytica User Guide 257

Chapter Probability Distributions Importance weighting

258

SampleWeighting To set up importance weighting, you set weights to each sample point in the built-in variable Sam-

pleWeighting. Here is how to open its Object window:

1. De-select all nodes, e.g., by clicking in the background of the diagram.

2. Fromthe Definition menu, select System Variables, and then SampleWeighting. Its Object
window opens.

9 ' Object - Sample Weighting g@g|
Sysvar Samplewveighting =
Title: Sample Weighting

Description: Weight sssigned to each sample point when computing statistical functions.
Sampleveighting would normally be a constant value, 9., 1, indicating that all sample
poirts are of equal weight., Howwever you can define a weighting, which when
evaluated would be indexed by Run. For example, it could depend upon uncetain
variables in your model. Weights must always be finite and non-negative, and at least
some samples should always have positive weight, Specityving a sample weight iz one
weay to perform importance weighting, or even simple posterior condtioning.

ey W
Definition: 1
ouputs: B Colf Celfi x, |, we, discrete, binMethod, sample:
B Correlation Correlation] X, ¥, 1, w)
B Covariance Covariancel ¥, Y, 1, w) ~
<] [

Initially, its definition is 1, meaning it has an equal weight of 1 for every sample. (1 is equivalent to
an array of 1s, e.g., Array(Run, 1)). For importance weighting, you assign a different weight-
ing array indexed by Run. It automatically normalizes the weighting to sum to one, so you need
only supply relative weights.

Suppose you have a distribution on variable X, with density function f(x), which has a small critical
region in cr(x) — in which X causes a large loss or gain. To generate the distribution on X, we use
a mixture of f(x) and cr(x) with probability p for cr(x) and (1-p) for f(x). Then use the sample-
Weighting function to adjust the results back to what they should be is:

f) 7 ((p f(x) + (1 - p) cr(x)) ®3)

For example, suppose you are selecting the design Capacity in Megawatts for an electrical
power generation system for a critical facility to meet an uncertain Demand in Megawatts which
has a lognormal distribution:

Chance Demand := Lognormal (100, 1.5)

Decision Capacity := 240

Probability(Demand) — 0.015
In other words, the probability of failing to meet demand is about 1.5%, according to the probabi-
listic simulation of the lognormal distribution. Suppose the operator receives Price of 20 dollars
per Megawatt-hour delivered, but must pay Penalty of 200 dollars per megawatt-hour of
demand that it fails to supply to its customers:

Variable Price := 100

Variable Penalty := 1000

Variable Revenue := IF Demand <= Capacity THEN Price*Demand

ELSE Price*Capacity - (Demand - Capacity)*Penalty

Mean (Revenue) — $2309
The estimated mean revenue of $2309 is imprecise because there is a small (1.5%) probability of
a large penalty ($200 per Mwh that it cannot supply), and only a few sample points will be in this
region. You can use Importance sampling to increase the number of samples in the critical region,
where Demand > Capacity).

Chance Excess_demand := Truncate(Demand, 150)

Analytica User Guide

Chapter Probability Distributions

Importance weighting

Variable Mix_prob := 0.6
Variable Weighted_demand := If Bernoulli(Mix_prob)
THEN Excess_demand ELSE Demand
SampleWeighting := Density(Demand) /
((1 - Mix_prob)*Density(Demand) +
Mix_prob*Density(Excess_demand))
Thus, we compute a Weighted_demand as a mixture between the original distribution on
Demand and the distribution in the critical region, Excess_demand. We assign weights to Sam-

pleWeighting, using the Object window for SampleWeighting opened as described above.
See the Analytica Wiki at http://www.lumina.com/wiki for more.

For more on weighted statistics and conditional statistics, see “Weighted statistics and w parame-
ter” on page 268.

Analytica User Guide 259

http://www.lumina.com/wiki

Chapter Probability Distributions Importance weighting

260 Analytica User Guide

O T (-IgNICI Statistics, Sensitivity, and
Uncertainty Analysis

This chapter describes:

« Statistical functions that compute statistics, such as mean,
variance, or correlation over a probabilistic value (or for arrays with
other indexes)

¢ Functions that show the sensitivity of a variable to one or more
variables that affect it, including Whatlf and Tornado analysis

« Tornado charts and importance analysis to see how to apportion
credit or blame for the uncertainty in an output to its uncertain
inputs

« XY plots and scatter plots to visualize the effect of an input on an
output

« Functions to perform regression analysis

Chapter Statistics, Sensitivity, and Uncertainty Analysis

Statistical functions

Statistical functions
force prob mode
evaluation

Statistics from non-
probabilistic arrays

Tip

Notation in formulas

Statistics and text-
valued distributions

Example model

262

Statistical functions compute a statistic from a probability distribution. More precisely, they esti-
mate the statistic from a random sample of values representing a probabilistic value. Common
examples are Mean, Variance, Correlation, and Getfract (which returns a fractile or percentile).
The uncertainty view options (page 33) available in the Result window use these functions.

Unlike other functions, statistical functions usually force their main parameter(s) to be evaluated
in prob mode (probabilistically) and they return a nonprobabilistic value — whether they are eval-
uated in a mid mode or prob mode. For example:

Chance X := Normal(0, 1)
Variable X90 := Getfract(X, .9)
X90 —» 1.259

Evaluating variable X90 causes variable X to be evaluated in prob mode, so that Getfract(X,
90%) can estimate the 90th percentile (0.9 fractile) of the distribution for X. X90 itself has only a
mid value, and no probabilistic value. The exception is the Mid(x) function that forces X to be
evaluated in mid mode, no matter the evaluation context.

The default usage of statistical functions is over a probability distribution, represented as a ran-
dom sample indexed by Run. You can also use these functions to compute statistics over an array
with a different index by specifying that index explicitly. This is often useful for computing statistics
from data tables — including if you want to fit a probability distribution to a set of data. For exam-
ple, suppose Data is an array of imported measurements:

Index K = 1..1000

Variable Data:= Table(K)(123.4, 252.9, 221.4,

Variable XFfitted :=

---)
Normal (Mean(Data, K), Sdeviation(Data, K)

XFitted is a normal distribution fitted to Data with the same mean and standard deviation.

All statistical functions produce estimates from the underlying random sample for each probabilistic
quantity. These estimates are not exact, but vary from one evaluation to the next due to the
variability inherent in random sampling. Hence, your results might not exactly match the results
shown in the examples here. For greater precision, use a larger sample size (see “Appendix A:
Selecting the Sample Size” on page 372 on how to select a sample size).

The formulas used to define statistics use this notation:

Xi The ith sample value of probabilistic variable x

X The mean of probabilistic variable x (see “Mean(x)” on page 263)

S Standard deviation (see “Sdeviation(x)” on page 263)

m Sample size (see “Appendix A: Selecting the Sample Size” on page 372)

Most statistical functions require their parameters to be numerical. A few statistical functions,
those that only requiring ordinal (ordered) values, also work on distributions with text values
(whose domain is a list of labels), namely Frequency (use Frequency(X, X)), Mid, Min, Max,
Probability_bands, and Sample. These functions assume the values are ordered as specified in
the domain list of labels, e.g., Low, Mid, High.

The examples in this section use the following variables:

Variable Alt_ fuel_ price = Normal(1.25, 0.1)
Variable Fuel_price := Normal(1.19, 0.1)
Variable Skfuel_price := Beta(4,2,1,1.5)

Analytica User Guide

Chapter Statistics, Sensitivity, and Uncertainty Analysis

Mean(x)

Library

Examples

Sdeviation(x)

Variance(x)

Library

Example

Library

Example

Skewness(x)

Kurtosis(x)

Library

Example

Returns an estimate of the mean of x if x is probabilistic. Otherwise, returns x.

Mean(x) uses this formula.

I

1 o
EZXi—x
i=1

Statistical

Mean(Fuel_price) — 1.19
Mean(Skfuel_price) —» 1.33

Returns an estimate of the standard deviation of x from its sample if x is probabilistic. If x is non-
probabilistic, returns O.

Sdeviation(x) uses this formula.

m
1 2
DI Ol
i=1
Statistical

Sdeviation(Fuel _price) —» 0.10

Returns an estimate of the variance of x if x is probabilistic. If x is non-probabilistic, returns 0.

Variance() uses this formula.

Statistical

Variance(Fuel_price) —» 0.01

Returns an estimate of the skewness of x. x must be probabilistic.

Skewness is a measure of the asymmetry of the distribution. A positively skewed distribution has
a thicker upper tail than lower tail, while a negatively skewed distribution has a thicker lower tail
than upper tail. A normal distribution has a skewness of zero.

Skewness() uses this formula.
I

n 2 [

3

Statistical
Skewness(Skfuel_price) — -0.45

Returns an estimate of the kurtosis of x. x must be probabilistic.

Analytica User Guide 263

Chapter Statistics, Sensitivity, and Uncertainty Analysis

Library

Example
Probability(b)

Library

Example

GetFract(x, p)

Library

Examples

ProbBands(x)

Library

Example

Covariance(x, y)

264

Kurtosis is a measure of the peakedness of a distribution. A distribution with long thin tails has a
positive kurtosis. A distribution with short tails and high shoulders, such as the uniform distribu-
tion, has a negative kurtosis. A normal distribution has zero kurtosis.

Kurtosis(x) uses this formula.

Statistical

Kurtosis(Skfuel_prices) —» -0.48

Returns an estimate of the probability or array of probabilities that the Boolean value b is True.
Statistical
Probability(Fuel_price < 1.19) —» 0.5

Returns an estimate of the pth fractile (also known as quantile or percentile) of x. This is the value
of x such that x has a probability p of being less than that value. If x is non-probabilistic, all frac-
tiles are equal to x.

The value of p must be a number or array of numbers between 0 and 1, inclusive.

Statistical

Getfract(x, 0.5)returns an estimate of the median of x.
Getfract(Fuel_price, 0.5) —» 1.19

The following returns a table containing estimates of the 10%ile and 90%ile values, that is, an
80% confidence interval.

Index Fract := [0.1, 0.9]

Getfract(Fuel_price, Fract) —

Fract p
0.10 0.90
1.06 1.32

Returns an estimate of probability or “confidence” bands for x if x is probabilistic. Otherwise
returns x for every band. The probabilities are specified in the Uncertainty Setup dialog
(page 225), Probability Bands option.

Statistical

Probbands(Fuel_price) —
Probability P

0.05 0.25 0.5 0.75 0.95
1.025| 1.123 1.19| 1.257| 1.355

Returns an estimate of the covariance of uncertain variables x and y. If x or y are non-probabilis-
tic, it returns 0. The covariance is a measure of the degree to which x and y both tend to be in the
upper (or lower) end of their ranges at the same time. Specifically, it is defined as:

S =R -9)

Analytica User Guide

Chapter Statistics, Sensitivity, and Uncertainty Analysis

Library

Correlation(x, y)

Library

Example

Example

Rankcorrel(x, y)

Library

Example

Statistical

Suppose you have an array x of uncertain quantities indexed by i:
Index 1 = 1..5
Variable x := Array(i, [.1D

You can compute the covariance matrix of each element of X against each other’s element
(over i), thus:

INDEX j := CopylIndex(l)
Covariance(x, x[i=j])

We create index j as a copy of index i and then create a copy of x that replaces i by j so that the
covariance is computed for each slice of x over i against each slice over j. The result is the cova-
riance matrix indexed by i and j. Each diagonal element contains the variance of the variable,
since Variance(x) = Covariance(X, X).You can use this same method to generate a cor-
relation matrix using the Correlation() or Rank_correl() functions described below.

Returns an estimate of the correlation between the probabilistic expressions x and y, where -1
means perfectly negatively correlated, 0 means no correlation, and 1 means perfectly positively
correlated.

Correlation(x, y), a measure of probabilistic dependency between uncertain variables, is some-
times known as the Pearson product moment coefficient of correlation, r. It measures the strength
of the linear relationship between x and y, using the formula:

Z(Xi - X)(yi -Y)

Z(Xi —)_()2 X Z(yi _y)Z

Statistical i

With sampleSize set to 100 and number format set to two decimal digits:
Correlation(Alt_fuel_price + Fuel_price, Fuel_price) —» 0.71

Correlation of two independent, uncorrelated distributions approaches 0 as the sample size
approaches infinity.

With sampleSize = 20:

Correlation(Normal(1.19, 0.1), Normal(1.19, 0.1))—>» -.28
With sampleSize = 1000:

Correlation(Normal(1.19, 0.1), Normal(1.19, 0.1))— 0.03

Returns an estimate of the rank-order correlation coefficient between the distributions x and y.
x and y must be probabilistic.

Rankcorrel(x,y), a measure of the dependence between x and y, is sometimes known as Spear-
man’s rank correlation coefficient, rq.

Rank-order correlation is measured by computing the ranks of the probability samples, and then
computing their correlation. By using the rank order of the samples, the measure of correlation is
not affected by skewed distributions or extreme values, and is, therefore, more robust than simple
correlation. Rank-order correlation is used for importance analysis (page 268).

Statistical

With sampleSize = 100:
Rankcorrel (Fuel_price, Alt_fuel _price) —» .02

Analytica User Guide 265

Chapter Statistics, Sensitivity, and Uncertainty Analysis

Frequency(x, i)

Library

Example (continuous)

Example (discrete)

Mid(x)

Sample(x)

266

Library

Example

Library

If X is a discrete uncertain variable, returns an array indexed by i, giving the frequency, or number
of occurrences of discrete values i. i must contain unique values; if numeric, the values must be
increasing.

If x is a continuous uncertain variable and i is an index of numbers in increasing order, it returns
an array indexed by i, with the count of values in the sample x that are equal to or less than each
value of i and greater than the previous value of i.

If x is non-probabilistic, Frequency() returns sampleSize for each value of i equal to x.

Since Frequency() is computed by counting occurrences in the probabilistic sample, it is a func-
tion of sampleSize (see “Uncertainty Setup dialog” on page 225). If you want the relative fre-
quency rather than the count of each value, divide the result by sampleSize.

Statistical

Index Index_a := [1.2,1.25]
Frequency(Fuel_price, Index_a) —
Index_a P

1.2 1.25
54 19

Bern_out: [0,1]
(Possible outcomes of the Bernoulli Distribution.)

With Samplesize = 100:
Frequency(Bernoulli (0.3), Bern_out) —
Bern_out p

0 1
70 30

With Samplesize = 25:
Frequency(Bernoulli (0.3), Bern_out) —
Bern_out WP

0 1
18 7

(Compare to the Bernoulli example on page 233.)

Returns the mid value of x. Unlike other statistical functions, Mid() forces deterministic evaluation
in contexts where x would otherwise be evaluated probabilistically.

The mid value is calculated by substituting the median for most full probability distributions in the
definition of a variable or expression, and using the mid value of any inputs. The mid value of a
variable or expression is not necessarily equal to its true median, but is usually close to it.

Statistical
Mid(Fuel_price) —» 1.19

Forces x to be evaluated probabilistically and returns a sample of values from the distribution of x
in an array indexed by the system variable Run. If x is not probabilistic, it just returns its mid value.
The system variable sampleSize specifies the size of this sample. You can set sampleSize in
the Uncertainty Setup dialog (page 225).

Statistical

Analytica User Guide

Chapter Statistics, Sensitivity, and Uncertainty Analysis

When to use

Example

Statistics(x)

Library

Example

PDF(X) and CDF(X)

Use when you want to force probabilistic evaluation.
Here are the first six values of a sample:

Sample(Fuel_price) —
Iteration(Run) M

1 2 3 4 5 6
1.191 1.32 1.19 1.164 1.191 0.962

Returns an array of statistics of x. Select the statistics to display in the Uncertainty Setup dialog
(page 225), Statistics option.

Statistical

Statistics(Fuel_price) —
Statistics P

Min Median |Mean Max Std. Dev.
0.93 1.19 1.19 1.45 0.10

These functions generate histograms from a sample X. They are similar to the methods used to
generate the probability density function (PDF) and cumulative probability distribution function
(CDF) as uncertainty views in a result window as graph or table. But, as functions, they return the
resulting histogram as an arrays available for further processing, display, or export. For example:

PDF(X)
CDF(X)

These functions evaluate x in prob mode, and return an array of points on the density or cumula-
tive distribution respectively.

You can also use PDF and CDF to generate a histograms (direct or cumulative) of data that is not
uncertain, but indexed by something other than Run. For example, to generate a histogram of Y
over index J, specify the index explicitly:

PDF(Y, J)

If it decides that X is discrete rather than continuous, PDF generates a probability mass distribu-
tion and CDF generates a cumulative mass distribution, with a probability for each discrete value
of X. It uses the same method as the uncertainty views in results to decide if X is discrete — if it
has text values, if it has many repeated numerical values, or if X has a domain attribute that is dis-
crete (see “The domain attribute and discrete variables” on page 236). Alternatively, you can con-
trol the result by setting the optional parameter discrete as true or false. For example:

Variable X = Poisson(20)

PDF(X, Discrete: True)
This generates a discrete histogram over X. If X contains text values, i.e., categorical data, you
might want to control the order of the categories, e.g., ["'Low", "Medium', "High'"]. Youcan
do this by specifying the Domain attribute of X as a List of Labels with these values, or as an
Index, referring to an Index using them. Alternatively, you can provide PDF or CDF with the

optional Domain parameter provided as the list of labels. If X is an expression rather than a vari-
able, this is your only choice.

PDF and CDF have one required parameter:

X The sample data points, indexed by i.

Analytica User Guide 267

Chapter Statistics, Sensitivity, and Uncertainty Analysis Weighted statistics and w parameter

In additional, PDF and CDF have these optional parameters:

i The index over which they generate the histogram. By default this is Run
(i.e., a Monte Carlo sample) but you can also specify another index to
generate a histogram over another dimension.

w The sample weights. Can be used to weight each sample point differently.
Defaults to system variable SampleWeights.

discrete Set true or false to force discrete or continuous treatment. By default, it
guesses, usually correctly.

binMethod Selects the histogramming method used. Otherwise it uses the system
default set in the Uncertainty Setup dialog from the Result menu.
Options are:

0 “equal-X": Equal steps along the X axis (values of X).
1 “equal-sample-P”: Equal numbers of sample values in each step.
2 “equal-weighted-P": Equal sum of weights of samples, weighted by w.

samplesPerStep An integer specifying the number of samples per bin. Otherwise, it uses
the default samplesize set in the Uncertainty Setup dialog from the
Result menu.

domain A list of numbers or labels, or the identifier of a variable whose Domain
attribute should be used to specify the sequence of possible values for
discrete distribution. If omitted, it uses the domain from the sample values.

Weighted statistics and w parameter

Normally, each statistical function gives an equal weight to each sample value in its parameters.
You can use the optional parameter w for any statistical function to specify unequal weights for its
samples. This lets you estimate conditional statistics. For example:

Mean(X, w: X>0)

This computes the mean of X for those samples of X that are positive. In this case, the weight vec-
tor contains only zeros and ones. The expression X>0 gives a weight of 1 (True) for each sam-
ple that satisfies the relationship and 0 (False) to those that do not.

By default, this method works over uncertain samples, indexed by Run. You can also use it to
compute weighted statistics over other indexes. For example, if Y is an array indexed by J, you
could compute:

Mean(Y, I, W: Y>0)

If you set the system variable SampleWeighting to something other than 1 (see “Importance
weighting” on page 257, all statistical functions use SampleWeighting as the default weights,
unless you specify parameter w with some other weighting array. So, when using importance
weighting, all statistics (and uncertainty views) automatically use the correct weighting.

Importance analysis

268

What is importance?

In a model with uncertain variables, you might want to know how much each uncertain input con-
tributes to the uncertainty in the output. Typically, a few uncertain inputs are responsible for the
lion’s share of the uncertainty in the output, while the rest have little impact. You can then concen-
trate on getting better estimates or building a more detailed model for the one or two most impor-
tant inputs without spending considerable time investigating issues that turn out not to matter very
much.

The importance analysis features in Analytica can help you quickly learn which inputs contribute
the most uncertainty to the output.

This analysis uses as a metric of the “importance” of each uncertain input to a selected output, the
absolute rank-order correlation between each input sample and the output sample. It is a robust
measure of the uncertain contribution because it is insensitive to extreme values and skewed dis-
tributions. Unlike commonly used deterministic measures of sensitivity, such as used in the Tor-

Analytica User Guide

Chapter Statistics, Sensitivity, and Uncertainty Analysis Importance analysis

nado analysis, it averages over the entire joint probability distribution. Therefore, it works well
even for models where there are strong interactions, where the sensitivity to one input depends
on the value of another.

Create an importance 1. Be sure you are in edit mode, viewing a Diagram window. Select an output variable, U, that
variable depends on two or more uncertain inputs — possibly, an objective.

2. Select Make Importance from the Object menu.

If the selected output is U, it creates an index U_Inputs, a list of the uncertain inputs, and a gen-
eral variable, U Importance, containing the importance of those inputs to the output.

Example Variable Miles_per_year := Triangular(l, 12K, 30K)

Variable Fuelcost_per_gallon := Lognormal(3)
Variable Miles_per_gallon := Normal (33, 2)
Variable Fuel _cost_per_year := (Fuel_cost_per_gallon*Miles_per_year)/

Miles_per_gallon

After you select Fuel_cost_per_year and then Make Importance from the Object menu, the
diagram contains two new variables.

i [=] B3
-]

il

@ Diagram - Fuel Cost Example

Miles per ™, - Miles per :
N\ year
: — %

Fuel cost

per gallan

Fuel cost per
year Inputs

Fuel cost per
year
Importance

34 | Pz
Fuel cost per year Inputsis defined as a list identifiers, containing all the chance variable
ancestors of the output node. It evaluates to an array of probability distributions, one for each
chance variable. This array is self-indexed, with the index values consisting of handles to each
input variable.

@ 'Result - Fuel cost per year Inputs M =]E3
Sample of Fuel cost per year Inputs ><Y|
=) | Fuel cost per year Inputs w | [Tataks
~ [meration (Runj w [> [T Tatals
1 2 3 1]
Fuel cost per gallon 4.351 14.53 1.906 B.1739
Miles per gallon 33.38 307 362 3287
Miles per year 1413k 13.16K 11.46HK 24 53K

K18 ay
Fuel cost per year Importance is defined as:
Abs(Rankcorrel (Fuel_cost_per_year_inputs, Fuel_cost_per_year))

The Rankcorrel() function computes the rank-order correlation of each input to the output, and
then the Abs() function computes the absolute value, yielding a positive relative importance.

Analytica User Guide 269

Ch apter Statistics, Sensitivity, and Uncertainty Analysis Sensitivity analysis functions

Tip

Updating inputs to
importance analysis

0 Result - Fuel Cost Imortance Analysis

Mid Value of Fuel Cost Imortance Analysis
Horizontal A:i3:| Fuel cost per year inputs W |
Lafl
O
o
=
o
e
Es
g2
o <X
T
=
w
i —
fuel cost per gallon miles pervyear miles per gallon
Fuel cost per year inputs 4

As expected, Fuelcost_per_gal lon contributes considerably more uncertainty to
Fuel_cost_per_year than Miles_per_gallon.

Importance, like every other statistical measure, is estimated from the random sample. The
estimates can vary slightly from one computation to another due to random noise. For a sample
size of 100, an importance of 0.1 might not be significantly different from zero. But an importance
of 0.5 is significantly different from zero. The main goal is to identify two or three that are the
primary contributors to the uncertainty in the output. For greater precision, use a larger sample
size.

If you create an importance analysis variable for U, and later add or remove uncertain variables
that affect U, the uncertainty analysis is not automatically updated to reflect those changes. You
can update the analysis either by:

¢ Select U and then select Make Importance from the Object menu. It automatically updates
the importance analysis to reflect any new or removed uncertain inputs.

« Draw an arrow from any new uncertain input into index U inputs. It adds the new variable
as an uncertain input. Similarly, you can remove a variable from U inputs by redrawing an
arrow from that variable into U inputs.

Sensitivity analysis functions

270

Examples

Sensitivity analysis enables you to examine the effect of a change in the value of an input variable
on the values of its output variables. They do not require their parameters to be uncertain.

The examples in this section refer to the following variables:

gasPrice Normal(1.3, .3) Cost of gasoline per gallon within market fluctuations
mpy: 12K The average number of miles driven per year
mpg: Normal (28, 5) Fuel consumption averaged over driving conditions

fuelCost: gasPrice * mpy /7 mpg Annual cost of fuel

The probability density of fuelCost is shown below.

Analytica User Guide

Ch apter Statistics, Sensitivity, and Uncertainty Analysis Sensitivity analysis functions

Dydx(y, x)

Library

Examples

Elasticity(y, x)

Tip

1 Result - fuelCost

Probability Density of fuelCost =
|
27am
2.5m
& 2i5m }lﬂl’ﬂ
g 1rem |
$ |
B' .
= 1.28m N[f N
E m
-] 750U P
™
o 500u ,l"
2500 e Ly
0 e n"-\wn
1] 200 400 600 g0o0 1000 1200 1400 1600 1800 2000
fuelCost

Returns the derivative of expression y with respect to variable x, evaluated at mid values. This
function returns the ratio of the change in y to a small change in x that affects y. The “small
change” is x/10000, or 1.0E-6 if x=0.
Special
Because fuelCost depends on mpg, a small change in mpg seems to have a modest negative
effect on fuelCost:

Dydx(fuelCost, mpg) —» -19.7
The reverse is not true, because mpg is not dependent on fuelCost. That is, fuelCost does
not cause any change in mpg:

Dydx(Mpg, Fuelcost) — O
In this model of fuelCost, a small change in gasPrice has by far the largest effect of all its
inputs:

Dydx(fuelCost, gasPrice) — 428.6

Dydx(fuelCost, mpy) — 0.04643

When you evaluate DyDx() in mid mode, the mid value for x is varied and the mid value of y is
evaluated. In prob mode, the sample of x is varied and the sample for y is computed in prob mode.
Therefore, when y is a statistical function of x, care must be taken to ensure that the evaluation
modes for x and y correspond. So, for example:
:= DyDx(Kurtosis(Normal (0, X)), X)

would not produce the expected result. In this case, when evaluating y in determ mode, Kurtosis
evaluates its parameter, and thus x, in prob mode, resulting in a mis-match in computation modes.
To get the desired result, you should explicitly use the mid value of x:

Y = DyDx(Kurtosis(Normal (0, Mid(X))), X)

Returns the percent change in variable y caused by a 1 percent change in a dependent variable
X. Mathematically, writing y(X) to emphasize that y is a function of x, elasticity is defined as:

Analytica User Guide 271

Chapter Statistics,

Whatif(e, v, vNew)

Library

Examples

Tip

Library

Example

Sensitivity, and Uncertainty Analysis Tornado charts

(Y2) - y() @)
u y(X)

When x is a positive scalar, but not when x is array-valued, Elasticity() is related to Dydx() in the
following manner:

Elasticity(y, x) = Dydx(y, x)*(x/y)

Elasticity(y,x) = lim
u—>0

Special

Elasticity(fuelCost, mpg) —» -1
Elasticity(fuelCost, gasprice) —» 1

A 1% change in variables mpg and gasPrice cause about the same degree of change in fuel -
cost, although in opposite directions.

mpg is inversely proportional to the value of fuelCost, while gasPrice is proportional to it.

When you evaluate Elasticity() in determ (mid) mode, the mid value for x is varied and the mid
value of y is evaluated. In prob mode, the sample of x is varied and the sample for y is computed
in prob mode. Therefore, wheny is a statistical function of x, care must be taken to ensure that the
evaluation modes for x and y correspond.

Returns the value of expression e when variable v is set to the value of vNew. v must be a vari-
able. It lets you explore the effect of a change to a value without changing it permanently. It
restores the original definition of v after evaluating Whatif() expression, so that there is no perma-
nent change (and so causes no side effects).

Special

Fuelcost —» 557.1

Whatif(Fuelcost, Mpy, 14K) — 650

WhatlfAll(e, vList, vNew)

Library

Like Whatif, but it lets you examine a set of changes to a list of variables, vList. It returns the mid
value of e when each of variables in vList is assigned the value in x one at a time, with the
remaining variables remaining at their nominal values. The result is indexed by vList. If vNew is
indexed by vList, it assigns the corresponding value of vNew to each variable, letting you assign
a different value to each variable in vList. WhatlfAll() is useful for performing ceteris paribus style
sensitivity analysis, which varies one variable at a time, leaving the others at their initial value,
such as in Tornado charts (see next section for an example).

Suppose Z is a function of A, B, and C, and we wish to examine the effect on Z when each input
is varied, one at a time, by 10% from its nominal value. Define:

Variable Z = 10*A + B”"2 + 5*C

Index L = [90%, 110%]

Variable V := [A, B, C]

MyTornado := WhatlfAll(Z, V, L*V)

Special

Tornado charts

272

A tornado diagram is a common tool used to depict the sensitivity of a result to changes in
selected variables. It shows the effect on the output of varying each input variable at a time, keep-
ing all the other input variables at their initial (nominal) values. Typically, you choose a “low” and a
“high” value for each input. The result is then displayed as a special type of bar graph, with bars
for each input variable displaying the variation from the nominal value. It is standard practice to
plot the bars horizontally, sorted so that the widest bar is placed at the top. When drawn in this

Analytica User Guide

Chapter Statistics, Sensitivity, and Uncertainty Analysis Tornado charts

Create a tornado
analysis

fashion, the diagram takes on the appearance of a tornado, hence its name. The figure below
shows a typical tornado diagram.

@ Result - Net Value range

Mean Value of Het Value range
Vertical Axis:| Input Vars w | I{ey:| Level v

Bar Origin:| Het Value w

LIseful Life

LHility of Mesw Unit

Time Until Upgrade

Price of Mew Unit

Input Vars

Utility of Upgrade

Frice of Upgrade

500 G600 oo aoa 900 1000 1100 1200 1
Net Value range

Level
B Low [l High

To perform a tornado analysis, you must:

1. Select the result or output variable to perform the analysis on.
2. Select the input variables that might affect the output.
3. Decide what the low and high values are to be for each input variable.

Note: The input variables do not need to be chance variables. In fact, tornado analysis is often
applied to models with no chance variables.
There are several options for selecting low and high values, including:

¢ Selecting the same absolute low and high levels for every input. This usually only makes
sense if inputs are very homogeneous with identical nominal values.

« Selecting absolute low and high values separately for each input variable.

* Varying all inputs by the same relative amount, e.g., low=90% of nominal, high=110% of
nominal.

« Varying all inputs between two given fractiles. This only makes sense if your inputs are
uncertain variables. Example: Low=10% fractile, High=90% fractile, nominal=50% fractile.

Implementing a tornado analysis

For this example, assume we vary all inputs by the same amount.

1. Create an index variable containing a list of input variable identifiers. Suppose this is called
vars.

2. Create avariable, Level, and define it as a self-indexed table. (To do this, select Table from
the expr menu, and select self as an index.) From the edit table, set the self-index labels to
read low and high. Set the value corresponding to low to 90%, and set the value corresponding
to high to 110%.

Analytica User Guide 273

Chapter Statistics, Sensitivity, and Uncertainty Analysis Tornado charts

274

Graphing a tornado

fit Table - Level [= |[B)[B

0
£7| Edit Table of Level
o
W

v [_~Pp
Low Q0%
High 110%

| [

3. Create anode, Tornado_Analysis. Assume that the output variable is Net_value. Define
Tornado_Analysis as:

Whatl fAII(X, Vars, Level * Vars)

4. Create a node, Input_Vars, defined as:
sortindex(-abs(Tornado_Analysis[Level="high"] -
Tornado_Analysis[Level="1ow"]))

5. Create a node, Net_value_range, to hold the final graph, defined as:
Tornado_Analysis[Vars=Input_Vars]

Steps 4 and 5 are not necessary if you do not require your bars to be displayed from largest to
smallest. If you do include steps 4 and 5, Net_value_range contains the results of the tornado
analysis, otherwise the result is Tornado_Analysis.

It is possible in Analytica to use array abstraction to produce a set of tornado diagrams, with each
tornado itself indexed by an additional dimension. Additional dimensions are already included if
your output variable is itself an array result, in which case you have a tornado diagram for each
element in the output value’s array value. This flexibility is unique to Analytica; however, you
should note that having multiple tornados in a single result complicates the problem of sorting the
bars, since the sort order is, in general, different for the different bars. If you have extra indexes in
your tornado analysis, you need to either skip steps 4 and 5 above, and display non-sorted Torna-
dos, or select a single sort order based on whatever criteria fits your needs, realizing that not all
tornados display in sorted order.

The WhatlfAll() function typically provides the easiest method for implementing a tornado analy-
sis in Analytica. Note that the third parameter to WhatlIfAll() controls the method by which inputs
are varied for the analysis. For example:

« For the case where you select the same absolute low and high levels for every input, Level
would be set to the absolute low and high values, and the third parameter to WhatIfAll()
would be simply Level.

« For the case where you select absolute low and high values separately for each input
variable, you would index Level by Vars, fill in Level’s table appropriately, then set the
third parameter to be just Level.

« And for the case where you vary all inputs between two given fractiles, you would set Level
to the desired fractiles, and use the expression getFract(Net_value,Level) as the
third parameter.

It's customary to graph a tornado with the names of the input variables are listed down the vertical
axis, and the bars displaying the effect on the output horizontally:

1. Select Show Result for the Tornado_Analysis or Sorted_Tornado variable. Press the
Graph button if necessary.

. Pivot the index order (if necessary) so that Vars is on the X-axis and L is the Key.
3. Select Graph Setup and the Chart Type tab.

Set the Line Style to the filled bar setting and check the Variable origin checkbox. This will also
set Bar Overlap=100% and Swap horizontal and vertical for you. Click Apply.

5. Next, we want to compare to the baseline value of Net_Value. Click the XY button to open
the XY Comparison Sources dialog, check Use another variable, press Add..., and in the
Object Finder select the variable Net_Value. Press OK twice.

Analytica User Guide

Ch apter Statistics, Sensitivity, and Uncertainty Analysis

X-Y plots

6. Inthe Bar Origin pulldown, select Net_value.

X-Y plots

You can compare the result of a variable against another variable, or one column against another
column of a result, using an XY-plot. XY plots can be graphed for Mid, Mean, Statistics,
Probability Bands, and Sample view modes.

To graph one variable against another:

1. Open a Result window for the y- (vertical axis) variable.

2. Click the XY button @ located in the top-right corner of the window to open the XY
Comparison Sources dialog.

3. Check the Use another variable checkbox, press Add..., and in the Object Finder, select the

X- (horizontal axis) variable.

The two variables in an XY window must share at least one index, and all indexes of x must also
be indexes of y. The popup menu in the index selection area becomes Common Index — only

indexes of both x and y might be selected.

Variable Angle := Sequence(0, 360, 10)
Variable Radius = 1..3
Variable SinX := Radius * Sin(Angle)

Variable Cosine := Radius * Cos(Angle) —

§ Result - Cosine

mid¥) Mid Value of Cosine =Y
Huriznntalnxis:| .ﬂmgle(“}vl Key:l Radius vl
Lall
3 -M“*‘ﬁ.
2
f
g 1 _“;w.:::&. &
‘w 1]
8 - -
-2 s e,
-3 \"“m. .--/
a a0 100 150 200 240 300 350 400
Angle (%)
Radius
-1 =2 =3

Analytica User Guide

275

Chapter Statistics, Sensitivity, and Uncertainty Analysis X-Y plots

Click the XY button, check Use another variable, then Add...., and in the Object Finder dialog
under Current Module select the variable Sine to display this result.

XY comparison sources X |

From this dialog, select source values to compare on pour graph. To create an > graph, select a
value to use az the horizontal-coordinate. This may be another variable, or it may be a single column of
your result,

After pou zelect zources here, they can quickly be aszigned to graphing roles [such as the honizontal axiz)
via pulldown selections in the result window, You must be in edit mode to add ar change sources.

[Use comparisaon index
Check. the option if vou would like to plot one column of vour results

againzt another colurn, From the result window, pou specify which
index defines the columng - thiz iz called the Comparizon Index.

v Usze another variable

The fallawing are athier variables that can be azsigned to the harizaontal aiz, ar ather rales, of your
graph. These should share a “'common index" with your main result.

Sine Sine add.

[Fees |
oK Cancel

[Result - Cosine
midr| Mid Value of Cosine =

@ Common Inde:u::l Angle (%) VI I{eyr:| Radius ‘I'I

Lall Horizontal Axis:

3
2 s —— S— P
o 1l B O
s b 4 i g o
e 1l . T
-2 \&""-___ "ﬁ.‘-‘h-""-‘— ——-""’"""‘f ”.""J/
1 ""‘-\-\._____ -‘_‘_"_,,.,--‘
-3 -2 -1 0 1 2 3
Sine
Radius
-1 =2 —3

276 Analytica User Guide

Ch apter Statistics, Sensitivity, and Uncertainty Analysis Scatter plots

Scatter plots

Example

Click the Table View button to display this result.

§ Result - Cosine

mid¥) mMid Value of Cosine W
[ok
Lall ~ angle (o) w |[» [Totals
0 1 2 3 1=l
Sine Cosine Sine Cosine Sine Cosine Sine C
q u} 1 ao174s 0.9995 0.0349 0.9994 0.05234
a 2 00349 2 0.0655 1.999 01047
3 a 3 005236 3 01047 2993 0157
1]l ar

To return to the graph or table of Cosine vs. Degrees, click in the XY checkbox.

A scatter plot graphs the samples of two probabilistic variables against each other, and provides
insight into their probabilistic relationship.

To generate a scatter plot for two variables, x and y:

1. Open a Result window for y.

2. Click the XY button located in the top-right corner of the window to open the Object Finder
dialog.

3. Inthe XY Comparison sources dialog, check Use Another variable.
4. Pressthe Add... button, and in the Object Finder, select the x variable. Press OK twice.

mid Mid Value

K Meanalue

Kt Statighics

[z Probability B ands

L~ Probability Density

L™ Cumnulative Probability
v |3 Sample

5. Inthe Uncertainty View popup menu (at the top-left of the Result window), select the Sample
view.

If the variables are independent, the scatter plot points fall randomly on the graph. If the variables
are totally dependent, the scatter plot points fall along a single line. The strength of the relation-
ship is indicated by the degree to which the points are close to a line. If the line is straight, the
relationship is linear; if the line is curved, the relationship is nonlinear.

You can superimpose several scatter plots of y in an array of uncertain quantities depending on X.
The different quantities are represented by differently colored dots or symbols.

x: Uniform(1, 2)
y: Normal (10, 3)

The resulting scatter plot of two independent variables is shown below.

Analytica User Guide 277

Chapter Statistics, Sensitivity, and Uncertainty Analysis Regression analysis

9 Result - ¥ ey
B Sample of y '
Common Index: Heration (Run)
Horizontal Axis:| X vl
20
18
16 e
14 4 g o
12 itnifk it
3)
= 10 .-"4".4":-'.--"'!_".
8 e ..'_‘.,'}_ et
B e
4 L)
2
I
1 1.1 12 13 14 158 16 17 18 1489 2
X

Regression analysis

Regression is a widely used statistical method to estimate the effects of a set of inputs (indepen-
dent variables) on an output (the dependent variable). It is a powerful method to estimate the sen-
sitivity of the output to a set of uncertain inputs. Like the rank-correlation used in importance
analysis (page 268), it is a global measure of sensitivity in that it averages the sensitivity over the
joint distribution of the inputs, unlike Tornado analysis that is local, meaning it varies each variable
one at a time, leaving all others fixed at a nominal value.

Regression() is in the built-in Statistics library, and works with all editions of Analytica. The Logis-
tic, probit, and poisson regression functions are in an add-in library, Generalized Regres-
sion.ana, and require Analytica Optimizer. These generalized regression functions are
described in the Analytica Optimizer manual.

Regression(y, b, i, k)

Generalized linear regression. Finds the best-fit (least squared error) curve to a set of data points.
Regression() finds the parameters a, in an equation of the form:

y = Zakbk(k)
k

The data points are contained in y (the dependent variable) and b (the independent variables),
both of which must be indexed by i. b is the basis set and is indexed by i and k. The function
returns the set of parameters a, indexed by k. Any datapoint having y=Nul 1 is ignored.

With the generalized form of linear regression, it is possible to have several independent vari-
ables, and your basis set might even contain non-linear transformations of your independent vari-
ables. Regression() can be used to find the best-fit planes or hyperplanes, best-fit polynomials,
and more complicated functions.

Regression() uses a state-of-the-art algorithm based on singular-value decomposition that is
numerically stable, even if the basis set contains redundant terms.

Example 1 Suppose a set of (x, y) points are contained in x and y, both indexed by i, and we wish to find the
parameters m and b of the best-fit line y = mx + b. We first define an index k as a list of labels:

Index K = [*"m", "b"]
Next, define b as a table indexed by k:

278 Analytica User Guide

Chapter Statistics, Sensitivity, and Uncertainty Analysis Uncertainty in regression results

Example 2

Variable b := k »

m b
X 1

Regression(y, b, i, k) returns the coefficients m and b as an array indexed by k.

We wish to fit the following polynomial to (x, y) data:
= 5 + 4 + 3 + 2 + +
y = agX +ta,Xx tagx +a,x +ajx+a

Define k to be the list:
Variable b = [x"5, x™M, x3, x"2, x, 1]

Regression(y, b, i, b) returns the best-fit coefficients of the polynomial indexed by b.

Uncertainty in regression results

RegressionDist(y, b,

Library

Examples

These functions help estimate the uncertainty in the results from a regression analysis, including
uncertainty in the regression coefficients and the noise. Together they are useful for generating a
probability distribution that represents the uncertainty in the predictions from a regression model.
When applying regression to make projections into the future based on historical data, there
might be additional sources of uncertainty because the future might be different from the past.
These functions estimate uncertainty due to noise and imperfect fit to the historical data. You
might wish to add further uncertainty for projections into the future to reflect these additional differ-
ences.

i, k)
RegressionDist estimates the uncertainty in linear regression coefficients, returning probability
distributions on them. Suppose you have data where y was produced as:

y = Sum(c*b, k) + Normal(0, s)

s is the measurement noise. You have the data b[i, k] and y[i]. You might or might not know the
measurement noise s. So you perform a linear regression to obtain an estimate of c. Because
your estimate is obtained from a finite amount of data, your estimate of c is itself uncertain. This
function returns the coefficients ¢ as a distribution (i.e., in sample mode, it returns a sampling of
coefficients indexed by Run and k), reflecting the uncertainty in the estimation of these parame-
ters.

Multivariate Distributions

If you know the noise level s in advance, then you can use historical data as a starting point for
building a predictive model of y, as follows:

{ Your model of the dependent variables: }

Variable y := your historical dependent data, indexed by i
Variable b := your historical independent data, indexed by i, k
Variable x = { indexed by k. Maybe others. Possibly uncertain }

Variable s = { the known noise level }
Chance c := RegressionDist(y, b, i, k)
Variable Predicted_y := Sum(c*x, k) + Normal(0, s)
If you don’t know the noise level, then you need to estimate it. You'll need it for the normal term of

Predicted_y anyway, and you'll need to do a regression to find it. So you can pass these optional
parameters into RegressionDist. The last three lines above become:

Variable e_c := Regression(y, b, 1, k)
Variable s := RegressionNoise(y, b, i, k, e c)
Chance c := RegressionDist(y, b, i, k, e_c)

Analytica User Guide 279

Chapter Statistics, Sensitivity, and Uncertainty Analysis Uncertainty in regression results

Variable Predicted_y := Sum(c*x, k) + Normal(0, s)

If you use RegressionNoise to compute s, you should use Mid(RegressionNoise(...)) for the s
parameter. However, when computing s for your prediction, don’t use RegressionNoise in con-
text. Better is if you don’t know the measurement noise in advance, don’t supply it as a parameter.

RegressionFitProb(y, b, i, k, ¢, s)

Library

Example

When you've obtained regression coefficients ¢ (indexed by k) by calling the Regression func-
tion, this function returns the probability that a fit this poor would occur by chance, given the
assumption that the data was generated by a process of the form:

Y = Sum(c*b, k) + Normal(0, s)

If this result is very close to zero, it probably indicates that the assumption of linearity is bad. If it is
very close to one, then it validates the assumption of linearity.

Multivariate Distributions

This is not a distribution function — it does not return a sample when evaluated in sample mode.
However, it does complement the multivariate RegressionDist function also included in this
library.
To use, first call the Regression function, then you must either know the measurement knows a
priori, or obtain it using the RegressionNoise function.

Var e _c := Regression(y, b, i, k);

Var s := RegressionNoise(y, b, i, k, c©);

Var PrThisPoor := RegressionFitProb(y, b, i, k, e c, s)

RegressionNoise(y, b, i, k, ¢)

280

Library

When you have data, y[i] and b[i, k], generated from an underlying model with unknown coeffi-
cients c[k] and s of the form:

y = Sum(c*b, 1) + Normal(0, s)

This function computes an estimate for s by assuming that the sample noise is the same for each
point in the data set.

When using in conjunction with RegressionDist, it is most efficient to provide the optional param-
eter c to both routines, where c is the expected value of the regression coefficients, obtained from
calling Regression(y, b, i, k). Doing so avoids an unnecessary call to the built-in Regression
function.

Multivariate Distributions

These functions express uncertainty in the coefficients of a linear regression. If you are using
results form a linear regression, you can use these functions to estimate uncertainty in predictive
distributions.

These uncertainties reflect only the degree to which the regression model fits the observations to
which it was fit. They do not reflect any possible systematic differences between the past process
that generated those observations and the process generating the results being predicted, usually
in the future. In this way, they are lower bounds on the true uncertainty.

Analytica User Guide

ST I YAl Dynamic Simulation

This chapter shows you how to use the system function Dynamic() and
the system variable Time.

Chapter Dynamic Simulation The Time index

The Time index

Tip

Tip

A dynamic variable is a quantity that changes over time — for example, the effect of inflation on
car prices over a ten-year period. The system function Dynamic() and system variable Time
enable you to model changes over time.

Read Chapter 11, “Arrays and Indexes,” before using these features.

The term dynamic is used in this chapter to refer to the Dynamic() function.

Dynamic simulation time periods are specified in the system variable Time. To perform dynamic
simulation, you must provide a definition for Time.

To edit the definition of Time, select Edit Time from the Definition menu to open the Object win-
dow for Time.

Time is defined by default as a list of three numbers 0, 1, and 2. You might want to define Time
as a list of years, as in the following example.

T Object - Time
Sysvar Time Units:
Title: Time

Description: Dynamic zimulation periods are specified in Time's definttion. This iz
usualty a list of numbers or labele, typically in some unit of time (days,
weeks, months, ete.). Usze the Dynamic() functien in your variables to
perform dynamic simulatien.

| 1g80|
| 1991 |
| 1992
| 1993

1994 =
| [4

Definition:

Time becomes the index for the array that results from the Dynamic() function.

A model can have only one definition Time — that is, one set of time periods for Dynamic()
functions. Any number of variables in the model can be defined using Dynamic().

Using the Dynamic() function

Dynamic(initiall, initial2..., initialn, expr)

282

Tip

Performs dynamic simulation, calculating the value of its defined variable at each element of
Time. The result of Dynamic() is an array, indexed by Time.

Initiall, ...initialn are the values of the variable for the first n time periods. expr is an expression
giving the value of the variable for each subsequent time period. expr can refer to the variable in
earlier time periods, that is, contain its own identifier in its definition. If variable Var is defined
using Dynamic(), expr can be a function of Var[Time-k] or Self[Time-k], where kis an
expression that evaluates to an integer between 1 and t, and t is the time step at which expr is
being evaluated.

Square brackets ([]) are necessary around Time-t.

Analytica User Guide

Chapter Dynamic Simulation Using the Dynamic() function

Library

When to use

Example

X[Time-k]

The Dynamic() function must appear at the topmost level of a definition. It cannot be used inside
another expression.

When a dynamic variable refers to itself, it appears in its own list of inputs and outputs, with a
symbol for cyclic dependency: #_.

Special

Use Dynamic() for defining variables that are cyclically dependent. This is the only function in
Analytica that permits reference to the same variable, or other dynamic variables, at earlier time
periods.

Dynamic() can be used to calculate the effect of inflation on the price of gasoline in the years
1990 to 1994.

If the initial value is $1.20 per gallon and the rate of inflation is 5% per year, then Gasprice can
be defined as: Dynamic(1.2, Gasprice[Time-1] * 1.05)
or Dynamic(1.2, Self[Time-1] * 1.05).

[Object - Gasaline price

() Wariable ¥ | Gasprice Units: Figallon —

Title: Gasoline price

Description: The price of a gallon of gascline, over time.

B W
Definition: [vynamic(1.2, Gasprice[Time-11*1 .05)

Inputs: Titne Time
) Gasprice Gaszdline price
Outputs: ¢ Gasprice Gasoline price

| (4

Clicking the Result button and viewing the mid value as a table displays the following results.

W Result - Gasoline price E|E|PX|
Mid Value of Gasoline price ($/gallon)

= o

| I 2

1990 12 i
1991 1.26
1992 1.323
1993 1.389
1994 1.459

| [/

For 1990, Analytica uses the initial value of Gasprice (1.2). For each subsequent year, Ana-
lytica multiplies the value of Gasprice at [Time-1] by 1.05 (the 5 percent inflation rate).

Given a variable x and brackets enclosing Time minus an integer k, returns the value for x, k time
periods back from the current time period. This function is only valid for variables defined using
the Dynamic() function.

Library Special

Analytica User Guide 283

Chapter Dynamic Simulation More about the Time index

More about the Time index

Reference to earlier time

Defining time

Time as a sequence

Example

Time-k in the expression var [Time-k] refers to the position of the elements in the Time index,
not values of Time.

For example, if Time equals [1990, 1994, 1998, 2002, 2006], then the value of
Gasprice[Time-3] in year 2006 would refer to the price of gasoline in 1994, not 2003. When
you refer to the Time variable directly, not as an index, the expression refers to the values of
Time. For example, the expression (Time-3) in 2006 is 2003.

The offset, k, can be an expression, and might even be indexed by Time. When k is indexed by
Time, then the offset varies at different points in Time. However, Slice(k, Time, t) mustbe
between 1 and t-1. It must be positive since the expression is not allowed to depend on values in
the future (that have not yet been computed). It must be less than t-1 since the expression cannot
depend on values “before the beginning of time.”

There are three ways to define the Time index, each of which has different advantages:
e Sequence (the preferred method)
e List (numeric)
« List of labels (text)

Using the Sequence() function is the easiest way to define Time with equal intervals (see
“Expression view” on page 164 and “Defining a variable as an edit table” on page 169). The
numeric values for Time can be used in other expressions.

Definition: Sequence (1,201}

Time as a list (numeric)

284

Example

When Time is defined as a numeric list, it usually consists of increasing numbers. The intervals
between entries can be unequal, and the values for Time can be used in other expressions.

Time

CJY N) PRCR R PR U gy

L= = R T T T

(== =R = R = R T T T]
=R e~

;

When you use time periods that differ by a value other than 1, typing (Time-1) won't provide the
value of the previous time period. You can use the syntax X[Time-1] if you want to utilize a vari-
able indexed by Time, but if you want to perform an operation that depends on the difference in
time between the current time period and the last one, you must first create a node that uncumu-
lates the Time index.

YearsPassed: Uncumulate(Time)

Analytica User Guide

Chapter Dynamic Simulation

More about the Time index

1 Result - Years Passed [Z| |E| E|
Mid Value of Years Passed X

I T

|V [P
1990 1580 b
1994
1992 1
1993 1
1995 2
2000 5
2005 &
| [

Now you can include this node in a dynamic expression that depends on the time between time
periods. The following definition is equivalent to the Dynamic() definition on page 283 but allows
for changes in time period increments.

Gasprice:= Dynamic(1.2, Gasprice[Time - 1] *

1.05 ™ YearsPassed) —

9 'Result - Gasprice

Mid Value of Gasprice ($/gallon) =
Horizontal Anis:
Lall
26
T 24 s
e
= 42 i
o™
e e
g 18 el
H 1.6 /
12 J
19480 19492 19594 1996 1998 2000 2002 2004 2006
Time

Time as a list of labels (text)

When Time is defined as a list of labels, Time values cannot be used in other expressions as
numbers.

The resulting graph of any Dynamic() function, with the x-axis set to Time, shows the labels at
equal x-axis intervals.

Example Time

|Jan
[Fet
|I.1ar
Apr

Gasprice:= Dynamic(l.2, Gasprice[Time-1] * 1.05) —

Analytica User Guide 285

Chapter Dynamic Simulation Initial values for Dynamic

' . Result - Gasprice

Mid Value of Gasprice ($/gallon) ><'Y'|
Horizontal Al:is:

Lall

Gasprice ($/gallon)

Jan Feh har Apr

Time
A

Using Time in a model

You can use Time like any index variable; you can change only its title and definition. To include
the Time node on a diagram:

1. Open the Object window for Time by selecting Edit Time from the Definition menu.

2. Select Make Alias from the Object menu (see “An alias is like its original” on page 55).
When the Time node displays on a diagram, arrows from Time to all dynamic variables display
by default.

Initial values for Dynamic

286

A dynamic definition of var usually includes the expression Self[Time-k] or var[Time-k],
where k is the number of time periods to subtract from the current Time value. You must supply at

least 1 initial value.

As an example, when k in [Time-k] is greater than 1, suppose your car insurance policy
depends on the premium you paid two years ago. To calculate your payments in 1992, you must
refer to the amount paid in 1990. A dynamic variable representing such a rate for insurance needs

two initial values for Time, such as:

Insurance:
Dynamic(600, 700, Insurance[Time - 2] * 1.05) —

. Result - Insurance |Z||§|g|
Mid Value of Insurance Pad!
[z I e

ba|” [P

-
4990 800
19491 700
4992 630
19493 735
1994 661.5

Analytica User Guide

Chapter Dynamic Simulation Using arrays in Dynamic()

Using arrays in Dynamic()

The initial value of a dynamic variable — that is, the first parameter to the Dynamic() function —
can be a number, variable identifier, or other expression that evaluates to a single number, list, or
array. Analytica evaluates a dynamic variable starting from each initial value, in each time period,
so the result is a correctly dimensioned array.

Example Expanding the example (see “Using the Dynamic() function” on page 282), suppose the inflation
rate of gasoline is uncertain. Instead of providing a single numerical value, you could define the

inflation rate as a list.

W Object - Inflation M=
Inflaticn Units: S&lyear 1=

Title: Inflation

Description: Three different possible rates of inflation for gasoling from 1980 to 1994

Definition: | 0.05|
| 0.1 | |
0.15 -
J [

Using the new Inflation variable in the definition for Gasprice, the results show three differ-
ent rates of increases in gasoline prices from 1990 to 1994:

Gasprice:

Dynamic(1.2, Gasprice[Time - 1] * (1 + Inflation)) —

@ Result - Gasoline price

Mid Value of Gasoline price ($/gallon)
i3] [inMation (year) w | T Totals

Lall ~ [Time w [[Totals
1990 1991 1992 1993 1994 - |
0.05 12 126 1323 1389 1459
0.4 132 132 1452 1597 1757
045 12 138 1587 1825 2,099

Dependencies with Dynamic

All variables with dynamic inputs are evaluated dynamically — that is, their results are arrays
indexed by Time.
Example A series of dynamic definitions produce equations for distance, velocity, and acceleration:
Acceleration: -9.8
Dt: 0.5
Time: Sequence(0, 6, Dt)
Velocity:
Dynamic(0, Self[Time-1] + Acceleration * Dt)
Distance:
Dynamic(100, Self[Time-1] + Velocity * Dt) —

Analytica User Guide 287

Chapter Dynamic Simulation Dependencies with Dynamic

@ Result - Distance

Mid Value of Distance (m) =
Horizontal Axis:
Lall
100 e
20 T —
£ an ""\\
@ 20 s
g 0 e
g -mw
2 .4 B
=]
G0 \\
-a0 g
=100
1] 1 2 3 4 A i
Time

Dynamic dependency arrows

If a variable is dynamically dependent on another variable, a gray arrow is drawn between the
variables.

To show or hide dynamic dependency arrows:

1. Select Set Diagram Style from the Diagram menu to open the Diagram Style dialog
(page 78).

Click in the Dynamic checkbox to show dynamic arrows (or uncheck it to hide the arrows).
3. Click OK to accept the change.

Expressions inside dynamic loops

288

A dynamic loop is a sequence of variables beginning and ending at the same variable, with each
consecutive variable dependent on the previous one. At least one variable in a dynamic loop is
defined using the dynamic function.

When the definition of a variable in a dynamic loop is evaluated, the definition is repeatedly evalu-
ated in the context of Time=t (as t increments through the values of Time). The value for any
identifier that appears in an expression is implicitly sliced at Time=t (unless it is explicitly offset in
Time). As an example, suppose A is indexed by Time, and X is defined as:

Dynamic(0, self[Time-1] + Max(A, Time))
During evaluation, A would be an atom at any given time point since it is implicitly sliced across

Time. When A is not indexed by Time, Max(A, Time) simply returns A, so that the above
expression is equivalent to:

Dynamic(0, self[Time-1] + A)
To add the greatest value of A along Time in this expression, you must introduce an extra vari-

able to hold the maximum value, defined simply as Max(A, Time), and ensure that the two vari-
ables do not occur in the same dynamic loop.

If you attempt to operate over the Time dimension from within a dynamic loop, Analytica issues
the warning: “Encountered application of an array function over the Time index from within a
dynamic loop. The semantics of this operation might be different than you expect.”

Analytica User Guide

Chapter Dynamic Simulation

Uncertainty and Dynamic

Uncertainty and Dynamic

Uncertain variables propagate uncertainty samples during dynamic simulation. If an uncertain
variable is used in a dynamic simulation, its uncertainty sample is calculated only once, in the ini-
tial time period.
Example The following definitions model population changes over time:

Variable Population := Normal (30, 2)

Variable Birthrate := Normal(1.2, .3)

Time =1 ..10

Variable Pop_by year := Dynamic(Population, Self[Time-1] +

Birthrate)
0 Result - Pop by Year E|E|E|
Cumulative Probability of Pop by Year XY
Lall
1
230.8
E%u.a
£S04
S0z
0 . ot 7
225 25 275 30 3245 35 374 40 425 45 475 a0
Pop by Year
Time
— 1 3 5 7 — 94
-2 4 — B g8 — 10

The uncertainty samples for Population and Birthrate are each calculated once, at the ini-
tial time period. The same samples are then used for each subsequent time period.

Resampling

If you want to create a new uncertainty sample for each time period (that is, resample for each
time period), place the distribution in the last parameter of the Dynamic() function. For example,
replace Birthrate with its definition in Pop_by_year:

Pop_by_year:= Dynamic(Population, Self[Time - 1] +

Normal (1.2, .3))
An alternative way to create a new uncertainty sample for each time period is to make Birth-
rate a dynamic variable:

Birthrate:= Dynamic(Normal (1.2, .3), Normal(1.2, .3))

Pop_by year:= Dynamic(Population, Self[Time-1] +

Birthrate)

Analytica User Guide 289

Ch apter Dynamic Simulation Uncertainty and Dynamic

290 Analytica User Guide

Chapter 18

Importing, Exporting, and
OLE Linking Data

OLE linking makes it possible to link data to and from external applica-
tions. With OLE linking, changes to inputs or results are automatically
and instantaneously propagated between applications.

This chapter describes how to exchange data between Analytica and
other applications. The primary methods are:

¢ Using the standard Copy and Paste commands
¢ Using OLE linking
¢ Using the Import and Export commands

Chapter Importing, Exporting, and OLE Linking Data Using OLE to link results to other applications

Copying and pasting

Pasting data from a
spreadsheet

Tip

Pasting data from
another program

Copying a diagram

Exporting to an
image file

Copying an edit table
or result table

Copying aresult graph

Exporting a result graph
to an image file

You can use the standard Copy and Paste commands with any modifiable attribute of a variable,
module, or function.

To paste tabular data from a spreadsheet into an Analytica table:
1. Select a group of cells in a spreadsheet.

2. Select Copy from that program’s Edit menu (Control+c), to copy the data to the clipboard.

3. Bring the Analytica model to the front and open the Edit Table window you want to paste the
data into.

4. Select a top-left cell or the same number of cells that you originally copied.
5. Select Paste from the Edit menu (Control+v).

When copying a row of data from a spreadsheet into a one-dimensional table, transpose the data
first so that you are copying it as a column of cells, not a row of cells.

To paste data from a program other than a spreadsheet:

« Use tab characters to separate items, and return characters to separate lines.

¢ Use numbers in floating point or exponential format. You can use the suffixes that Analytica
recognizes (including K, M, and m; see character suffixes (page 132) for a comprehensive
list). Dollar signs ($) and commas (thousands separators) are not permitted.

To copy an influence diagram, including the objects represented by the nodes:

1. Select the group of nodes you wish to copy.

2. Select Copy from the Edit menu (Control+c). The objects that the nodes represent, as well as
a picture of the selected nodes with all of the relevant arrows between the selected nodes, are
copied to the clipboard.

To copy an entire Influence Diagram window, select Copy Diagram from the Edit menu. The
entire influence diagram is copied as a picture representation without copying the objects that the
nodes represent.

To export an influence diagram to an image file, with the diagram showing select Export from the
File menu. From the Save dialog, select the desired format (e.g., EMF, PNG, JPEG). An image of
the full diagram is stored (not just the selected nodes).

To copy data from an edit table or result table:
1. Open the window containing the table.
2. Select cells and choose Copy from the Edit menu (Control+c).

To copy all the elements of a table in addition to the index elements, select Copy Table from the
Edit menu. The entire multidimensional array is copied as a graphic and as a list of two-dimen-
sional tables in a special text format (see “Edit table data import/export format” on page 300).

To copy a result graph:

1. Open the Result window containing the graph.

2. Select Copy from the Edit menu (Control+c) to copy an image representation of the graph to
the clipboard.

To export a result graph:

1. Open the Result window containing the graph.

2. Select Export from the File menu and select the desired image file format (e.g., EMF, PNG,
JPEG).

Using OLE to link results to other applications

292

Object Linking and Embedding (OLE) is a widely used Microsoft technology that enables objects
in two applications to be hotlinked, so that changes to the object in one application cause the

Analytica User Guide

Ch apter Importing, Exporting, and OLE Linking Data

Linking procedure

Tip

Detailed example of
linking Analytica results

Using OLE to link results to other applications

same changes in the other application. For example, by linking an array in Analytica to a table in
a Microsoft Excel spreadsheet, any change to the array in the Analytica model is automatically
reflected in the spreadsheet.

By using OLE linking, results from Analytica models can be linked into OLE compliant applica-
tions like Word and Excel. Linking data can save a great deal of work because it saves you from
performing repeated copy and paste operations between Analytica and other applications when-
ever your model results change. Without OLE, if you copied result tables from Analytica, pasted
them into a Word document, and later you tweak your model results, you would need to re-copy
and re-paste all those result tables. However, if you link those tables using OLE, all the data in the
Word document either updates automatically, or if you prefer, when you explicitly decide to update
the data.

You can link any of the result table views (i.e., Mid, Mean, Statistics, Probability Density, Cumula-
tive Probability, and Sample table views). You can link any two-dimensional slice of a multi-dimen-
sional table with the regular Copy command. For result tables with more than two dimensions,
you might decide to link the entire table as a series of two-dimensional tables using the Copy
Table option from the Edit menu. You can also link a rectangular region of cells that are a subset
of a a two-dimensional table. However, you cannot link non-table data such as the information
that is contained in the Object window or Attribute panel.

Steps for linking result data from your Analytica model to an external OLE-compliant application
are as follows. For concreteness, we’ll assume here that the other application is Microsoft Excel.

1. Inthe Analytica Result window, select the cells you want to link and choose Copy from the
Edit menu (Control+c).

From Excel, select the cells where you would like the Analytica data linked.

From Excel, choose Paste Special from the Edit menu.

The Paste Special dialog appears.

In this box, choose the option Paste Link, select Text from the As list, and click OK.

a bk~ wb

You're done. Any changes to the source result table are propagated to the linked data in Excel.
The procedure for linking Analytica model results to other OLE-compliant applications is similar to
the above steps.

The external application must support OLE-linking of tab-delimited text data. Applications that do
not support this format do not display “Text” as an option in Step 5 above, or disable the Paste
Special menu item in Step 3.

J] . Re a 0 |
midv| prid Value of Cash Flow pad!
Il Relative Price < Ea
Lall | Advertising Budget Options T* | (|
| Time - I [Totals
vl Cash Flow - |[> [~ Totals
Revenue Cost Net 1=
1998 20 67 421,766.88| 357 421,756.598
1999 572,096 148,41 3101, 71984119 32562365278
2000 108,792,232 5160567 883.42 225 224 34545
2004| 5336196 198.97 5233750 36547 2102426 3325
2002 5335196 19897 5233750 36547 2102426 3325
2003 S5336,196198.97 5233760 866.47 2102 426 3325
2004 S52241307959.31 EB177 73716554 %46 393 632.67
2008 511208538988 $121,704 486 81 25630 067.15
2006 30 26567176608 5-65671,766.58

Analytica User Guide

293

Ch apter Importing, Exporting, and OLE Linking Data

Using OLE to link results to other applications

This example itemizes detailed steps for linking an Analytica result table into an Excel spread-
sheet. Suppose you would like to link the model results displayed above into an Excel spread-
sheet. You can start by linking the column and row headers. Go to the node titled Cashflow
Category and evaluate its result. Notice the result of node Cash Flow Category is displayed as a
column of cells, but you would like to have them linked into Excel as a row. Unfortunately you can-
not link this data as a row with a single Copy/Paste Special operation since Excel does not let you
transpose the linked data from a column to a row. However, you can easily work around this limi-
tation. Link the values into an unused portion of your spreadsheet or to a blank sheet using the
linking procedure described in the previous section. In the cells where you actually would like the
labels to appear as a row, simply reference the linked cells. In other words, define the cells that
comprise the column headers for the linked table you are creating using the names of the corre-
sponding linked cells.

Now it's time to link the values of Time as the row headers in your linked table. Time is an Analyt-
ica system variable and one of the elementary ways to copy its values for linking is to create a
node called Time and give it the definition time. Evaluate this node and then link the values dis-
played in the result table using the linking procedure described in the previous section.

Linking the body of the table is just a straightforward application of the linking procedure. The
number format of the cells is preserved in fixed point format, but you might want to use Excel for-
matting to get the dollar sign and thousand separator displayed. Excel might switch to the expo-
nential number format or display ######## if your columns are not wide enough.

The body of the table and its indexes (the row and column headers) are linked. For instance, if
your Analytica model results change and you decide also to change the value of cost to expense,
these changes are reflected in your linked table in Excel.

icrenaft Excel - Bookl A=
BS)pe Edt gew Jeent Fymat Took Deu findow teb = @ X
| s = 30 B /U EEW
& sragt o1 | oo -l
T S
A | [:] | c | [1] L%
1
ball| Advertising Budget Options 0 | 8044 2 [Time Revonue Cost Het
[ime w) | 3| s S0 561421766 98 S5 421 766 98,
T Caahow P I o 4| uw $72096 14847 SI01 TG4 90 206260 TH
5| 2000 109,742,237 SIG0.6T 8042 529228 M98
s 6| 2001 | 533519619857 S20ITELEE64T SG02.4263%250
thial 7| 200F | 533519619897 S2I3TEUBEAAT §102.426.3X2 50
e ® | 2003 | 530515619857 SI3TEUMEEAT | 510242631250
0 85| 2004 £224 130,799 31 S1TT TIT 16E 64 S4E I EX2 6T
002 0] 2005 | $112.065 399 65 5121704 455 81 0,619 067 15
203 1] 2008 S0 | 565 671,765 98 555 671,766.53
3004 12
b 13
u|
i 15 -
W a8 M) Sheetl / Sheetd [sreetd [I« |
Roeacty HLM

Important notes about linking to Analytica results

Changing file locations

Automatic vs. manual

294

updating

When moving linked files from one drive partition to another on the same machine or between two
different computers, keep the relative paths the same. The simplest way to do this is to keep the
linked model files and the other application files to which they are linked in the same folder.

OLE links are set for automatic updating by default, but you can change this setting to manual.
We recommend this if the data is linked from an Analytica model with a lengthy re-computation
time or to an application with a lengthy re-computation time.

To change a link’s setting to manual in Word:

1. On Word's Edit menu, select Links.
2. Inthe Links box that appears select the link(s) you're interested in adjusting.
3. Click the radio button labeled manual and click the OK button.

In other OLE-compliant applications the steps for switching from automatic to manual updating
should be very similar to the ones listed above.

Analytica User Guide

Chapter Importing, Exporting, and OLE Linking Data Linking data from other applications into Analytica

Using Indexes

Number formatting

Refreshing links when
Analytica model
is not running

You can also decide to set all your OLE links to be updated manually using a preference setting in
Analytica. From the Edit menu, select Preferences, then in the Preferences dialog, uncheck the
checkbox located on the bottom right labeled Auto recompute outgoing OLE links.

Array-valued results that are to be linked should not have local indexes (created using the
Index..Do construct). All indexes should correspond to index nodes in your diagram.

When linking data into OLE compliant applications, the number format is the same as Analytica’s
format at the time of link creation. However, if the linked Analytica data uses the default Suffix
number format, the linking converts the format to Exponential, which is more universally recogniz-
able in other applications. In programs that have their own number formatting settings such as
Excel, the number format is likely adjusted according to the settings for the cells you are pasting
into. However you must still be careful about losing significant digits (see next paragraph).

Precision is another important issue in number formatting. Before linking from Analytica, you
should first adjust the number format so that it displays all the significant digits you would like to
have in the other OLE-savvy application to which you are linking.

If you refresh the links between an Analytica model and another OLE-savvy application when the
Analytica model is not running, the following events occur:

A new instance of Analytica launches.

Analytica loads the model.

Analytica evaluates the variables upon which the links are dependent.

The links reactivate.

a ks wbnh e

The linked data updates.

There are two ways to refresh the links this way. The first case occurs when a file with links is
opened while the model file to which it is linked is closed, and you answer Yes to the dialog
prompting you to update the linked data. The other way is if you are working with a file containing
links to a model that is not running and you explicitly update the links. To explicitly update the links
in Excel, you would select Links from the Edit menu. Then in the Links dialog, select the links
you would like to refresh and click the Update button.

Linking data from other applications into Analytica

Linking procedure

Using OLE linking, you can incorporate data originating in OLE-compliant applications as the
input for nodes in your Analytica model. You accomplish this by linking the external data to edit
tables in Analytica. Once again, this removes the need to perform numerous copy and paste
operations each time the source data in the other application changes.

When linking data into Analytica, you can link data into any edit table with less than three dimen-
sions. When linking data in edit tables you must link all the contents of the table; linking a subset
of an edit table is not supported. You cannot link data from other applications to anywhere else
than an edit table in Analytica including the diagram windows, Object windows, and the Attribute
panel.

Steps for creating a linked edit table in Analytica with data from an Excel spreadsheet:
1. In Excel, select the cells you want to link to Analytica and choose Copy from the Edit menu.

2. In Analytica, make the edit table where you want the Excel data linked the front most window.

3. From the Edit menu or the right mouse button pop-up menu, choose Paste Special.
The Paste Special dialog appears.

4. In this box, choose the option Paste Link, select Text from the As list, and click OK.

The process for linking data from Word or other OLE-compliant applications are analogous to the
steps just outlined.

Analytica User Guide 295

Chapter Importing, Exporting, and OLE Linking Data Linking data from other applications into Analytica

Example of linking a table into Analytica

296

This section itemizes detailed steps for linking a table from Excel into Analytica by creating a node
with a “Linked Table” definition. Specifically, suppose you desire to link the Excel table displayed
in the following figure into Analytica.

Microsoft Excel EJ @l E|

I File Edit WView Insert Format Tools Data Window Help

§jainna| -0 - B 7 U|EE|H-
: & sSnaglt &' | window - !
c10 - f

In Stock Ordered
Red Widgets 100 25
Blue Widgets] 175
Green Widgets 5 17
b
M 4 » W] Sheetl / Sheet2 / Sheet3 |¢ >
Ready MWLM

Start by creating two indexes in Analytica to store the row and column headers. Title the first index
Items and the second Status. Select the node Items and then click the Show definition button on
the toolbar (this is the button with the pencil icon) or right mouse menu. In the Attribute panel or
Object window that appears, click the expr popup menu and choose List of Labels. Press the
down-arrow or Return key three times. This gives you three cells — item 1, item 2, and item 3. In
Excel, copy the three cells used as the row headers (i.e., Red Widgets, Blue Widgets, and Green
Widgets); return to Analytica and do a regular paste into the three cells of the definition for the
Index node Items.

Now you need to copy the values of the column headers (i.e., In Stock and Ordered) into the def-
inition for the index node Status. Since Analytica enforces strict dimension checking (i.e., you
cannot paste a 3 x 1 array of cells into a 1 x 3 array of cells), you are required to first convert the
row into a column. You can accomplish this easily by copying the row, moving to an unused por-
tion of the spreadsheet or onto a blank sheet, and choosing Paste Special from Excel's Edit
menu. The Paste Special dialog appears and you need only select the Transpose checkbox on
the bottom right. Click the OK button and you have converted the column header cells from a row
into a column. Now copy this column, go back to Analytica, select the Status node, and click the
Show definition toolbar button. Select the first cell item 1 and choose Paste from the Analyt-
ica’s Edit menu.

Since you've finished creating the indexes, you're ready to start on the node that contains the
linked table. Create a variable node in Analytica and title it Inventory. With this node selected,
click the Show definition button on the toolbar. In the Attribute panel or Object window that
appears, click the expr popup menu and choose Table. The Indexes dialog appears. In this dia-
log, select Items and click the w button. This moves Items to the Selected Indexes section. You
also want to select Status and then click the W button to make it a selected index as well. Click
OK and an edit table appears as follows.

Analytica User Guide

Chapter Importing, Exporting, and OLE Linking Data Linking data from other applications into Analytica

9§ Ole linking from Excel to Ana -- Analytica® Enterprise beta - C:\Documents and Setti. .. rZ|r§|z|
Bde Edit Object Definiton Result Diagram \Window Hep
& =|=|@lr| &[% +|m[e]o|e|e|s|a|n|T]

§ Edit Table - Inventory

Inventory: [Definition

Edt Table | indexad by Eems, Status

Go to Excel and select the numerical values displayed in the table and choose Copy from the
Edit menu (Control+c). Return to Analytica (while in edit mode) and click anywhere in the edit
table grid. Choose Paste Special from the Edit menu and the Paste Special dialog comes into
view. You want the settings in the box to be Paste Link and Text which are the default settings
(see below). Click OK.

Paste Special

Source: CA\Documents and SettingshRenee'\My Documents'Ole | 0K |
As: Cancel |

" Paste

* Paste Link

Result

Inserts the contents of the clipboard into your

@4@ document as data into Analtica. The data is
linked to the source file so that changes to the file
will be reflected in your document.

The caption for the table changes from Edit Table to Linked Table and you're done. If you arrange
the application windows so that you can see the source table in Excel and the linked table in Ana-
lytica, you can readily demonstrate that the link is activated. Change the value for Green Widgets
Ordered from 2 to say 17. The corresponding value in Analytica’s linked table changes accord-

ingly.

Analytica User Guide 297

Ch apter Importing, Exporting, and OLE Linking Data

Tip

Importing and exporting

0 e Hnidng from Exced to Ana - Analytica® Erterprise beta — O, |'-_.|E'_§
e B Chwct [efrron Geadt Dugrem fiindow pep

S Al |

el © Wicromon el
i Be Bt Pew Dwet Fomat Toos [ew firdow bed
| <% s B S U EE D

1
2| i Stock Ordesed
Ea Red Widgets 100 2%

: Blus Widgets 1

3 Greon Widgets 5 17
t] =l & i
e — I | Bn o v Wb Sheet1 [Sheetd [Sheetd | ¢ ¥|

Uriad Tabis | maexed by beea, Stafn Eracy L

The data within the table is linked and is updated automatically when altered, but the row and
column headers are not linked and any changes to their values must be propagated using the
standard cut and paste operations. Perform this by copying to the indexes used by the table, not
to the table itself.

Important notes about linking into Analytica edit tables

Changing file locations

Automatic vs. manual
updating

Terminating links

Activating the other
application

When moving linked files on the same machine or between two different computers, keep the rel-
ative paths the same so that the files can locate each other. The simplest way to do this is to keep
the linked model file(s) and the other application file(s) to which it is linked in the same folder.

OLE links are set for “automatic” updating by default, but you can change this setting to “manual.”
This might be desirable if the linked data is used in a model with a lengthy computation time. To
change a link’s setting to “manual” updating:

1. On Analytica’'s Edit menu, select OLE Links.
2. Inthe Edit Analytica Links box that appears select the link(s).
3. Click the radio button labeled manual and click the OK button.

You might want to terminate a link to a source file for a number of reason including if you do not
have the source file or if you would like to edit the values in a linked table. To break a link, bring up
the Edit Analytica Links dialog, by choosing OLE Links from the Edit menu. Select the link you
would like to terminate and click the Break Link button.

If you have linked data from an external application into Analytica, after loading Analytica you can
make the other application visible using the Open Source button on the OLE Links dialog,
accessed through the Edit menu. If you implement a portion of your model in Analytica and a por-
tion in an external application, with OLE links in both directions, you can make both applications
simultaneously visible on the screen by loading the Analytica model first, then pressing the Open
Source button to open the external application.

Importing and exporting

Importing a definition

298

To import a definition from a text file into expression format:

1. Select the definition field of the variable in either the Object window or Attribute panel
definition view.

If the variable is defined as a List, List of Labels, or Edit Table, select the cell(s) in which to
import.

2. SelectImport from the File menu. A dialog prompts you for the file name from which to import.

Analytica User Guide

Printing to a file

Ch apter Importing, Exporting, and OLE Linking Data

Loak jm; |E} I zer Guide Examples ﬂ L] & Ef-

File: name: | Open
Files of type: | Tet document [* k) ~| Cancel

Importing into an To import data from a tab-delimited text file into an edit table:
edit table
1. Open the window containing the table.

2. Select cells and choose Import from the File menu.

A dialog prompts you for the file name from which to import.

To import all the elements of a multidimensional table including the index elements, a special text
format is required (see “Edit table data import/export format” on page 300). This is also the format
in which an edit table or result table is exported. The indexes of the table must have been previ-
ously created as nodes.

Exporting To export a variable’s result table to a text file, first be certain that the text file is closed.

1. Select the variable to be exported from and open its Result window.
2. Select Export from the File menu. A dialog prompts you for the file name to export to.

Printing to a file

Another way of exporting any Diagram window, Object window, or Result window to a file is to
print to a file:

1. Select Print from the File menu.
2. Select Print to File and press Enter or click OK.

Analytica User Guide 299

Ch apter Importing, Exporting, and OLE Linking Data Edit table data import/export format

3.

General]

Select Printer

\ ;) ~
HP DeskJet
400 =

W

Status: Ready W Prirttofle Preferences

Location:

Comment: Find Prirter...
Page Range

“ Al Mumber of copies: |1 3:
i i

" Pages: |1-99%9 ¥
Enter either a single page number or a single

page range. For example, 5-12

Prirt Cancel ‘

Enter the name of the file and the format for the file in the dialog that appears.

Edit table data import/export format

Multidimensional data being imported or copied into an edit table must be in a text file with the
special format described in this section. This is also the format in which an edit table or result
table is exported.

TextTable is a keyword.

Attribute is the name of the attribute into which the data is to be pasted (usually
definition).

Variable identifier is the identifier of the variable node into which the data is to be
pasted.

Index identifier is the identifier of the index for this variable. This node must already
exist in the model.

Each index value and array value pair must be separated by tab characters.

One-dimensional array
The format for a one-dimensional array is:

TextTable <Attribute> <Variable identifier> <line break>
<Index identifier><line break>
<Index value><tab><Array value><line break>

300 Analytica User Guide

Chapter Importing, Exporting, and OLE Linking Data

Example

Two-dimensional array

Keyword Attribute Variable identifier

TextTable De#inition House_cost_inputs
House_inputs_— |ndex identifier

PropTax 3400
Tax rate 0.44
Maintenance 4000
Interest 0.105
Appreciation 0.08
InderaMes AnayLaMes

Edit table data import/export format

The format for a two-dimensional array is:
TextTable <Attribute><Variable identifier><line break>
<Indexl identifier><tab><Indexl values separated by tabs>

<line break>

<Index2
<Index2
<Index2
<Index2

Example

Three-dimensional array

identifier><line break>

valuel><tab><Array values separated by tabs><line
value2><tab><Array values separated by tabs><line
valueN><tab><Array values separated by tabs><line

break>
break>
break>

Keyword Attribute Variable identifier

TextTable Definition Mortgage
Index1 —— Down_payment 20000 45000 60000
Index2 —— Buying_price
200000 180000
400000 380000
600000 580000

155000 140000
355000 340000
555000 540000

Index2 values Array values Index1 values

The format for a three-dimensional array is:

TextTable <Attribute> <Variable

<Indexl
<Index2
break>

<Index3
<Index3
<Index3
<Index3
<Indexl
<Index2
break>

<Index3
<Index3

identifier> <line break>
Valuel><line break>
values separated by tabs><line

identifier><tab><Index1l
identifier><tab><Index2

identifier><line break>

valuel><tab><Array values separated by tabs><line break>
value2><tab><Array values separated by tabs><line break>
valueN><tab><Array values separated by tabs><line break>
identifier><tab><lIndexl Value2><line break>
identifier><tab><Index2 values separated by tabs><line

identifier><line break>
valuel><tab><Array values separated by tabs><line break>

Analytica User Guide

301

Edit table data import/export format

Chapter Importing, Exporting, and OLE Linking Data

<Index3 value2><tab><Array values separated by tabs><line break>
<Index3 valueN><tab><Array values separated by tabs><line break>

And so on for each value of Index1.

Example

Keyword Attribute

Variable identifier

TextTable Definition Net_diff

Index1 Buying_price
Index2 Years_owned
Index3 Down_payment

200000
5 10 15

20000 10112 12160 13525

Index3 values

45000 | 10093 12158 13540

60000) | 10073 12157 13555

Index1

Buying_price
Years_owned
Down_payment
20000 10180.
45000 10160.
65000 10141.
Buying_price
Years owned
Down_payment
20000 10248
45000 10228
60000 10208

Index1

400000

5 10 15

14201. 16867.
14199. 16882.
14198. 16897.

60000

5 10 15

16242 20209
16241 20224
16239 20239

Index1 Valuel
Index2 values

Array values

Index1 Value2

Index1 Value3

Number format
Numerical data can be imported in any format recognized by Analytica (see “Number formats” on
page 82).
Numerical data is exported in the format set for the table, with these exceptions:
« Suffix format numbers are exported in scientific exponential format.

« Fixed decimal point numbers of more than 9 digits are exported in scientific exponential
format.

« If a date format begins with the day of the week, e.g., “Saturday, January 1, 2000”, the
weekday is suppressed: “January 1, 2000".

302 Analytica User Guide

ST (-IgN I \Working with Large Models

This chapter shows you how to:
« Navigate large models
« Combine existing models into an integrated model

Show module hierarchy preference

Chapter Working with Large Models

Large models, which include many variables organized into multiple modules at several levels of
hierarchy, can be challenging to find your way around. The first part of this chapter describes how
to navigate larger models, using the hierarchy preference, the Outline window, and variable input
and output attributes. The second part of this chapter describes how to combine existing models
into an integrated model.

Show module hierarchy preference

Often a large model has many layers of hierarchy. You can see the hierarchy depth of each mod-
ule at the top of its Diagram window by setting a preference. Select Preferences from the Edit
menu to display the Preferences dialog.

0 Preferences X

— Windows of each kind: Default result view: ———

" One only @ ™ Tahle

f* Any number

]

" Ohbject window
* Diagram attribute panel

Show rezult warnings

IJse Retum to enter data

|_9 Result windows H @ el
T Check vaiabie ces ararany
[20 characters Check value bounds [~ option
W sk before renaming Show undefined, —7 "7
Flag & wi/descriptions
_‘?"W Opens: Show module hierarchy

o Sale Intermediates
Wt aintain Recovery Info

<% 71T

Auto recompute outgoing
QLE links

[Use Excel date origin

Cancel ak

If you check the Show module hierarchy box, the top of the active Diagram window displays one
or more module node shapes to indicate its hierarchy depth.

B[=1ES

0 Diagram - Cost to Buy

30 CosttoBuy W |

Indicates that this module has a parent in the model

The Outline window

The Outline window displays a listing of the nodes inside a model. It can also show the module
hierarchy as an indented list of modules. It provides an easy way to orient yourself in a large
model and to navigate within it.

304 Analytica User Guide

Chapter Working with Large Models The Outline window

Opening the Outline
window

Opening details from
an outline

Expanding and
contracting the outline

Viewing and editing
attributes

Viewing values

modules, and functions ———_(__) Cash flow of rental costs

0§ Outline - Model details
Check to display only 7100 | Model details bl |
modules™— —F Modules Only

{2 Apprecistion rate

Selected object is :
h|gh||ghted [zount rate

(1 Time horizon

> Rate of inflation

{7 Met present value

[Burying price

< () Cost to Rent
() Monthly rert

List of variables,< () Presert value of cost ta rert

Discount rate: |Descriptinn il | =

Discount rate for converting & future cash flow into 3 single value (present value). The
dizcount rate represents the values of the huyer at the presert time.

Attribute panel |

Attribute popup menu

To open the Outline window, click the Outline button in the toolbar | 7= |.
The Outline window highlights the entry for the selected module or variable.
To display a module’s Diagram window, double-click its entry in the outline.
To display a variable’s Object window, double-click its entry in the outline.

By default, the outline lists all nodes in the model. Check the Modules Only box to list only the
modules (exclude variables and functions).

5 Outline - Model details
Click here to see {0 Model details hd

v Modules Only

[() Cost to Buy
< (J Cost to Rent

modules only

In the outline, each module entry has a triangle icon D or <7 to let you display or hide the mod-
ule’s contents.

D Indicates that the module’s contents are not shown in the Outline window. Click this icon
to display the module’s contents.

<~ Indicates that the module’s contents are shown as an indented list. Click this icon to hide
the module’s contents.

The Attribute panel at the bottom of the Outline window works just like the Attribute panel avail-
able at the bottom of a Diagram window (page 19).

To view the attributes of a listed node:

1. Select the node by clicking it.

2. Choose the attribute to examine from the Attribute popup menu (see “Creating or editing a
definition” on page 108).

If you edit attributes in this panel, the changes are propagated to any other Attribute panels and
Object windows.

To see the Outline window with mid values, select Show With Values (page 26) from the Object
menu. Each variable whose mid value has been evaluated and is an atom displays in the window.

Analytica User Guide 305

Chapter Working with Large Models Finding variables

@ Outline - Rent versus Buy

O Rent versus Buy
[Modules Only
- [Cost to Buy =
() Dowvn payment [$) = Array[Price]
() Mortgage loan amourt ($) = Array[Price]
() Mortgage interest rate (%edyear) =65
) Maoving costs (%) = Array[Price] |
- (O Opportunity cost
() Discount rate afyear) =6
() Foregone interest on down payment () = Array[Price]
() Savings interest rate (HeMvear) =25
() Presert value of foregone interest = Array[Price] -
Rent versus Buy: | Description % | =
Financial model comparing the Met Present Yalue of renting versus buying & house., e

Finding variables
To locate a variable in its diagram, by identifier or by title, use the Find dialog.
Find dialog To display the Find dialog:
1. Select Find from the Object menu (Control+f).

® Find
Find what Object?

|dnwn
b " |dentifier

Cancel

2. Choose the attribute to search by, Identifier or Title.

3. Inthetextfield, enter the identifier or title for the Analytica object for which you want to search.
You can enter an incomplete identifier or title, such as “down” for “Down payment.”

4, Click the Find button to initiate the search.

The Diagram window containing the object found is displayed, with the node of the object
selected.

If the name you type does not match completely any existing identifier or title (depending on
which attribute you are searching), the first identifier or title that is a partial match is displayed.

To find the next object that is a partial match to the last identifier or title that you entered, select
Find Next from the Object menu (Control+g).

To find an object whose identifier matches the selected text in an attribute field (such as a defini-
tion field), select Find Selection from the Object menu (Control+h).

Managing attributes

Every node in an Analytica model is described by a collection of attributes. For some models,
you might want to control the display of attributes or create new attributes. Some attributes apply

306 Analytica User Guide

Chapter Working with Large Models Managing attributes

to all classes (variable, module, and function). Others apply to specific classes, as listed in the fol-

lowing table.
Attribute Function Module Variable
Author *
Check + +
Class * * *
Created *
Definition * *
Description * * *
Domain +
File Info *
Help + + +
Identifier * * *
Inputs + +
Last Saved *
MetaOnly +
Outputs + +
Parameters *
Probvalue +
Recursive +
Title * * *
Units * *
Value +
User-created (up to 5) + + +
Key:
plain = modifiable by user * = always displayed
italic = set by Analytica + = optionally displayed

For descriptions of the attributes, see “Glossary.”

Attributes dialog Use the Attributes dialog to control the display of optional attributes in the Object window and
Attribute panel and to define new attributes.

To open the Attributes dialog, select Attributes from the Object menu.

Analytica User Guide 307

Chapter Working with Large Models

Displaying optional
attributes

Creating new attributes

Renaming an attribute

Managing attributes

M Attributes X

Class:l "+ Functions w I Class popup menu

CETITITOTOTT
Fe
W Inputs J
» Outputs
Domain

Check
w Recursive

Checkmark indicates optional
attribute is displayed

Attribute list

Help
Reference - |

Cancel oK

¢ Class popup menu
Use this menu to select the Attribute list for variables, modules, or functions.
e Attribute list

This list shows attributes for the selected class. Attributes with an asterisk (*) are always
displayed in the Object window and Attribute panel. Attributes with a checkmark () are
displayed optionally.

To display an optional attribute in the Object window and Attribute panel, click it once to select it,
then click it again to show a checkmark.

To hide an optional attribute, click it once to select it, then click it again to remove the checkmark.

You can create up to five additional attributes. For example, you could use a reference attribute to
include the bibliographic reference for a module or variable.

To create a new attribute in the Attributes dialog:

1. Select new Attribute from the attribute list to show the new Attribute Title field and the Create
button.

2. Enter the title for the new attribute in the Title field. The title can contain a maximum of 14
characters; 10 characters are the maximum recommended for visibility with all screen fonts.

3. Click the Create button to define the new attribute.

A newly created attribute is displayed for modules, variables, and functions. To control whether or
not it is displayed for modules, variables, or functions, select the Class popup menu in the Attri-
butes dialog, and turn the checkmark on or off.

To rename a created attribute:

1. Selectitin the Attribute list. The Title field and the Rename button appear.
2. Edit the name of the attribute in the Title field.
3. Click the Rename button.

Referring to the value of an attribute

Attrib Of x

308

Analytica includes the following function for referring to the value of an attribute in a variable’s def-
inition.

Returns the value of attribute attrib of object x, where x might be a variable, function, or module.
For most attributes, including Identifier, Title, Description, Units, Definition, and user-defined attri-
butes the result is a text value. For Value and Probvalue, the result is the value of the variable
(deterministic or probabilistic, respectively). For Inputs, Outputs, and Contains (an attribute of a
module), the result is a vector of variables.

You cannot refer to an attribute of a variable by naming the variable in the definition of that vari-
able. Instead, refer to it as Sel f, for example:

Analytica User Guide

Chapter Working with Large Models invalid variables

Variable Boiling_point

Units: F

Definition: If (Units of Self) = *C*
THEN 100 ELSE 212

Boiling_point —» 212
Library Special

Example Units of Time — "Years"

Ti P Changes to attributes other than Definition do not automatically cause recomputation of the
variables whose definitions refer to those attributes. So, if you change Units of Boi ling_point
to C, the value of Boi ling_point does not change until Boi ling_point is recomputed for
some other reason.

Invalid variables

To locate all variables in a model with syntactically incorrect or missing definitions, select Show
Invalid Variables from the Definition menu.

@ Invalid Variables X
Variables with invalid definitions: Check All |
) Cost Cost =]
() Cost_in_time Cost in time

Double-click a variable to open its Object window. From the Object window, you can edit the def-
inition, or click the Parent Diagram button &, to see the variable in its diagram.

Using filed modules and libraries

Modules and libraries can be components of a model. If you are building several similar models,
or if you are building a large model composed of similar components, you can create modules
and libraries for reuse. (See Chapter 20, “Building Functions and Libraries” for details about
libraries.)

To use a module or library in more than one model, create a filed module or filed library.

Creating a filed module To create a filed module or library:

or librar
y Create a module by dragging the module icon from the node palette onto the diagram, and

give it a title.

2. Create functions and variables in the module, or create them elsewhere and move them into
the module.

3. Change the class (page 57) of the module to Module (&) or Library ¥G}.
The Save As dialog appears. Give the filed module or library a name and save it.

5. If you want the original model to load the new filed module or library the next time it is opened,
save the model using the Save command.

Locking a filed module To prevent a filed module or library from being modified, lock it:

or library . . .
1. Close the filed module or library, or close Analytica.

2. In Windows Explorer, select the filed module or library.
3. Select Properties from the File menu.

Analytica User Guide 309

Chapter Working with Large Models Adding a module or library

Adding a module
to a model

Adding library
to a model

Removing a module or
library from a model

Saving changes

Rent versus Buy example.ANA Properties @gl

General Summaty

Q! Rent versus Buy example, ANA

Tvpe of file: Analytica Model File
Opens wikh: ﬂ Analytica

Location: o
Size: 18,3 KB (18,786 bytes)

Size ondisk; 20,0 KE (20,430 bytes)

Created: Taday, Cckober 11, 2007, 4:15:39 PM

Check Read-only to Modified: Today, Cctober 11, 2007, 4:15;40 PM

lock a library or module
file — Accessed: Today, Ockober 11, 2007, 4:15:40 PM

o lResc-ony [Hdden
Security: This File came from another
computer and might be blocked to Eire e

help protect this computer,

[[8]4 H Cancel H Apply]

4. Check the Read-only checkbox.
5. Close the Properties window.

To add a filed module to the active model, use the Add Module dialog (page 310). You can either
embed a copy of the module or link to the original of the filed module.

To add a filed library to the active model, use the Add Module dialog (page 310). You can either
embed a copy of the library or link to the original of the filed library.

When you select Add Library from the File menu, the Open File dialog always opens up to fixed
directory, regardless of the current directory settings or previous changes of directories. The
directory is determined by a registry setting in /Lumina Decision Systems/Analytica/
3.0/AddLibraryDir, which is set by the Analytica installer to INSTALLDIR/Libraries.

To remove a filed module or library from a model, first select it. Then, select Cut or Clear from the
Edit menu. An embedded copy is deleted; a linked original still exists as a separate file.

After you have linked to a filed module or library, the Save command saves every filed module
and library that has changed, as well as the model containing them, in their corresponding files.

The Save As and Save A Copy In commands save only the active (topmost window’s) model,
filed module or filed library.

Adding a module or library

310

To add a module or library, select Add Module (Control+l) or Add Library from the File menu.
The main difference is that Add module starts the file browser by default in the folder you opened
the model (or last added module) from, where Add Library starts from the standard libraries
folder installed when you installed Analytica. Either way, you must be in Edit mode or those
options will be grayed out in the File menu.

Analytica User Guide

Chapter Working with Large Models Combining models into an integrated model

Tip

Embed a copy

Link to original

Merge contents
(overwrite)

The standard Open Model dialog appears. Select the desired module in that dialog. The following
dialog then appears.

Add a Module or, Library... g|

Chioogze how module ar ibrary should be added.

{+ Embed a copy
" Link to ariginal

[Merge contents [ovenarite)

Cancel

Be sure that the selected model or module was saved with a class of filed module or filed library.
If it was saved with a class of model, when it is linked to the root model, its preferences and
uncertainty settings overwrite the preferences and uncertainty settings of the root model.

An added module or library can be either embedded or linked. You can optionally overwrite any
nodes with the same identifiers.

Embeds a copy of the selected module or library in the active model, making it a part of, and sav-
ing it with, the model. Any changes to the copy do not affect the original filed module or library.

Creates a link to the selected module or library, which can be separately opened and saved. If you
make changes to a linked module or library from one model, the changes are saved in the origi-
nal’s file and any other models linked to the original are affected by the changes.

A linked module or linked library has a bold arrow pointing into it on the diagram.

q Morgage
! L payments
Bold arrow indicates that this is a
linked module
Select this checkbox to overwrite existing objects in the active model with objects with the same
identifiers from the added module or library. This is useful if the file being added contains updates
from a previous version.

If you do not select this checkbox, and an object in the file being added has the same identifier as
one in the active model, Analytica points that out and asks if you want to rename the variable. If
you click Yes, it renames the variable in the existing model, and updates all definitions in the
existing model to use the changed identifier. It leaves unchanged the identifier of the variable in
the module it is adding (which might contain definitions referencing that identifier that it has yet
to read.) Hence, all the definitions in the existing model and added module continue to refer-
ence the correct (original) variables.

Combining models into an integrated model

Large models introduce a unique set of modeling issues. Modelers might want to work on differ-
ent parts of a model simultaneously, or at remote locations. During construction, a large model
might be more tractable when broken into modular pieces (modules), but all modules should use
a common set of indexes and functions. Analytica provides the functionality required to support
large-scale, distributed modeling efforts.

This section describes how to best use Analytica for large modeling projects and contains sug-
gestions for planning a large model where responsibility for each module is assigned to different
people (or teams).

Analytica User Guide 311

Chapter Working with Large Models

Define public variables

Create a modular model

312

Identical identifiers

Redundant nodes

Stand alone shells

Combining models into an integrated model

The first step to creating an integrated model is to define public variables for use by all modules
and agree on module linkages.

Every integrated model has variables that are used by two or more projects (for example, geo-
graphical, organizational, or other indexes, modeling parameters, and universal constants).
These public variables should be defined in a separate module, and distributed to all project
teams. Each team uses the Add Module dialog (page 310) to add the public variables module to
its model at the outset of modeling. Using a common module for public variables avoids duplica-
tion of variables and facilitates the modules’ integration.

Source control over the public variable module must be established at the outset so that all teams
are always working with the same public variables module. Modelers should not add, delete, or
change variables in the public variables module unless they inform the source controller, who can
then distribute a new version to all modelers.

If multiple teams will be working on separate projects, it is essential that the teams agree upon
inputs and outputs. Modelers must specify the input variables, units, and dimensions that they are
expecting as well as the output variables, units, and dimensions that they will be providing. The
indexes of these inputs and outputs should be contained in the public variables module.

By keeping large pieces of a model in separate, or filed modules, modelers can work on different
parts of a model simultaneously. You can break an existing model into modules, or combine mod-
ules into an integrated model. In both cases, the result is a top-level model, into which the mod-
ules are added.

To save pieces of a large model as a set of filed modules, see “Using filed modules and libraries”
on page 309.

To combine existing models into a new, integrated model:

1. Create or open the model that will be the top level of the hierarchy. This is the model to which
all sub-models will be added.

2. Usingthe Add Module dialog (page 310), add in the sub-models. Be sure to check the Merge
option in the Add Module dialog. Add the modules in the following sequence:
¢ Any public variable modules
« All remaining modules in order of back to front; that is:
< First, the module(s) whose outputs are not used by any other module, and
¢ Last, the module(s) which take no inputs from any other module.
3. Save the entire integrated model, using the Save command.

The two alternative methods of controlling each module’s input and output nodes so the modules
can be easily integrated, are:

¢ |dentical identifiers
¢ Redundant nodes

Assign the input nodes in each module the exact same identifiers as the output nodes in other
modules that will be feeding into them. When you add the modules beginning with the last mod-
ules first (that is, those at the end of model flow diagram), the input nodes are overwritten by the
output nodes, thus linking the modules and avoiding duplication.

With identical identifiers, the individual modules cannot be evaluated alone because they are
missing their input data. They can be evaluated only as part of the integrated model.

Place the output node identifiers in the definition fields of their respective input nodes. Due to the
node redundancy, this method requires more memory than using identical identifiers, and it is
therefore less desirable when large tables of data are passed between modules. However, since
no nodes are overwritten and lost upon integration, this method preserves the modules’ structural
integrity, with both input and output nodes visible in each module’s diagram.

With redundant nodes, each module can be opened and evaluated alone, using stand alone
shells.

With redundant nodes, you can create a top-level model that contains one or more modules and
the public variables module plus dummy inputs and outputs. Such a top-level model is called a
stand alone shell because it allows you to open and evaluate a single module “standing alone”

Analytica User Guide

Chapter Working with Large Models Managing windows

from the rest of the integrated model. Stand alone shells are useful when modelers want to exam-
ine or refine a particular module without the overhead of opening and running the entire model.

To create a stand alone shell for module Mod1, which is a filed module:

1. Open the integrated model and evaluate all nodes that feed inputs to Mod1.

2. Use the Export command (see “Importing and exporting” on page 298) to save the value of
each feeding node in a separate file. Make a note of these items:

* The identifier of each node and the indexes by which its results are dimensioned.

« The identifiers of Mod1’s output nodes, if you want to include their dummies in the stand
alone shell.

Close the integrated model.
Create a new model, to be the stand alone shell.
Use Add Module to add the public variables module.

For each input node, create a node containing an edit table, using the identifier and
dimensions of the feeding nodes you noted from the integrated model.

7. Usethe Import command (see “Importing and exporting” on page 298) to load the appropriate
data into each node’s edit table.

8. Use Add Module to add Mod1 into the stand alone shell.

To include output nodes at the top level of the hierarchy, create nodes there and define them
as the identifiers of Mod1's outputs.

10. Save the shell.

The shell now has all the components necessary to open and evaluate Mod1, without loading the
entire model. As long as modelers do not make changes to the dimensions or identifiers of mod-
ule inputs and outputs, they can modify a module while using the stand alone shell, and the result-
ing module is usable within the integrated model.

o gk~ w

Cautions in combining models

Identifiers

Created attributes

Location of linked
modules and libraries

Every object in a model must have a unique identifier. The identifiers of filed libraries and filed
modules that you add to a model, as well as their variables and functions, cannot duplicate identi-
fiers in the root model. See “Merge contents (overwrite)” on page 311.

When you combine models with created attributes, the maximum number of defined attributes is
five (see “Managing attributes” on page 306).

If the model will eventually be distributed to other computers, all modules and libraries should be
on the same drive as the root model prior to being added to the root model. When the model is
distributed, distribute it with all linked modules and libraries.

Managing windows

Overriding the limits on
the number of windows

An Analytica model can potentially display thousands of Diagram, Object, and Result windows.
To prevent your screen from becoming cluttered, Analytica limits the number of windows of each
type that can be open at once. The default limits are:

¢ The top-level Diagram window and not more than one Diagram window for each lower level
in the hierarchy

¢ One Object window
e Two Result windows

The oldest window of the same type is deleted whenever you display a new window that would
otherwise exceed these limits.

To display more windows of the same type, override the default limits in one of the following ways:

* Open a second Object window, or open a Diagram window without closing an existing
Diagram window at the same level, by pressing the Control key while you click or double-
click to open the new window.

Analytica User Guide 313

Chapter Working with Large Models

Managing windows

« Use the Preferences dialog (page 58) to change the limits. Select Preferences from the
Edit menu.

) Preferences

Click here to allow an unlimited
number of windows on the. — Windows of each kind:
screen at once " Oneanly

* E-'I"

Default result view: ——

@ £ Table

Enter the maximum number _ {« Graph
of Result windows 2 Result windows ﬂ i

In the Windows of each Kind area, select Any number instead of One only.

To display more Result windows and keep the limit on Diagram and Object windows, enter
the maximum number of Result windows.

314 Analytica User Guide

O Tl (:Ig72{0l Building Functions and
Libraries

This chapter shows you how to:
* Use functions
« Create your own functions
* Work with parameter qualifiers
« Create your own function libraries

Chapter Building Functions and Libraries Example function

You can create your own functions to perform calculations you use frequently. A function has one
or more parameters; its definition is an expression that uses these parameters. You can specify
that the function check the type or dimensions of its parameters, and control their evaluation by
using various parameter qualifiers.

Alibrary is a collection of user-defined functions grouped in a library file, for use in more than one
model. Using libraries, you can effectively extend the available functions beyond those built in to
Analytica. Analytica is distributed with an initial set of libraries, available in the Libraries folder
inside the Analytica folder on your hard disk. If you add a library to a model, it appears with its
functions in the Definition menu, and these functions appear almost the same as the built-in
functions.

You might want to look at these libraries to see if they provide functions useful for your applica-
tions. You might also look at library functions as a starting point or inspiration for writing your own
functions.

Analytica experts can create their own function libraries for particular domains. Other Analytica
users can benefit from these libraries.

Example function

316

Parameters

Description

Definition

Sample usage

The following function, Capm(), computes the expected return for a stock under the capital asset
pricing model.

1 Object - Capmirf, rm, beta) EJ@E|

T Function Capm Units:

Title: Capmirf, rm, beta)
Parameters: (rf, rm, beta: Humben)

Description: Calculates the expected stodk rate of return under the capital asset
pricing model (CAPM), where:
rf = ris-free interest rate
m = market rate of return
beta = beta of indiwvidual stock, the relative marginal contribution of
the stodk to the market return, defined as the ratio fo the covariance
betueen the stock return and the market return.

ar W
Definition: f+ beta ™ (rm - M)

4 | »[.A4

It has three parameters, rf, rm, and beta. The parameter qualifier Number says that it expects
that the parameters are numbers.

The description says what the function returns and what its parameters mean.

The definition is an expression that uses its parameters, rf, rm, and beta, and evaluates to the
value to be returned.

You use the Capm() function in a definition in the same way you would use Analytica’s built-in
functions. For example, if the risk free rate is 5%, the expected market return is 8%, and Stock-
Beta is defined as the beta value for a given stock, we can find the expected return according to
the capital asset pricing model as:

Stock_return: Capm(5%, 8%, StockBeta)

The function works equally well when StockBeta is an array of beta values — or if any parame-
ter is an array — the result is an array of expected returns.

Analytica User Guide

Chapter Building Functions and Libraries Using a function

Using a function

Position-based calling

Name-based
calling

Tip

Analytica uses the standard position-based syntax for using, or calling, a function. You simply list
the actual parameters after the function name, within parentheses, and separated by commas, in
the same sequence in which they are defined. For example:

Capm(5%, 8%, StockBeta)

This evaluates function Capm(RF, Rm, Beta) with RF set to 5%, Rm set to 8%, and Beta set to
Stockbeta.

Analytica also supports a more flexible name-based calling syntax, identifying the parameters by
name:

Capm(beta: StockBeta, rf: 5%, rm: 8%)

In this case, we name each parameter, and put its actual value after a colon “:” after the parame-
ter name. The name-value pairs are separated by commas. You can give the parameters in any
order. They must include all required parameters. This method is much easier to read when the
function has many parameters. It is especially useful when many parameters are optional
(page 321).

You can mix positional and named parameters, provided the positional parameters come first:
Fui(1, 2, D: 4, C:3)
You cannot give a positional parameter after a named parameter. For example, the following entry
displays an error message:
Ful(1, D: 4, 2, 3) Invalid
This name-based calling syntax is analogous to Analytica’s name-based subscripting for arrays to
obtain selected elements of an array, in which you specify indexes by name. You don'’t have to

remember a particular sequence to write or understand an expression. See “x[i=v]: Subscript con-
struct” on page 174.

Name-based calling syntax works for all user-defined functions. It also works for most of the built-
in functions, except for a few with only one or two parameters.

Creating a function

To define a function:

1. Make sure the edit tool is selected and you can see the node palette.

2. Drag the Function node icon from the node palette into the diagram area.
3. Title the node, and double-click it to open its Object window.

4. Enter the new function’s attributes (described in the next section).

Attributes of a function

Identifier

Title

Units

Like other objects, a function is defined by a set of attributes. It shares many of the attributes of
variables, including identifier, title, units, description, and definition, inputs, and outputs. It has a
unique attribute, Parameters, which specifies the parameters available to the function.

If you are creating a library of functions, make a descriptive identifier. This identifier appears in the
function list for the library under the Definition menu, and is used to call the function. Analytica
makes all characters except the first one lower case.

If you are creating a library of functions, limit the title to 22 characters. This title appears in the
Object Finder dialog to the right of the function.

If desired, use the units field to document the units of the function’s result. The units are not used
in any calculation.

Analytica User Guide 317

Chapter Building Functions and Libraries Parameter qualifiers

Parameters

Description

Definition

Recursive

The parameters to be passed to the function must be enclosed in parentheses, separated by
commas. For example:

(X, Yy, z: Number)
The parameters can have type qualifiers, such as Number above (see the next section).

You can help make functions easier to understand and use by giving the parameters meaningful
names, in a logical sequence. The parameters appear in the Object Finder dialog. When you
select a function from the Definition menu, it copies its name and parameters into the current
definition.

The description should describe what the function returns, and explain each of its parameters. If
the definition is not immediately obvious, a second part of the description should explain how it
works. The description text for a function in a library also appears in a scrolling box in the bottom
half of the Object Finder dialog.

The definition of a function is an expression or compound list of expressions. It should use all of
its parameters. When you select the definition field of a function in edit mode, it shows the Inputs
pull-down menu that lists the parameters as well as any other variables or functions that have
been specified as inputs to the function. You can specify the inputs to a function in the same way
as for a variable, by drawing arrows from each input node into the function node.

Set to 1 (true) if the function is recursive — that is, it calls itself. This attribute is not initially dis-
played. Use the Attributes dialog from the Object menu to display it. See “For and While loops
and recursion” on page 331.

Parameter qualifiers

Parameter qualifiers are keywords you can use in the list of parameters to specify how, or
whether, each parameter should be evaluated when the function is used (called), and whether to
require a particular type of value, such as number or text value. Other qualifiers specify whether a
parameter should be an array, and if so, which indexes it expects. You can also specify whether a
parameter is optional, or can be repeated. By using qualifiers properly, you can help make func-
tions easier to use, more flexible, and more reliable.

For example, consider this parameters attribute:
(a: Number Array[i, j]; i, j: Index; c; d: Atom Text Optional =“NA)

It defines five parameters. a should be an array of numbers, indexed by parameters i and j, and

optionally other indexes. i and j must be index variables. ¢ has no qualifiers, and so can be of any
type or dimensions. (The semicolon “;” between ¢ and d means that the qualifiers following d do
not apply to c. d is an Atom Text, meaning that it is reduced to a single text value each time the
function is called, and is optional. If omitted it defaults to ““NA”’. See below for details.

Evaluation mode qualifiers

318

Context

Evaluation modes control how, or whether, Analytica evaluates each parameter when a function
is used (called). The evaluation mode qualifiers are:

Evaluates the parameter deterministically or probabilistically according to the current context. For
example:

Function Fn1(x)

Parameters: (x: Context)

Mean(Fn1(x))

Mean() is a statistical function that always evaluates its parameter probabilistically. Hence, the
evaluation context for x is probabilistic, and so Fnl evaluates x probabilistically.

Context is the default evaluation mode used when no evaluation mode qualifier is mentioned.
So, strictly, Context is redundant, and you can omit it. But, it is sometimes useful to specify it
explicitly to make clear that the function should be able to handle the parameter whether it is
deterministic or probabilistic.

Analytica User Guide

Chapter Building Functions and Libraries Parameter qualifiers

ContextSample

Mid

Prob

Sample

Index

Variable

Array qualifiers

Atom

Scalar
Array [il,i2...]

Causes the qualified parameter to be evaluated in prob mode if any of the other parameters to the
function are Run. If not, it evaluates in context mode — i.e., prob or mid following the context in
which the function is called.

This qualifier is used for the main parameter of most built-in statistical functions. For example,
Mean has these parameters:

Mean(x: ContextSample[i]; i: Index = Run)

Thus, Mean(x, Run) evaluates x in prob mode. So does Mean(x), because the index i defaults
to Run. But, Mean(x, J) evaluates x in mid mode, because j is not Run.

When the parameter declaration contains more than one dimension, prob mode is used if any of
the indexes is Run.

Evaluates the parameter determinstically, or in mid mode, using the mid (usually median) of any
explicit probability distribution.

Evaluates the parameter probabilistically, i.e., in prob mode, if it can. If you declare the dimension
of the parameter, include the dimension Run in the declaration if you want the variable to hold the
full sample, or omit Run from the list if you want the variable to hold individual samples. For exam-
ple:

(A: Prob [In1, Run])

Evaluates the parameter probabilistically, i.e., in prob mode, if it can. If you declare the dimension
of the parameter, include the dimension Run in the declaration if you want the variable to hold the
full sample, or omit Run from the list if you want the variable to hold individual samples. For exam-
ple:

(A: Sample[Inl, Run])

The parameter must be an index variable, or a dot-operator expression, such as a.i. You can then
use the parameter as a local index within the function definition. This is useful if you want to use
the index in a function that requires an index, for example Sum(x, 1) within the function.

The parameter must be a variable, or the identifier of some other object. You can then treat the
parameter name as equivalent to the variable, or other object name, within the function definition.
This is useful if you want to use the variable in one of the few expressions or built-in functions that
require a variable as a parameter, for example, Whatlf, DyDx, and Elasticity.

An array qualifier can specify that a parameter is an array with specified index(es) or no indexes,
in the case of Scalar.

Atom specifies that the parameter must be an atom — a single number, text, or other value not an
array — when the function is evaluated; but the actual parameter can be an array when you call
the function. If it is an array when you call the function, Analytica disassembles it into atoms, and
evaluates the function separately on each atomic element of the array. After these evaluates, it
reassembles the results into an array with the same indexes as the original parameter, and
returns is returned as the overall result.

You need to use Atom only when the function uses one of Analytica’s few constructs that require
an atomic parameter or operand — i.e., that does not fully support array abstraction. See “Ensur-
ing array abstraction” on page 336.

You might be tempted to use Atom to qualify parameters of every function, just in case it’s
needed. We strongly advise you not to do that: Functions with Atom parameters can take much
longer to execute with array parameters, because they have to disassemble the array-valued
parameters, execute the function for each atom value, and reassemble them into an array. So,
avoid using it except when really necessary.

The parameter expects a single number, not an array. Means the same as Number Atom.

Specifies that the parameter should be an array with the designated index(es) when it the function
is evaluated. Similar to Atom above, you can still call the function with the parameter as an array
with indexes in addition to those listed. If you do, it disassembles the array into subarrays, each

Analytica User Guide 319

Chapter Building Functions and Libraries Parameter qualifiers

with only the listed indexes. It calls the function for each subarray, so that a is indexed only by the
specified index(es). For example, if Ful has the parameter declaration:

Function Ful(a: Array[Time])

and if a, when evaluated, contains index(es) other than Time, it iterates over the other index(es)
calling Ful, for each one, and thus ensuring that each time it calls Ful, parameter a has no index
other than Time.

An array declaration can specified zero or more indexes between the square brackets. With zero
indexes, it is equivalent to the qualifier Atom, specifying that the parameter must be a single value
or atom each time the function is called.

The square brackets are sufficient and the qualifier word Array is optional, so you could write
simply:
Function F(a: Number [I1])

instead of
Function F(a: Number Array [I])

Each index identifier listed inside the brackets can be either a global index variable or another
parameter explicitly qualified as an Index. For example the Parameters attribute:

(A: [Time, j1: J: Index)

specifies that parameter a must be an array indexed by Time (a built-in index variable) and by the
index variable passed to parameter j.

In the absence of an array qualifier, Analytica accepts an array-valued parameter for the function,
and passes it into the function Definition for evaluation with all its indexes. This kind of vertical
array abstraction is usually more efficient for those functions that can handle array-valued param-
eters.

All Forces the parameter to have, or be expanded to have, all the Indexes listed. For example:
x: AIl [i, j]

Here the A1l qualifier forces the value of x to be an array indexed by the specified index vari-
ables, i and j. If x is a single number, not an array, A1l converts it into an array with indexes, i and
j, repeating the value of x in each element. Without A1l Analytica would simply pass the atomic
value x into the function definition.

Type checking qualifiers

Type checking qualifiers make Analytica check whether the value of a parameter (each element
of an array-valued parameter) has the expected type — such as, numerical, text, or reference. If
any values do not have the expected type, Analytica gives an evaluation error at the time it tries to
use (call) the function. The type checking qualifiers are:

Number A number, including +INF, - INF, or NaN.

Positive A number greater than zero, including INF.

Nonnegative Zero, or a number greater than zero including INF.

Text A text value.

Reference A reference to a value, created with the \ operator.

Handle A handle to an Analytica object, obtained from the Handle or

HandleFromldentifier functions. It also accepts an array of handles.

OrNull Used in conjunction with one of the above type qualifiers, allows Null
values in addition to the given type. For example:
X: Number OrNull

Some array functions ignore Null values, but require this qualifier for the
null values to be accepted without flagging an error.

320 Analytica User Guide

Chapter Building Functions and Libraries Parameter qualifiers

Coerce If you accompany a Type checking qualifier by the Coerce qualifier, it
tries to convert, or coerce, the value of the parameter to the specified
type. For example:

a: Coerce Text [I]

tries to convert the value of a to an array of text values. It gives an error
message if any of the coercions are unsuccessful.

Coerce supports these conversions:

From To Result

Null Text "Null"

Number Text Number as text, using the number format of the
variable or function calling the function.

Text Number or Positive If possible, interprets it as a date or number, using
the number format.

Null Reference \Null

Number Reference \X

Text Reference \Text

Other combinations, including Nul I to Number, give an error message that the coercion is not
possible.

Ordering qualifiers: Ascending and Descending

The ordering qualifiers, Ascending or Descending, check that the parameter value is an array
of numbers or text values in the specified order. For text values, Ascending means alphabetical
order, and Descending means the reverse.

Ordering is not strict; that is, it allows successive elements to be the same. For example, [1, 2,
3, 3, 4]and [“Anne®, "Bob®, "Bob", “Carmen©] are both considered ascending.

If the value of the parameter does not have the specified ordering, or it is an atom (not array)
value, it gives an evaluation error.

If the parameter has more than one dimension (other than Run), you should specify the index of
the dimension over which to check the order, for example:

A: Ascending [I]

Optional parameters

You can specify a parameter as optional using the qualifier Optional, for example:
Function F(a: Number; b: Optional Number)

In this case, you can call the function without mentioning b, as:
F(100)

Or you can specify b:
F(100, 200)

You can specify a default value for an optional parameter after an = sign, for example:
Function F(a: Number; b: Number Optional = 0)

It uses the default value if the actual parameter is omitted. Given an equal sign and default value,
the Optional qualifier is itself optional (!):

Function F(a: Number; b: Number = 0)
Optional parameters can appear anywhere within the declaration — they are not limited to the
final parameters. For example, if you declare the parameters for G as:

Function G(A: Optional; B; C: Optional; D; E: Optional)

Analytica User Guide 321

Chapter Building Functions and Libraries Parameter qualifiers

IsNotSpecified(v)

You can call G in any of these ways:
G, 2, 3, 4, 5)
6, 2, , 4
GC, 2, ,9
G(C, 2, 3, 4, 5
Generally, you must include the commas to indicate an omitted optional parameter, before any
specified parameter, but not after the last specified parameter.
Or you can use named-based calling syntax, which is usually clearer and simpler:
G(B: 2, D: 4)
If you omit a parameter that is not given a default value, you can test this inside the function defi-

nition using function 1sNotSpecified(Vv). For example, the first line of the body of the function
might read:

IT IsNotSpecified(a) then a := 0;

But it is usually simpler to specify the default value in the parameter list as:
Function H(x;, a - = 0)

Repeated parameters (...)

322

Three dots, “. . ." qualifies a parameter as repeatable, meaning that the function accepts one or
more actual parameters for the formal parameter. For example:

Function ValMax(x: ... Number) := Max(x)
ValMax(3, 6, -2, 4) > 6

ValMax () returns the maximum value of the actual parameters given for its repeated parameter,
X. Unlike the built-in Max () function, it doesn’t need square brackets around its parameters.

During evaluation of ValMax (), the value of the repeated parameter, X, is a list of the values of
the actual parameters, with implicit (Null I) index:

[3, 6, -2, 4]
ValMax () can also take array parameters, for example:

Variable z = [0.2, 0.5, 1, 2, 4]

ValMax(Sqrt(2), 272, 0)

By itself, the qualifier “. . .” means that the qualified parameter expects one or more parameters.
If you combine “...” with Optional, it accepts zero or more parameters.

Calling a function that has only its last parameter repeated is easy. You just add as many param-
eters as you want in the call. The extra ones are treated as repeated:

Function F2(a; b: ...)
F2(1, 2, 3, 4)
Within the function, F2, the value of ais 1, and the value of b is a list [2, 3, 4].

If the repeated parameter is not the last parameter, or if a function has more than one repeated
parameter, for example:

Function Fxy(X: ... scalar; Y: ... Optional Scalar)

You have several options for syntax to call the function. Use name-based calling:
Fxy(x: 10, 20, 40, y: 2, 3, 4)

Or use position for the first repeated parameter group and name only the second parameter y:
Fxy(10, 20, 40, y: 2, 3, 4)

Or enclose each set of repeated parameters in square brackets:
Fxy([10, 20, 40], [2, 3, 4])

Analytica User Guide

Chapter Building Functions and Libraries Libraries

Deprecated synonyms for parameter qualifiers

Libraries

Creating a library

Most parameter qualifiers have several synonyms. For example, Atomic, AtomType, and Atom-
icType are synonyms for Atom. We recommend that you use only the words listed above. If you
encounter other synonyms in older models, consult the Analytica wiki “Deprecated qualifiers” to
see what they mean (http://lumina.com/wiki/index.php/Function_Parameter_Qualifiers).

When you place functions and variables in a library, the library becomes available as an exten-
sion to the system libraries. Its functions and variables also become available. Up to eight user
libraries can be used in a model.
There are two types of user libraries (see also “To change the class of an object” on page 57):
* Alibrary ¥ is a module within the current model.
» A filed library 1o} is saved in a separate file, and can be shared among several models.

To create a library of functions and/or variables:

1. Create a module by dragging the module icon from the node palette onto the diagram, and
give it a title.

2. Change the class (page 57) of the module to library or filed library.

3. Create functions and/or variables in the new library or create them elsewhere in the model and
then move them into the library.

Functions and variables in the top level of the library can be accessed from the Definition menu
or Object Finder. Use modules within the library to hold functions and variables (such as test
cases) that are not accessible to models using the library.

Adding afiled library to a model

Using a library

Add a filed library to a model using the Add Module dialog (page 310).

When defining a variable, you can use a function or variable from a library in any of the following
ways:

e Typeitin.

* Select Paste Identifier from the Definition menu to open the Object Finder.
* Select Other from the expr menu to open the Object Finder.

« Paste from the library under the Definition menu.

Analytica User Guide 323

http://lumina.com/wiki/index.php/Function_Parameter_Qualifiers#Deprecated_Synonyms_for_Parameter_Qualifiers

Ch apter Building Functions and Libraries

324

Example

Result Diagram Windo

Edit Definition Ctrl+E

Edit Time

Math 3

Array 4

gernoul

Special 4 Beta

Statistical 4 Binormial

Operataors » Certain

System Variables » Chancedist

Matrix b Chisquared

Taxt Functions 4 Cumdist

Financial 3 Exponential

Advanced Math » Fractiles

Optirmizer b Gamma

Database » Geometric
Hypergeometric
Logistic
Lognormal
Mormal

Lihrary:l Extended Financial Library w I Find. .. |

P+ Calloption Black-Scholes call ~

ey CAPM expected rg

r Costcapme Adj Cost of Capital

£+ Costcapmm Adj Cost of Capital

7 Implied_volatiity_c Implied “olatility Ca

F = Implied_volatilty_p Implied olatility Pu

'+ Putontinn Flack-Srholes nut ™ |

Rf Rm Beta
Capm | |

Calculates the expected stock return under the Capital Az=et Pricing Model. i‘

Rf = rizk free rate
| Bm = market return hd |

Cancel QK

Analytica User Guide

Libraries

Compare the way the Capm() function is displayed in the Object window (see “Libraries” on
page 323) to the way it is displayed in the Object Finder.

@ Object Finder X

O F-To)(|@”4 M Procedural Programming

This chapter shows you how to use the procedural features of the Ana-
lytica modeling language, including:

Begin-End, (), and “;” for grouping expressions (page 328)
Declaring local variables and assigning to them (page 328)
For and While loops and recursion (page 331)

Local indexes (page 335)

References and data structures (page 340)

Handles to objects (page 344)

Dialog functions (page 345)

Miscellanous functions (page 348)

Chapter Procedural Programming An example of procedural programming

A procedural program is list of instructions to a computer. Each instruction tells the computer
what to do, or it might change the sequence to execute the instructions. Most Analytica models
are non-procedural — that is, they consist of an unsequenced set of definitions of variables.
Each definition is a simple expression that contain functions, operators, constants, and other vari-
ables, but no procedural constructs controlling the sequence of execution. In this way, Analytica is
like a standard spreadsheet application, in which each cell contains a simple formula with no pro-
cedural constructs. Analytica selects the sequence in which to evaluate variables based on the
dependencies among them, somewhat in the same way spreadsheets determine the sequence to
evaluate their cells. Controlling the evaluation sequence via conditional statements and loops is a
large part of programming in a language like in Fortran, Visual Basic, or C++. Non-procedural lan-
guages like Analytica free you from having to worry about sequencing. Non-procedural models or
programs are usually much easier to write and understand than procedural programs because
you can understand each definition (or formula) without worrying about the sequence of execu-
tion.

However, procedural languages enable you to write more powerful functions that are hard or
impossible without their procedural constructs. For this reason, Analytica offers a set of program-
ming constructs, described in this chapter, providing a general procedural programming language
for those who need it.

You can use these constructs to control the flow of execution only within the definition of a vari-
able or function. Evaluating one variable or function cannot (usually) change the value of another
variables or functions. Thus, these procedural constructs do not affect the simple nonprocedural
relationship among variables and functions. The only exception is that a function called from a
button can change the definition of a global variable. See “Creating buttons and scripts” on

page 363.

An example of procedural programming

326

Numbers identify
features below

1.
2.

The following function, Factors(), computes the prime factors of an integer x. It illustrates many
of the key constructs of procedural programming.

1. Object - Factors(x) Q@Ig|

¥+ Function Factors Units: =]

Title: Factors(x)
Parameters: (=}

Description: Returns a list of the prime factors starting with 1 of positive integer x.
If = iz not an integer, it returns =

Bpr W
Definition: VAR result:=[1];

VAR n:=2;
WHILE n==x DO
BEGIN

VAR r:=Floor{xin};

IF r*n = x THEN

(result := Concat{result [n]}; x:=r)
ELSE ni=n+1

END;
result =

| (4

See below for an explanation of each of these constructs, and cross-reference to where they are.

Function Factors(x)
Definition:

VAR result = [1];
VAR n = 2;

Analytica User Guide

Chapter Procedural Programming

4, 7.
7, 8.

Summary of programming constructs

WHILE n <= x DO
BEGIN

VAR r := Floor(x/n);
IF r*n = x THEN

(result := Concat(result, [n]);

X I=r)
ELSE n :=n + 1

END; /* End While loop */
result /* End Definition */

This definition illustrates these features:

1.

VAR x := e construct defines a local variable x, and sets an initial value e. See “Defining a
local variable: Var v := e” on page 328 for more.

You can group several expressions (statements) into a definition by separating them by “;”
(semicolons). Expressions can be on the same line or successive lines. See “Begin-End, (),
and “;” for grouping expressions” on page 328.

While test Do body construct tests condition Test, and, if True, evaluates Body, and
repeats until condition Test is False. See “While(Test) Do Body” on page 333.

Begin e1; e2; ... End groups several expressions separated by semicolons “;” — in this case
as the body of a While loop. See “Begin-End, (), and “;” for grouping expressions” on
page 328.

(el; e2; ...) is another way to group expressions — in this case, as the action to be taken in
the Then case. See “Begin-End, (), and “;" for grouping expressions” on page 328.

X := e lets you assign the value of an expression e to a local variable x or, as in the first case,
to a parameter of a function. See “Assigning to a local variable: v := €” on page 329.

A comment is enclosed between /* and */ as an alternative to { and }.

A group of expressions returns the value of the last expression — here the function Factors
returns the value of result — whether the group is delimited by Begin and End, by
parentheses marks (and), or, as here, by nothing.

Summary of programming constructs

Construct Meaning For more see

el; e2; ... ei Semicolons join a group of expressions to be evaluated in | page 328
sequence.

BEGIN el; e2; ... A group of expressions to be evaluated in sequence. page 328

ei END

(e1; e2; ... ei) Another way to group expressions. page 328

m..n Generates a list of successive integers from m to n. page 337

Varx :=e Define local variable x and assign initial value e. page 328

Indexi:=e Define local index i and assign initial value e. page 335

X:=e Assigns value from evaluating e to local variable x. page 329
Returns value e.

While Test Do While Test is True, evaluate Body and repeat. Returns page 333

Body last value of Body.

Analytica User Guide

327

Chapter Procedural Programming

Begin-End, (), and “;” for grouping expressions

Construct Meaning For more see
{comments } Curly brackets { } and /* */ are alternative ways to enclose page 327

/* comments */ comments to be ignored by the parser.

"text” You can use single or double quotes to enclose a literal page 133
"text" text value, but they must match.

Forx:=aDOe Assigns to loop variable x, successive atoms from array a | page 339

and repeats evaluation expression e for each value of x.
Returns an array of values of e with the same indexes as
a.

Forx[i,j...]:=aDO | Same, but it assigns to x successive subarrays of a, each page 339
e

indexed by the indices, [i, j ...].

\e Creates a reference to the value of expression e. page 340

\[i,j...]e Creates an array indexed by any indexes of e other thani, | page 342
j ... of references to subarrays of e each indexed by i, j

#r Returns the value referred to by reference r. page 340

Begin-End, (), and “;” for grouping expressions

As illustrated above, you can group several expressions (statements) as the definition of a vari-
able or function simply by separating them by semicolons (;). To group several expressions as a
condition or action of If a Then b Else ¢ or While a Do b, or, indeed, anywhere a single expres-
sion is valid, you should enclose the expressions between Begin and End, or between parenthe-
ses characters (and).

The overall value of the group of statements is the value from evaluating the last expression. For
example:

(VAR x = 10; X = x/2; x - 2) > 3
Analytica also tolerates a semicolon (;) after the last expression in a group. It still returns the value
of the last expression. For example:

(VAR x := 10; x = x/2; x/2;) —» 2.5
The statements can be grouped on one line, or over several lines. In fact, Analytica does not care

where new-lines, spaces, or tabs occur within an expression or sequence of expressions — as
long as they are not within a number or identifier.

Declaring local variables and assigning to them

Defining a local variable: Var v :=e

328

Examples

This construct creates a local variable v and initializes it with the value from evaluating expression
e. You can then use v in subsequent expressions within this context — that is, in following
expressions in this group, or nested within expressions in this group. You cannot refer to a local
variable outside its context — for example, in the definition of another variable or function.

If v has the same identifier (nhame) as a global variable, any subsequent mention of v in this con-
text refers to the just-defined local variable, not the global.

Instead of defining a variable as:
Sum(Array_a*Array_b, N)/(1+Sum(Array_a*Array_b, N))

Define it as:
VAR t := Sum(Array_a*Array*b, N); t/(1+t)

Analytica User Guide

Chapter Procedural Programming Declaring local variables and assigning to them

To compute a correlation between Xdata and Ydata, instead of:
Sum((Xdata-Sum(Xdata, Data_index)/Nopts)*(Ydata-
Sum(Ydata, Data_index)/Nopts), Data_index)/
Sgrt(Sum((Xdata-Sum(Xdata, Data_index)/
Nopts)”2, Data_index) * Sum((Ydata -
Sum(Ydata, Data_index)/Nopts)”2, Data_index))

Define the correlation as:

VAR mx := Sum(Xdata, Data_index)/Nopts;
VAR my := Sum(Ydata, Data_index)/Nopts;
VAR dx := Xdata - mx;

VAR dy := Ydata - my;
Sum(dx*dy, Data_index)/Sqrt(Sum(dx”2, Data_index)*Sum(dy”2,
Data_index))

The latter expression is faster to execute and easier to read.

The correlation expression in this example is an alternative to Analytica’s built-in Correlation()
function (page 265) when data is dimensioned by an index other than the system index Run.

Assigning to alocal variable: v := e

Tip

ComputedBy(x)

The := (assignment operator) sets the local variable v to the value of expression e.

The assignment expression also returns the value of e, although it is usually the effect of the
assignment that is of primary interest.

The equal sign = does not do assignment. It tests for equality between two values.

Within the definition of a function, you can also assign a new value to any parameter. This only
changes the parameter and does not affect any global variables used as actual parameters in the
call to the function.

Usually, you cannot assign to a global variable — that is, to a variable created as a diagram
node. You can assign only to a local variable, declared in this definition using Var or Index, in the
current context — that is, at the same or enclosing level in this definition. In a function definition,
you can also assign to a parameter.This prevents side effects — i.e., where evaluating a global
variable or function changes a global variable, other than one that mentions this variable or
function in its definition. Analytica’s lack of side effects makes models much easier to write,
understand, and debug than normal computer languages that allow side effects. You can tell how
a variable is computed just by looking at its definition, without having to worry about parts of the
model not mentioned in the definition. There are a few exceptions to this rule of no assignments to
globals: You can assign to globals in button scripts or functions called from button scripts. See
“Creating buttons and scripts” on page 363 for details. You can also assign to a global variable V
from the definition of X when V is defined as ComputedBy(X).

This function indicates that the value of a variable is computed as a side-effect of another vari-
able, x. Suppose v is defined as ComputedBy(x), and the value of v needs to be computed, then
Analytica will evaluate x. During the evaluation of x, X must set the value of v using an assign-
ment operator.

Even though v is a side-effect of x, its definition is still referentially transparent, which means that
its definition completely describes its computed value.

ComputedBy is useful when multiple items are computed simultaneously within an expression. It
is particularly useful from within an Iterate() function when several variables need to be updated
in each iteration.

Analytica User Guide 329

Chapter Procedural Programming Declaring local variables and assigning to them

Variable rot := ... {a 2-D rotation matrix indexed by Dim and Dim2}
Variable X _rot := ComputedBy(Y_rot)
Variable Y_rot :=

BEGIN
var v := Array(Dim,[X,Y]);
Var v_r := sum(rot*v, Dim);

X_rot = v_r[Dim2="x"];
v_r[Dim2="y"];
END

Assigning to a slice of alocal variable

330

Slice assignment means assigning a value into an element or slice of an array contained by a
local variable, for example:

X[i = n] :=e
X must be a local variable, i is an index (local or global), n is a single value of i, and e is any

expression. If x was not array or was an array not indexed by i, the slice assignment adds i as a
dimension of x.

You can write some algorithms much more easily and efficiently using slice assignment. For
example:
Function Fibonacci_series(fl, 2, n: Number Atom) :=
INDEX m = 1..n;
VAR result := 0;
result[m = 1] := f1;
result[m = 2] := 2;
FOR I := 3..n DO result[m = i] := result[m =i -1] + result[m =1 - 2];
result
In the first slice assignment:
result[m = 1] := f1;

result was not previously indexed by m. So the assignment adds the index m to result, making it
into an array with value 1 for m=1 and its original value, O, for all other values of m.

More generally, in a slice assignment:

X[i = n] :=e
If x was already indexed by i, it sets X[1=n] to the value of e. For other values of i, x retains its
previous value. All other slices of x over i retain their previous values. If x was indexed by other

indexes, say j, the result is indexed by i and j. The assigned slice x[i=n] has the value e for all
values of the other index(es) j.

You can index by position as well as name in a slice assignment, for example:
x[@i = 2] = e
This assigns the value of e as the second slice of x over index i.
Slice assignment, e.g., X[i = n] := e, has three limitations:
e X must be a local variable.
* n must be an atom, not an array.

¢ You can use only one index. For example, you cannot use an expression like
x[i = a, j=b] := e, with two index expressions. If x has two (or more) dimensions, you
can create and assign a slice (e.g., a row) to x.

Analytica User Guide

Chapter Procedural Programming For and While loops and recursion

For and While loops and recursion

Tip

Fori:=a Do expr

Library

Avoiding out-of-range
errors

Analytica’s Intelligent Array features means that you rarely need explicit iteration using For loops
to repeat operations over each dimensions of an array, often used in conventional computer
language. If you find yourself using For loops a lot in Analytica, this might be a sign that you are
not using the Intelligent Arrays effectively. If so, please (re)read the sections on Intelligent Arrays
(page 144 and page 160).

The For loop successively assigns the next atom from array a to local index i, and evaluates
expression expr. expr might refer to i, for example to slice out a particular element of an array. a
might be a list of values defined by m. _n or Sequence(m, n, dx) or it might be a multidimen-
sional array. Normally, it evaluates the body expr once for each atom in a.

The result of the For is an array with all the indexes of a containing the values of each evaluation
of expr. If any or all evaluations of expr have any additional index(es), they are also indexes of
the result.

Usually, the Intelligent Array features take care of iterating over indexes of arrays without the
need for explicit looping. For is sometimes useful in these specialized cases:

« To avoid selected evaluations of expr that might be invalid or out of range, and can be
prevented by nesting an I1T-Then-Else inside a For.

« To apply an Analytica function that requires an atom or one- or two-dimensional array input to
a higher-dimensioned array.

« To reduce the memory needed for calculations with very large arrays by reducing the
memory requirement for intermediate results.

See below for an example of each of these three cases.

Special

Consider the following expression:

IT x<0 Then 0 Else Sqrt(x)
The 1¥-Then-Else is included in this expression to avoid the warning “Square root of a negative
number.” However, if X is an array of values, this expression cannot avoid the warning since

Sqrt(x) is evaluated before 1f-Then-Else selects which elements of Sqrt(x) to include. To
avoid the warning (assuming X is indexed by i), the expression can be rewritten as:

For j:=1 do
IT xX[i=J]<0 then 0 else Sgrt(x[i=j])
Or as (see next section):
Using y:=x in i do
IT y<0 Then 0 else Sqrt(y)
Situations like this can often occur during slicing operations. For example, to shift x one position
to the right along i, the following expression would encounter an error:
if i<2 then x[i=1] else x[i=i-1]
The error occurs when x[i=i-1] is evaluated since the value corresponding to i-1=0 is out of
range. The avoid the error, the expression can be rewritten as:
For j:=i do
IT j<2 then x[i=1] else x[i=j-1]
Out-of-range errors can also be avoided without using For by placing the conditional inside an
argument. For example, the two examples above can be written without For as follows:
Sqrt(if x<0 then 0 else x)
X[i=(if i<2 then 1 else i-1)]

Analytica User Guide 331

Chapter Procedural Programming

332

reduction

Reducing memory

requirements

Tip

For and While loops and recursion

Dimensionality For can be used to apply a function that requires an atom, one- or two- dimensional input to a

multi-dimensional result. This usage is rare in Analytica since array abstraction normally does this
automatically; however, the need occasionally arises in some circumstances.

Suppose you have an array A indexed by |, and you wish to apply a function f(x) to each element
of A along I. In a conventional programming language, this would require a loop over the ele-
ments of A; however, in almost all cases, Analytica’s array abstraction does this automatically —
the expression is simply £(A), and the result remains indexed by i. However, there are a few
cases where Analytica does not automatically array abstract, or it is possible to write a user-
defined function that does not automatically array abstract (e.g., by declaring a parameter to be of
type Atom, page 318). For example, Analytica does not array abstract over functions such as
Sequence, Split, Subset, or Unique, since these return unindexed lists of varying lengths that
are unknown until the function evaluates. Suppose we have the following variables defined (note
that A is an array of text values):

A: Index 1w

1 A, B, C
2 D, E, F
3 G, H, 1
Index_2:
1] 2] 3]

We wish to split the text values in A and obtain a two dimensional array of letters indexed by
Index_1 and Index_2. Since Split does not array abstract, we must do each row separately
and re-index by Index_2 before the result rows are recombined into a single array. This is accom-
plished by the following loop:

FOR Row := Index_1 DO Array(Index_2, SplitText(A[Index_1=Row], *,"))

This results in:
Index 1w, Index 2 P

1 2
1 A B C
2 D E F
3 G H [

In some cases, it is possible to reduce the amount of memory required for intermediate results
during the evaluation of expressions involving large arrays. For example, consider the following
expression:

MatrixA: A two dimensional array indexed by M and N.
MatrixB: A two dimensional array indexed by N and P.

Average(MatrixA * MatrixB, N)
During the calculation, Analytica needs memory to compute MatrixA * MatrixB, an array
indexed by M, N, and P. If these indexes have sizes 100, 200, and 300 respectively, then
MatrixA * MatrixB contains 6,000,000 numbers, requiring over 60 megabytes of memory at 10
bytes per number.
To reduce the memory required, use the following expression instead:

For L := M Do Average(MatrixA[M=L]*MatrixB, N)

Each element MatrixA[M=L]*MatrixB has dimensions N and P, needing only 200x300x10=
600 kilobytes of memory at a time.

For the special case of a dot product (page 203), for an expression of the form Sum(a*b, 1),it
performs a similar transformation internally.

Analytica User Guide

Chapter Procedural Programming For and While loops and recursion

While(Test) Do Body

Iterate(initial, expr,

Tip

While evaluates Body repeatedly as long as Test <> 0. For While ... to terminate, Body must
produce a side-effect on a local variable that is used by Test, causing Test eventually to equal O.
If Test never becomes False, While continues to loop indefinitely. If you suspect that might be
happening, type Control+. (Control+period) to interrupt execution.

Test must evaluate to an atomic (non-array) value; therefore, it is a good idea to force any local
variable used in Test to be atomic valued. While is one of the few constructs in Analytica that
does not generalize completely to handle arrays. But, there are ways to ensure that variables and
functions using While support Intelligent Arrays and probabilistic evaluation. See “While and
array abstraction” on page 338 for details.

While returns the final value found in the last iteration of Body or Null if no iterations occur. For
example:

(Var x = 1; While x < 10 Do x := x+1) — 10
(Var x = 1; While x > 10 Do x := x+1) — Null

Using While often follows the following pattern:
Var x[]:= -..;
While (FunctionOf(x)) Do (
X 1= expr;

);

returnValue

until, maxlter, warnFlag)

Suppose the definition of variable x contains a call to Iterate(). Iterate() initializes x to the value of
initial. While stopping condition until is False (zero), it evaluates expression expr, and assigns
the result to x. Given the optional parameter maxlter, it stops after maxlter iterations and, if
warnFlag is True, issues a warning — unless it has already been stopped by until becoming
True. If until is array-valued, it only stops when all elements of until are True.

Iterate() is designed for convergence algorithms where an expression must be recomputed an
unknown number of iterations. Iterate (like Dynamic) must be the main expression in a definition
— it cannot be nested within another expression. But it can, and usually does, contain nested
expressions as some of its parameters. Iterate() (again like Dynamic() and unlike other func-
tions) can, and usually does, mention the variable x that it defines within the expressions for ini-
tial and until. These expressions can also refer to variables that depend on x.

If you use Iterate() in more than one node in your model, you should be careful that the two func-
tions don’t interact adversely. In general, two nodes containing Iterate() should never be mutual
ancestors of each other. Doing so makes the nesting order ambiguous and can result in inconsis-
tent computations. Likewise, care must be taken to avoid similar ambiguities when using interact-
ing Iterate and Dynamic loops.

You can usually write convergence algorithms more cleanly using While. One difference is that
While requires its stopping condition Test to be an atom, where Iterate() allows an array-valued
stopping condition until. Nevertheless, it is usually better to use While because you want it to do
an appropriate number of iterations for each element of until, rather than continue until all its
elements are True. But, with While you need to use one of the tricks described on and after “While
and array abstraction” on page 338 to ensure the expression fully supports array abstraction.

Analytica User Guide 333

Chapter Procedural Programming For and While loops and recursion

Recursive functions

334

Tip

A recursive function is a function that calls itself within its definition. This is often a convenient
way to define a function, and sometimes the only way. As an example, consider this definition of
factorial:

Function Factorial2(n: Positive Atom)
Definition: IF n > 1 THEN N*Factorial2(n-1) ELSE 1
If its parameter, n, is greater than 1, Factorial2 calls itself if with the actual parameter value n-1.

Otherwise, it simply returns 1. Like any normal recursive function, it has a termination condition
under which the recursion stops —when n <= 1.

The built-in function Factorial does the same, and is fully abstractable, to boot. We define
Factorial2 here as a simple example to demonstrate key ideas.

Normally, if you try to use a function in its own definition, it complains about a cyclic dependency
loop. To enable recursion, you must display and set the Recursive attribute:

1. Select the Attributes dialog from the Object menu.

W Attributes X

Class:l T+ Functions ‘I'l
DETITITOOTT
s
W Inputs J
v Outputs
Domain

Check
v Recursive

Help
Reference - |

Cancel QK

2. Select Functions from the Class menu in this dialog.

3. Scroll down the list of attributes and click Recursive twice, so that it shows W, meaning that
the recursive attribute is displayed for each function in its Object window and the Attribute
panel.

4. Check OK to close Attributes dialog.
For each function for which you wish to enable recursion:

5. Open the Object Window for the function by double-clicking its node (or select the node and
click the Object button).

Analytica User Guide

Ch apter Procedural Programming

Tip

Local indexes

Local indexes

6. Type 1into its Recursive field.

1. Object - Factorial2(n)

¥ ¢ Function Factorial?
Title: FactorialZz(n}

EEX

Units:

Parameters: (n. positive atemic)

Description: Computes the facterial of integer n, using a recursive method

[
Definition: IF n<=1 THEN 1 ELSE N * Facterial2(n-1})
Inputs: ¥+ Factorial2 Factorial2(n)
Outputs: ;_+ Factorialz Facterialz(n)

Recursive: 1

| (4

As another example, consider this recursive function to compute a list of the prime factors of an
integer, X, equal to or greater than y:
Function Prime_factors(x, y: Positive Atom)
Definition:
Var n := Floor(x/y);
IF n<y THEN [X]
ELSE IF x = n*y THEN Concat([y], Factors(n, y))
ELSE Prime_factors(x, y+1)

Factors(60, 2) —» [2, 2, 3, 5]

In essence, Prime_Tfactors says to compute n as x divided by y, rounded down. If y is greater
than n, then x is the last factor, so return x as a list. If x is an exact factor of y, then concatenate
X with any factors of n, equal or greater than n. Otherwise, try y+1 as a factor.

To prevent accidental infinite recursion, it stops and gives a warning if the stack reaches a depth
of 256 function calls.

You can declare a local index in the definition of a variable or function. It is possible that the value
of the variable or value returned by the function is an array using this index. This is handy
because it lets you define a variable or function that creates an array without relying on an exter-
nally defined index.

The construct, Index i := indexExpr defines an index local to the definition in which it is used.
The expression indexExpr can be a sequence, literal list, or other expression that generates an
unindexed array, as used to define a global index. For example:

Variable PowersOf2 := Index j := 0..5; 27j

The new variable PowersOf2 is an array of powers of two, indexed by the local index j, with val-
ues from 0 to 5:

PowersOf2 —

Analytica User Guide 335

Ch apter Procedural Programming Ensuring array abstraction

Dot operator: a . i

Example using
alocal index

0. Result - PowersOf2 [:J@EI

Mid Value of Powers0f2 XY

[~ Totals

0 1 i
qi 2z
2 4
3 8
4 16
[32

| [/

The dot operator in a . i lets you access a local index i via an array a that it dimensions. If a local
index identifies a dimension of an array that becomes the value of a global variable, it can persist
long after evaluation of the expression — unlike other local variables which disappear after the
expression is evaluated.

Even though local index j has no global identifier, you can access it via its parent variable with the
dot operator (.), for example:

PowersOf2.j —» [0,1,2,3,4,5]
When using the subscript operation on a variable with a local index, you need to include the dot
(-) operator, but do not need to repeat the name of the variable:

PowersOf2[.j=5] — 32

Any other variables depending on PowersO¥2 can inherit j as a local index — for example:
Variable P2 := Powers0f2/2

P2[.j=5]1 — 16

In this example, MatSqr is a user-defined function that returns the square of a matrix —i.e., A X
A', where A' is the transpose of A. The result is a square matrix. Rather than require a third index
as a parameter, MatSqr creates the local index, i2, as a copy of index i.

Function MatSqr(a: Array; i, j: Index)
Definition := Index 12:=CopylIndex(i); Sum(a*a[i=i2], J)
The local variable, 12, in MatSqr is not within lexical scope in the definition of Z, so we must use
the dot operator (.) to access this dimension. We underline the dot operator for clarity:
Variable Z = Var XX := MatSqr(X, Rows, Cols);
Sum(XX * Y[I=XX_i2], XX.i2)

Ensuring array abstraction

336

The vast majority of the elements of the Analytica language (operators, functions, and control
constructs) fully support Intelligent Arrays — that is, they can handle operands or parameters that
are arrays with any number of indexes, and generate a result with the appropriate dimensions.
Thus, most models automatically obtain the benefits of array abstraction with no special care.

There are just a few elements that do not inherently enable Intelligent Arrays — i.e., support array
abstraction. They fall into these main types:

* Functions whose parameters must be atoms (not arrays), including Sequence, m..n, and
SplitText. See below.

« Functions whose parameter must be a vector (an array with just one index), such as
Copylndex, Sortindex, Subset, Unique, and Concat when called with two parameters.

* The While loop (page 338), which requires its termination condition to be an atom.

Analytica User Guide

Chapter Procedural Programming Ensuring array abstraction

Functions expecting
atomic parameters

Atom parameters and
array abstraction

« If b Then ¢ Else d (page 338), when condition b is an array, and c or d can give an
evaluation error.

¢ Functions with an optional index parameter that is omitted (page 339), such as Sum(x),
Product, Max, Min, Average, Argmax, SubIndex, ChanceDist, CumDist, and ProbDist.

When using these constructs, you must take special care to ensure that your model is fully array-
abstractable. Here we explain how to do this for each of these five types.
Consider this example:

Variable N := 1..3

Variable B = 1_.N

B — Evaluation error:

One or both parameters to Sequence(m, n) or m .. n are not scalars.

The expression 1. N, or equivalently, Sequence(1, N), cannotwork if N is an array, because it
would have to create a nonrectangular array containing slices with 1, 2, and 3 elements. Analytica
does not allow nonrectangular arrays, and so requires the parameters of Sequence to be atoms
(single elements).

Most functions and expressions that, like Sequence, are used to generate the definition of an
index require atomic (or in some cases, vector) parameters, and so are not fully array
abstractable. These include Sequence, Subset, SplitText, Sortindex (if the second parameter
is omitted), Concat, Copylndex, and Unique.

Why would you want array abstraction using such a function? Consider this approach to writing a
function to compute a factorial:

Function Factorial2

Parameters: (n)

Definition: Product(l..n)

It works if n is an atom, but not if it is an array, because 1. . n requires atom operands. In this ver-
sion, however, using a For loop works fine:

Function Factorial3

Parameters: (n)

Definition: FOR m := n DO Product(l..m)

The For loop repeats with the loop variable m set to each atom of n, and evaluates the body
Product(1. .m) for each value. Because m is guaranteed to be an atom, this works fine. The
For loop reassembles the result of each evaluation of Product (1. .m) to create an array with all
the same dimensions as n.

Another way to ensure array abstraction in a function is to use the Atom qualifier for its parame-
ter(s). When you qualify a parameter n as an Atom, you are saying that it must be a single value
— not an array — when the function is evaluated, but not when the function is used:

Function Factorial3
Parameters: (n: Atom)
Definition: Product(l..n)

@ ' Object - Factorial3{n)
¥+ Function Factarial? Units: =]

Title: Factorial3in)
Parameters: (nAtomic)

Description: Computes the factorial of integer n.
Fully generalizable for array valued n.

Bpr W
Definition: Product(1..n)

Analytica User Guide 337

Ch apter Procedural Programming Ensuring array abstraction

338

While and array
abstraction

If a Then b Else ¢ and
array abstraction

Index K :=1 .. 6
Factorial3(K) —

0 Result - Result g@@l
ad

midw| pid Value of Result

L~
Lall ~ EI[) [Tatals
1 2

3 1 5 6
1 2 G 24 120 20

| (4

Notice that Atom does not require the actual parameter K to be an atom when the function is
called. If K is an array, as in this case, it repeatedly evaluates the function Factorial3(n) with n set
to each atom of array K. It then reassembles the results back into an array with the same indexes
as parameter K, like the For loop above. This scheme works fine even if you qualify several
parameters of the function as Atom.

In some cases, a function might require a parameter to be an vector (have only one index), or
have multiple dimensions with specified indexes. You can use “Array qualifiers” on page 319 to
specify this. With this approach, you can ensure your function array abstracts when new dimen-
sions are added to your model, or if parameters are probabilistic.

The While b Do e construct requires its termination condition b to evaluate to be an atom — that
is, a single Boolean value, True (1) or False (0). Otherwise, it would be ambiguous about whether
to continue. Again, Atom is useful to ensure that a function using a While loop array abstracts, as
it was for the Sequence function. Here’s a way to write a Factorial function using a While loop:
Function Factorial4
Parameters: (n: Atom)
Definition:
VAR fact := 1; VAR a := 1;
WHILE a < n DO (a := a + 1; fact := fact * a)

In this example, the Atom qualifier assures that n and hence the While termination condition a <
n is an atom during each evaluation of Factorial4.

Consider this example:
Variable X = -2..2
Sqrt(X) — [NAN, NAN, 0, 1, 1.414]

The square root of negative numbers -2 and -1 returns NAN (not a number) after issuing a warn-
ing. Now consider the definition of Y:

Variable Y = (IF X>0 THEN Sqrt(X) ELSE 0)

Y - [0, O, O, 1 1.414]

For the construct IF a THEN b ELSE c, a is an array of truth values, as in this case, so it evalu-
ates both b and C. It returns the corresponding elements of b or C, according to the value of con-
dition a for each index value. Thus, it still ends up evaluating Sqrt(X) even for negative values
of X. In this case, it returns O for those values, rather than NAN, and so it generates no error mes-
sage.
A similar problem remains with text processing functions that require a parameter to be a text
value. Consider this array:

Variable Z := [1000, "10,000°, "100,0007]
This kind of array containing true numbers, e.g., 1000, and numbers with commas turned into text
values, often arises when copying arrays of numbers from spreadsheets. The following function
would seem helpful to remove the commas and convert the text values into numbers:

Function RemoveCommas(t)

Parameters: (t)
Definition: Evaluate(TextReplace(t, *,", "7))

Analytica User Guide

Ch apter Procedural Programming

Omitted index
parameters and array
abstraction

Tip

Selecting indexes
for iterating with
For and Var

Ensuring array abstraction

RemoveCommas(Z) —

Evaluation Error: The parameter of Pluginfunction TextReplace must
be a text while evaluating function RemoveCommas.

TextReplace doesn't like the first value of z, which is a number, where it's expecting a text value.
What if we test if t is text and only apply TextReplace when it is?
Function RemoveCommas(t)
Parameters: (t)
Definition: IF IsText(t)
THEN Evaluate(TextReplace(t, ",", "")) ELSE t

RemoveCommas(Z) — (same error message)

It still doesn’t work because the IF construct still applies ReplaceText to all elements of t. Now,
let's add the parameter qualifier Atom to t:
Function RemoveCommas(t)
Parameters: (t: Atom)
Definition: IF IsText(t)
THEN Evaluate(TextReplace(t, ",", "")) ELSE t
RemoveCommas(Z) —

@ Result-A [2][B)X]

Mid Value of A XY
[~ Totals
TP

1,000 1000
10,000 10000
100,000" 100000

| (4

This works fine because the Atom qualifier means that RemoveCommas breaks its parameter t
down into atomic elements before evaluating the function. During each evaluation of Remove-
Commas, t, and hence IsText(t), is atomic, either True or False. When False, the If construct
evaluates the Else part but not the Then part, and so calls TextReplace whent is truly a text
value. After calling TextReplace separately for each element, it reassembles the results into the
array shown above with the same index as Z.

Several functions have index parameters that are optional, including Sum, Product, Max, Min,
Average, Argmax, Sublndex, ChanceDist, CumDist, and ProbDist. For example, with Sum(x,
i), you can omit index i, and call it as Sum(x). But, if x has more than one index, it is hard to pre-
dict which index it sums over. Even if x has only one dimension now, you might add other dimen-
sions later, for example for parametric analysis. This ambiguity makes the use of functions with
omitted index parameters non-array abstractable.

There is a simple way to avoid this problem and maintain reliable array abstraction: When using
functions with optional index parameters, never omit the index! Almost always, you know
what you want to sum over, so mention it explicitly. If you add dimensions later, you'll be glad you
did.

When the optional index parameter is omitted, and the parameter has more than one dimension,
these functions choose the outer index, by default. Usually, the outer index is the index created
most recently when the model was built. But, this is often not obvious. We designed Intelligent

Arrays specifically to shield you from having to worry about this detail of the internal representation.

To provide detailed control over array abstraction, the For loop can specify exactly which indexes
to use in the iterator x. The old edition of For still works. It requires that the expression a assigned

Analytica User Guide 339

Chapter Procedural Programming References and data structures

to iterator X generate an index — that is, it must be a defined index variable, Sequence(m, n), or
m..n. The new forms of For are more flexible. They work for any array (or even atomic) value a.
The loop iterates by assigning to x successive subarrays of a, dimensioned by the indexes listed
in square brackets. If the square brackets are empty, as in the second line of the table, the suc-
cessive values of iterator x are atoms. In the other cases, the indexes mentioned specify the
dimensions of x to be used in each evaluation of e. In all cases, the final result of executing the
For loop is a value with the same dimensions as a.

Forx:=aDOe Assigns to loop variable x successive atoms from index expression
a and repeats evaluation expression e for each value. Returns an
array of values of e indexed by a.

Forx:=aDOe Assigns to loop variable x, successive atomic values from array a. It
For x[]:=aDO e repeats evaluation of expression e for each value. It returns an
array of values of e with the same indexes as a.

For x[i] :=aDO e Assigns to loop variable x successive subarrays from array a, each
indexed only by i. It repeats evaluation of expression e for each
index value of a other than i. As before, the result has the same
indexes as a.

For x[i,j ...] :=a DO e | Assigns to loop variable x successive subarrays from array a, each
indexed only by i, j It repeats evaluation of expression e for
each index value of a other than i, j As before, the result has
the same indexes as a.

The same approach also works using Var to define local variables. By putting square brackets
listing indexes after the new variable, you can specify the exact dimensions of the variable. These
indexes should be a subset (none, one, some, or all) of the indexes of the assigned value a. Any
subsequent expressions in the context are automatically repeated as each subarray is assigned
to the local variable. In this way, a local variable can act as an implicit iterator, like the For loop.

Var Temp[il, i2, ...] = X;

References and data structures

340

A reference is an indirect link to a value, an atom or an array. A variable can contain a single ref-

erence to a value, or it can contain an array of references. Variables and arrays can themselves

contain references, nested to any depth. This lets you create complex data structures, such as

linked lists, trees, and non-rectangular structures. Use of references is provided by two operators:
« \eis the reference operation. It creates a reference to the value of expression e.

« #eisthe dereference operation. It obtains the value referred to by e. If e is not a reference,
it issues a warning and returns Null.

An example:

Variable M 10 Result - Ref to M M=

Definition: 100 Mid Value of Ref to M Padl
2]

Variable Ref_to_M —

Definition: \ M —

wrefs

The result of Ref_to_M looks like this:

Analytica User Guide

Ch apter Procedural Programming

References and data structures

You can double-click the cell containing
«ref» to view the value referenced, in this @ Result - #Ref to M

case: Mid Value of #Ref to M x|
iz
Ll
100 e
| [/

You can also create an array of refer-
ences. Suppose:

Index K
Definition: 1..5

@ Result - Ksquare |Z||E|r'>__(|
Mid Value of Ksquare Pl
[Totals

T L =P

Variable Ksquare =
Definition: K2 1 !

7 4

3 5
Ksquare — 4 18

5 25

Variable Ref_to_Ksquare —_—
Definition: \ Ksquare W Result - Ref to Ksquare |-_||E|E]
Mid Value of Ref to Ksquare XY

Ref_to_Ksquare —

wrefy

If you click the «ref» cell, it opens:

Mid Value of #Ref to Ksquare XY

= IEI [~ Tetals
Lall [

d

o L R =
o

Analytica User Guide 341

Chapter Procedural Programming References and data structures

You can also create an array of refer-
ences from an array, for example:

W Result - Ref Ksquare array E”E”‘S__(l
Variable Ref_Ksquare_array Mid Value of Ref Ksquare array X |
Definition: \ [] Ksquare g [kv] [Totsks

Ksquare — | P

The empty square brackets [] specify that —
the values referred to have no indexes, wrefy
i.e., they are atoms. You can now click

any of these cells to see what it refers to.

arefa

wrefs

o L) k) =

wrefs

Clicking the third cell, for example, gives:

1 Result - #Ref Ksquare array[K=3] [Z”E”‘S__q
Mid Value of #Ref Ksquare array[K=3] ﬂ
[[-2]
|
S —
|_

Managing indexes of More generally, you can list in the square brackets any indexes of e that you want to be indexes of
referenced subarrays: \ each subarray referenced by the result. The other indexes of e (if any) are used as indexes for the
li.j.-.]e referencing array. Thus, in the example above, since there were no indexes in square brackets,
the index K was used as an index of the reference array. If instead we write:

\ [K] Ksquare —

1 Result - Ref to Ksquare E”'E| r5__<|
Mid Value of Ref to Ksquare XY

wrety

I (4

It creates a similar result to \ Ksquare, since K is the only index of Ksquare.

342 Analytica User Guide

Chapter Procedural Programming

IsReference(x)

Using references for
linked lists: Example
functions

To summarize:

References and data structures

\e

Creates a reference to the value of expression e, whether it is an atom or an
array.

\[le

Creates an array indexed by all indexes of e containing references to all
atoms from e.

\[i] e

Creates an array indexed by any indexes of e other than i of references to
subarrays of e each indexed by i.

\[li,j..]le

Creates an array indexed by any indexes of e other than i, j ... of references
to subarrays of e each indexed by i, j

In general, it is better to include the square brackets after the reference operator, and avoid the
unadorned reference operator, as in the first row of the table. Being explicit about which indexes
to include generally leads to expressions that array abstract as intended.

Is a test to see whether its parameter x is a reference. It returns True (1) if x is a reference, False

(0) otherwise.

Linked lists are a common way for programmers to represent an ordered set of items. They are
more efficient than arrays when you want often to add or remove items, thereby changing the
length of the list (which is more time consuming for arrays). In Analytica, we can represent a
linked list as an element with two elements, the item — that is, a reference to the value of the item
— and a link — that is, a reference, to the next item:

Index Linked_list
Definition: ["ltem", "Link"]

Function LL_Put(x, LL)
Description: Puts item x onto linked list LL.
Definition: \Array(Linked_List, [\x, LL])

Function LL_Get_ltem(LL)
Description: Gets the value of the first
item from linked list LL.
Definition: # Subscript(#LL, Linked_list, "ltem")

Function LL_length(LL)

Parameters: (LL: Atom)

Description: Returns the number of items in
linked list LL

Definition: VAR len := 0;
WHILE (IsReference(LL)) BEGIN

LL
len
END;

len

= subscript(#LL, Linked_List, "Next');
:=1len + 1

Function LL_from_array(a, i)

Parameters: (a; i: Index)

Description: Creates a linked list from the
elements of array a over index 1i

Definition:
VAR LL := NULL;
Index iRev := Size(i) .. 1;

Analytica User Guide 343

Chapter Procedural Programming Handles to objects

FOR j := iRev
DO LL := LL_Push(LL, Slice(a, i, j));
LL

See Linked List Library.anainthe Libraries folder for these and other functions for work-
ing with linked lists.

Handles to objects

A handle is a pointer to a variable, function, module, or other object. Using a handle lets you write
variables or functions that work with the object itself, for example to access its attributes —
instead of just its value which is what you usually get when you mention a variable by identifier in
an expression.

Viewing handles In atable result, a handle in an index or content cell usually shows the title of the object. If you
select Show by identifier from the Object menu (or press Control+y) it toggles to show identifi-
ers instead of titles (as it does in the node diagrams). If you double-click a cell containing a handle
(title or identifier) it opens its Object window (as it does when you double-click a node in a dia-
gram).

Attributes that contain The attributes, inputs, outputs, and contains (the list of objects in a module) each consist of a

handles |ist of handles to objects. The attribute isIn is a single handle to the module that contains this
object — the inverse of contains.

List of variables: [v1, v2, ... vn]

If you define a variable as a list of variables, for example,

Variable A = [X, Y, Z]
the variable will have a self index that is a list of handles to those variables. In a table result view
of A (or other variable that uses this index), the index A will usually show the titles of the variables.
See “List of variables” on page 167 for more. In an expression, the handles in the self index can

be accessed using IndexValue(A). The main value of A (either mid value or a probabilistic view of
A) contains the results of evaluating X, Y and Z.

Handle(o)

Returns a handle to an Analytica object, given its identifier o.
Handle(Val) — Val

HandleFromldentifier(text)
Returns a handle to global object (i.e., not a local variable or parameter), given its identifier as
text.
Variable B = 99
HandleFromldentifier("'B") — Val

The dependency maintenance is unaware of the dependency on the object. Hence, any changes
to the variable B above will not cause the result to recompute.

Indexes of Handles

MetaOnly attribute When an index object is defined as a list of identifiers, the MetaOnly attribute controls whether it
is treated as a general index or a meta-index. Meta-indexes are useful when reasoning about
the structure or contents of the model itself. A general index evaluates the variables appearing in
its definition to obtain its mid or sample value, and the values that are recognized by Subscript
(i.e., a[i=x]), while a meta-index (having its metaOnly attribute set to 1) does not evaluate the
objects in the list. The following comparisons demonstrates the similarities and differences.

344 Analytica User Guide

Chapter Procedural Programming Dialog functions

Metalndex..Do

IndexesOf(X)

Constant E:= exp(l)

Variable X = -1
General index Meta-Index

Index 10 := [E,X,Pi,True] Index 11 := [E,X,Pi,True]
MetaOnly of 10 := 0 {or not set} MetaOnly of 11 =1
Variable A0 := Table(10)(1,2,3,4) |Variable Al := Table(11)(1,2,3,4)
IndexValue(10) — [E,X,Pi,True] IndexvValue(ll) — [E,X,Pi,True]
Mid(10) —» 2.718,-1,3.142,1,0] Mid(11) —»[E,X,Pi,True,False]
AO[I0=Handle(E)] —» 1 Al[l1=Handle(E)] —» 1
AO[I0=Handle(True)] — 4 Al[l1=Handle(True)] — 4
AO[I10=E] —» 1 Al[11=E] — Error:-2.718 not in I1
AO[10=-1] —» 2 Al[11=-1] - Error:-1 not in 11
AO[10=True] - 4 Al[11=True] —» Error:1 not in 11
The construct, Metalndex 1 := IndexExpr, declares a local meta-index (see “Local indexes”
on page 335). This should generally be used in lieu of the Index i1 == ¥ndexExpr construct
when indexExpr evaluates to a list of handles.

Metalndex 1 := contains of Revenue_Module;

Description of (1)

Returns the indexes of an array value as a list of handles. The first element of the list is null,
rather than a handle, when X has an implicit dimension (also known as a null-index).

Dialog functions

MsgBox(message,

Dialog functions display dialog boxes to give special information, warnings, or error messages, or
to request information from the user. Dialogs are modal — meaning that Analytica pauses evalu-
ation while showing the dialog until the user closes the dialog. (ShowProgressBar is an excep-
tion in that it continues evaluation while it displays the progress bar.) If the user clicks Cancel
button, it stops further evaluation — as if user pressed Control+. (Control+period).

Dialog functions display their dialog when evaluated. If the definition of a variable A calls a dialog
function, it will display the dialog when it evaluates A. If it evaluates A in mid and prob mode, it dis-
plays the dialog each time. It does not display the dialog again until it evaluates A again — for
example, because one of its inputs changes.

buttons, title)

Displays a dialog with the text message, a set of buttons and an icon (according to numerical
codes below), with title in the dialog header bar. Analytica pauses until the user clicks a button. If
the user clicks the Cancel button, it stops evaluation. Otherwise it returns a number, depending
on which button the user presses (see below).

The optional buttons parameter is a number that controls which buttons to display, as follows:
0=0K only
1 = OK and Cancel (the default if buttons is omitted)
2 = Abort, Retry, and Ignore
3 = Yes, No, and Cancel
4 = Yes and No
5 = Retry and Cancel
To display an icon in the dialog, add one of these numbers to the buttons parameter:

16 = Critical (white X on red circle)

Analytica User Guide 345

Ch apter Procedural Programming Dialog functions

32 = Question
48 = Exclamation
64 = Information

MsgBox returns a number depending on which button the user presses:

1=0K

2 = Cancel (stops any further evaluation)
3 = Abort

4 = Retry

5 =Ignore

6 =Yes

7=No

Here are some examples.
Msgbox("0OK, I*""m done now.", 0+64,"Information®) —

Information | X |

1 } Ok, I'm done now,

Msgbox(*Uh uh! Looks like trouble!", 5+16, "Disaster®) —

Disaster

@ Uh uhb! Looks like trouble!

Cancel ‘

Msgbox("Do you really mean that?", 3+32, "Critical question®) —

Critical question

\";f) Do yvou really mean that?

Mo Cancel ‘

Msgbox(*This could be a real problem!®, 2+48, "Critical question®) —

Critical question

L] E This could be a real problem!
-

Retry Ignare

346 Analytica User Guide

Chapter Procedural Programming Dialog functions

Error(message)

Displays an evaluation error in a dialog mentioning the variable whose definition calls this func-
tion, showing the message text:

Variable Xyz := Error("There seems to be some kind of problem®)
Xyz —

Question §|

Evaluation errar in xyz:
‘-‘lr/ There seems ko be some kind of problem.

Do vou want ko edit the Definition of Xwz?

Mo | Cancel

If you click Yes, it opens the definition of the variable or function whose definition (or Check attri-
bute) calls Error() in edit mode (if the model is editable). If you click No or Cancel, it stops evalu-
ation.

Error in check Ifyou call Error() in a check attribute (page 115), it shows the error message when the check fails
instead of the default check error message, letting you tailor the message.

AskMsgText(question, title, maxText, default)

Opens a dialog displaying question text with a field for the user to provide an answer, which it
returns as text.

If you specify title text it displays that in the title bar of the dialog. If you specify maxText as a
number, it will accept only that many characters. If you specify default text, it displays that as the
default answer.

Example AskMsgText(“’Enter your model access key", title: '"License Entry",
maxText: 15)

AskMsgNumber(question, title, default)

Displays a dialog showing question with title, if given. It shows a field for user to enter a number,
containing default number if given. When the user enters a number into the dialog, and clicks
OK, it returns the number.

ShowProgressBar(title, text, p)

Displays a dialog with the title in title bar, a text message and a progress bar showing fraction p
of progress along the bar. The dialog appears the first time you call it with p<1. As long as
0O<=p<1, it shows a Cancel button, and continues evaluation. If you click Cancel, it stops further
computation, as if the user had pressed Control+. (Control+period). If p=1, it shows the OK button
and stops further computation. If you click OK, it closes the dialog. The dialog also closes if called
with p>1 or when the computation completes.

Progress [

Camputing Acrozz All Scenarios

I —
Cancel |

Declaration ShowProgressBar(title, text: Text atomic; p: number atomic)

Analytica User Guide 347

Chapter Procedural Programming Miscellaneous functions

Example

In this example:
VAR x0rig := X;
VAR result :=
FOR n[] := @Scenario DO (
ShowProgressBar ("'Progress', "Computing Across All Scenarios', (n-
1)/Size(Scenario));
Whatlf(Y, X, xOrig[@Scenario=n])
);
ShowProgressBar (*'Progress', "Done™, 1);
result

Miscellaneous functions

CurrentDataDirectory(filename)

Sets the current data directory to filename. The current data directory is the directory used by
ReadTextFile() and WriteTextFile(), if their flename parameter contains no other path. When
starting a model, it is the current model directory that contains the model. Specifying a path as a
parameter to the function changes the current data directory to that path. If filename is omitted, it
returns the path to the current data directory.

CurrentModelDirectory(filename)

Evaluate(e)

348

Sets the current model directory to filename. The current model directory is the directory into
which the model (and submodules) are saved, by default. When starting a model, it is the direc-
tory containing the model. You can change it by selecting a different directly using the directory
browser from Save as, or by using this function. If filename is omitted, it returns the path to the
current model directory.

If e is a text value, Evaluate(e) tries to parse e as an Analytica expression, evaluates it, and
returns its value. For example:

Evaluate("10M /107) — 1M
One use for Evaluate(e) is to convert a number formatted as text into a number it can compute
with, for example:

Evaluate("1.23456e+10") — 12.3456G
If e is an expression that generates a text value, it evaluates the expression, and then parses and
evaluates the resulting text value. For example:

(VAR x := 10; Evaluate(x & "+" & x)) — 20

If e is a number or expression that is not a text value, it just returns its value:
Evaluate(10M /10) — 1M

If e is a text value that is not a valid expression — for example, if it has a syntax error — it returns
Null.

Like other functions, it evaluates the parameter as mid (deterministic) or prob (probabilistic),
according to the context in which it is called.

Evaluate(e) parses and evaluates text e in a global context. Thus, e cannot refer to local vari-
ables, local indexes, or function parameters defined in the definition that uses Evaluate(e). For
example, this would give an evaluation error:

Variable A = (VAR r := 99; Evaluate("r"2%))

Analytica User Guide

Chapter Procedural Programming Miscellaneous functions

Evaluate and
dependencies

If e evaluates to a handle before it is passed to the function, then that object is evaluated and its
(mid or sample) value is returned.

Analytica’s dependency mechanism does not work with variables or functions whose identifiers
appear inside the text parameter of Evaluate. For example, consider:

Variable B := Evaluate("F(A)")
Variable C = F(A)

Initially B and C compute the same value. If you then change the definition of function F or vari-
able A, Analytica’s dependency maintenance ensures that C is recomputed when needed using
the new definition of F and A. But, B does not know it depends on F and A, so is not recomputed,
and can become inconsistent with the new values for F and A. In rare cases, you might intention-
ally want to break the dependency, in which case Evaluate is appropriate; otherwise, use it only
with care.

GetRegistryValue(root, subfolder, name)

Example

Reads a value from the Windows system registry. This can be quite useful if you install your Ana-
lytica model as part of a larger application, and if your model needs to find certain data files on the
user’s computer (for example, for use with ShowPdfFile, ReadTextFile, or RunConsolePro-
cess). The locations of those files could be stored in the registry by your installer, so that your
model knows where to look.

GetRegistryValue(""HKEY_CURRENT_USER", "Software/MyCompany/MyProduct™,
"FileLocation™)

lgnoreWarnings(expr)

Evaluates its parameter expr, and returns its value, while suppressing most warnings (page 387)
that might otherwise be displayed during the evaluation. It is useful when you want to evaluate an
expression that generates warnings, such as divide by zero, that you know are not important in
that context, but you do not want to uncheck the option Show Result Warnings in the Prefer-
ences dialog (page 58), because you do want to see warnings that might appear in other parts of
the model.

IsResultComputed(x)

Returns 1 if the value of x is computed when the function is evaluated. To test whether the sample
value of x has been computed, use Sample(1sResultComputed(x)), or to test the mid value
use Mid(IsResultComputed(x)).

ShowPdfFile(filename)

Opens filename using Adobe Reader or Acrobat if one is installed on this computer and the file is
a PDF document. ShowPdfFile is most useful when called from a button script, for example, as a
way to provide the user of your model with a way to open a user guide for your model.

Analytica User Guide 349

Ch apter Procedural Programming Miscellaneous functions

350 Analytica User Guide

OFllfs|g7 Analytica Enterprise

Analytica Enterprise extends the Professional edition with these fea-
tures:

« Database access: Functions to read and write data from and to
ODBC databases and external files

¢ Reading and writing text files

* Save models as browse-only: Models that let end users of models
modify only variables designated as inputs

« Hide definitions: Prevent end users from viewing data or algorithms
that are confidential or proprietary

* Huge arrays: Expand arrays with indexes of over 30,000 elements

« Creating buttons and scripts: Objects that users click to run scripts
that can change the model

« Performance Profiler: A library to see which variables and functions
take the most CPU time or memory

*« RunConsoleProcess: A function that calls another Windows
application as subprogram from Analytica

Chapter Analytica Enterprise Accessing databases

Tip

You need Analytica Enterprise or Optimizer to create models using the features described in this
chapter. You can use the Analytica Power Player or the Analytica Decision Engine to run models
created with Enterprise or Optimizer with these features, and can change them using Analytica
Decision Engine. You can use any edition of Analytica to run a model that uses buttons, or was
saved as browse-only with hidden definitions.

Accessing databases

352

Overview of ODBC

DSN and data source

Analytica Enterprise provides several functions for querying external databases using Open Data-
base Connectivity (ODBC). ODBC is a widely used standard for connecting to relational data-
bases, on either local or remote computers. It uses queries in Structured Query Language (SQL),
pronounced “sequel,” to read from and write to databases.

SQL is a widely used language to read data from and write data to a relational database. A rela-
tional database organizes data in two-dimensional tables, where the columns of a table serve as
fields or labels, and the rows correspond to records, entries, or instances. In Analytica, it is more
natural to refer to the columns as labels and rows as records. For instance, an address book
table might have the columns or labels LastName, FirstName, Address, City, State, Zip, Phone,
Fax, and E-mail, and each individual would occupy one row or record in that table.

The result of an SQL query is a two-dimensional table, called a result table. The rows are the
records matching the criteria specified by the query. The columns are the requested fields.

Analytica Enterprise provides functions that accept an SQL query, using standard SQL syntax, as
a text-valued parameter. These functions return the result of the query as an array with two
dimensions, with its rows indexed by a record index, and columns indexed by a label index. So,
the basic structure of an Analytica model for retrieving a result table is this.

/ Labels Fesult tablej

Each of these three nodes could require the information from the Result_Table. For example,
the definition of the record index would require knowing how many records (rows) are in the result
table; the label index might need to read the names of the columns — although, often they are
known in advance; and of course, the Result_Table needs to read the table. The Database
library provides the functions, DBQuery, DBLabels, and DBTable to define these variables.
These functions work in concert to perform the query only once (when the record index is evalu-
ated), and share the result table between the nodes.

For the address database example above, we can obtain the record index as Individuals, the
label index as Address_Tields, and the resulting table as Address_Tfields, as follows:

Index Individuals := DBQuery(Data_source, "SELECT*FROM Addresses®)
Index Address_fields := DBLabels(Individuals)
Variable Address_fields := DBTable(Individuals, Address_fields)

In the above example, the record index is defined using DBQuery(), the label index is defined

using DBLabels(), and the result table is defined using DBTable(). Each function is described
below.

To specify a data source query, two basic pieces of information must always be known. These are
the data source identifier and the SQL query text. These two items are the parameters to the
DBQuery() function, and are discussed in the following two subsections.

A data source is described by a text value, which can contain the Data Source Name (DSN) of
the data source, login names, passwords, etc. Here, we describe the essentials of how to identify

Analytica User Guide

Chapter Analytica Enterprise Accessing databases

Tip

and access a data source. These follow standard ODBC conventions. For more details, consult
one of the many texts on ODBC.

You must have a DSN already configured on your machine. If not, consult with your Network
Administrator. See “Configuring a DSN” below.

The general format of a data source identification text is (the single quotes are Analytica’s text
delimiters):

"attrl=valuel; attr2=value2; attr3=value3;"
For example, the following data source identifier specifies the database called '‘Automobile Data’,
with a user login '‘John' and a password of 'Lightning':

"DSN=Automobile Data; UID=John;PWD=Lightning”

If a database is not password protected, then a data source descriptor might be as simple as:
"DSN=Automobile Data”

If a default data source is configured on your machine (consult your database administrator), you
can specify it as:

"DSN=DEFAULT"

Some systems might require one login and password for the server, and another login and pass-
word for the DBMS. In this case, both can be specified as:

"DSN=Automobi le Data; UID=John;

PWD=Lightning; UIDDBMS=JQR; PWDDBMS=Thunder*

You can use the DRIVER attribute to specify explicitly which driver to use, instead of letting it be
determined automatically by the data source type. For example:

"DSN=Automobile Data; DRIVER=SQL Server-

Instead of embedding a long data source connection text inside the DBQuery() statement, you
can define a variable in Analytica whose value is the appropriate text value. The name of this vari-
able can then be provided as the argument to DBQuery(). Another alternative is to place the con-
nection information in a file data source (a .DSN file). Such a file would consist of lines such as:

DRIVER = SQL Server

UID = John
PWD = Lightning
DSN = Automobile Data

Assuming this data is in a file named MyConnect.DSN, the connection text can be specified as:
"FILEDSN=MyConnect _.DSN"

In some applications, you might wish to connect directly to a driver rather than a registered data
source. Some drivers allow this as a way to access a data file directly, even when it is not regis-
tered. Also, some drivers provide this as a way of interrogating the driver itself. To perform such a
connection, use the driver keyword. For example, if the Paradox driver accepts the directory of
the data files as an argument, you can specify:

"DRIVER={Paradox Driver};DIRECTORY="D:\CARS"

The specific fields used here (UID, PWD, UIDDBMS, PWDDBMS, DIRECTORY, etc.) are inter-
preted by the ODBC driver, and therefore depend on the specific driver used. Any fields inter-
preted by your driver are allowed.

If you do not wish to embed the full DSN in the connection text, a series of dialogs pop up when
the DBQuery() function is evaluated. For example, you can leave the UID and PWD (user name
and password) out of your model. When the model is evaluated, Analytica prompts you to enter
the required information. Explicitly placing information in your model eliminates the extra dialog. A
blank connection text can even be used, in which case you need to choose among the data
sources available on your machine when the model is being evaluated. Although the user can
form the DSN via the graphical interface at that point, the result is not automatically placed in the

Analytica User Guide 353

Chapter Analytica Enterprise Accessing databases

354

Configuring a DSN

The DSN used in your ODBC Microsoft Access 97 Setup

The actual location of

Specifying an SQL
query

Tip

definitions of your Analytica model. However, you might be able to store the information in a DSN
file (depending on which drivers and driver manager you are using). You might also be able to
register data sources on your machine from that interface.

To access a database using ODBC, you must have a Data Source Name (DSN) already config-
ured on your machine. In general, configuring a DSN requires substantial database administration
expertise as well as the appropriate access permissions on your computer and network. To con-
figure a data source, you should consult with your Network Administrator or your database prod-
uct documentation. The general task of configuring a DSN is beyond the scope of this manual.

If you find you must configure a DSN yourself, the process usually involves the following steps
(assuming your database already exists):
1. Select the ODBC icon from the Windows Control Panel.

2. Select the User DSN, System DSN, or File DSN tab depending on your needs. Most likely,
you will want System DSN. Click the Add button.

3. Select the driver. For example, if your database is a Microsoft Access database, select the
Microsoft Access Driver and click Finish.

4. You are led through a series of dialogs specific to the driver you selected. These include
dialogs that allow you to specify the location of your database, as well as the DSN name that
you will use from your Analytica model. An example is shown here.

Analytica queries

Data Source Name—tAutamabile D ata

\i
=
[

Dezcription: IDatabase aof autorabile makes and models

Cancel |
— Database
- Databaze: D:MProjectz\AutoDB.mdb Help

/

Create. .. | Repair... Compact... |

ik

the database Advanced...

— System D atabaze

* Naone
" Database:

Syztem Databaze,.. |
Dptionzs» |

You can use any SQL query as a text parameter within an Analytica database function. SQL que-
ries can be very powerful, and can include multiple tables, joins, splits, filters, sorting, and so on.
We give only a few simple examples here. If you are interested in more demanding applications,
please consult one of the many excellent texts on SQL.

The SQL expression to select a complete table in a relational database, where the table is named
VEHICLES, would be:

"SELECT * FROM vehicles”

SQL is case insensitive, but Analytica is case sensitive for labels of Column names.

To select only two columns (make and model) from this same table and sort them by make:
"SELECT make, model FROM vehicles ORDER BY make*
These examples provide a starting point. When using multiple tables, one detail to be aware of is

that it is possible in SQL to construct a result table with two columns containing the same label.
For example:

"SELECT * FROM vehicles, companies”

Analytica User Guide

Chapter Analytica Enterprise Accessing databases

Retrieving an SQL
result table

where both tables for vehicles and companies contain a column labeled Id. In this case, you can
only access one (the first) of the two columns using DBTable(). Thus, you should take care to
ensure that duplicate column labels do not result. This can be accomplished, for example, using
the AS keyword, for example:

"SELECT vehicles.ld AS vid, companies.ld AS

cid, * FROM vehicles, companies”

For users that are unaccustomed to writing SQL statements, products exist that allow SQL state-
ments to be constructed from a simple graphical user interface. Many databases allow queries to
be defined and stored in the database. For example, from Microsoft Access, one can define a
query by running Access and using the Query Wizard graphical user interface. The query is given
a name and stored in the database. The name of the query can then be used where the name of
a table would normally appear, for example:

"SELECT * FROM myQuery*
To retrieve a result table from a data source, you need:

The data source connection text.

2. The SQL query. These are discussed in the previous two sections. For illustrative purposes,
suppose the connection text is "DSN=Automobile Data“®, and the SQL statement is
"SELECT * FROM vehicles”. Obtain the relational Result_table thus:

Index Records := DBQuery("DSN=Automobile Data",
"SELECT * FROM vehicles™)

Index Labels := DBLabels(Records)

Variable Result_table := DBTable(Records, Labels)

You can now display Result_table to examine the results.

This basic procedure can be repeated for any result table. The structure of the model stays the
same, and just the connection text and SQL query text change.

Separating columns of a database table

It is often more convenient for further modeling to create a separate variable for each column of a
database table. Each column variable uses the same record index. For example, we might create
separate variables for Make, Year, and Car model from the vehicles database table.

/ Records %{Mudel_yearj

Car_model

In this case, the record index is still defined using DBQuery(), and each column is defined using
DBTable(). The actual SQL query is issued only once when the record index is evaluated.

Suppose you wished to have Make, Model, Year, MPG, etc., as separate Analytica variables,
each a one-dimensional array with a common index. For example:

Index Records := DBQuery("DSN=Automobile Data“,

"SELECT * FROM vehicles"®)

Variable Make := DBTable(Records, "make")

Variable Model_Year := DBTable(Records, "year"®)

Variable Car_Model := DBTable(Records, "model®)

Analytica User Guide 355

Chapter Analytica Enterprise Accessing databases

Since Model is a reserved word in Analytica, we named the variable Car_Model instead of just
Model. But, the second parameter to DBTable() specifies the name of the column as stored in
the database. This does not have to be the same as the name of the variable in Analytica.

Alternatively, you can construct a table containing a subset of the columns in a result table. For
example, if vehicles has a large number of columns, you might create this variable with only the
three columns you are interested in:

Variable SubCarTable:= DBTable(Records, ["make®,"model*,"year™])
This table is indexed by Records and by an implicit index (a.k.a. a null index). The first argument

to DBTable() must always be an indexed defined by DBQuery() — remember the SQL query is
defined in that node, and this is how DBTable() knows which table is being retrieved.

DBWrite(): Writing to a database

356

Tip

You can use SQL to change the contents of the external data source from within an Analytica
model. Using the appropriate SQL statements, you can add or delete records from an existing
database table. You can also add columns, and create or delete tables, if your data source driver
supports these operations.

DBQuery() cannot alter the data source, because it processes the SQL statement in read-only
mode. Instead, use DBWrite(), which is identical to DBQuery() except that it processes the SQL
statement in read-write mode. DBWrite() can make any change to the database that can be
expressed as an SQL statement, and is supported by the ODBC driver.

To send data from your model into the database, you must convert that data into a text value —
more precisely, into an SQL statement. Analytica offers some tools to help this process. Here, we
illustrate a common case — writing a multi-dimensional array to a table in a database. We use the
ODBC_Library.ana library distributed with Analytica.

Suppose you want to write the value of variable A, which is a three dimensional array indexed by
I, J, and K, into a relational table named TableA, so that other applications can use the data.

First, we need to convert the 3D array into the correct relational table form. Then we convert the
table into the SQL text to write to the database.

Our approach is to first convert the three-dimensional array A into a two dimensional table, which
we store into TableA. TableA needs the two indexes ARowlndex and ALabel Index. These
three variables are defined as follows:

Index ALabellndex := Concat(lIndexNames(A),["A"])
Index ARowlndex := sequence(l, Size(A))
Variable TableA := MDArrayToTable(A, ARowlndex, AlLabellndex)

MDArrayToTable(a, i, I) is described in “MDArrayToTable(a, i, [)” on page 194. ALabel Index
evaluatesto ["1","J","K","A"], and ARowlndex sets aside one row for each element of A.
TableA is then a table with one row for each element of A, where the value of each index for that
element is listed in the corresponding column, and the value of that element appears in the final
column.

Next, set up TableA in the database with the same columns. This is most easily done using the
front end provided with your database. For example, if you are using MS Access, start the MS
Access program, and from there, create a new table. Alternatively, you could issue the statement:

DBWrite(DB, "CREATE TABLE TableA(l <text>, J <text>, K <text>, A
<text>)")

from an Analytica expression (replacing <text> with whatever type is appropriate for your appli-
cation). Be sure that the column labels in the database table have the same names as the labels
of ALabel Index in the Analytica model.

If you want to use column labels in the database that are different from the Analytica index names,
define ALabel Index to be a 1D array, self indexed. Set the domain of ALabel Index to be the
database labels, and the values of the array to the index names. (The last value is arbitrary.)

Analytica User Guide

Chapter Analytica Enterprise Accessing databases

Important feature
(double semicolon)

Creating an output node
to write to a database

Our data is now in the form of a 2D table as needed for a database table. Next we construct the
SQL text to write the table to the database. You must choose whether you want to append rows to
the existing database table, or replace the table entirely. Or you can replace only selected entries.
Your choice affects how you construct the SQL statement. Here, we totally replace any existing
data with the new data, so after the operation, the database table is exactly the same as TableA
in the Analytica model. The SQL statements for performing the write is:

DELETE * FROM TableA
INSERT INTO TableA(l, J, K, A) VALUES ("il1","j1","k1","alll")
INSERT INTO TableA(l, J, K, A) VALUES ("il1","j1","k2","all12")

The first statement removes existing data, since we are replacing it. We follow this by one
INSERT INTO statement for each row of TableA. The data to the right of the VALUES keyword
is replaced by the specific values for indexes 1, J, K, and array A (the example above assumes
the values are all text values). If your values are numeric, you should note that MSAccess adds
guotes around them automatically.

Since writing the table requires a series of SQL statements, we have two options: Evaluate a
series of DBWrite() functions, or lump the series of SQL statements into one long text value and
issue one DBWrite() statement. In Analytica, the second option is much more efficient for two
reasons. First, the overhead of connecting with the database occurs only one time. Second, inter-
mediate result tables do not have to be read from the ODBC driver, while if you issued separate
DBWrite() statements, each one would go through the effort of acquiring the result table, only to
be ignored.

To allow multiple SQL statements in a single DBWrite() function (or in a single DBQuery() func-
tion), Analytica provides an extension to the SQL language. The double semicolon separates
multiple statements. For example:

"DELETE * FROM TableA ;; SELECT * FROM TableA*®

This first deletes the data from the table, and then reads the (now empty) table. When ; ; is used,
only the last SQL statement in the series returns a result table. Most statements that write to a
database return an empty result table.

We are now ready to write the Analytica expression that constructs the SQL statement to write the
table to the database. The function to do this already exists in the ODBC_Library. First, use the
Add Module item on the File menu to insert the ODBC_Library into your model; then use the
WriteTableSql() function, which returns the SQL statement (as a text value) for writing the table
to the database. The function requires that | and L contain no duplicates (which should be the
case anyway).

Finally, define:
Variable Write_A_to_DB := DBWrite(DB, WriteTableSql(A, Rowlndex,
Label Index, "TableA®))

Write_A_to_DB writes array A to the database whenever it is evaluated. But, this happens when
the model user causes Write_A_to_DB to be evaluated, not necessarily whenever A changes.
To make it easy for the end user to perform the write, we suggest you make an output node for
WriteAtoDB:

1. Selectnode Write_A_to_ DB in its diagram.

2. Select the Make Output Node command on the Edit menu.

3. Move the new output node to a convenient place in the user interface of the model.

Initially, the output node shows the Calc button. When you click it, it writes A to the database. It

also displays the result of evaluating DBWrite(), usually an empty window, not very interesting to
the user. To avoid this, append “; "Done” ” to its definition:

Write_A_to DB := DBWrite(DB, WriteTableSql(A, Rowlndex,
Labellndex, "TableA®); “Done*

Now, when you or an end user of the model, clicks Write_A_to_DB, after writing A to the data-
base, it shows 'Done' in the output node. It reverts to the Calc button, whenever A changes.

Analytica User Guide 357

Chapter Analytica Enterprise Database functions

Database functions

DBLabels(dbindex)

The Database library on the Definition menu contains five functions for working with ODBC data-
bases.

Returns a list of the column labels for the result table. This statement can be used to define an
index which can then be used as the second argument to DBTable(). The first argument, dbin-
dex, must be defined by a DBQuery() statement.

DBQuery(connectionString, sql)

Used to define an index variable. The definition of the index should contain only one DBQuery()
statement. connectionString specifies a data source (e.g., "DSN=MyDatabase™) and sql
defines an SQL query.

When placed as the definition of an index variable, DBQuery() is evaluated as soon as the defini-
tion is complete. When it is evaluated, the actual query is performed. The resulting result table is
cached inside Analytica, to subsequently be accessed by DBTable() or DBLabels().

DBQuery() returns a sequence 1. .n, where n is the number of records (rows) in the result table.

DBQuery() should appear only once in a definition, and if it is embedded in an expression, the
expression must return a list with n elements.

DBQuery() processes the sgl statement in read-only mode, so that the data source cannot be
altered as a result of executing this statement. To alter the data source, use DBWrite().

DBTable(dbIindex, column)
DBTable(dbindex, columnList)
DBTable(dbindex, columnindex)

DBTable() is used to get at the data within a result table. The first argument, db Index, must be
the name of a variable (normally an index) in your Analytica model that is defined with a
DBQuery() statement. If the second argument, column, is a text value, it identifies the name of a
column label in the result table, in which case DBTable() returns a 1D array (indexed by dbIndex)
with the data for that column. If the second argument is a list of text values (the columnList form),
then DBTable() returns a 2D table with records indexed by dbindex, and columns implicitly
indexed (i.e., self-indexed/null-indexed). If the second argument is the name of an Analytica vari-
able (usually an index) whose value evaluates to a list of text values, those text values become
the column headings for a 2D table with columns indexed by columnindex, and rows indexed by
dbindex. With this last form, columnindex can be defined as DBLabels(dbindex).

DbTableNames(connectionString, cat, sch, tab, typ)

358

Examples

Connects to an ODBC data source and returns catalog data for the data source. connection-
String specifies a data source (e.g., "DSN=MyDatabase"). cat (catalog names), sch (schema
names), tab (table names), and typ (table types) might be patterns if your ODBC driver manager
is ODBC 3 compliant. Use the percent symbol (%) as a wildcard in each field to match zero or
more characters. Underscore (_) matches one character. Most drivers use backslash () as an
escape character, so that the characters %, _, or \ as literals must be entered as \%, _, or \\. typ
might be a comma-delimited list of table types. Your data source and ODBC driver might or might
not support this call to varying degrees.

To get all valid catalog names in My db:
DBTableNames(*DSN=My db*®,"%","","","")

To get all valid schemas in My db:
DBTableNames("DSN=My db*,"","%","","")

Analytica User Guide

Chapter Analytica Enterprise Reading and writing text files

To get all valid table names in My db:
DbTableNames(*DSN=My db*®,"","","%","")

To get all valid table types:
DbTableNames(*DSN=My db*®,"","","","%")

DBWrite(connectionString, sql)

This function is identical to DBQuery() except that the query is processed in read-write mode,
making it possible to store data in the data source from within Analytica.

MdxQuery(connectionString, mdx)

MdxQuery lets you read or write multidimensional data on an OLAP server database, returning or
sending a multidimensional Analytica array. It uses the standard query language, MDX. MDX is
analogous to SQL, but where SQL accesses any standard relational database, MDX accesses
multidimensional “hypercube” databases. MdxQuery() works with Microsoft SQL Server Analysis
Services.

connectionStr is the standard text used to identify and connect with the database, similar to that
used in other database functions, such as DBQuery(). mdx is text containing the query in the
MDX language.

MdxQuery() creates a local index for each dimension. The local indexes are named .Axis1,
Axis2, .Axis3, etc., and contain the cube member captions as elements. Some cube axes
returned from MDX queries are hierarchical, and for these, MdxQuery concatenates member
captions, separated by commas. For example, if a particular hierarchical axis included calendar
year and quarter, an element of .Axis1 might be “2003,1", i.e., Calendar year 2003, quarter 1. To
use a separator other than comma, specify an optional parameter, sep, to MdxQuery.

For additional usage information and examples, please refer to MdxQuery on the Analytica Wiki.

SqlDriverinfo(driverName)

Returns a list of attribute-value pairs for the specified driver. If driverName="" (an empty text
value), returns a list of the names of the drivers. driverName must be a text value — it cannot be
a list of text values or an index that is defined as a list of text values. This statement would not
normally be used in a model, but might be helpful in understanding the SQL drivers that are avail-
able.

Reading and writing text files

ReadTextFile(filename)

Reads a file filename and returns its contents as a text value. If filename contains no directory
path, it tries to read from the current folder, usually the folder containing the current model file. If it
doesn't find the file, it opens a Windows browser dialog to prompt the user. For example:

Function LinesFromFile(filename: Atom Text)
Definition:
VAR r := SplitText(ReadTextFile(filename), Chr(10));
Index lines :=1..Size(r);
Array(lines, r)
This function reads in the file and splits the text up at the end of each line, with the Chr(10) line

feed character. It then defines a local index Iines, to be used as the index of the array of lines
that it returns.

The optional parameter showDialog controls whether the file dialog appears. If not specified,
then the dialog appears only if the file does not exist. If you set showDialog to true (1), it always

Analytica User Guide 359

http://lumina.com/wiki/index.php/MdxQuery

Chapter Analytica Enterprise Making a browse-only model and hiding definitions

prompts for the file, even if it finds one by that name. This gives the user a chance to change the
filename, while still providing a default name.

WriteTextFile(filename, text, append, warn, sep)

Writes text to the file filename. The filename is relative to the current data directory. It returns the
full pathname of the file if it is successful in writing or appending to it. By default, the append flag
is False and warn flag is True. If the file doesn't already exist, it creates the file in the current
data directory — and if the file does exist, it asks if you want to replace it. If append is True (1),
and the file already exists, it appends the text to the end of the file. If warn is False (0), it does
not issue a warning before overwriting an existing file when append is Fal se, or when modifying
an existing file when append is True.

If text is an array, it writes each element to the file, inserting separator sep between elements, if
provided. If text has more than one dimension, you can control the sequence in which they are
written by using function JoinText() to join the text over the index you want innermost.

You can write or append to multiple files when filename is an array of file names. If text has the
same index(es), it writes the corresponding slice of text to each file — following proper array
abstraction.

Making a browse-only model and hiding definitions

360

Tip

Hiding and unhiding
definitions

When you are ready to let others use the models you have created, you might want to save it as
browse-only, so that end users can only change the variables you have designated as inputs (by
making input nodes for them). You might also want to hide definitions of variables or functions to
protect confidential or proprietary data or algorithms. With Analytica Enterprise, you can save
models that are locked as browse-only and with hidden definitions, using these steps:

1. Hide selected definitions in your model, for entire model, modules, or by variable.

2. Save your master model file (and any linked submodules) so that you can still view and modify
it yourself.

3. Select Save a copy from the File menu, and check Lock and obfuscate and optionally Save
as a browse-only model copy to save an obfuscated copy — that is a file scrambled into a
non-human-readable form.

4. Distribute the obfuscated copy to your end users.

The third step permanently locks your model so that hidden definitions can never again be viewed
in that copy. It is therefore recommended that you save a protected copy of your model, and leave
your original model as a master (unprotected) copy. Until the model is stored in an “obfuscated”
form (step 3), an end user is not prevented from unhiding your definitions, or from viewing them
by other means (e.g., by loading the Analytica model file into a text editor).

An obfuscated model file cannot be un-obfuscated, even by the original author. If it is locked as
browse-only, it can never again be edited. If definitions are hidden, they can never again be viewed
or edited. Always place a master copy of your model (and any submodules) in a safe place before
making an obfuscated copy!

To hide the definition of a single variable or function, select its node and select Hide Definition(s)
from the Object menu, so it becomes checked. You cannot hide multiple nodes, except by hiding
all nodes in a parent module. To hide the definitions of all objects in a module:

1. Select the node of the module in its parent diagram, or open the module and select no nodes
inside it.

2. Select Hide Definition(s) from the Object menu, so it becomes checked.

If a variable, function, or module is hidden, when you try to view its definition, it displays:
[Definition is Hidden]

Analytica User Guide

Chapter Analytica Enterprise Making a browse-only model and hiding definitions

Tip

Unhiding and
inheritance of hiding

Tip

Saving an obfuscated
copy of your model

The definition of a variable with an input node is always visible regardless of whether it or its parent
module is marked as Hidden.

Definition hiding is inherited down the module hierarchy. If you hide a module, you hide the defini-
tions of all the objects that it contains, including its submodules and all the objects that they con-
tain — unless you explicitly unhide an object or submodule, in which it or the objects it contains
are not hidden. To unhide a variable, function, or module:

1. Selectits node in its parent diagram.
2. Select Unhide Definition(s) from the Object menu, so it becomes checked.

In the module hierarchy shown below, module Mol is hidden, and therefore so are the objects it
contains, module Mo2, Val, and Va2. But module Mo3 is unhidden, and therefore so are the
objects it contains, Va3 and Mo4. However, object Va4 is itself explicitly hidden.

Mol
(hide)
Mo3
) @ [
Va2 Va3
Va4
(hide)

The Hide Definition(s) and Unhide Definition(s) menu options are disabled if the current model,
or any of its linked submodules, has been obfuscated. In this case, obfuscation has locked hiding
in place.

After hiding the definitions you want, you can view your model to check everything is as you want.
You can still Unhide items if you want to view or edit them. But, after saving the model in obfus-
cated form, no one, even you, can view hidden definitions or edit any variables that are not inputs,
even if they open the model file in a text editor. That's why it's important that you save a master
copy for your own use.

When you are ready to save an obfuscated copy of your model, select Save a Copy In from the
File menu.

Analytica User Guide 361

Chapter Analytica Enterprise

Huge Arrays

EE3

=+ & ek E-

Save a copy of Model Energy_analyzer as

Save in |) Latest examples

ﬁl Energy efficiency

af T 06
File name: |Energ_l,l analyzer End Uszer Save
Save astype: | Analytica Model [*.anal | Cancel

[v Lock and obfuscate the copy
v 5 b
Cl

-only maodel

Enter a filename that is different than the filename of your master copy, to make sure that you
retain an editable version for your self.

Click the Lock and obfuscate the copy checkbox at the bottom of the dialog to save the model in
an encrypted form that makes any hidden definitions unviewable, even if you try to edit the file.

Click Save as a browse-only model checkbox if you also want to prevent users from changing any
variables not designated as inputs. In that case, the model is locked in browse-only mode, as if it
is being run with Analytica Player or Power Player, even if the user runs the model with an Analyt-
ica edition that normally allows editing.

A browse-only model is always obfuscated to prevent anyone from editing the source Analytica
file. Thus, it automatically checks Lock and obfuscate the copy and the Save in XML format option
is not available.

If you want end users to be able to use other Enterprise features, such as database access, file
reading and writing, Huge Arrays, or performance profiling, they need the Power Player — or their
own Enterprise edition.

When a browse-only model (saved as such from Enterprise) is loaded into Analytica Professional,
it runs it in Power Player mode.

Warning: Do not obfuscate libraries or linked submodules!

Tip

Huge Arrays

362

If you want to create an obfuscated version of your model, embed any libraries or submodules
into it, rather than linking them, to avoid accidentally obfuscating them.

If you read an obfuscated library or other module into your model, it results in obfuscating the
parent model, as well as any other separately filed submodules or libraries it might contain. So, you
could accidentally end up obfuscating your entire model and rendering it uneditable by anyone,
including you! Therefore, we strongly recommend that you do not obfuscate any library or module
intended to be used by another model; and that you do not try to read an obfuscated library or
module into any model.

Analytica Enterprise, Optimizer, Power Player, and ADE can manage indexes and arrays of up to
100 million elements in any dimension. The only practical limit on model sizes is the amount of
memory. Huge Arrays means they can also handle sample size for probabilistic simulation up to

Analytica User Guide

Chapter Analytica Enterprise

Tip

Creating buttons and scripts

this size. (You can set this in the Uncertainty Setup dialog from the Result menu.) This also lets
you read in large datasets from databases, using the ODBC functions.

Editions of Analytica other than Enterprise, Optimizer, Power Player, and ADE are limited to index
and sample sizes of 32,000 elements.

Creating buttons and scripts

To make a button

Button script

Script language

Tip

A button is a special kind of object you can add to a diagram. It contains a script that is executed
when you press the button (in browse mode). You need Analytica Enterprise (or Optimizer) to cre-
ate new buttons. You can use buttons with any edition of Analytica.

To create a new button, enter edit mode, and drag from the button icon at the right end of the new
object toolbar onto the diagram (or press Control+0).

o|e|o|s|a|n|r|m

_ B5=]

Setagd |
value of X :
|

hx »| =

Q. Diagram - Buttons

g 4| E
Set A to value of X: | Script v |
(&= H3 =

The button script is in its script attribute. You can view and edit the script in the Attribute panel as
above, or its Object window, like any user-editable attribute. Any change to an identifier used in a
button script automatically updates the script, just as it does in a definition of a variable or func-
tion.

The script language is similar to the Analytica language used in definitions. Some key differences
are:

« A script consists of one or more statements, each on a separate line, with no semicolon (;) or
other separator between them.

« A statement can be an assignment to change the definition of a global variable — something
not allowed in a variable definition.

« A statement in a script can be any expression valid in the Analytica modeling language,
including a call to a built-in or user-defined function, as long as it fits on one line.

« A statement or expression in a script must be all on one line. A new line implies a new
statement. A script does not accept BEGIN END or parentheses around a sequence of
statements.

< A script can call a function that assigns to a global variable. Such a function can be called
directly from a script, or indirectly from another function called from a script, and so on
recursively. Such a function might not be from an Analytica variable.

« Script statements can use a wide range of script commands, not available in the normal
modeling language. Among other things, these can open or close windows. See http://
lumina.com/wiki/index.php/Commands.

Consult the Scripting Guide on Anawiki for details of syntax of scripts.

If you want a button to perform a complex series of steps, it is usually easiest to define those steps
in a function, and call the function from the script, rather than write the steps directly into the script.

Analytica User Guide 363

http://lumina.com/wiki/index.php/Commands
http://lumina.com/wiki/index.php/Commands
http://lumina.com/wiki/index.php/Scripting_Guide

Chapter Analytica Enterprise Creating buttons and scripts

Function definitions offer several advantages over scripts, including the ability to add inputs by
drawing arrows to its node and a more flexible (and familiar) syntax.

Assigning to global variables
Assigning a definition

364

in a script

Assigning a value
in ascript

Assigning a value
in a function

Save a
computed value

A statement in a button script can assign to a nonlocal (global) variable, for example:
:= 100
This is not permitted in the definition of a variable, which only assigns to local variables declared

within the definition of the variable, to prevent side effects — where evaluating one variable
changes the value of another. See “Assigning to a local variable: v := e” on page 329.

An assignment statement in a script assigns the definition of the variable to the expression
assigned, not to the value of the expression. Consider these three statements in a button script,
assuming A and B are global (i.e., non-local) variables:

A:=1
B := A+1
A = 100

The second assignment changes the definition of B to the expression A+1, not the value of the
expression, which would be 2. After these three statements, the value of B is 101, because the
third line sets A to 100, which propagates to the definition of B is A+1.

In the context of an expression rather than a script statement, the assignment
B := A+l

sets variable B to the value of A+1, not the expression A+1. An expression is anything in the def-
inition of a variable or function. You might also include an expression within a script statement
simply by enclosing it in parentheses:

A=1
(B := A+1)
A -= 100

In this case, after executing this script, the definition of B is 2 — the value of expression A+1 in the
second line. Since the definition of B is now 2, not A+1, the third line, assigning 100 to A has no
effect on B.

There is an important exception to the rule that you cannot assign to globals in a definition: You
can assign to a global variable in a function that is called from a button script. It can be called
directly or indirectly — that is, called from a function called from a script, and so on recursively:

Variable A := 100
Variable B := 2

Function IncrementA
Parameters: (x)
Definition: A := A + X

Button Add_B_to_A
Script: IncrementA(B)
When you press button Add_B_to_A, it calls function IncrementA, which sets the definition of A

to the current value of A+B, i.e., 102. Like any assignment in a function, it assigns the value not
the expression A+B.

This kind of global assignment gives you the ability to create buttons and functions to make
changes to a model, including such things as modifying existing model values and dependencies.

One useful application of assigning to a global variable is to save the results of a long computa-
tion. Normally, the cached result of a computation is stored until you change any ancestor feeding
into the computation, or until you Quit the session. By assigning the result to a global variable,

Analytica User Guide

Chapter Analytica Enterprise

Assign to
an attribute

Creating buttons and scripts

you can save it so that it remains the same when you change an input, or even when you quit and
later restart the model.

A common case where this is helpful is a model containing two parts: (1) A time-consuming statis-
tical estimation, neural network, or optimization that learns a parameter set, and (2) a model that
applies the learned parameters to classify new instances. After computing the parameters, you
can save them into a set of global variables, and then save and close the model. When you
restart the model, you can apply the learned parameters to many instances without having to
waste time recomputing them.

Consider this example:

Variable Saved A := 0

Function Save_value(x)
Description: Sets Saved_A to be the value of x.
Definition: Saved A := X

Button Save_A
Script: Save_value(A)

When you click button Save_A, it calls function Save_value(A), which saves the value of A into
global Saved_A. Saved_A retains this value if you change A or any of its predecessors, or even if
you quit the session, saving the model file, and later restart the model. Thus, you won't have to
wait to recompute Saved_A. Of course, the value of Saved_A does not update automatically if
you change any of its predecessors, the way A does. You need to click button Save_A again to
save a new value of A.

If the value of A is an array with nonlocal indexes, the definition of Saved_A is an edit table,
using those indexes. Any subsequent change to those indexes affect, and possibly invalidate the
table. If you want to make sure this doesn’t happen, you might want to save copies of the indexes,
and transform the table to use the saved indexes.

You can assign to any user-editable attribute of a (nonlocal) variable or other object, subject to the
same restrictions as assigning a value — i.e., you can do it only in a function called from a script,
directly or indirectly. You cannot assign to an attribute in the definition of a variable. The syntax is:

<attrib> OF <object> := <text>
Here <attrib> is the name of an editable attribute, including Title, Units, Description, Definition,

Check, Domain, and Author; <object> is the identifier of a user-defined, nonlocal object, vari-
able, function, module, etc.; and <text> is a text value. For example:

Function Retitle(o, t)

Description: Sets the title of object o to text t.
Parameters: (o: Object; t: Atom Text)

Definition: Title OF o0 := t

Variable Gray = 0
Title: Gray

Button Change_title

Script: Retitle(Gray, "Earl "&(Title of Gray))
When you click button Change_title, it calls function Retitle applying it to variable Gray,
prefixing the old title of Gray with Earl to become Earl Gray. It does this again each time you

press the button. Notice that the object whose attribute you are resetting can be passed to the
function, provided the parameter is qualified as an Object in the parameters declaration.

If the text is an array, it flattens the array into a single text value before the assignment — proba-
bly not what you want. So, it is best only to assign atomic text values.

Analytica User Guide 365

Ch apter Analytica Enterprise Performance Profiler library

EvaluateScript(t)

Tip

If you want to assign a new definition as text (rather than assigning the value of an expression),
you can assign to the definition thus:

Definition OF X = Y~2
You can use this method to assign new values to various internal attributes, such as Nodeloca-

tion, Nodecolor, Nodesize, and NodeFont, letting you change the way nodes appear on a dia-
gram. Consult the Scripting Guide on Anawiki for details of syntax.

This function evaluates a text value t as if it was a script. This means t can contain script com-
mands, assignments to globals, and other statements permitted in scripts.

Avoid using EvaluateScript(t) except in script functions — that is, functions called from button
scripts. This minimizes the danger of undermining the no-side-effects rule.

Typescript Window

The Typescript window offers an old-fashioned command-line user interface, like the Windows
CMD program or a Unix shell, showing a prompt — the title of the model or module — at the start
of each line. You can type in a script command. It prints any results as text, and show another
prompt. This window is occasionally useful for advanced users who wish to inspect internal
details of a model. You can also use it to test out commands that you want to use in a button
script.

To open the Typescript window, press Control+* (single apostrophe).

@ Typescript
i model Ana_ug_ 4 0_eq 416 ohjects

Buttons_and_assignme: Sl
Button Change_fitle

Izin: Buttons _and_assignme
Title: Change title
Modelocation; 360,224 1
Modesize: 56,24

Wincstate: 2 361,351 476 224
Script: Retitle(Gray, 'Earl '&Title OF Gray)

Buﬂons_and_asaignme:' -

| (4

Performance Profiler library

366

The Performance Profiler library shows you the computation time and memory space used by
each variable and function. If you have a large model that takes a long time to run or uses a lot of
memory, you might want to find out which variables or functions are using the Lion’s share of the
time or memory. As experienced programmers know, the results are often a surprise. With the
results from the Performance Profiler, you know where to focus your efforts to make the model
faster or use less RAM.

First add Performance Profiler.ana from the Libraries folder into your model.

Analytica User Guide

http://lumina.com/wiki/index.php/Scripting_Guide

Ch apter Analytica Enterprise Performance Profiler library

[Diagram - Performance Profiler g@g|
:
profiles times
Sort objects by | Bytes - |
Performance profiles mi
ol | [

Now display the results (table or graph) for the variables whose performance you want to pro-
file. Open the library, and click Performance profiles.

W Result - Performance profiles

Mid Value of Performance profiles
& ™ Totshs
] [Protter feds > p [~ To
Class Module Bytes CPUmsecs msSecs W ancestors -
Revenue Variahle Project revenue analysis| 2,356,040 301 40| |
HPV revenue Chjective Praject revenue analysis 168316 a0 211
Triangular2in} Function Inclex library 24 7o 70
Prob_from_inputs{n) Function Inclex library 24 20 20—
Product released Decision Praject revenue analysis 168316 10 30
B&D cost Chance Project revenue analysis 168 426 10 30
Production cost Chance Praject revenue analysis 168316 10 20
Merit “ariable Partfolic optimization 168,316 10 521
R&D budget Decision Maodel details 10 1 1
Project inputs Variahle Maodel details 5228 1 1| =
|_

Update profiles

Zero out times

Understanding
memory usage

Understanding
computation time

This table lists the variables and functions by row, with the class of the object, parent module,

Bytes of RAM (random access memory), and CPU msecs (milliseconds of time used by the cen-
tral processing unit). The last column, msecs w ancestors, shows the CPU milliseconds to com-
pute each variable or function including all its ancestors — i.e., the variables and functions it uses.
The Profiler shows all variables and functions that use more than 24 bytes of RAM (the minimum)
or take more than 1 millisecond to compute. Use Sort objects by to sort the table by any column.

If you want to inspect a variable or function to see why it's taking so much time or memory, just
click its title in the .Objects index column to open its Object window.

After computing more results, click this button to update the performance profile to reflect the
additional time and memory used.

If you want to look at the incremental time used by additional results, or another computation, first
click this button to zero out the times already computed.

For complex definitions, it might use much more RAM while it is computing than it needs to cache
the final result — the Profiler reports only the latter. The Bytes show the RAM used to store the
value of each variable, mid, probabilistic, or both, depending on which it has computed. Typically,
an array takes about 12 bytes per number to store. For example, an uncertain dynamic array of
numbers, with an index | of 20 elements, Time has 30 elements, and Samplesize = 1000, would
use about 20 x 30 x 1000 x12 = 7,200,000 bytes or 7.2 Megabytes. Analytica uses an efficient
representation for arrays with many zeroes (sparse arrays) or many repeated values. An array
that is an exact or partial copy of another array can share slices. In such cases, it might actually
use less memory than it reports.

The CPU time listed is the time it took to evaluate the mid and/or prob value of each variable or
function, depending on which type of evaluation it did. It is zero if the results computed did not
cause evaluation of the variable or function. A variable is usually only computed at most once
each for its mid and prob value. Rare exceptions include when the variable is referenced directly

Analytica User Guide 367

Chapter Analytica Enterprise Integrating with other Applications

Time and virtual
memory

or indirectly in a parameter to Whatif or Whatlfall, which might cause multiple evaluations. A
function can be called many times. The CPU time reported is the sum over all these evaluations.

Like most 32-bit applications on Windows, Analytica can use up to 3 GB of memory. If your com-

puter doesn’t have that much RAM installed, and it needs more than is available, it can use virtual
memory — that is, it saves data onto the hard disk. Since reading and writing a hard disk is usu-

ally much slower than RAM, using virtual memory often causes the application to slow down sub-
stantially. In this case, finding a way to reduce memory usage below the amount of physical RAM
available can speed up the application considerably. Another approach is to install more RAM, up
to 4 GB.

Performance profiling attributes and function

MemorylnUseBy(v)

ResetElapsedTimings

Tip

The Performance Profiler library uses a function, two attributes, and a command, which are also
available for you to write your own functions using memory or time. For an example of how to use
them, you can open up the library.

This function returns the number of bytes in use by the cached result(s) for variable v — with the
same disclaimer that shared memory can be counted more than once. It includes memory used
by mid and prob values if those results have been computed and cached, but it doesn't force
them to be computed if they haven't been.

This function includes these two special read-only attributes:

EvaluationTime This attribute returns the time in seconds to evaluate its variable or
function, not including the time to evaluate any of its inputs.

EvaluationTimeAll This attribute returns the time in seconds to evaluate its variable or
function, including the time to compute any of its inputs that needed to
be evaluated (and their inputs, and so on.).

This command sets these attributes back to zero. Like any command, you can use it in a button
script, the Typescript, but not in a regular definition.

These features, including the Performance Profiler are only available for Analytica Enterprise,
Power Player, and ADE editions.

Integrating with other Applications

RunConsoleProcess(program)

368

Required parameter

Optional parameters

This function lets an Analytica model run a console process, that is, start another Windows appli-
cation. The application or program can be a simple one with no graphical user interface, or it can
interact directly with the user. RunConsoleProcess() can provide data as input to the program
and return results generated by the application. The program parameter contains text to specify
the directory path and name of the program. It can feed input to the program via command line
parameters in cmdLine, via the stdin parameter, piped to the Stdin input channel of the program,
or via a data file created with WriteTextFile(). Normally, when the program completes, RunCon-
soleProcess returns a result (as text) any information the program writes to stdOut. Analytica
can also use ReadTextFile() to read any results the program has saved as a data file.

program Text to specify the directory path and name of the Windows application (pro-
gram) to run. A relative path is interpreted relative to Analytica’s CurrentDataDi-
rectory. If it cannot find or launch the application, it gives an error message.

cmdline Text given input to the program as command line parameters. (It is separated
from the program parameter to protect against a common type of virus attack.)

Analytica User Guide

Chapter Analytica Enterprise Integrating with other Applications

Examples
Run a VB Script

To run a batch file

stdin Text to be piped to the StdIn input channel of the program.

block If you omit block or set it to True (1), RunConsoleProcess() blocks — that is,
after calling the process, Analytica stops and waits until the console process ter-
minates and returns a result before it resumes execution. While blocked, Analyt-
ica still notices Windows events. If you press Control+Break (or Control+.)
before the process terminates, it kills the process, and ends further computation
by Analytica, just as when Analytica is computing without another process.

If you set block to False (0), RunConsoleProcess() spawns an independent
process that runs concurrently with Analytica. Within Analytica, it returns empty
text. Analytica and the spawned process each continues running independently
until it terminates. If you press Control+Break (or Control+.), it interrupts and
stops further computations by Analytica, but has no effect on the spawned pro-
cess. An unblocking process might continue running even after you exit Analyt-
ica. Unblocking processes are useful when you want to send data to another
application for display, such as a special graphing package or GIS, or for saving
selected results. It is difficult for Analytica to get any results or status back from
an unblocking process. If you need results back it is usually best to use a block-
ing process.

curDir The directory the process should use as its default directory to read and write
files. If omitted, it uses the application’s own directory as the default.

priority Sets the priority that Windows should give the spawned process relative to the
Analytica process. The default (0) is the same priority as the Analytica process.
Setting it to +1 or +2 raises its priority, taking more of the CPU for the process. -
1 or -2 lowers the priority, letting other processes (including Analytica) use more
of the CPU.

showErr Controls the display of error messages from a blocking process. By default, if the
process writes anything to stdErr, Analytica displays it as an error message
when the process terminates. If showErr=2 it shows any text in stdErr as a
warning message. If showErr=0, it ignores anything in stdErr. Analytica always
ignores any error in an unblocking process, which is assumed to control the dis-
play of its own errors.

RunConsoleProcess() fully supports Intelligent Arrays. If any parameter is passed an array, it
runs a separate process for each element of the array. It runs multiple blocking processes
sequentially. It runs multiple non-blocking processes concurrently.

Suppose the Visual Basic program file Hel loWor ld.vbs is in your model directory and contains:
WScript.Echo "Hello World"
Your call to RunConsoleProcess might look like:
RunConsoleProcess("'C:\Windows\System32\CScript._exe",
"CScript /Nologo HelloWorld.vbs™)

The first parameter identifies the program to be launched. You don’t need to worry about quoting
any spaces in the path name. The second parameter is the command line as it might appear on a
command prompt. This expression returns the text value "Hello World".

To send data to the StdIn of the process, include the optional parameter StdIn:
RunConsoleProcess('C:\Windows\System32\CScript.exe",
"CScript /Nologo HelloWorld.vbs™, StdIn: MyDataToSend)

where MyDataToSend is an Analytica variable that gives a text value.

Suppose the directory C:\Try contains a data file named data.log and a batch file named
Dol t.bat containing:

Analytica User Guide 369

Chapter Analytica Enterprise Integrating with other Applications

To read data from a URL

370

Dolt.bat — dump the log

Type data.log
This batch file assumes it is run from the directory C:\Try so does not mention the directory of
data. log. From Analytica, you call:

RunConsoleProcess("'C:\Windows\System32\Cmd.exe", "Cmd /C Dolt.bat",
CurDir: "C:\Try")

Or you can run it directly:

RunConsoleProcess(*'Dolt.bat", "Dolt_bat", CurDir: "C:\Try")
If you have the program ReadURL . exe (which you can download from the Anawiki), you can use
it to read the contents of a web page into Analytica:

RunConsoleProcess("'ReadURL .exe', "ReadURL " & url)
where url is a text string as would appear in the address bar of your browser. You can download
the ReadURL . exe program by clicking the link and saving. If you save ReadURL .exe into a

directory other than CurrentDataDirectory, you also need to specify its directory path in the pro-
gram parameter above.

Analytica User Guide

http://lumina.com/wiki/index.php/Retrieving_Content_From_the_Web

Appendices

The following appendices shows you:

How to select an appropriate sample size

The complete set of Analytica menus

The specifications for Analytica

The list of reserved identifiers and error message types
Forward and backward compatibility information

A bibliography

A list of all the Analytica functions

Appendices Appendix A: Selecting the Sample Size

Appendix A: Selecting the Sample Size

Choosing an

appropriate sample size

372

Uncertainty about
the mean

Each probabilistic value is simulated by computing a random sample of values from the actual
probability distribution.

You can control the sampling method and sample size by using the Uncertainty setup dialog.
This appendix briefly discusses how to select a sample size.

There is a clear trade-off for using a larger sample size in calculating an uncertainty variable.
When you set the sample size to a large value, the result is less noisy, but it takes a longer time to
compute the distribution. For an initial probabilistic calculation, a sample size of 20 to 50 is usually
adequate.

How should you choose the sample size m? It depends both on the cost of each model run, and
what you want the results for. An advantage of the Monte Carlo method is that you can apply
many standard statistical techniques to estimate the precision of estimates of the output distribu-
tion. This is because the generated sample of values for each output variable is a random sample
from the true probability distribution for that variable.

First, suppose you are primarily interested in the precision of the mean of your output variable y.
Assume you have a random sample of m output values generated by Monte Carlo simulation:

You can estimate the mean and standard deviation of y using the following equations:
I
Ji
m
i=1 (2)

This leads to the following confidence interval with confidence o, where ¢ is the deviation for the
unit normally enclosing probability a:

y+o) (@)

oo
Jm T Jm

Suppose you wish to obtain an estimate of the mean of y with an o confidence interval smaller
than w units wide. What sample size do you need? You need to make sure that:

w > 20% ©))

Or, rearranging the inequality:
2
ch)
m>| = 6
>(w 6)

To use this, first make a small Monte Carlo run with, say, 10 values to get an initial estimate of the
variance of y — that is, s2. You can then use equation (6) to estimate how many samples reduce
the confidence interval to the requisite width w.

Analytica User Guide

Appendices Appendix A: Selecting the Sample Size

Estimating confidence
intervals for fractiles

For example, suppose you wish to obtain a 95% confidence interval for the mean that is less than
20 units wide. Suppose your initial sample of 10 gives s = 40. The deviation ¢ enclosing a proba-
bility of 95% for a unit normal is about 2. Substituting these numbers into equation (6), you get:

(L - - 0

So, to get the required precision for the mean, you should set the sample size to about 64.

Another criterion for selecting sample size is the precision of the estimate of the median and other
fractiles, or more generally, the precision of the estimated cumulative distribution. Assume that
the sample m values of y are relabeled so that they are in increasing order:

Y1 < Yo < “Ym
c is the deviation enclosing probability o of the unit normal. Then the following pair of sample val-
ues constitutes the confidence interval:

(yi’yk)
where:
i = [mp-cJ/mp(l-p)] (8)
k=[mp+cimp(l-p)] 9)

Note: The brackets in equations (8) and (9) above mean round up [and round down I since
they are computing numbers that need to be integers.

Suppose you want to achieve sufficient precision such that the o confidence interval for the pth
fractile Yp is given by (y;.y,), where Y is an estimate of Yp _Ap and y, is an estimate of Yp + Ap
In other words, you want a confidence of Y_ being between the sample values used as esti-
mates of the (p - Ap)th and (p + Ap)th fractiles. What sample size do you need? Ignoring the
rounding, you have approximately:

i =m(p-Ap), k=m(p+Ap) (10)
Thus:

k—i = 2mAp (11)
From equations (8) and (9) above, you have:

k—i = 2cymp(l-p) (12)

Equating the two expressions for k— i, you obtain:

(13)
2mAp = 2cymp(1l-p)

m = p(l—p)(Aip)2

For example, suppose you want to be 95% confident that the estimated fractile Y o is between
the estimated fractiles Y g5 and Y 5. So you have Ap = 0.0%, and ¢ = 2. Substituting the numbers
into equation (14), you get:

(14)

m = 0.90><(1—0.90)><(2/0.05)2 = 144 (15)

Analytica User Guide 373

Appendices Appendix A: Selecting the Sample Size

374

On the other hand, suppose you want the credible interval for the least precise estimated percen-
tile (the 50th percentile) to have a 95% confidence interval of plus or minus one estimated percen-
tile. Then:

2
m = 05x(1-0.5)x(2/0.01) = 10,000 (16)
These results are completely independent of the shape of the distribution. If you find this an

appropriate way to state your requirements for the precision of the estimated distribution, you can
determine the sample size before doing any runs to see what sort of distribution it might be.

Analytica User Guide

Appendices Appendix B: Menus

Appendix B: Menus

File menu

Edit Object

Mew Model

Open Model..,
Add Module...
add Library...

Close

Close Model

Save

Save As...

Save A Copy In...

Prink Setup...
Prink Presvigw
Prink. ..

Prink Report...

BestCombination, AMA
Relocatable Classroom 3. AMA
Data Center Cost Modeky3, ANA
Data Center Cost Modekz, ANA
Data Center Cost Modelv2, ANA
Data Center Cost MadelvZ, A&

Bk,

Definition Result

[iagry
ChrHM

Chr+
ChrHL

Chrl-wy

Chrl+3

Chr4-P

g

@ Ana User Guide 4.0 examples -- Analytica® Enterprise

File Edit

New Model
Open Model
Add Module
Add Library

Close
Close Model

Save

Save As

Save A Copy In

Import
Export

Print Setup
Print Preview
Print

Print Report

Recent files

Exit

Analytica User Guide

Object

Definition Resul: Diagram ‘Window Help

Starts a new model.
Opens an existing, previously saved model.
Adds a filed module to the active model.

Opens file finder at Analytica Libraries folder to add a library
module.

Closes the active window.

Closes the model after prompting you to save the file if it has
changed.

Saves the model in its file. If the model has never been saved
before, prompts for a file name and folder. If it has linked
modules that have changed, it also saves them.

Saves the active model, filed module, or filed library as a new
file, after asking for new file name and folder.

Saves a copy of the active model (or filed module) into a new
file, after prompting for a file name, leaving the original file
name for future saves.

Imports the contents of a text or data file into the selected
variable definition. See “Importing and exporting” on page 298.

Exports the contents of the selected field or cells into a file. See
“Importing and exporting” on page 298.

Opens a dialog for selecting paper size, orientation, and
scaling options for printing.

Opens a view showing where page breaks occur before the
current window is printed.

Opens a dialog for selecting the printer, number of copies you
want to print, and other printing options.

Opens a dialog for printing multiple diagrams, Object windows,
and result windows at the same time. See “Printing” on
page 27.

Lists the six most recently opened Analytica model files. Select
one to open that model.

Quits the Analytica application, after prompting to save any
model changes to file.

375

Appendices Appendix B: Menus

Edit menu

208 Chiect

Zuk

Copy
Paste

Clear
Select Al

Definition Resy

Chrls
ChrH-C
Chrly

ChrH-A

Duplicate Modes k4D

Copy Diagram

Preferences. ..

376

Undo

Cut

Copy

Paste

Paste Special
Clear

Select All

Duplicate Nodes

Copy Diagram or
Copy Table

Insert Rows or
Insert Columns

Delete Rows or
Delete Columns

Preferences

OLE Links

Analytica User Guide

Undoes your last action. “Can’t Undo” appears in this location if an undo is
not possible.

Cuts the selected text, node(s), or table cells into the clipboard temporarily
for pasting.

Copies the selected text, node(s), graph, or table cells into the clipboard
temporarily for pasting. See “Copying and pasting” on page 292.

Pastes the contents of the clipboard at the insertion point in a text, diagram,
or table, or replaces the current selection. See “Copying and pasting” on
page 292.

Brings up a dialog to select the format of data to OLE link into an edit table.
Deletes the selected text or node(s).
Selects all the text in an attribute field, nodes in a diagram, or cells in a table.

Duplicates the selected nodes onto the same diagram. See “Duplicate
nodes” on page 51.

When a Diagram window is active, Copy Diagram copies a picture of the
diagram for pasting into a graphics application. When a table window is
active, Copy Table copies the entire multidimensional object as a
tab-delimited list of tables. See “Copying and pasting” on page 292.

Inserts an item into a list, or a row in a table, by copying the current item, or
row. If a column in a table is selected, Insert Columns inserts an item or
column. See “Editing a table” on page 171.

Deletes the selected item or items in a list, or rows or columns in a table. See
“Editing a table” on page 171.

Opens the Preferences dialog (page 58) to examine or change various
options.

Opens a dialog to let you change properties for OLE links from external
applications into your model. See Chapter 18, “Importing, Exporting, and
OLE Linking Data.”

Object menu

ela=Wd Definition Result
Find... Chrl+F
Make flias Chrl+M
Make Importance
Make Input Node
Make Output Node
Show By Identifier Chrly

Show Wwith Yalues
Attributes. ..

Hide Definitiongs)
Unhide Definitions(s)

Diagra

Appendices Appendix B: Menus

Find

Find Next

Find Selection

Make Alias

Make Importance

Make Input Node
Make Output

Node

Show By Identifier
Show With Values
Attributes

Hide Definition(s)

Unhide
Definition(s)

Analytica User Guide

Opens a Find dialog to search for an object by its identifier or title. If a
table is in focus, brings up the Find in Table dialog. See “Finding
variables” on page 306.

Finds the next object that partially matches the previously defined text
value. See “Finding variables” on page 306.

Finds an object by its identifier that matches the currently selected text.
See “Finding variables” on page 306.

Creates an alias for the selected object(s). See “Alias nodes” on
page 54.

Creates an importance variable (and index) to compute the importance
(rank correlation) of all uncertain inputs for the selected variable. See
“Importance analysis” on page 268.

Creates an input node for the selected node(s).

Creates an output node for the selected node(s). See “Using output
nodes” on page 122.

Shows the identifier instead of title of each object in the current diagram,
edit table, Result window, or Outline view. Toggle to show title again.

Shows the mid values of the variable and all its inputs in each Object
window. See “Showing values in the Object window” on page 26.

Opens the Attribute dialog to set the visibility of attributes and define
new attributes. See “Managing attributes” on page 306.

Marks the currently selected node or module as hidden, so that their
definitions are invisible. (Analytica Enterprise only)

Unhides the currently selected node or module. This overrides any
settings in parent modules to hide definitions. (Analytica Enterprise only)

377

Appendices Appendix B: Menus

Definition menu

This menu is hierarchical. Each library lists the functions or other constructs it contains. The mid-
dle partition lists built-in libraries. At the bottom, are any libraries you have created or added. If
you view and select a subitem when editing a definition, it pastes it into the definition.

Edit Definition

Opens the appropriate view for editing the definition of the selected

SN Resul Diagram Mindo variable. If the variable is defined as a distribution or sequence, the
Object Finder opens. If it is defined as a table or probability table, its
edit table window opens. Otherwise, an Object window or Attribute

Edit Tirme panel opens, depending on the Edit attributes setting in the
Preferences dialog (page 58).
Sheow Invalid Variables Edit Time Opens the Object window for the Time system variable. See “The Time
M index” on page 282.
akh 3
Array 4 Paste Identifier ~ Opens the Object Finder dialog for examining functions and variable
Distribution 3 identifiers, entering function parameters, and pasting them into
Special » definitions. See “Object Finder dialog” on page 112.
Statistical ' Show Invalid Displays a window listing all variables with invalid or missing definitions.
Operators 4 Variables See “Invalid variables” on page 309.
System Yariabl ’)
Mistr?: aranes N Math See “Math functions” on page 136.
Texk Functions 4 Array See Chapter 11, “Arrays and Indexes,” and Chapter 12, “More Array
Financial 3 Functions.”
Advanced Math ' Distribution See Chapter 15, “Probability Distributions.”
Database ’
Optimizer 3 Special Displays a list of unusual or less commonly used functions in the Special
Database » library.
Statistical See “Statistical functions” on page 262.
Operators Arithmetic, comparison, logical, and conditional operators. See
“Operators” on page 133.
System System Variables submenu (see below).
Variables
Matrix See “Matrix functions” on page 202.

378

Text Functions
Financial
Advanced Math

See “Converting number to text” on page 138.
See “Financial functions” on page 210.

See “Converting number to text” on page 138.

Database Appears only in Analytica Enterprise. See “Database functions” on
page 358.
Optimizer Appears only if you have the Optimizer activated. See Optimizer Guide

your libraries

Analytica User Guide

for more.

Lists the names of any libraries that you have defined or added to the
model, each with a submenu that lists the functions contained in the
library. See Chapter 20, “Building Functions and Libraries.”

Appendices Appendix B: Menus

System Variables
submenu

Analvticaedition
Analyticaplatform
Analyticaversion
False
Issampleavalmode
Tull

Fi

Run

Samplesize
Sampleweighting
Svdindesx

Time:

True

Analyticaedition

Analyticaplatform

Analyticaversion

False

Issampleevalmode

Null

Pi

Run
Samplesize

Sampleweighting

Svdindex

Time

True

Analytica User Guide

The edition of Analytica running, either “Optimizer”, “Enterprise”,
“Professional”, “Power Player”, “Player”, “Trial”, “Lite”, “ADE” or “ADE
Optimizer”.

The operating system/platform. In Analytica for Windows, this is “Windows,”
in Analytica for Macintosh, this is “Macintosh,” and in the Analytica Decision
Engine this is “ADE.”

An integer encoding the current build number of Analytica being run. In terms
of the major release number, minor release number, and sub-minor release
number, it is equal to:

10K - Major + 100 - Minor + SubMinor

For example, Analytica 4.1 subminor version 2 returns the value 40102.
The logical (Boolean) constant that evaluates numerically to zero.

This is 1 when evaluated in Sample mode, or 0 when evaluated in Mid mode.
You can use this in an expression when you need to compute a mid value
differently than a probabilistic value.

A special system constant, returned by various functions when data does not
exist at a requested location, and ignored by array-reducing functions when
present in the cells of an array. See “Exception values INF, NAN, and NULL"
on page 138.

The ratio of circumference to the diameter of a circle.

The index for uncertainty sampling, defined as
Sequence(1,Samplesize).

The number of sample iterations for probabilistic simulation. See
“Uncertainty Setup dialog” on page 225.

When this variable to an array indexed by Run, a different weight can be
assigned to each probabilistic sample point. See “Importance weighting” on
page 257.

The SingularValueDecomp() function returns three matrices, *U*", "W~=,
and "V*. To return all three at once, the return value is an array indexed by
SvdIndex, which is equal to [*U","W*","V=].

The index variable identifying the dimension for dynamic simulation (the
Dynamic() function). See “The Time index” on page 282.

The logical (Boolean) constant that evaluates numerically to nonzero.

379

Appendices Appendix B: Menus

Result menu

GCENM Diagram wWindow Help

W

Show Resulk Chrl+R

Mid Yalue

Mean Yalue

Skatiskics

Probability Bands
Probability Density
Cumulative Probability
Sarmple

Graph Setup. .,
Mumber Format. .. Chrl+B

Uncertainty Options,., Ckrl+U

Show Result

Mid Value

Mean Value
Statistics
Probability Bands

Probability
Density

380

Cumulative
Probability

Sample
Graph Setup
Number Format

Uncertainty
Options

Analytica User Guide

Opens a Result window for the selected object. See “The Result
window” on page 30.

Displays the mid or deterministic value. See “Uncertainty views” on
page 33.

Displays the mean of the uncertain value. See “Uncertainty views” on
page 33.

Displays statistics of the uncertain value in a table as set in the
Uncertainty Setup dialog. See “Uncertainty views” on page 33.

Shows probability bands (percentiles) as set in the Uncertainty
Setup dialog. See “Uncertainty views” on page 33.

Displays a probability density graph for an uncertain value. For a
discrete probability distribution, Probability Mass replaces this
command. See “Uncertainty views” on page 33.

Displays a cumulative probability graph representing the probability
that a variable’s value is less than or equal to each possible
(uncertain) value. See “Uncertainty views” on page 33.

Displays a table of the values determined for each uncertainty sample
iteration. See “Uncertainty views” on page 33.

Displays a dialog to specify the graphing tool, graph frame, and graph
style. See “Graphing roles” on page 86.

Displays a dialog to set the number format for displays of results. See
“Number formats” on page 82.

Displays a dialog to specify the uncertainty sample size and sampling
method and to set options for statistics, probability bands, probability
density, and cumulative probability. See “Uncertainty Setup dialog” on
page 225.

Appendices Appendix B: Menus

Diagram menu

Window Help
Sek Diagram Style. ..
Set Mode Styvle. ..
Show Color Palette

Align Selection To arid Ctr+]
Adjust Size Chr+T
Mave Inka Parent

v Resize Centered
hange Pickure Format...
v Snap ko Grid

Edit Icon

Align »
Make Same Size »
Space evenly »

Align submenu

Left Edges (CTRL+Left)
Centers Left and Right (CTRL+FS)
Right Edges (CTRL+Right)
Left and Right Edges (CTRL+=)
Top Edges (CTRL+Up)
Centers Up and Down (SHIFT+F3)
Botkom Edges (CTRL+Down)

Make Same Size submenu

width {=,Right)
Height (=,Down)
Both (==

Space evenly submenu

Across
Down

Set Diagram Style

Set Node Style

Show Color
Palette

Align Selection To
Grid

Adjust Size
Move Into Parent

Resize Centered

Change Picture
Format

Snap to Grid

Edit Icon

Left Edges

Centers Left and
Right

Right Edges

Left and Right
Edges

Top Edges

Centers Up and
Down

Bottom Edges

Width
Height
Both

Across

Down

Analytica User Guide

Displays a Diagram style dialog to set default arrow displays,
node size, and font for this diagram. See “Diagram Style dialog”
on page 78.

Displays Node style dialog to set arrow display and font for the
selected node(s). See “Node Style dialog” on page 79.

Displays the color palette to set the color of the diagram
background or of selected nodes. See “Recoloring nodes
or background” on page 77.

Aligns selected node(s) to the diagram grid. See “Align to the
grid” on page 73.

Adjusts the selected node’s size to match the default node size,
or to fit the title label. See “Default node size” on page 78.

Moves the selected object from the current diagram to its parent
diagram. See “The Object window” on page 23.

If checked, when you resize a node, the node’s center stays
unmoved. If unchecked, when you resize a node by dragging a
corner handle, the opposite handle stays unmoved. See “Align
selected nodes” on page 73.

Opens a dialog that lets you convert the internal image format for
any selected images to another image format.

Turns alignment to the diagram grid on or off in edit mode.See
“Align to the grid” on page 73.

Opens a window to draw or edit an icon for the selected node.
See “Adding icons to nodes” on page 124.

Aligns left edges.
Aligns centers along the same horizontal line.

Aligns right edges.

Moves and changes width so left and right edges are aligned
vertically.

Aligns top edges.
Aligns centers along the same vertical line.

Aligns bottom edges.

Makes all nodes the same width.
Makes all nodes the same height.
Makes all nodes the same width and height.

Spaces nodes evenly horizontally between leftmost and rightmost
node.

Spaces nodes evenly vertically between top and bottom node.

381

Appendices Appendix B: Menus

Window menu

mm Help

Bring To Fronk
Show Memory Usage
Show Page Breaks

Cascade
Tile Top ko Baokkam
Tile Left to Right

»

Help menu

User guide F1
Optirizer
Tukorial

Web tech support
Ernail tech support
Reqister. .,
Conkack Lumina..,
Update license. ..

About Analytica. ..

382

Bring To Front

Show Memory Usage

Show Page Breaks

Cascade
Tile Top to Bottom

Tile Left to Right

User guide

Optimizer

Tutorial

Web tech support

Email tech support

Register

Contact Lumina

Update license

About Analytica

Displays a list of the current windows; select one to display on top.

Opens a window showing memory usage. See “Numbers and arrays” on
page 384.

Shows page breaks for the active diagram.

Rearranges all open windows using a standard size, organized so that
you can see the title bar of each one.

Rearranges all open windows so that they fill the application window
horizontally.

Rearranges all open windows so that they fill the application window
vertically.

Opens the User Guide.

Opens the Optimizer Manual (only appears in Optimizer-enabled version
of Analytica).

Opens the Analytica Tutorial.

Opens your default web browser to the Analytica Tech Support page at
http://www.lumina.com.

Opens your email system to send an email to Analytica Tech Support.

Opens your default web browser to the Analytica software registration
page at http://www.lumina.com.

Provides contact information for Lumina.

Displays your current Analytica license information and allow you to
update the license code.

Displays useful information such as the application’s edition, release
number, your license code, and contact information.

Ti P The options that appear on the help menu vary depending on your computer setup and the version
of Analytica you have.

Analytica User Guide

Appendices Appendix B: Menus

Right mouse button menus

Cuk
Copy
Paste
Select Al

Duplicate Nodes
Copy Diagram
Preferences. ..

Edit: Definition
Show Result

Eting To Front
Send To Back

Set Diagram Style...
Set Mode Skyle,..
ShowHide Color Palette

ShowfHide Color Palette

[|

Click the right mouse button on one or more nodes, a diagram background, or in other windows
to get a menu of useful commands. The list of commands depends on the context. This menu is
what you get when you right-click a node.

These two menu options appear only when you right-click one or more nodes. This is the only
way to move some nodes in front of others.

Bring to Front

Send to Back

Analytica User Guide

Brings the selected object(s) to the front of the drawing order so that if the
object(s) overlap any other elements, the object is visible.

Sends the selected object(s) to the back of the drawing order so that the
selected object(s) are drawn behind any overlapping elements.

383

Ap pen dices Appendix C: Analytica Specifications

Appendix C: Analytica Specifications

Hardware and software

Objects

Uncertainty

Numbers and arrays

Memory usage

384

CPUs supported

System Software
Memory requirements

Application size

Number of system objects
Maximum user-defined objects
Maximum number of local-variables

Probability methods

Maximum sample size

Random sampling methods

Number precision

Maximum elements in a dimension

Maximum dimensions in an array

Pentium or higher and equivalent AMD processors
recommended

Windows XP, Vista, and Server
128 MB (512 MB+ recommended)
Approximately 6 MB

738
31,900
No fixed limit

Random Latin HyperCube
Median Latin HyperCube
Monte Carlo

99,999,999 for Analytica Enterprise, Optimizer, Power
Player, and ADE

30,000 (other Editions)
limited by available memory

Minimal Standard
L'Ecuyer
Knuth

15 significant digits for floating-point numbers
9 digits for integers

99,999,999 (Analytica Enterprise, Optimizer, Power
Player, and ADE)
30,000 (other editions)

15

The Memory Usage window displays the amount of memory available on your system, as well as
the memory currently in use by all applications, including Windows itself. The memory available
on your system is the sum of all physical memory installed on your system and the swapfile on
your hard disk, which is used to complement the physical memory.

To display the Memory Usage window, select Show Memory Usage from the Window menu.

Current sample size (reduce it if
you are having memory.
problems); see “Uncertainty
sample” on page 225

Shows proportion of available
memory currently used

Analytica User Guide

Number of user-defined variables and other objects

9

windows memory

—)

AEE)

]

age is OK

Sy=tem Memory:
’:14?63 available

Data
61 objects
Sample size =100 57.28MB in use

High-water mark'indicates

peak memory used

Ap pen dices Appendix C: Analytica Specifications

Tip

This window appears automatically when Analytica runs low on memory.

If you require additional memory to run your model at a given sample size, you can take several
steps to increase the amount of memory available to Analytica:

1.

Close other open applications.

All applications require a segment of memory to operate, and this reduces the memory
available to Analytica.

Increase the size of your computer’s swapfile.

In Windows XP, right click on My Computer and select the Advanced tab. Select
Performance Settings, Advanced, Virtual Memory Change. From the resulting dialog,
increase maximum paging file size.

Analytica is a 32-bit process, and like all 32-bit process, the Windows operating system limits
the maximum amount of memory that can be used by a 32-bit process to a default limit of 2GB.
In Windows XP and Vista, this limit can be increased to 3GB by editing a system file
C:\boot. ini. For the line corresponding to your operating in that file, append /3GB and
/USERVA options. For example, after your edit, the line may be:

multi (0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows XP' /3GB /USERVA

After making the edit, a system reboot is required for this to take effect.
Consider adding more physical memory to your computer.

If you are limited by the 3GB per process ceiling, then adding more memory will not increase
available space, although it may speed up execution when other applications are also open.

Consider ways to reorganize your model. Are there dimensions that can be removed from the
model, or especially from problematic high-dimensional results. The Performance Profiler (in
Analytica Enterprise) can help you pinpoint variables that consume a lot of memory.

For additional ideas for coping with memory limitations, see Managing Memory and CPU Time for
large models on the Analytica Wiki (http:/lumina.com/wiki).

Analytica User Guide 385

http://lumina.com/wiki/index.php/Managing_Memory_and_CPU_Time_for_large_models
http://lumina.com/wiki/index.php/Managing_Memory_and_CPU_Time_for_large_models
http://lumina.com/wiki

Ap pen dices Appendix D: Identifiers Already Used

Appendix D: Identifiers Already Used

Each object, whether built-in or created by you, must have a unique identifier. This identifier must
start with a letter, and can be up to 20 characters including letters, digits, and underscores. If you
try to create an identifier already in use, it warns you and append a digit to make it unique.

To see all identifiers currently in use:

1. Press Control+' (Control+single apostrophe), to open the Typescript Window
2. Type List, followed by Enter.

386 Analytica User Guide

Appendices Appendix E: Error Message Types

Appendix E: Error Message Types

Warning

Lexical error

Syntax error

There are several types of error messages in Analytica. Many messages are designed to inform
you that something in the model needs to be corrected; some messages indicate that Analytica
cannot continue or complete your request. Each error message begins with its message type, one
of warning, lexical, syntax, evaluation, system, and fatal errors.

In general, Analytica allows you to continue working on your model unless it cannot proceed until
a problem has been corrected. When you are editing a variable definition, you can request an
error message by pressing Alt-Enter or by clicking the definition warning icon [

A warning indicates that there is a possible problem. Here is an example.

Warning:

Log of non-positive number.

A warning is reported during result evaluation to inform you that continuing can yield unexpected
results.

You can suppress evaluation warnings for all variables by disabling the Show result warnings

preference (see “Preferences dialog” on page 58). When Show result warnings is unchecked,
any warning conditions encountered during result evaluation is ignored. You can also suppress

warnings during evaluation of a single expression with the IgnoreWarnings(expr) function. See
“IlgnoreWarnings(expr)” on page 349 for details.

If an identifier in a module you are adding to a model has a hame conflict with an identifier in the
model, you see a warning similar to the following.

Warning:

Can’t declare Variable Location because the Identifier
is already in use as Attribute Location.

Declare using the Identifier Location1?

A lexical error occurs when a component of an expression was expected and is missing or is
invalid. For example, if you enter a number with an invalid number suffix, you might get a mes-
sage similar to the following.

Lexical error while checking:

2sdf
N

Invalid exponent code.

A syntax error occurs when an expression contains a syntax mistake. Analytica often reports the
mistake together with the fragment of the expression that contained the error. Here is an example.

Syntax error while checking:

2++3

AN

Expression expected.

The following are two common syntax errors.

Expecting ", Indicates a comma is missing, or there are too few parameters to a function.

Expecting ")" Indicates there are too many parameters to a function.

If you attempt to change the identifier for a variable, and the new identifier is assigned to another
node, you see a message similar to the following.

Analytica User Guide 387

Appendices Appendix E: Error Message Types

388

Evaluation error

Invalid number

System error

Out of memory error

Syntax error:

The Identifier "Location” is already in use.

An evaluation error occurs when there is a problem while evaluating a variable, user-defined func-
tion, or system function. You are asked if you want to edit the definition of the variable currently
being evaluated.

Error during evaluation of Ch1.

Do you want to edit the Definition of Ch1?

If a system function expects a specific kind of argument, an error message similar to the following
is displayed.

Evaluation error:

First parameter of Sysfunction Argmax must be
atable.

This message indicates that an argument passed to the function is of a different type or cannot be
handled by that function. You might need to redefine a variable being used as an argument to the
function, or change an expression being passed as an argument.

If a calculation tries to perform a division by zero, it displays a warning with an option to continue
calculating. Three possible error codes can be returned as a result of an invalid calculation.

Code Meaning

INF Infinity, such as 1/0.

NAN Not A Number. Results from invalid functions such as Sqrt(-1), or 0/0.

NULL Displays as a blank cell if the result is a table, or shows the Compute button

(blank) otherwise. Results from certain functions, such as SubIndex(), when a
result is not available.

You can test for these results in an expression using ""X=INF", Isnan(X), or X=NULL.

If you see this message type, please contact Lumina Decision System'’s technical support depart-
ment to report the error. (See inside the front cover for contact information, or go to
www.lumina.com.)

Indicates that Analytica has used up all available memory and cannot complete the current com-
mand. If this occurs, first save your model. Before attempting to evaluate again, close some win-
dows, use a smaller sample size, or expand the memory available to Analytica (see “Numbers
and arrays” on page 384).

Analytica User Guide

Appendices Appendix F: Forward and Backward Compatibility

Appendix F: Forward and Backward Compatibility

Backward compatibility

Forward compatibility

Models created in earlier releases of Analytica can be loaded, viewed, evaluated, and modified
with Analytica 4.1. There is no fundamental difference in file format, so no file conversion must
take place. There are, however, some changes that could affect your results when migrating a
model from a previous release to 4.1.

When you are trying a model for the first time in 4.1, the first thing you should do is ensure that
Show Result Warnings is checked in the Preferences dialog. While evaluating your model, avoid
selecting Ignore Warnings if warnings do appear. If any expression in your model produces a
warning that you can live with, surround the expression with IgnoreWarnings(...) to suppress the
warning, so that you don'’t feel compelled to select the Ignore Warnings button. When you leave
warnings on while your model evaluates, any potential backward-compatibility issues are
reported to you.

The most commonly encountered difference is the multiplication of NaN or INF by zero. In earlier
releases of Analytica (prior to 4.0), multiplying INF or NaN by zero results in 0, while now it results
in NaN (with a warning, if “Check result warnings” is on). The new 4.0+ treatment here is in accor-
dance with the IEEE 754 binary floating point arithmetic standard. It was not uncommon by Ana-
lytica 3.1 modelers to zero-out NaNs and INFs with a multiplication by zero. Now you might need
to use IF-THEN-ELSE instead. If you find certain results have suddenly changed to NaN, this is
the likely reason.

There have been many bug fixes in Analytica 4.1, so if for some reason your model utilized an
undocumented feature that was really a bug, a change in model behavior could result. There are
also numerous uncommon situations where there are syntactic and evaluation differences
between the releases. In a correctly functioning model from a previous release, you are unlikely to
encounter these, but they are documented in detail on the Analytica Wiki at http://lumina.com/
wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models.

Generally when you load a model into Analytica and evaluate uncertain variables in an identical
sequence, the identical random samples are returned. (Also, when you reset the random seed,
you can reproduce the same sample.) In most, but not all, cases, Analytica 4.1 returns the same
sample returned by Analytica 3.1 or 4.0; however, this is not guaranteed, and there are several
cases where the sample is different. Although the samples in each release come from the same
distribution, the precise points in the random samples might be different, causing changes in your
results. Uncertain results inherently have a certain “sampling error” arising from the fact that a
finite sample size is used. These differences, when they occur, reflect this sampling error. Two
uses of distribution functions that are likely to result in a sampling difference are certain hierarchi-
cal uses of distributions, in which the parameters to distribution functions are themselves uncer-
tain, and use of the Truncate function (which now preserves rank order). In the hierarchical
cases, several distribution functions are more efficient now, requiring fewer random numbers to
be generated when producing the entire sample. In either case, once a different number of
pseudo-random numbers are utilized, you see all samples from that point on changed.

It is also possible to run models created or edited in Release 4.1 in earlier releases of Analytica,
such as Analytica 4.0 or 3.1, provided you don't rely on functions, features, or functionalities new
to Analytica 4.1. The models load into earlier releases of Analytica, although they might encounter
problems during parsing or evaluation in the places where 4.1 features are used. A few 4.1 fea-

tures might be stripped out of the model if it is re-saved from 3.1, including, for example, graphing
settings for graphs viewed while the model was loaded in 3.1.

If you have pasted bitmap graphics onto a diagram in 4.1, these will not display when your model
is loaded into Analytica 4.0 or earlier, due to a new feature in 4.1 that compresses these images
into an internal PNG format. The Change Picture Format option on the Diagram menu in 4.1
can be used to convert these back to the Legacy Bitmap format so that they display in earlier
releases (at a price of increased space consumed).

There are two issues related to edit tables that could potentially create a problem when loading a
model edited with 4.0 or 4.1 into an earlier release of Analytica. If a computed index has changed
in the model since the downstream edit tables have been accessed, some edit tables might not
yet be fully spliced. When loaded into Analytica 3.1, unspliced edit tables do not successfully

Analytica User Guide 389

http://lumina.com/wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models
http://lumina.com/wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models

Appendices Appendix G: Bibliography

390

parse. To avoid this, prior to saving the model from Analytica 4.1, access the typescript windows
by pressing the F12 key and type:

SpliceTable all
A second issue arises if any of your edit tables have blank (empty) cells. Edit tables with blank

cells do not parse in earlier releases, so you must ensure that all cells in your edit tables have
value, even if just O or null.

In general, because there are so many new features in 4.0 and 4.1, it is likely that you have to test
and debug your model in 3.1 to eliminate the use of new features or functions, if its use in 3.1 is
required. Please see “What's new in Analytica 4.1?” on page 10 and “What's new in Analytica
4.0?” on page 12 for information on the many things that are new in this release.

Appendix G: Bibliography

Morgan, M. Granger and Max Henrion. Uncertainty: A Guide to Dealing with Uncertainty in Quan-
titative Risk and Policy Analysis, Cambridge University Press (1990,1998).

Written by the original authors of Analytica, this text provides extensive background on how to
represent and analyze uncertainty in quantitative models. It includes chapters on:

« Building good policy models

« Categorizing types and sources of uncertainty

* How people make judgments under uncertainty

« Encoding expert judgment in the form of probability distributions

* Choosing a computational method for propagating uncertainty in a model

¢ Analyzing uncertainty in very large models

« Displaying and communicating uncertainty

« How to tell if representing uncertainty could make a significant difference to your conclusions,
or “the value of knowing how little you know”

We recommend the second edition, published in 1998, which contains a full chapter on Analytica
(Chapter 10). If you have the first edition (1990), we recommend that you ignore Chapter 10,
which describes the precursor of Analytica and is quite out of date!

Clemen, Robert T. Making Hard Decisions: An Introduction to Decision Analysis. Duxbury Press
(1991).

Howard, R., and J. Matheson. Influence Diagrams. In Readings on the Principles and Applica-
tions of Decision Analysis, eds. R. Howard and J. Matheson. pp. 721-762. Menlo Park, CA: Stra-
tegic Decisions Group (1981).

Keeney, R. Value—Focused Thinking: A Path to Creative Decision Making, Cambridge, MA: Har-
vard University Press (1992).

Knuth, D.E. Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming,
Reading, MA: Addison-Wesley (1981).

L'Ecuyer, P. Communications of the ACM, 31, 742-774 (1988).
Park, S.K., and K.W. Miller. Communications of the ACM, 31, 1192-1201 (1988).

Pearl, J. Probabilistic Reasoning in Intelligent Systems, San Mateo, CA: Morgan Kaufmann
(1988).

Analytica User Guide

Function List

When viewing this list online, click the category or function name to see details.

Basic Math

Abs, Mod, Sqr, Sqrt, Exp, Ln, Logten
Round, Ceil, Floor, Factorial,
Radians, Degrees, Sin, Cos, Tan,
Arctan

Advanced Math

Arccos, Arcsin, Arctan2, Bessel ™,
BetaFn, Betal, Betal Inv,
Combinations, Cosh, CumNormal,
CumNormalInv, Erf, Erfiny,
GammaFn, Gammal, Gammal Inv
Lgamma, Permutations, Regression
Sinh, Tanh

Creating Arrays

1. m. .n, Array, CopylIndex,
DetermTable, Sequence, SubTable,
Table

Array-Reducing

Area, Argmin, Argmax, Average, Max,
Min, Product, Subindex, Sum
CondMin, CondMax
Positioninlndex

Transforming Arrays
Cumproduct, Cumulate, Integrate,
Normal ize, Rank, Sortindex,
Uncumulate

Selecting from Arrays
x[i=v], x[@i-n], x[Time=n],
Choice, Slice, Subscript

Interpolation
Cubicinterp, Linearinterp,
Stepinterp

Other Array Functions
Concat, ConcatRows, Size,
Sortindex, Subindex, Subset,
Unique, Rank, IndexesOf,
IndexNames, IndexValue

Relational to Array conversions
MDArrayToTable, MDTable

Matrix Functions
Decompose, Determinant,
DotProduct, Invert,
MatrixMultiply, Transpose,
EigenDecomp,
SingularValueDecomp

Continuous Distributions
Beta, ChiSquared, Cumdist,
Exponential, Gamma, Logistic,
Lognormal, Normal, Probdist,
Random, Shuffle, StudentT,
Triangular, Truncate, Uniform
Weibull

Discrete Distributions
Bernoulli, Binomial, Certain
Chancedist, Geometric
Hypergeometric, Poisson,
Probtable, Uniform

Multivariate Distributions
BiNormal, Correlate_dists,
Correlate_with, Dirichlet,
Gaussian, Multinomial,
MultiNormal, MultiUniform,
Normal_correl, RegressionDist

Statistical Functions

CDF, Correlation, Covariance,
Frequency, Getfract, Kurtosis,
Mean, Mid, PDF, Probability
Probbands, Rankcorrel,
Regression, Sample, Sdeviation
Skewness, Statistics, Variance

Text Functions

&, Asc, Chr, FindinText, JoinText
SelectText, SplitText, TextTrim
TextUpperCase, TextLength,
TextLowerCase,
TextSentenceCase,

TextReplace

Sensitivity Analysis
Correlation, Dydx, Elasticity,
Rankcorrel, Regression, Whatif,
WhatlfAll

Special Functions
ComputedBy, Dynamic, Error
Evaluate, EvaluateScript,
IgnoreWarnings, lterate,
Subindex, Time, Today, Whatif,
WhatlfAll

Miscellaneous Functions
CurrentDataDirectory,
CurrentModelDirectory,
GetRegistryValue, Handle
HandleFromldentifier
RunConsoleProcess

Financial Functions

Cumipmt, Cumprinc, Fv, Ipmt, Irr,
Nper, Npv, Pmt, Ppmt, Pv, Rate, Xirr
Xnpv

Dates
DateAdd, DatePart, MakeDate,
MakeTime, Today

Dialog Functions
MsgBox, AskMsgNumber, AskMsgText,

Analytica User Guide

ShowProgressBar, Error
ShowPdfFile

Operators
@ +-*/"<<==<>>=>: &\ #NOT
OR AND OF

Database Access

DBLabels, DBQuery, DBTable,
DBTableNames, DBWrite, MdxQuery,
SqlDriverinfo, ReadTextFile
WriteTextFile

Data Types
IsNaN, IsNumber, IsReference,
IsText, IsUndef, TypeOf

Control Constructs
(s1;s2;...),Begin ..
For...Do..., Index
If...Then...Else..., ITAlLI,
1TOnly, IgnoreWarnings, lterate,
MemoryInUseBy, Var,
While...Do...

. End,

System Variables
AnalyticaEdition,
AnalyticaPlatform
AnalyticaVersion,
IsSampleEvalMode, Run,
Samplesize, SampleWeighting,
Time

System Constants
False, Null, Pi, True, INF

Object Classes

Chance, Constant, Decision, Form,
Index, Library, Model, Module,
Objective, Variable

Parameter Qualifiers

All, Atom, Array, Ascending
Coerce, Context, ContextSample,
Descending, Handle, Index,
IsNotSpecified, Mid, Nonnegative,
Number, Optional, OrNull,
Positive, Prob, Reference, Sample,
Text, Variable

Optimizer Functions

See the Optimizer Guide for information on
these functions.
LpDefine, LpFindI IS, LpObjSA,
LpOpt, LpRead, LpSolution,
LpStatusNum, LpStatusText,
LpWrite, LpWritel IS, NIpDefine,
QpDefine

Logistic_regression

Prob_regression,
Poisson_regression

391

Appendix Function List

392 Analytica User Guide

Glossary

This glossary defines special terms used for Analytica and selected sta-
tistical terms.

Glossary

ADE

Alias

Analytica Decision
Engine

Analytica Enterprise

Analytica Optimizer

Analytica Player

Analytica Power Player

Analytica Professional

394

Analytica Trial

Array

Array abstraction

Arrow

Arrow tool

Attribute

Attribute panel

Author

Behavior analysis

Browse-only models

See “Analytica Decision Engine.”

A node in a diagram that refers to a variable or other node located somewhere else, usually in
another module. An alias permits you to display a variable in more than one module. An alias
node is distinguished by having its title in italics. See “Alias nodes” on page 54.

An Edition of Analytica that runs Analytica models on a server computer. The Analytica Decision
Engine (or ADE) provides an application programming interface (API) instead of Analytica’s
graphical end user interface. You can write custom applications in Visual Basic, C++, C#, Micro-
soft Office, or any language supporting ActiveX Automation or COM to access ADE via its API.
For example, you could write a web application that lets you view and run an Analytica model
from a web browser on a server. See “Editions of Analytica” on page 5.

An edition of Analytica that includes all features of Analytica Professional, and adds functions for
accessing databases, Huge arrays, creating buttons and scripts, model profiling, and the ability to
save models that are browse-only and hide selected aspects of a model that are proprietary or
confidential. See “Editions of Analytica” on page 5 and Chapter 22, “Analytica Enterprise” on
page 351.

An edition of Analytica that includes all features of Analytica Enterprise, and adds the Optimizer
engine with functions for linear and nonlinear programming. See “Editions of Analytica” on
page 5.

A free edition of Analytica that lets you open, view, and run a model. It lets you change variables
designated as inputs, and generate corresponding results. It does not let you edit the model or
save changes. See “Editions of Analytica” on page 5.

An edition of Analytica that lets you open, view, run a model, and change variables designated as
inputs. Like the free Player edition, it does not let you edit the model other than inputs. But it does
let you save changes, and it offers the database access and Huge Array features of Analytica
Enterprise. See “Editions of Analytica” on page 5.

The standard edition of Analytica. It provides all the features and functionality required to create,
edit, and evaluate models. See “Editions of Analytica” on page 5.

An edition of Analytica that offers all features of the Professional edition for a trial period, say of
15 days. You can download Analytica Trial from the Lumina web site (www.lumina.com) for a test
drive. After expiration, Analytica Trial converts to Analytica Player edition. See “Editions of Analyt-
ica” on page 5.

A collection of values that can be viewed as a table or graph. An array has one or more dimen-
sions, each identified by an index. See “Introducing indexes and arrays” on page 144.

See “Intelligent array abstraction.”

An arrow or influence from one variable node to another indicates that the origin node affects
(influences) the destination node. If the nodes depict variables, the origin variable usually appears
in the definition of the destination variable. See “Drawing arrows” on page 51.

A tool available from the edit tool in the toolbar in the shape of an arrow pointing right. In arrow
mode, the cursor changes to this arrow. In this mode, you can draw arrows from one node to
another to define influences. See “Drawing arrows” on page 51.

A property or descriptor of an object, such as its title, description, definition, value, or inputs. See
“Managing attributes” on page 306.

An auxiliary window pane that you can open below a diagram or outline window. Use the Attri-
bute panel to rapidly examine one attribute at a time of any variable in the model, by selecting the
variable and then the attribute from a popup menu. See “The Attribute panel” on page 24.

An attribute recording the name(s) of the person or people who created the model, or other
object. See “The model's Object window” on page 48.

Model behavior analysis is a type of sensitivity analysis in which you specify a set of alternative
values for one or more inputs and examine the effect on selected model output variables. It is also
known as parametric analysis. See “Analyzing Model Behavior” on page 41.

A model that you can open, run, and change designated inputs, but not make other changes even
if you have an edition of Analytica that is normally capable of editing a model. You can create a

Analytica User Guide

Glossary

Browse tool
Chance variable

Check

Class

Cloaking

Conditional dependency
Constant

Continuous distribution

Continuous variable

Created

Cumulative probability
distribution

Data source
Decision variable

Definition

Definition Hiding

Description

Deterministic table

Deterministic value

Deterministic (determ)
variable

Browse-only model with Analytica Enterprise. Browse-only models are also obfuscated, meaning
that the model file is encrypted and not readable or editable. See “Making a browse-only model
and hiding definitions” on page 360.

The browse tool is in the shape of a hand. With the browse tool, you can examine the diagram but
cannot make any changes, except to input variables. See “Browse mode” on page 23.

An variable that is defined as uncertain by a probability distribution. A chance variable is depicted
as an oval node. See “Classes of variables and other objects” on page 20.

The check attribute contains an expression that checks the validity of the value of a variable. It
usually displays a warning message when the check fails. See “Checking for valid values” on
page 115.

The type of Analytica object: decision, chance, objective, or index variable; function; module;
library; form; model. See “Classes of variables and other objects” on page 20.

See “Definition Hiding.”

A chance variable a is conditionally dependent on another variable b if the probability of a value
of a depends on the value of b. If a is defined by a probability table, b can be an index of its prob-
ability table. See “Add a conditioning variable” on page 239.

A variable whose value is not probabilistic, and does not depend on other variables, such as the
number of minutes in an hour. See “Classes of variables and other objects” on page 20.

A probability distribution defined for a continuous variable — that is, for a real-valued variable.
Example continuous distributions are beta, normal, and uniform. Compare to “Discrete distribu-
tion.” See “Parametric continuous distributions” on page 241 and subsequent sections.

A variable whose value is a real number — that is, one of an infinite number of possible values. Its
range can be bounded (for example, between 0 and 1) or unbounded. Compare to “Discrete vari-
able.” See “Is the quantity discrete or continuous?” on page 220.

The date and time at which the model was first created. This model attribute is entered automati-
cally, and is not user-modifiable. See “The model’'s Object window” on page 48.

A graphical representation of a probability distribution that plots the cumulative probability that the
actual value of the uncertain variable x is less than or equal to each possible value of x. The
cumulative probability distribution is a display option in the Uncertainty View popup menu. See
“Cumulative probability” on page 36.

A data source is described by a text value, which might contain the Data Source Name (DSN) of
the data source, login names, passwords, etc. See “DSN and data source” on page 352.

A variable that the decision maker can control directly. Decision variables are represented by rect-
angular nodes. See “Classes of variables and other objects” on page 20.

A formula for computing a variable’s value. The definition can be a simple number, a mathemati-
cal expression, a list of values, a table, or a probability distribution. In text format, it is limited in
length to 32,000 characters. See “Creating and Editing Definitions” on page 107.

A feature in Analytica Enterprise for protecting your intellectual property when distributing models
you have created to others. Definition hiding controls whether the end-user of your model can
view the definitions of selected nodes. See “Making a browse-only model and hiding definitions”
on page 360.

Text explaining what the node represents in the real system being modeled. It is limited in length
to 32,000 characters. See “Attributes of a function” on page 317.

A deterministic function that gives the value of a variable x conditional on the values of its input
variables. The input must all be discrete variables. The table is indexed by each of its inputs, and
gives the value of x that corresponds to each combination of values of its inputs. See “Creating a
DetermTable” on page 200.

A variable’s deterministic value, or mid value, is a calculation of the variable’s value assuming all
uncertain inputs are fixed at their median values. See “Uncertainty views” on page 33.

A variable that is a deterministic function of its inputs. Its definition does not contain a probability
distribution. The value of a deterministic variable can be probabilistic if one or more of its inputs

Analytica User Guide 395

Glossary

Determtable
Diagram

Dimension

Discrete distribution

Discrete variable

Domain

DSN

Dynamic variable

Edit table

Editable table

Edit tool

Expression

Expression type

File Info

Filed library

Filed module

Fractile

396

are uncertain. A deterministic variable is displayed as a double oval. You can also use a general
variable (rounded rectangle) to depict a deterministic variable. See “Classes of variables and
other objects” on page 20.

See “Deterministic table.”
See “Influence diagram.”

An array has one or more dimensions. Each dimension is identified by an index variable. When
an array is shown as a table, the row header (vertical) and column headers (horizontal) give the
two dimensions of the table. See “Introducing indexes and arrays” on page 144.

A probability distribution over a finite number of possible values. Example discrete distributions
are Bernoulli and the Probtable function. Compare to “Continuous distribution.” See “Parametric
discrete distributions” on page 233.

A variable whose value is one of a finite number of possible values. Examples are the number of
days in a month (28, 29, 30, or 31), or a Boolean variable with possible values True and False.
A variable that is defined as a list or list of labels is discrete. Compare to “Continuous variable.”
See “Is the quantity discrete or continuous?” on page 220.

The possible outcomes of a variable. The domain has a type as well as value. The possible types
are List of Labels, List of Numbers, or Continuous; the default type is Continuous, except for vari-
ables defined with the Choice(), Probtable(), and Determtable() functions. See “The domain
attribute and discrete variables” on page 236.

The Data Source Name (DSN) provides connectivity to a database through an ODBC driver. The
DSN contains the database name, directory, database driver, user ID, password, and other infor-
mation. See “DSN and data source” on page 352.

A variable that depends on the system variable Time and is defined by the Dynamic() function.
A dynamic variable can depend on itself at a previous time period, directly or indirectly, through
other dynamic variables. See “Dynamic Simulation” on page 281.

A definition defined by the Table function, also called an edit table because it can be edited. See
“Defining a variable as an edit table” on page 169 and “Editing a table” on page 171.

A table that the end user can edit directly when it is a model input, including an edit table (table),
probability table (probtable), deterministic table (determtable), or subtable. See “Defining a vari-
able as an edit table” on page 169

A tool is used to create a new model or to change an existing model. It allows you to move, resize,
and edit nodes, and exposes the arrow tool and node palette.The edit tool is in the shape of the
normal mouse pointer cursor. See “Creating and editing nodes” on page 49.

A formula that can contain numbers, variables, functions, distributions, and operators, such as
0.5, a-b, or Min(x), combined according to the Analytica language syntax. The definition of a
variable must contain an expression. See “Using Expressions” on page 131.

The expr (Expression) popup menu, which appears above the definition field, allows you to
change the definition of a variable to one of several different kinds of expressions. Expression
types include expression, list (of expressions or numbers), list of labels (text values), table, proba-
bility table, and distribution. Any definition, regardless of expression type, can be viewed as an
expression. See “The Expression popup menu” on page 111.

The name of the file and folders in which the model was last saved.

A library whose contents are saved in a file separate from the model that contains it. A filed library
can be shared among several models without making a copy for each model. See “Using filed
modules and libraries” on page 309.

A module whose contents are saved in a file separate from the model that contains it. A filed mod-
ule can be shared among several models without making a copy for each model. See “Using filed
modules and libraries” on page 309.

The median is the 0.5 fractile. More generally, there is probability p that the value is less than or
equal to the p fractile. Quantile is a synonym for fractile. (Fractal is something different!) Compare
to “Percentile.” See “GetFract(x, p)” on page 264.

Analytica User Guide

Glossary

General variable

Graph
Graphing role

Identifier

Importance analysis

Index

Index selection area

Index variable

Influence arrow

Influence cycle

Influence diagram

Innermost dimension

Input node

Input arrowhead

Inputs attribute

A variable that can be certain or probabilistic. It is often convenient to define a variable as a gen-
eral variable without worrying about what particular kind of variable it is. A general variable is
depicted by a rounded rectangle node. See “Classes of variables and other objects” on page 20.

Format for displaying a multidimensional result. To view a result as a graph, click the Graph but-
ton. See also “Table.” See “Viewing a result as a graph” on page 32.

An aspect of a graph or chart used to display a dimension (or Index) of an array value. They
include the horizontal axis, vertical axis, and key. See “Graphing roles” on page 86.

A unique name for a variable used in expressions in definitions. An identifier must start with a let-
ter, have no more than 20 characters, and contain only letters, numbers, and underscore (_) char-
acters (which are used instead of spaces). Each identifier in a model must be unique. Compare to
“Title.” See “Identifiers and titles” on page 50.

Importance analysis lets you determine how much effect the uncertainty of one or more input vari-
ables has on the uncertainty of an output variable. Analytica defines importance as the rank order
correlation between the sample of output values and the sample for each uncertain input. It is a
robust measure of the uncertain contribution because it is insensitive to extreme values and
skewed distributions.

Unlike commonly used deterministic measures of sensitivity, this rank order correlation averages
over the entire joint probability distribution. Therefore, it works well even for models where the
sensitivity to one input depends strongly on the value of another. See “Importance analysis” on
page 268.

An index of an array identifies a dimension of that array. An index is usually a variable defined as
a list, list of labels, or sequence. An index is often, but not always, a variable with a node class of
Index. See “Introducing indexes and arrays” on page 144.

The plural, indexes, indicates a set of index variables that define the dimensions of a table (in an
edit table or value).

The top portion of a Result window, containing a description of the result and other information
about the dimensions of the result. See “Index selection” on page 30.

A class of variable, defined as a list, list of labels, or sequence, that identifies the dimensions of
an array — for example, in an edit table. An index variable is depicted as a parallelogram node.
Variables of other classes whose definition or domain consist of list, list of labels, or sequence
can also be used to identify the dimensions of an array, and are sometimes referred to as index
variables. See “Classes of variables and other objects” on page 20.

See “Arrow.”

A cyclic dependency occurs when a variable depends on itself directly or indirectly so that the
arrows form a directed circular path. The only cyclic dependencies allowed in Analytica are in
variables using the Dynamic() function that contain a time lag on the cycle. See “Influence cycle
or loop” on page 52.

An intuitive graphical view of the structure of a model, consisting of nodes and arrows. Influence
diagrams provide a clear visual way to express uncertain knowledge about the state of the world,
decisions, objectives, and their interrelationships. See “The Object window” on page 23.

The dimension of an array that varies most rapidly in the Table() function. The innermost dimen-
sion is the last index listed in a Table() or Array() function. Compare to “Outermost dimension.”
See “Array(il, i2, ... in, a)" on page 183 and “Table(i1, i2, ... in) (ul, u2, u3, ... um)” on page 185.

A node in a diagram that gives easy access to view and change the value of a variable. This can
be a field, choice menu, or edit table. An input node is an alias to a variable. See also “Output
node.” See “Using input nodes” on page 120.

An arrowhead pointing into a node, indicating that the node has one or more inputs from outside
its module. Click the arrowhead for a popup menu of the input variables. See “Arrows linking to
module nodes” on page 52.

A computed attribute listing the variables and functions used in the definition of this object. The
inputs are determined by the arrows drawn to and the variables or functions referred to in this

Analytica User Guide 397

Glossary

Intelligent array
abstraction

Key

Kurtosis

Last Saved

Library

List

List of labels
Matrix

Mean

Median

Mid value

Mode

Model

Module

Module hierarchy

Multimodal distribution

Node

398

variable’s or function’s definition or check attribute. See also “Outputs attribute.” See “Using input
nodes” on page 120.

A powerful key feature of the Analytica Engine that automatically propagates and manages the
dimensionality of multidimensional arrays within models. See “Summary of Intelligent Arrays and
array abstraction” on page 160.

In a results graph, the key shows the value of the key index variable that corresponds to each
curve, indicated by pattern or color. See “Graphing roles” on page 86.

A measure of the peakedness of a distribution. A distribution with long thin tails has a positive kur-
tosis. A distribution with short tails and high shoulders, such as the uniform distribution, has a
negative kurtosis. A normal distribution has zero kurtosis. See “Kurtosis(x)” on page 263.

The date and time at which the model was last saved. This model attribute is entered automati-
cally, and is not user-modifiable. If the model is new, this field remains empty until the model is
first saved.

A model component that typically contains a collection of user-defined functions and variables to
be shared. See “Libraries” on page 323.

A type of expression available in the expr menu consisting of an ordered set of numbers or
expressions. A list is often used to define index and decision variables. See “Creating an index”
on page 163.

A type of expression available in the expr menu consisting of an ordered set of text items. A list of
labels is often used to define index and decision variables. See “Creating an index” on page 163.

A two-dimensional array of numbers with indexes of equal length. See “Matrix functions” on
page 202.

The average of the population, weighted by the probability mass or density for each value. The
mean is also called the expected value. The mean is the center of gravity of the probability den-
sity function. See “Mean(x)” on page 263.

The value that divides the range of possible values of a quantity into two equally probable parts.
Thus, there is 0.5 probability that the uncertain quantity is less than or equal to the median, and
0.5 probability that it is greater than the median.

The result of evaluating a variable deterministically, holding probability distributions at their
median value. Analytica calculates the mid value of a variable by using the mid value of each
input. The mid value is a measure of central value, computed very quickly compared to uncer-
tainty values. Compare “Prob value.” See “Uncertainty views” on page 33.

The most probable value of the quantity. The mode is at the highest peak of the probability den-
sity function. On the cumulative probability distribution, the mode is at the steepest slope, at the
point of inflection. See “Probability density” on page 35.

The main module containing all the objects that comprise an Analytica model. A model can con-
tain a hierarchy of modules and libraries. Between sessions, a model is stored in an Analytica
document file with extension -ana. See “Models” on page 18.

A collection of related nodes, typically including variables, functions, and other modules, orga-
nized as a separate influence diagram. A module is depicted in a diagram as a node with a thick
outline. See “Classes of variables and other objects” on page 20.

A model can contain several modules, each one containing details of the model. Each module
can contain further modules, containing still more detail. This module hierarchy is organized as a
tree with the model at the top. You can view the hierarchical structure in the Outline window. See
“Organizing a module hierarchy” on page 75 and “Show module hierarchy preference” on

page 304.

A probability distribution that has more than one mode. See “How many modes does it have?” on
page 221.

A shape, such as a rectangle, oval, or hexagon, that represents an object in an influence diagram.
Different node shapes are used to represent different types of variables. See “Classes of vari-
ables and other objects” on page 20.

Analytica User Guide

Glossary

Normal distribution

Obfuscated

Object

Object Finder
Object window

Objective variable

ODBC

OLE linking
Operator

Outermost dimension

Outline window

Output node

Output arrowhead

Outputs attribute

Parameters

Parametric analysis
Parent

Percentile

Probabilistic variable

The bell-shaped curve, also known as a Gaussian distribution. See “Normal(mean, stddev)” on
page 242.

Saved in a non-human-readable (i.e., encrypted) form. Obfuscation provides a mechanism for
protecting intellectual property. Analytica Enterprise users can distribute obfuscated copies of
their models to their end-users. In Analytica, obfuscation also has the effect of making settings for
definition hiding and/or browse-only mode permanent. See “Making a browse-only model and hid-
ing definitions” on page 360.

A variable, function, or module in an Analytica model. Each object is depicted as a node in an
influence diagram and is described by a set of attributes. See also “Class,” “Node,” “Attribute,”
and “Influence diagram.” See “Classes of variables and other objects” on page 20.

A dialog used to browse and edit the functions and variables available in a model. See “Object
Finder dialog” on page 112.

A view of the detailed information about a node. The Object window shows the visible attributes,
such as a node’s type, identifier, and description. See “The Object window” on page 23.

A variable that evaluates the overall desirability of possible outcomes. The objective can be mea-
sured as cost, value, or utility. A purpose of most decision models is to find the decision or deci-
sions that optimize the objective — for example, minimizing cost or maximizing expected utility.
An objective variable is represented by a hexagonal node. See “Classes of variables and other
objects” on page 20.

Open Database Connectivity (ODBC) is a widely used standard for connecting to relational data-
bases, on either local or remote computers, and issuing queries in Standard Query Language
(SQL). See “Overview of ODBC” on page 352.

A standard in the Windows operating system for sharing data between applications. See “Using
OLE to link results to other applications” on page 292.

A symbol, such as a plus sign (+), that represents a computational process or action such as
addition or comparison. See “Operators” on page 133.

The dimension of an array that varies least rapidly in the Table() function. The outermost dimen-
sion is the first index listed in a Table() or Array() function. Compare to “Innermost dimension.”
See “Array(il, i2, ... in, a)" on page 183 and “Table(i1, i2, ... in) (ul, u2, u3, ... um)” on page 185.

A view of a model that lists the objects it contains as a hierarchical outline. See “The Outline win-
dow” on page 304.

A node in a diagram that gives easy access to see the result of a variable, as a number, table, or
graph. This can be a field, choice menu, or edit table. An output node is an alias to a variable. See
also “Input node.” See “Using output nodes” on page 122.

An arrowhead pointing out of a node, indicating that the node has one or more outputs outside its
module. Click the arrowhead for a popup menu of the output variables. See “Arrows linking to
module nodes” on page 52.

A computed attribute listing the variables and functions that mention this variable in their defini-
tion. The outputs are determined by the arrows drawn from this variable or function and the vari-
ables or functions in whose definition or check attribute this variable or function appears. See also
“Inputs attribute.” See “Using output nodes” on page 122.

Values or expressions passed to a function, in parentheses after the function name, sometimes
termed arguments. See “Function calls and parameters” on page 136.

See “Behavior analysis.”
The parent of an object is the module that contains it.

The median is the fiftieth percentile (also written as 50%ile). More generally, there is probability p
that the value is less than or equal to the pth percentile. Compare to “Fractile.” See “GetFract(x,
p)”’ on page 264.

A variable that is uncertain, and is described by a probability distribution. A probabilistic variable
is evaluated using simulation; its result is an array of sample values indexed by Run. See “Proba-
bilistic calculation” on page 224.

Analytica User Guide 399

Glossary

Probability bands

Probability density
function (PDF)

Probability distribution

400

Probability mass
function

Probability table

Probtable

Prob value

Quantile

Reducing function

Remote variable

Result view

Sample

Sampling method

Scalar

Scatter plot

Self

The bands that display the uncertainty in a value by showing percentiles from its distribution — for
example, the 5%, 25%, 50%, 75%, and 95% percentiles. On a graph, these often appear as
bands around the median (50%) line. Probability bands are also referred to as credible intervals.
See “Probability Bands option” on page 228.

A graphical representation of a probability distribution that plots the probability density against the
value of the variable. The probability density at each value of X is the relative probability that X is
at or near that value. The probability density function can be displayed for continuous, but not dis-
crete variables. It is a display option in the Uncertainty View popup menu. Compare to “Probabil-
ity mass function,” which is used with discrete variables. See “Probability density” on page 35.

A probability distribution describes the relative likelihood of a variable having different possible
values. See “Probability distributions” on page 232 and “Probabilistic calculation” on page 224.

A probability mass function is a representation of a probability distribution for a discrete variable
as a bar graph, showing the probability that the variable takes each possible value. The probabil-
ity mass function can be displayed for discrete, but not continuous variables. It is a display option
in the Uncertainty mode View menu. Compare to “Probability density function (PDF),” which is
used with continuous variables. See “Probability density” on page 35.

A table for specifying a discrete probability distribution for a chance variable. In a probability table,
you specify the numerical probability for each value in the domain of the variable. If the variable
depends on (that is, is conditioned by) other discrete variables, each of these conditioning vari-
ables gives an additional dimension to the table, so you can specify the probability distribution
conditional on the value of each conditioning variable. See “Probtable(): Probability Tables” on
page 238.

See “Probability table.”

The probabilistic value of a variable, represented as a random sample of values from the proba-
bility distribution for the variable. The prob value for a variable is based on the prob value for the
inputs to the variable. See also “Probabilistic variable” and compare to “Mid value.” See “Uncer-
tainty views” on page 33.

See “Percentile.”

A function that operates on an array over one of its indexes. The result of a reducing function has
that dimension removed, and hence has one fewer dimension. See “Array-reducing functions” on
page 185.

A variable in another module, not shown in the active diagram. Typically a remote variable is an
input or output of a node in the active diagram. See “Seeing remote inputs and outputs” on
page 20.

A window that shows the value of a variable as a table or graph. See “Default result view” on
page 59.

An array of values selected at random from the underlying probability distribution for a quantity.
Analytica represents uncertainty about a quantity as a sample, and estimates statistics, probabil-
ity density function, and other representations of a probability distribution from the sample. See
“Sample” on page 37.

A method used to generate a random sample from the probability distributions in a model (for
example, Monte Carlo and Latin hypercube). See “Sampling method” on page 226.

A value that is a single number. See “Input field” on page 120.

A graph that plots the samples of two probabilistic variables against each other. See “Scatter
plots” on page 277.
A keyword used in two different ways:

« Refers to the index of a table that is indexed by itself. Sel F refers to the alternative values of
the variable defined by the table. See “Create a probability table” on page 238.

* Refers to the variable itself, instead of the variable’s identifier, in a check attribute or a
Dynami c expression. See “Dynamic(initiall, initial2..., initialn, expr)” on page 282.

Analytica User Guide

Glossary

Sensitivity analysis

Side effects

Skewed distribution

Skewness

Slice

Slicer

Splicing

SQL

Standard deviation

Suffix notation

Symmetrical
distribution
System function

System variable

Table

Tail

Title

Uncertain value

Uniform distribution

A method to identify and compare the effects of various input variables to a model on a selected
output. Example methods for sensitivity analysis are importance analysis and model behavior
analysis. See “Sensitivity analysis functions” on page 270.

If evaluating the definition of variable A changes the value of variable B, the change to B would be
a side effect of evaluating A. Unlike most computer languages, Analytica does not (usually) allow
side effects, which makes Analytica models much easier to understand and verify. See “Assigning
to a local variable: v := e” on page 329.

A distribution that is asymmetric about its mean. A positively skewed distribution has a thicker
upper tail than lower tail; and vice versa, for a negatively skewed distribution. See “Is the quantity
symmetric or skewed?” on page 222.

A measure of the asymmetry of the distribution. A positively skewed distribution has a thicker
upper tail than lower tail, while a negatively skewed distribution has a thicker lower tail than upper
tail. A normal distribution has a skewness of zero. See “Skewness(x)” on page 263.

A slice of an array is an element or subarray selected along a specified index dimension. A slice
has one less dimension than the array from which it is sliced. See “XY comparison” on page 98.

A control on a graph or table result window that shows the value of a third (or higher) index
dimension, not otherwise visible on the graph or table. You can press on the slicer to open a
menu to select another value for the slicer index, or to step through other values. See “Slicers” on
page 89.

Table splicing is the process of updating an editable table that depends on a computed index
when that index changes. It can result in adding, deleting, or reordering subarrays of the table.
See “Splice a table when computed indexes change” on page 173.

Structured Query Language or SQL is a standard interactive and programming language for get-
ting information from and updating a database. See “Accessing databases” on page 352.

The square root of the variance. The standard deviation of an uncertainty distribution reflects the
amount of spread or dispersion in the distribution. See “Sdeviation(x)” on page 263.

The default number format, such as 10K, 123M, or 1.23u, where a suffix letter denotes a power of
ten. For example, K, M, and u denote 103, 108, and 1078, respectively. See “Suffix characters” on
page 83.

A distribution, such as a normal distribution, that is symmetrical about its mean. See “Is the quan-
tity symmetric or skewed?” on page 222.

A function available in the Analytica modeling language. See also “User-defined function.” See
“Building Functions and Libraries” on page 315.

A variable built in to the Analytica language, such as Samplesize or Time. See “Using a func-
tion or variable from the Definition menu” on page 114.

A two-dimensional view of an array. An array can have more than two dimensions, but usually you
can only display two at one time. A definition that is a table is called an edit table. In the Result

window, click the Table button to select the table view of an array-valued result. See “Viewing a

result as a table” on page 32.

The upper and lower tails of a probability distribution contain the extreme high and low quantity,
respectively. Typically, the lower and upper tails include the lower and upper ten percent of the
probability, respectively. See “Is the quantity symmetric or skewed?” on page 222.

An attribute of an Analytica object containing its full name. The title usually appears in the dia-
gram node for the object and in graphs and lists of inputs and outputs. It is limited to 255 charac-
ters. The title can contain any characters, including spaces and punctuation. Compare to
“Identifier.” See “Edit a node title” on page 49.

See “Prob value.”

A distribution representing an equal chance of occurrence for any value between the lower and
upper values. See “Uniform(min, max, Integer: True)” on page 234 and “Uniform(min, max)” on
page 241.

Analytica User Guide 401

Glossary

Units The increments of measurement for a variable. Units are used to annotate tables and graphs;
they are not used in any calculation. See “Showing values in the Object window” on page 26.

User-defined function A function that the user defines to augment the functions provided as part of the Analytica model-
ing language. See “Building Functions and Libraries” on page 315.

Value See “Mid value.”

Variable An object that has a value, which can be text, a number, or an array. Classes of variable include
decision, chance, and objective. See “The Object window” on page 23.

Variance A measure of the uncertainty or dispersion of a distribution. The wider the distribution, the greater
its variance. See “Variance(x)” on page 263.

402 Analytica User Guide

- (subtraction) operator 133

A (exponentiation) operator 133

:: (scoping) operator 134

:= (assignment) operator 329

.. (sequence) operator 167

... (list) operator 166

@ (position) operator 190

* (multiplication) operator 133

\ (reference) operator 320, 340

& (concatenation) operator 206

(dereference) operator 204, 340

+ (addition) operator 133

< (less than) operator 134

<= (less than or equal to) operator 134
<> (not equal) operator 134

= (equal) operator 134

> (greater than) operator 134

>= (greater than or equal to) operator 134

A
About Analytica command 382
Abs() function 136
accept button 110
Across command 381
Add Library command 375
Add Module command 375
Adjust Size command 381
Advanced Math command 378
aliases

compared to original 55

creating 54

definition 394

illustration 54

input nodes 56, 120

output nodes 56, 122

vs. originals 56
Align Selection to Grid command 381
Align submenu 381
All qualifier 320
alphabetic ordering, text 134
.ana file extension 18
Analytica 4.0 new features 12
Analytica 4.1 new features 10
Analytica Decision Engine, description 394
Analytica Enterprise, description 394
Analytica Player, description 394
Analytica Power Player, description 394
Analytica Professional, description 394
Analytica Trial, description 394
Analyticaedition system variable 379
Analyticaplatform system variable 379
Analyticaversion system variable 379
application integration 368
Arccos() function 209
Arcsin() function 209
Arctan() function 137
Arctan2() function 209
Area() function 190

Analytica User Guide

403

Index

Argmax() function 188
Argmin() function 188
arithmetic operators

array abstraction 147
meanings 133

Array command 378
Array() function 183
arrays

abstraction, see intelligent array abstraction

changing index of 184
combining 147-152

defining 183

definition 394

ensuring abstraction 336
example variables 182
functions 182

IF a THEN b ELSE ¢ 154, 161
matrices 202

modeling 143-179
multidimensional 189
one-dimensional 147, 149, 151, 300
qualifiers 319

reducing functions 185
removing indexes 171

safe intermediates 60

scalar 147

serial correlation 256

slicing 174

subarrays 174
three-dimensional 152, 301
two-dimensional 151, 152, 301
using in Dynamic() 287
values 27

working with 144-161
zero-dimensional 147

arrows

across windows 53

alias nodes 54
arranging 72

arrow tool 22, 394
automatically drawn 51
between modules 53, 55
bold 311

creating 51

definition 394

display settings 78
double-headed 53
drawing 51-55

dynamic 288

gray 52

hiding and unhiding 51, 74, 78
illustrations 52

influence cycles 52

input 397

keyboard shortcuts 178
linking to module nodes 52
outputs 399

removing 51

small arrowhead 53

Asc() function 206

404

Analytica User Guide

AskMsgNumber() function 347
AskMsgText() function 347
assignment operator 329
associational correspondence 174
atoms
about 144
array abstraction 337
qualifier 319
values 27
Attrib Of Ident 308
Attribute panel
closing 26
definition 394
using 24
attributes
canceling edits 56
controlling display 307
copying and pasting 292
creating 308
definition 394
displaying 308
displaying check attribute 115
domain 236
editing 56
functions 306, 317
managing 306—-308
modules 306
renaming 308
user-created 307
variables 306
Attributes command 377
Attributes dialog 115, 307
authors
adding 48
attribute 307
definition 394
Average() function 187
axes, display settings 91

B
background printing 28
backward compatibility 389
bar graphs 91
behavior analysis
definition 394
overview 42
results 43
understanding 45
Bernoulli() function 233
Bessell() function 210
Bessel functions 11, 210
Bessel K() function 210
Bessell() function 11
BesselJ() function 11, 210
BesselK() function 11
BesselY() function 11, 210
Beta() distribution function 244
BetaFn() function 217
Betal() function 217

Betallnv() function 217
bibliography 390
binding precedence, operators 135
Binomial() function 233
BiNormal() distribution function 255
Boolean

number format 83

operators 134

values 132

variables 221
Both command 381
Bottom Edges command 381
Bring to Front command 382, 383
browse mode 23
browse tool

button 22

definition 395
browse-only models 394
buttons

accept and cancel 110

arrow tool 22

assigning to global variables 364

browse tool 22

Calc 23, 122

creating 363

Definition 22

Distribution 23

Edit Table 23

edit tool 22

editing modes 22

List 23

navigation toolbar 21

Object 21

object representation 21

Outline 21

Parent Diagram 21

Result 22, 23, 122

scripts 363

C
Calc button 23, 122
Calloption() function 214
cancel button 110
Capm() function 215
Cascade command 382
categorical plots 95
CDF() function 267
Ceil() function 136
cells
adding 165, 172
copying and pasting 172
deleting 165, 172
editing 171
selecting 172
Centers Left and Right command 381
Centers Up and Down command 381
Certain() distribution function 251
chance variables
definition 395

Analytica User Guide

Index

representation 20
Chancedist() function 240
Change Picture Format command 381
charts, selecting type 90
check attribute

defining 115

definition 395

displaying 115

edit table cells 116

failure 116

features 307

triggering 116
ChiSquared() distribution function 249
choice menus 176
Choice option 121
Choice() function 176
Chr() function 206
Class attribute 307
classes

changing for objects 57

definition 395
Clear command 376
cloaking 395
Close command 375
Close Model command 375
Coerce qualifier 321
colors

adding to influence diagrams 77

background 78, 94

changing 77

displaying in nodes 79

graphs 93

grouping nodes 77

input and output nodes 123

opening palette 77

screenshots 80
columns

adding and deleting 172

display significance 150

separating 355

trading places with rows 150
Combinations() function 217
comments in definitions 109
comparison operators 134
compatibility, backward and forward 389
computation time 372
ComputedBy() function 329
Concat() function 197
concatenation operators 206
ConcatRows() function 198
conditional dependencies

creating 239

definition 395
CondMax() function 188
CondMin() function 188
confidence intervals 372, 373
conglomeration functions 195
console processes, running 368
constants

definition 395

405

Index

representation 20
constructs, programming 327
Contact Lumina command 382
context qualifier 318
ContextSample qualifier 319
continuous distributions

definition 395

overview 221
continuous plots 95
continuous variables 395
controls, resizing 123
conventions, typographic 9
Copy command 376
Copy Diagram command 376
Copy Table command 376
Copylndex() function 168

Correlate_dists() distribution function 255
Correlate_with() distribution function 254

Correlation() function 265
correspondence types 174
Cos() function 137
Cosh() function 210
CostCapme() function 215
CostCapmm() function 215
Covariance() function 264
CPU sharing 13
Created attribute 307, 395
cross-hatching pattern

switching off 80

use of 59, 110
Cubicinterp() function 197
Cumdist() distribution function 249
Cumipmt() function 211
CumNormal() function 217
CumNormalinv() function 218
Cumprinc() function 211
Cumproduct() function 192
Cumulate() function 191
cumulative probability

distribution 395

options 228

samples per plot point 229

uncertainty view 36
Cumulative Probability command 380
currency symbols, showing 83
CurrentDataDirectory() function 348
CurrentModelDirectory() function 348
curve fitting 278
Cut command 376
cycles, influence 52, 397
cyclic dependencies 52, 397

D

data
copying and pasting 292
copying diagrams 292
identifying source 352
import/export format 300
importing and exporting 291-302

406 Analytica User Guide

numerical 302
OLE linking 292
pasting from programs 292
pasting from spreadsheets 292
source 395
structures 340
Data Source Name (DSN)
definition 396
using 352
Database command 378
Database library functions 358
databases
configuring DSN 354
writing to 356
datatype functions 140
date formats
arithmetic 86
date numbers 86
date origin 84, 86
interpreting 85
letter codes 85
literal text 85
range of dates 86
settings 84
type description 83
date functions 207
DateAdd() function 209
DatePart() function 208
DBLabels() function 358
DBQuery() function 358
DBTable() function 358
DBTableNames() function 358
DBWrite() function 356, 359
decision variables
arranging nodes 72
definition 395
identifying 63
representation 20
Decompose() function 204
defaults
changing global 98
views 31
Definition attribute 307
Definition button 22
Definition menu
overview 378
pasting from a library 114
definitions
about 395
adding identifiers 109
alphabetical list 393—-402

changes to influence diagrams 110

changing 111

comments in 109

creating 108-110, 122
cross-hatching 110

editing 108-110, 114
exporting 299

hidden, see hidden definitions
hiding 361, 395

importing 298
including probability distributions in 224
incomplete 309
inheritance 361
invalid or missing 378
syntax check 110
unhiding 360
updating arrows 111
using 318
working with 108
Degrees() function 137
Delete Columns command 376
Delete Rows command 376
dependencies
conditional 239
cyclic 52, 397
Dynamic() function 287
depreciation 153
dereference operator 340
Description attribute 307
descriptions
definition 395
overview 128
using 318
Determinant() function 204
deterministic tables
converting Table to DetermTable 201
definition 199, 395
equivalent of using Subscript 202
expression view 201
in parametric analysis 201
relation to ProbTable 239
splicing 173
used with discrete distributions 239
working with 199-201
deterministic values 395
deterministic variables 395
DetermTable() function 199, 239
determtables, see deterministic tables
Diagram menu 381
Diagram Style dialog 78
Diagram window
description 19
maximum number of 313
diagrams
see also influence diagrams
adding frames 126
adding graphics 125
adding text 126
copying 292
editing 21, 49
editing across multiple screens 13
exporting as image 80
exporting to image file 292
keeping compact 74
opening details 19
organizing 72, 75
overriding default styles 79
tornado 272
dialog functions 345

Analytica User Guide

Index

digits, setting maximum number 83
dimensions
adding to tables 150
definition 396
modeling arrays and tables 144
reducing 332
Dirichlet() distribution function 255
discrete probability distributions
creating 240
definition 396
vs. continuous 221
discrete variables
definition 396
domain attribute 236
logical and Boolean 221
probability tables 238
discretizing process 221
Dist_additive_growth() distribution function 257
Dist_compound_growth() distribution function 257
Dist_reshape() distribution function 255
Dist_serial_correl() distribution function 257
Distribution button 23
Distribution command 378
Distribution library 232
distributions
arrays with serial correlation 256
continuous 395
correlation or covariance matrix 255
creating dependencies 254
custom continuous 249
exponential 246
gamma 246
logistic 246
lognormal 243
multivariate 253
new features in 4.0 13
normal 399
parametric continuous 241
parametric discrete 233
symmetric vs. skewed 222
transformed beta 244
uniform 234, 241, 401
domain attributes
classes 307
editing 236
types 237
use of Index domains 200
use with DetermTable 200
viewing in Object window 237
working with 236
domains 396
dot operator 336
dot product 203
Down command 381
DRIVER attribute 353
DSN, see Data Source Name (DSN)
Duplicate Nodes command 376
Dydx() function 271
dynamic arrows, showing or hiding 288
dynamic loops 288

407

Index

dynamic models 72
dynamic simulation 282—289
dynamic variables
definition 396
initial values 287
working with 282
Dynamic() function 282—289

E

Edit Definition command 378

Edit Icon command 381

Edit menu 376

Edit Table button 23

Edit Table window 171

edit tables
see also tables
adding cells 172
adding dimensions 150
blank cells 185
choice menus 176
clickable titles 167
comparing results 38
copying 172, 292

copying and pasting cells 172

creating 146, 185
date formats 85
defining 147

defining variables as 169-171

definition 396

deleting cells 172

display 121

editing 171-173

extending indexes 157, 172

import and export formats 300

importing data 299
keyboard shortcuts 177
OLE linking 298
pivoting 3D 152

pivoting rows and columns 150

saving recover info 59
selecting cells 172
splicing 173

totals 156

two with the same index 148

using spreadsheet data 172
working with 171
Edit Time command 378
edit tool
about 22
definition 396
using 49
edits, canceling 56
EigenDecomp() function 204
Elasticity() function 271

Email tech support command 382

Erf() function 218
Erflnv() function 218
Error() function 347
errors

408 Analytica User Guide

avoiding out-of-range 331
custom messages 116
displaying warnings 60
evaluation 347, 388
factor 243
fatal 388
invalid number 388
lexical 387
message types 387-388
naming 387
out of memory 388
syntax 387
system 388
warnings 139
Evaluate() function 348
EvaluateScript() function 366
evaluation errors 347, 388
evaluation mode qualifiers 318
Exit command 375
Exp() function 137
expected value
definition 398
using 34
exponent number format 82
exponential distribution 246
Exponential() distribution function 245
Export command
exporting images 80
menu item description 375
export format 300
expr (Expression) popup menu 111, 170
expression view 164
expressions
Boolean values 132
conditional 135
definition 396
entering probability distributions as 223
exception values 138
importing definitions 298
in dynamic loops 288
listing 111
number formats 131, 132
parenthesis matching 109
subscript constructs 153
syntax 135
text values 133
truth values 132
types 111, 396
using 131-141
variable definitions 132

F
Factorial() function 137
False system variable 132, 379
fatal errors 388
File Info attribute 307, 396
File menu 375
filed libraries
about 323

adding to models 310, 323
creating 309
definition 396
locking 309
removing from models 310
representation 57
saving 310
working with 309
filed modules
adding to models 310
creating 309
definition 396
locking 309
removing from models 310
representation 57
saving 310
working with 309
files
automatic saves 13
changing locations 294, 298
Financial command 378
financial functions 210
Financial library functions 214
Find command 377
Find dialog 306
Find Next command 377
Find Selection command 377
FindinText() function 206
fixed point number format 82
Floor() function 136
font settings
graphs 93
nodes 78, 79
For loops 331
For...Do function 331
Form class 57
form modules
adding nodes 124
creating 123
working with 123
forward compatibility 389
fractiles
definition 396
estimating confidence intervals 373
frames, adding to diagrams 126
Frequency() function 266
functions
about 21
array 197
array-reducing 185-191
attributes 317
categories 391
conglomeration 195
creating 317
custom discrete probabilities 237
datatype 140
date 207
dialog 345
financial 210
Financial library 214

Analytica User Guide

Index

interpolation 195
list of 391
math 136, 209
matrix 202—-204
miscellaneous 348
name-based calls 136, 317
new in 4.0 14
pasting 110
position-based calls 136, 317
probability 217
recursive 318, 334
special probabilistic 251
statistical 262
system 401
text 206
transforming 191-194
using 317

Fv() function 211

G
Gamma() distribution function 246
GammaFn() function 218
Gammal() function 218
Gammalinv() function 218
Gaussian probability distributions 242
Gaussian() distribution function 255
general indexes 344
general variables

definition 397

representation 20
generalized linear regression 278
generalized regression analysis 278
Geometric() distribution function 234
GetFract() function 264
GetRegistryValue() function 349
global defaults, modifying 98
Graph Setup command 380
Graph Setup dialog

Axis Ranges tab 91

Background tab 94

Chart Type tab 90

opening 89

Preview tab 95

Style tab 92

Text tab 93

using 89-95
graphics

adding frames 126

adding to diagrams 125

converting image formats 126

exporting diagrams 80

exporting graphs 95

Legacy Bitmap format 126

taking screenshots 80
graphing roles

definition 397

working with 86
graphs

3D effects 90

409

Index

axis settings 91
bar style 91
changing global default 98
combining settings 97
comparing results 38
converting from tables 32
creating templates 96
customizing 33
definition 397
display settings 92
displaying 32
exporting 292
exporting as image files 95, 292
features 33
line style settings 90
modifying templates 97
new features in 4.0 12
plotting methods 95
previewing 95
renaming templates 98
scatter 277
unlinking templates 96
using templates 96
XY 98, 275

grid, aligning to 73

Grouped Integer variable type 15

H
Handle qualifier 320
Handle() function 344
HandleFromldentifier() function 344
handles
edit tables 167
functions 344
indexes of 344
using 344
viewing 344
Height command 381
Help attribute 307
Help menu 382
hexagons 20
hidden definitions
creating 361
description 395
inheritance 361
making unviewable 362
unhiding 360
using 360
Hide Definition(s) command 377
hourglass cursor 19
Hypergeometric() distribution function 234
hyperlinks, using 128

I
Icon window, opening 124
icons
adding to nodes 124
drawing 125
editing 125

410 Analytica User Guide

Ident(Time-k) function 283
identifiers
changing 58
copying 54
definition 397
listing those in use 386
name format 386
naming 387
using 50, 109, 317
Identifiers attribute 307
IFa THEN b ELSE ¢
in arrays 154, 161
using 135
IgnoreNaN parameter 11
ignoreNaN parameter 186
ignoreNonNumbers parameter 11, 186
IgnoreWarnings() function 349
image files
see also graphics
exporting diagrams as 80
exporting graphs as 95
Implied_volatility_c() function 215
Implied_volatility_p() function 216
Import command 375
import format 300
importance analysis 397
importance weighting
setting up 258
using 257
Index button 173
index position operator 190
Index qualifier 319
index variables 397
indexes
adding 173
adding items 157
automatic updates 158
by name not position 174
changing on arrays 184
correspondence types 174
creating 145, 163, 171
defining 358
definition 397
dialog box features 170
example variables 182
expanding 157, 172
functions 166, 198
general 344
handles 344
iterating with For and Var 339
label 352
local 335
meta-indexes 344
modeling 143-179
OLE linking 295
omitting parameters 339
position operator 190

propagating without changing definitions 152

recognizing nodes 20
record 352

reducing when unused 186

removing from arrays 171, 173

selection area 30, 397

self 156, 167

sequence of numbers 148

splicing 173

sums 152

Svdindex 204

working with 144-161
IndexesOf() function 198, 345
IndexNames() function 198
IndexValue() function 198
INF 138
infinity 138
influence arrows, see arrows
influence cycles 52, 397
influence diagrams

see also diagrams

automatically updating 110

coloring 77

copying 292

creating 71-74

decision variables 63

definition 397

examples of good and bad 70

overview 19

screenshots 80

using to create models 62
innermost dimension 397
input nodes

browsing 22

creating 121

definition 397

original variables 123

popup menus 121

resizing 123

using 120-122

viewing 23
input variables, date formats 85
inputs

arrowhead 397

attribute 307

examining results 43

listing 20

remote 20

varying 43
Insert Columns command 376
Insert Rows command 376
integer number formats 83, 132
Integrate() function 193
integration with other applications 368
intellectual property, protecting 360
intelligent array abstraction

arithmetic operators 147

definition 398

dimensional reduction 332

ensuring 336

exceptions 160

financial functions 210

IF THEN ELSE 338

Analytica User Guide

omitted index parameters 339
summary 160
tornado diagrams 274
vertical 320
Intelligent Arrays
about 144
main principles 160
Monte Carlo sampling 159
probability distributions 253
interpolation functions 195
invalid variables 309
Invert() function 204
Ipmt() function 211
Irr() function 212
IsNaN() function 140
IsNotSpecified() function 322
IsNumber() function 140
IsReference() function 141
IsResultComputed() function 349
Issampleevalmode system variable 379
IsText() function 140
IsUndef() function 141
Iterate function 333

J
JoinText() function 207

K

key combinations for editing 109, 177
key icon 25

key, in graphs 398

Knuth random number generator 227
kurtosis 398

Kurtosis() function 263

L
L’Ecuyer random number generator 227
labels
index 352
listing 111
Last Saved attribute 307, 398
Left and Right Edges command 381
Left Edges command 381
Legacy Bitmap format 126
lexical errors 387
Lgamma() function 210
libraries
adding 310
creating 323
custom 378
Database 358
definition 398
Distribution 224
Distribution System 111
Distribution Variations 14
embedding 311
filed, see filed libraries
Financial 214
Generalized Regression 15

Index

411

Index

linking to original 311
Multivariate Distributions 13, 254
obfuscating 362
Performance Profiler 15, 366
representation 57
selecting 113
Special 378
Text 206
Trash 51
user 378
user-defined functions 323
using 316, 323
line style in charts, selecting 90
linear regression 278
Linearinterp() function 197
List button 23
List buttons 121
list view 164
lists
adding cells 165
autofilling 164
creating 42
defining time 284
definition 398
deleting cells 165
editing 165
labels 398
mixing numbers and text 164
navigating 165
Ln() function 137
local indexes
about 335
Metalndex declaration 345
local variables
assigning 329
assigning slices 330
declaring 328
logical operators 134
logical variables 221
logistic regression 278
Logistic() distribution function 246
Lognormal() distribution function 243
Logten() function 137
loops, dynamic 288

M
m to n sequence 167
magnification, printouts 27
Maintain recovery info preference 60
Make Alias command 377
Make Importance command 10, 269, 377
Make Input Node command 377
Make Output Node command 377
Make Same Size submenu 381
MakeDate() function 208
MakeTime() function 11, 208
Math command 378
math functions

advanced 209

412 Analytica User Guide

Math library 136
matrices
definition 398
dot product 203
functions 202—204
multiplication 203
Matrix command 378
MatrixMultiply() function 203
Max() function 187
MDArrayToTable() function 194, 356
MDTable() function 195
MdxQuery() function 359
mean value
definition 398
using 34
Mean Value command 380
Mean() function 263
median
definition 398
Latin hypercube sampling method 227
see GetFract()
memory
increasing swapfile size 385
Memory Usage window 384
reducing requirements 332
requirements 384
understanding usage 367
usage 382
MemorylnUseBy() function 368
menus
choice 176
command descriptions 375-383
creating 121
pull-down 23
right mouse button 383
Metalndex declaration 345
meta-indexes 344
MetaOnly attribute 307, 344
Mid qualifier 319
Mid Value command 380
mid values
definition 398
using 33, 34
Mid() function 266
Min() function 188
Minimal Standard random number generator 227
mixed correspondence 174
Mod() function 137
Model class 57
models
behavior analysis 42
browse-only 360, 394
building 62
closing 19
combining 311
creating 48
definition 398
documentation 65
dynamic 72
editing 49-56

expanding 66
hierarchy 304
integrated 311
large 304-314
linking obfuscated 362
listing nodes 304
making easy to use 120
modular 312
navigating 305
obfuscating 360
opening 18
opening details 23
protecting intellectual property 360
reusing 64
saving obfuscated copies 361
separating columns 355
specifying attributes 48
switching 19
testing and debugging 64
unexpected behavior 45
viewing details 19
working with 18
modes
definition 398
determining number of 221
overview 22
quantities 221
switching 49
Module class 57
modules
about 20
adding 310
connecting with arrows 53
definition 398
displaying hierarchy 59
embedding 311
filed, see filed modules
form 123
hierarchy 304, 398
linking to original 311
obfuscated 362
opening details 23
organizing hierarchy 75
subclasses list 57
Monte Carlo sampling method
Intelligent Arrays 159
using 226
mouse operations 177
Move Into Parent command 381
MsgBox() function 345
multiD tables, converting from relational 194
multimodal distribution 398
Multinomial() distribution function 256
Multinormal() distribution function 255
MultiUniform() distribution function 256
multivariate distributions 253
Multivariate Distributions library
new distributions 13
using 254

Analytica User Guide

N
name-based calling syntax 136, 317
name-based subscripting 153
naming errors 387
NAN 138
natural cubic spline 197
navigation
shortcuts 109, 177
toolbar 21
New Model command 375
Node Style dialog. using 79
nodes
about 19
adding icons 124
adjusting size 72
alias 54
aligning 73
arranging 72
arranging front to back 74
changing size 51
consistent sizes 71
creating 49
creating aliases 54
customizing 79
cut, copy, and paste 51
default size 78
definition 398
deleting 51
deselecting 21
distributing 74
duplicating 51
editing title 49
flagging with red triangle 59
font and typeface settings 78
grouping related 75
handles 50
identifying types 20
input, see input nodes
linking arrows to 52
list of attributes 306
moving 50
moving into the same diagram 54
output, see output nodes
redundant 312
selecting 21, 50
selecting multiple 21
shape descriptions 20
shape representations 20
text node type 126
title characteristics 71
undefined 59, 80
visual grouping 77
Z-order 74
Nonnegative qualifier 320
non-procedural programs 326
normal distribution 399
Normal_additive_gro() distribution function 257

Normal_compound_gro() distribution function 257

Normal_correl() distribution function 254

Index

413

Index

Normal_serial_correl() distribution function 256 searching for 113
Normal() distribution function 242 titles 50
Normalize() function 193 viewing definitions 59
Nper() function 212 ODBC 399
Npv() function 212 OLE linking
Null system constant 138, 379 activating other applications 298
Number Format command 380 auto recompute links 60, 295
Number format dialog 82 automatic vs. manual updates 294, 298
number formats changing file locations 294, 298
case sensitivity 83 definition 399
converting to text 138 linking data from Analytica 292—295
currency symbols 83 linking data into Analytica 295-298
date numbers 207 number formatting 295
expressions 131 OLE Links menu command 376

import and export rules 302
integers 132
largest and smallest 132
list of types 82
number of decimal digits 83
OLE linking 295
options 132
precision 132, 384
quick reference 422
regional settings 84
settings 82
tables 32
thousands separator 83
trailing zeroes 83

Number qualifier 320

numbers in lists 164

Open Source button 298
Paste Special dialog 297
procedure, from Analytica 293
procedure, to Analytica 295
refreshing links 295
table example 296
terminating links 298
using indexes 295
working with 291
one-dimensional array format 300
Open Model command 375
Open Source button 298
OpenExcelFile() function 11
operators
arithmetic 133, 147
binding precedence 135
Boolean 134

O comparison 134
obfuscated copies 360 definition 399
obfuscated, definition 399 logical 134
Object button 21 scoping 134

Object Finder dialog
definition 399
Distribution library 223
using 112

Object menu 377

Object window
definition 399
features of 48, 316
maximum number of 313

text concatenation 206
Operators command 378
Optimizer command

Definition menu 378

Help menu 382
order of precedence 135
ordering qualifiers 321
originals vs. aliases 56
OrNull qualifier 320

opening 24 outermost dimension 399
showing values 26 Outline button 21
using 23, 48 Outline window 304, 399

objective variables
arranging nodes 72
definition 399
representation 20
working with 62

out-of-range errors 331
output nodes
browsing 22
creating 122
definition 399

objects original variables 123
changing class 57 resizing 123
classes 20 using 122
definition 399 viewing values 23
finding 306 writing to databases 357
handles 344 outputs

identifiers 50

414 Analytica User Guide

arrowhead 399
attribute 307

definition 399

listing 20

remote 20
ovals 20

P
palette, color 77
parallelograms 20
parameters
assigning values 42
attribute 307
changing definition 42
defining as lists 42
definition 399
financial functions 210
parametric analysis 42
qualifiers 316, 318
repeated 322
using 318
varying inputs 42, 43
parametric sensitivity analysis 151
parent diagram
hiding nodes 360
returning to 24
settings 21
viewing 20
Parent Diagram button 21
parenthesis matching 109
parents, definition 399
Paste command 376
Paste Identifier command 378
Paste Special command 376
PDF() function 267
percent number format 83
percentiles
definition 399
estimating 264
Performance Profiler library
features 367
functions 368
using 366
Permutations() function 217
Pi system variable 379
pictures, see graphics
pivot table
creating array from relational tables 194
edit tables 171
result tables 32
see function MDTable() 195
Pmt() function 212
poisson regression 278
Poisson() distribution function 233
positional correspondence 174
position-based calling syntax 136, 317
PositionInindex() function 189
Positive qualifier 320
Ppmt() function 213
precedence, order of 135
precision, number

Analytica User Guide

Index

formats 132
specifications 384
Preferences command 376
Preferences dialog
changing window limits 314
disabling checking 117
features 58-60
opening 304
Premium Solver 15
Print command 375
Print Preview command 375
Print Report command 28, 375
Print Setup command 375
printing options
background 28
fit to page 27
magnification/scale 27
multiple windows 28
page preview 27
printing to files 299
setting 27
Prob qualifier 319
Prob Table button 238
prob values
definition 400
Probvalue attribute 307
using 33
probabilistic variables 399
probability bands
definition 400
settings 228
uncertainty view 35
Probability Bands command 380
probability density
displaying graphs 380
equal steps 229
function (PDF) 400
options 228
samples per plot point 229
uncertainty view 35
probability distributions
array parameters 253
beta 244
button 121
calculating 224
Chi-squared 249
choosing 220-222
computing 232
continuous 221
custom discrete 237
defining variables as 222
definition 400
discrete 221, 240
entering as expressions 223
functions 231-249
Gaussian 242
including in definitions 224
new features in 4.0 13
normal 242
triangular 242

415

Index

truncating 251

uniform 241
probability functions, advanced 217
probability mass functions

definition 400

displaying in graphs 36

menu command 380
probability tables

adding conditional variables 239

conditional 239

creating 238

definition 400

expression view 239

Self index 238

splicing 173

working with 238
Probability() function 264
Probbands() function 264
Probdist() distribution function 250
probit regression 278
Probtable() distribution function 238
probtables, see probability tables
procedural programs

constructs 327

example 326

using 326
Product() function 187
progressive refinement 160
public variables 312
purchase price 153

pure associational correspondence 174

pure positional correspondence 174
Putoption() function 214

Pv() function 213

Pvgperp() function 216

Pvperp() function 216

Q

qualifiers
All 320
array 319
Atom 319
Coerce 321
context 318
ContextSample 319
deprecated synonyms 323
evaluation mode 318
Handle 320
Index 319
Mid 319
Nonnegative 320
Number 320
Optional 321
ordering 321
OrNull 320
parameter 316, 318
Positive 320
Prob 319
Reference 320

416 Analytica User Guide

Sample 319
Scalar 319
Text 320
type checking 320
Variable 319

quantiles 264

gquantities
bounds 221
discrete vs. continuous 220
discretizing process 221
modes 221
selecting distribution 222
skewed vs. symmetric 222

R
Radians() function 137
random Latin hypercube sampling 227
random number methods 227
random seed 227
Random() distribution function 252
Rank() function 192
Rankcorrel() function 265
Rate() function 213
ReadTextFile() function 359
Recent files 375
record indexes 352
records 352
recovery info settings 59
rectangles 20
recursion 331
Recursive attribute 307
recursive functions

attributes 318

settings 334

using 334
reducing functions

definition 400

working with 185-191
reference operator 340
Reference qualifier 320
references 340
refinement, progressive 160
regional settings

date formats 85

number formats 84
Register command 382
regression analysis 278
Regression() function 278
RegressionDist() function 279
RegressionFitProb() function 280
RegressionNoise() function 280
relational tables, converting from multiD 194
remote variables

definition 400

seeing 20
Reorder

See Sortindex() function
resampling 289
Resize Centered command 381

Result button 22, 23, 122
result graphs, exporting 292
Result menu 380
result tables
copying 292
getting data 358
retrieving 355
result views
definition 400
setting default 59
Result window
controls 30
default view 31, 59
graph view 32
index selection 30
maximum number of 58, 313
opening 30
table view 32
working with 30-39
Resultindex() function 198
results
analyzing 43
comparing 38
graph view 32
recomputing 31
table view 32
viewing 19
Return key, using to enter data 60
Right Edges command 381
Round() function 11, 137
rows
adding and deleting 172
display significance 150
trading places with columns 150
Run system variable
description 171
menu command 379
probabilistic calculation 224
sample values 266
RunConsoleProcess() function 368

S
Sample command 380
Sample qualifier 319
sample size
selecting 372
setting 226
Sample() function 266
samples, definition 400
SampleSize system variable 226, 266, 379
Sampleweighting system variable 379
sampling methods
choosing 227
definition 400
median Latin hypercube 227
Monte Carlo 226
random Latin hypercube 227
selecting 226
Save A Copy In command 375

Analytica User Guide

Index

Save As command 375
Save command 375
scalar (OD) arrays 147
Scalar qualifier 319
scalars
definition 400
input fields 120
scatter plots
definition 400
example 277
working with 277
scoping operator 134
screenshots, taking 80
scripts
assigning to global variables 364
creating 363
language 363
Sdeviation() function 263
Select All command 376
SelectText() function 206
self indexes 156, 167
self, definitions 400
semicolon, double 357
Send to Back command 383
sensitivity analysis
definition 401
functions 270-272
sequence operator 167
Sequence() function 167
Set Diagram Style command 381
Set Node Style command 381
shells, stand alone 312
shortcuts, navigation 109, 177
Show By Identifier command 377
Show Color Palette command 381
Show Invalid Variables command 378
Show Memory Usage command 382, 384
Show Page Breaks command 382
Show Result command 380
Show With Values command 377
ShowPdfFile() function 349
ShowProgressBar() function 347
Shuffle() distribution function 251
side effects 401
Sin() function 137
SingularValueDecomp() function 204
Sinh() function 210
Size() function 199
skewed distributions
about 222
comparison to symmetric 222
definition 401
formula 263
skewness 401
Skewness() function 263
Slice() function 175
slicers
definition 401
working with 89
slices

417

Index

adding items to indexes 173
assigning to variables 330
construct 175
definition 401
effects of splicing 173
mixing with subscripts 175
preceding time period 176
types of correspondence 174
Snap to Grid command 381
Sort
Sorting arrays, see Sortindex() function
Sortindex() function 168
Space evenly submenu 381
Special command 378
Special library 378
splicing
changing computed indexes 173
default correspondence 174
definition 401
working with 173
SplitText() function 207
SQL
accessing databases 352
case sensitivity 354
definition 401
retrieving result tables 355
specifying queries 354
SqlDriverinfo() function 359
Sqr() function 137
Sqrt() function 137
standard deviation 401
Statistical command 378
statistics
functions 262
new features in 4.0 13
setting options 228
uncertainty view 35
weighted 268
Statistics command 380
Statistics() function 267
Stepinterp() function 196
strings, see text
StudentT() distribution function 247
subarrays
extracting 174
slicing and subscripting 174
Subindex() function 188
subscript construct
mixing with slices 175
using 174
Subscript() function 175
subscripting
construct syntax 153
name-based 153
value v is array 153
Subset() function 168
SubTable() function 202
subtables, using 202
suffix notation
characters 83

418 Analytica User Guide

definition 401
number formats 82
using 82
Sum() function 156, 187
Svdindex system variable 379
symmetrical distributions
comparison to skewed 222
definition 401
syntax
checking in definitions 110
errors 387
name-based 136, 317
operators 135
position-based 136, 317
system constants 138
system functions 401
system variables
definition 401
Definition menu 114
menu commands 378, 379
menu options 379
sample weighting 258

T
Table() function 185
tables
converting between 194
converting from graph view 32
copying 292
creating 183
definition 401
deterministic, see deterministic tables
displaying 32
edit, see edit tables
editable types 396
features 32
import/export data format 300
lookup 196
modeling 143-179
multiple number formats 86
new features in 4.0 12
number formats 32
numerical data formats 302
probability, see probability tables
separating columns 355
tails, definition 401
Tan() function 137
Tanh() function 210
templates
combining settings 97
creating 96
modifying 97
renaming 98
setting associations 98
unlinking 96
using with graphs 96
terminology 393-402
text
adding to diagrams 126

alphabetic ordering 134
combining with numbers 164
concatenation operators 206
converting to numbers 138
evaluating as scripts 366
functions 206
joining 206
reading and writing files 359
values 133
Text functions command 378
Text qualifier 320
TextLength() function 206
TextLowerCase() function 207
TextReplace() function 206
TextSentenceCase() function 207
TextTrim() function 11, 206
TextUpperCase() function 207
three-dimensional array format 301
Tile Left to Right command 382
Tile Top to Bottom command 382
time
profiling 366
slices, preceding 176
Time system variable
description 171
details 284-286
earlier time reference 284
menu command 379
using in a model 286
working with 282
Title attribute 307
titles
attribute characteristics 317
characteristics 71
definition 401
editing 49
using 50
Today() function 209
toolbar
features 21
quick reference 422
Top Edges command 381
tornado charts 272
transformed beta distribution 244
transforming functions 191-194
Transpose() function 204
trapezoids
finding area 190
representation 20
Triangular() distribution function 242
True system variable 132, 379
Truncate() distribution function 251
truth values 132
Tutorial command 382
two-dimensional array format 301
type checking qualifiers 320
typeface, editing in nodes 78
TypeOf() function 141
Typescript window 366
typographic conventions 9

Analytica User Guide

Index

U
uncertainties
dynamic simulations 289
expressing 220
mean 372
resampling 289
uncertainty factor 243
Uncertainty Options command 380
Uncertainty Sample option 225
Uncertainty Setup dialog 225-229
uncertainty views
cumulative probability 36
list of 34
mean value 34
mid value 34
probability bands 35
probability density 35
probability mass function 36
sample 37
statistics 35
working with 33
Uncumulate() function 192
Undo command 376
Unhide Definition(s) command 377
uniform distribution 401
Uniform() distribution function 234, 241
UniformSpherical() distribution function 256
Unique() function 169
units
attribute 307
definition 402
using 317
Update License command 382
Use Excel date origin preference 60
User guide command 382
user interfaces, creating for models 120
user libraries 323, 378
user-created attributes 307
user-defined functions
attributes 317
creating 317
definition 402
libraries 316, 323
parameter qualifiers 318
working with 315-324

V
Value attribute 307
values
arrays 27
assigning to parameters 42
atoms 27
Boolean 132

checking bounds 59
checking validity 115-117
constants 156

disabling checking 117
expected 398

listing 111

419

Index

showing in Object window 26

text 133

truth 132

undefined 195
Variable qualifier 319
variables

assigning slices 330

automatic renaming 58

chance 20, 395

class checking 59

classes 20

comparing lists 155

constants 20

continuous 395

declaring 328

defining as distributions 222

defining as edit tables 169-171

definition 402
description 19
discrete 236, 396
dynamic 282, 396
examples 182
finding 306
general 20, 397
index 20, 397
invalid 309
objective 20
probabilistic 399
public 312
remote 20
setting number formats 82
uncertain 289
variance
definition 402
estimating 263
Variance() function 263
views
default 31, 59

uncertainty, see uncertainty views

W

w parameter 268

Wacc() function 216

warning icon 110

warnings, see errors

Web tech support command 382

Weibull() distribution function 248

weighted statistics 268
weighting, importance 257
Whatif() function 272
WhatifAll() function 272
While loops 331
While...Do function 333
Width command 381
Window menu 382
windows

see also Diagram window, Object window, Result window

browsing 23
changing number limits 314

420 Analytica User Guide

example images 421
managing 313
numbers displayed 58
print settings 28
Windows system software 384
WorksheetCell() function 11
WorksheetRange() function 11
WriteTableSql() function 357
WriteTextFile() function 360

X

Xirr() function 213

Xnpv() function 214

XY button 101, 275

XY comparison
dialog features 99
examples 100, 103
special menus 99
using 98

XY plots 275

Z
Z-order, nodes 74

Windows and Dialogs

ey Hiog prcs) o
| Pocont down paymeed (W) 3]
Merigage tsrestiate (Wiwa| 9]

m[_am] seencmenaw ovws(s)

Couts ol teying anrersng (51 Caie_) b

Diagram Window:
Inputs and Outputs

[re—
Tt Dmest e
Deacripaon: Ducount rate e cosesring § by CHn fim FiS & g Ve

Isresest ale, The St rale rerebas B b £ e by
PR

==

Detrmen:

Coman: [Aussmase -

Oumputi: () _ferpese_pirest Presest valee of feregsns plaest
[=Jr- Prrneet saker 61 tmeprate aln

Diagram Style Dialog

T -
Lo =
g et e et

=
10 st

O
ot

« 1 e — |
-

]

L] e | e |

Graph Setup Dialog

Attributes Dialog

Analytica User Guide

Diagram Window:
Influence Diagram

Node Style Dialog

P |
(Appiies fo sntine model]
Sampls Sire: "

Sampiing mathact Randarmize method:
r Miedan Lot Hypescube r e

" Random Latn Hoarube
™ Semgie Morte Cae

Lo
Wt

Fever Qpters | Random nees: ¥ Reset erce

Cneel St Dt

Uncertainty Setup Dialog

52 Feragene rtsreat o6 dawa paymeel
S Saveg et rane
(1 Present valee o1 Rermgee pimeeal
(S Pertent temn et
= O Ouretpocket csats 4o swm
[—————

Ber va. Buy Ansfysiac

Tiracislmoste ompareg e et Proaset akos of reing ve. by § Foue.

Thin il 5840 B0 B CETARTEERE: § S8 R 8 Tagaten Vakah madny B A

la |» W]«

Outline Window

Co—r—

W Result - Conts of buyieg iy

llocm] erotutsany ey o Conta of taying st renting (3} x|
I~ Toss

= x ¥ S
3 WK [Tok 1R R7Ms AR 153k
= a s (1% W 34,

Result Window — Table View

i

Errrran 1w

Emp Pt

Fren rumons ot [3]

Lot Tradng
 Gamescy

Wincowrs of each kingd: ——— — Default result virer
% e eriy I

by rumber E_‘ e
% Bewstt wincows 5= amh
Changs idemafier: —————

¥ Witen e charges

| 3% charscters.

5 o bk ey

1 Dhpect windew

o] panw: —————
r" Disgrom asbute parsl

§ T ot Rt s s

- F See rremedaes

% Martan Fscevesy ke A
OLE s

I U Bl ot oo

- | . |

Preferences Dialog

Find Dialog

421

Quick Reference

The Tool Bar
& == @|p| B[x »| 5@ e o sla|w| 7| m
N
&S S $§ I IFIFIFPIISS
S & & & & g §F s &£ <& & <& & & & » <
& © g £ F & S5 & ¢ ¢ ¥ g & S es
& ° & TS F ST EFE &
& g ¥ 0 5 < S <
It displays the node palette
when you select the edit tool or
arrow tool.
Number Formats
Format Description Example
Suffix letter denotes order of magnitude, such as 12.35K
M for 10°° (see table below)
Exponent scientific exponential 1.235e+004
Fixed point fixed decimal point 12345.68
Integer fixed point with no decimals 12346
Percent percentage 1234568%
Date text date 12 Jan 2008
Boolean true or false True
Suffix format
Power of 10 Suffix Prefix Power of 10 Suffix Prefix
1072 % percent
103 K Kilo 103 m milli
108 M Mega or Million 106 H micro (mu)
10° G Giga 10°° n nano
1012 T Tera or Trillion 1012 p pico
101° Q Quad 1015 f femto

422

For more, see “Number formats” on page 82.

Analytica User Guide

	Contents
	About Analytica
	Welcome!
	If you don’t read manuals
	Hardware and software requirements
	Installation and license codes
	Editions of Analytica
	Compare Analytica features by edition

	Help menu and electronic documentation
	Online help and electronic documentation

	Normally, usually, and defaults
	Typographic conventions in this guide
	User guide Examples folder
	What’s new in Analytica 4.1?
	User Guide
	Installer
	User Interface
	Excel Integration
	Expressions

	What’s new in Analytica 4.0?
	User interface
	The Application
	Probability distributions and statistical functions
	New functions and language extensions
	Analytica Enterprise Edition
	Analytica Optimizer

	Examining a Model
	To open or exit a model
	Diagram window
	Classes of variables and other objects
	Selecting nodes
	The toolbar
	Browsing with input and output nodes
	Browse mode
	Viewing input nodes
	Viewing output node values
	Opening module details

	The Object window
	The Attribute panel
	Showing values in the Object window
	Printing

	Result Tables and Graphs
	The Result window
	Index selection
	The default view
	Recomputing results

	Viewing a result as a table
	Viewing a result as a graph
	Uncertainty views
	Comparing results

	Analyzing Model Behavior
	Varying input parameters
	Analyzing model behavior results

	Creating and Editing a Model
	Creating and saving a model
	Creating and editing nodes
	Drawing arrows
	How to draw arrows between different modules
	Alias nodes
	To edit an attribute
	To change the class of an object
	Module Subclasses

	Preferences dialog

	Building Effective Models
	Creating a model
	Testing and debugging a model
	Expanding your model

	Creating Lucid Influence Diagrams
	Guidelines for creating lucid and elegant diagrams
	Arranging nodes to make clear diagrams
	Organizing a module hierarchy
	Color in influence diagrams
	Diagram Style dialog
	Node Style dialog
	Taking screenshots of diagrams

	Formatting Numbers, Tables, and Graphs
	Number formats
	Date formats
	Multiple formats in one table
	Graphing roles
	Graph setup dialog
	Chart Type tab
	Axis Ranges tab
	Style tab
	Text tab
	Background tab
	Preview tab
	Categorical and Continuous Plots
	Exporting graph image type

	Graph templates
	To use a graph style template
	To stop using a graph style template
	To define a new graph style template
	To modify a graph style template
	Combining local, template, and model default settings
	Saving defaults as a template model
	Graph templates and setting associations
	Changing the global default
	To rename a graph style template

	XY comparison

	Creating and Editing Definitions
	Creating or editing a definition
	Automatically updating the diagram

	The Expression popup menu
	Object Finder dialog
	Using a function or variable from the Definition menu
	Checking for valid values

	Creating Interfaces for End Users
	Using input nodes
	Creating a choice menu
	Using output nodes
	Input and output nodes and their original variables
	Using form modules
	Adding icons to nodes
	Graphics, frames, and text in a diagram
	Default and XML model file formats
	Hyperlinks in model documentation

	Using Expressions
	Expressions
	Numbers
	Boolean or truth values
	Text values
	Operators
	Operator binding precedence

	IF a THEN b ELSE c
	Function calls and parameters
	Math functions
	Numbers and text
	Exception values INF, NAN, and NULL
	Warnings
	Datatype functions

	Arrays and Indexes
	Introducing indexes and arrays
	IF a THEN b ELSE c with arrays
	Creating an index
	Editing a list
	Defining an index as a sequence

	Functions that create indexes
	[u1, u2, u3, … um]
	List of variables
	m .. n
	Sequence(start, end, stepSize)
	Concat(i, j)
	Subset(d)
	CopyIndex(i)
	Sortindex(d, i)
	Unique(a, i)

	Defining a variable as an edit table
	Indexes dialog

	Editing a table
	Editing or extending indexes in an edit table

	Splice a table when computed indexes change
	Subscript and slice of a subarray
	x[i=v]: Subscript construct
	Subscript(x, i, v)
	x[@i=n]: Slice construct
	Slice(x, i, v)
	Slice(x, n)
	Preceding time slice: x[Time-1]
	Choice(i, n, inclAll)

	Choice menus in an edit table
	Shortcuts to navigate and edit a table

	More Array Functions
	Functions that create arrays
	Array(i1, i2, … in, a)
	Table(i1, i2, … in) (u1, u2, u3, … um)

	Array-reducing functions
	Sum(x, i)
	Product(x, i)
	Average(x, i)
	Max(x, i)
	Min(x, i)
	Argmax(a, i)
	Argmin(a, i)
	CondMin(x: Array[i], cond: Boolean[i]; i: IndexType) CondMax(x: Array[i], cond: Boolean[i]; i: IndexType)
	Subindex(a, u, i)
	PositionInIndex(a, x, i)
	@: Index Position Operator
	Area(r, i, x1, x2)

	Transforming functions
	Cumulate(x, i)
	Uncumulate(x, i, firstElement)
	Cumproduct(x, i)
	Rank(x, i)
	Integrate(r, i)
	Normalize(r, i)

	Converting between multiD and relational tables
	MDArrayToTable(a, i, l)
	MDTable(t, rows, cols, vars, conglomFn, missingVal)

	Interpolation functions
	Stepinterp(x, y, v, i)
	Linearinterp(x, y, v, i)
	Cubicinterp(x, y, v, i)

	Other array functions
	Concat(a1, a2, i, j, k)
	ConcatRows(a: Array[i, j]; i, j, k: Index)
	IndexNames(a)
	IndexesOf(a: Array)
	IndexValue(i)
	Size(u)

	DetermTable: Deterministic tables
	SubTable
	Matrix functions
	Dot product of two matrices
	MatrixMultiply(a, aRow, aCol, b, bRow, bCol)
	Transpose(c, i, j)
	Invert(c, i, j)
	Determinant(c, i, j)
	Decompose(c, i, j)
	EigenDecomp(a: Numeric[i, j]; i, j: Index)
	SingularValueDecomp(a, i, j, j2)

	Other Functions
	Text functions
	Date functions
	Advanced math functions
	Financial functions
	Cumipmt(rate, nPer, pv, startPeriod, endPeriod, type)
	Cumprinc(rate, nPer, pv, startPeriod, endPeriod, type)
	Fv(rate, nPer, pmt, pv, type)
	Ipmt(rate, per, nPer, pv, fv, type)
	Irr(values, i, guess)
	Nper(rate, pmt, pv, fv, type)
	Npv(discountRate, values, i)
	Pmt(rate, nPer, pv, fv, type)
	Ppmt(rate, per, nPer, pv, fv, type)
	Pv(rate, nPer, pmt, fv, type)
	Rate(nPer, pmt, pv, fv, type, guess)
	Xirr(values, dates, i, guess)
	Xnpv(rate, values, dates, i)

	Financial library functions
	Calloption(S, X, T, r, theta)
	Putoption(S, X, T, r, theta)
	Capm(Rf, Rm, Beta)
	CostCapme(rOpp, rD, Tc, L)
	CostCapmm(rAllEq, Tc, L)
	Implied_volatility_c(S, X, T, r, p)
	Implied_volatility_p(S, X, T, r, p)
	Pvperp(C, rate)
	Pvgperp(C1, rate, growth)
	Wacc(Debt, Equity, rD, rE, Tc)

	Advanced probability functions

	Expressing Uncertainty
	Choosing an appropriate distribution
	Defining a variable as a distribution
	Including a distribution in a definition
	Probabilistic calculation
	Uncertainty Setup dialog

	Probability Distributions
	Probability distributions
	Parametric discrete distributions
	Bernoulli(p)
	Binomial(n, p)
	Poisson(m)
	Geometric(p)
	Hypergeometric(s, m, n)
	Uniform(min, max, Integer: True)

	Probability density and mass graphs
	The domain attribute and discrete variables
	Custom discrete probabilities
	Probtable(): Probability Tables
	Determtable(): Deterministic conditional table
	Chancedist(p, a, i)

	Parametric continuous distributions
	Uniform(min, max)
	Triangular(min, mode, max)
	Normal(mean, stddev)
	Lognormal(median, gsdev, mean, stddev)
	Beta(x, y, min, max)
	Exponential(r)
	Gamma(a, b)
	Logistic(m, s)
	StudentT(d)
	Weibull(n, s)
	ChiSquared(d)

	Custom continuous distributions
	Cumdist(p, r, i)
	Probdist(p, r, i)

	Special probabilistic functions
	Certain(u)
	Shuffle(a, i)
	Truncate(u, min, max)
	Random(expr)

	Multivariate distributions
	Over indexes as parameters to probability distributions
	Probability distributions with array parameters
	Multivariate Distributions library
	Create one distribution dependent on another
	An array of distributions with correlation or covariance matrix
	Other parametric multivariate distributions
	Arrays with serial correlation
	Uncertainty over regression coefficients

	Importance weighting

	Statistics, Sensitivity, and Uncertainty Analysis
	Statistical functions
	Mean(x)
	Sdeviation(x)
	Variance(x)
	Skewness(x)
	Kurtosis(x)
	Probability(b)
	GetFract(x, p)
	ProbBands(x)
	Covariance(x, y)
	Correlation(x, y)
	Rankcorrel(x, y)
	Frequency(x, i)
	Mid(x)
	Sample(x)
	Statistics(x)
	PDF(X) and CDF(X)

	Weighted statistics and w parameter
	Importance analysis
	Sensitivity analysis functions
	Dydx(y, x)
	Elasticity(y, x)
	Whatif(e, v, vNew)
	WhatIfAll(e, vList, vNew)

	Tornado charts
	X-Y plots
	Scatter plots
	Regression analysis
	Regression(y, b, i, k)

	Uncertainty in regression results
	RegressionDist(y, b, i, k)
	RegressionFitProb(y, b, i, k, c, s)
	RegressionNoise(y, b, i, k, c)

	Dynamic Simulation
	The Time index
	Using the Dynamic() function
	Dynamic(initial1, initial2..., initialn, expr)
	x [Time - k]

	More about the Time index
	Reference to earlier time
	Defining time
	Using Time in a model

	Initial values for Dynamic
	Using arrays in Dynamic()
	Dependencies with Dynamic
	Dynamic dependency arrows
	Expressions inside dynamic loops

	Uncertainty and Dynamic
	Resampling

	Importing, Exporting, and OLE Linking Data
	Copying and pasting
	Using OLE to link results to other applications
	Important notes about linking to Analytica results

	Linking data from other applications into Analytica
	Example of linking a table into Analytica
	Important notes about linking into Analytica edit tables

	Importing and exporting
	Printing to a file
	Edit table data import/export format
	One-dimensional array
	Two-dimensional array
	Three-dimensional array
	Number format

	Working with Large Models
	Show module hierarchy preference
	The Outline window
	Finding variables
	Managing attributes
	Referring to the value of an attribute

	Invalid variables
	Using filed modules and libraries
	Adding a module or library
	Combining models into an integrated model
	Cautions in combining models

	Managing windows

	Building Functions and Libraries
	Example function
	Using a function
	Creating a function
	Attributes of a function
	Parameter qualifiers
	Evaluation mode qualifiers
	Array qualifiers
	Type checking qualifiers
	Ordering qualifiers: Ascending and Descending
	Optional parameters
	Repeated parameters (...)
	Deprecated synonyms for parameter qualifiers

	Libraries
	Creating a library
	Adding a filed library to a model
	Using a library

	Procedural Programming
	An example of procedural programming
	Summary of programming constructs
	Begin-End, (), and “;” for grouping expressions
	Declaring local variables and assigning to them
	Defining a local variable: Var v := e
	Assigning to a local variable: v := e
	ComputedBy(x)
	Assigning to a slice of a local variable

	For and While loops and recursion
	For i := a Do expr
	While(Test) Do Body
	Iterate(initial, expr, until, maxIter, warnFlag)
	Recursive functions

	Local indexes
	Ensuring array abstraction
	References and data structures
	Handles to objects
	List of variables: [v1, v2, ... vn]
	Handle(o)
	HandleFromIdentifier(text)
	Indexes of Handles

	Dialog functions
	MsgBox(message, buttons, title)
	Error(message)
	AskMsgText(question, title, maxText, default)
	AskMsgNumber(question, title, default)
	ShowProgressBar(title, text, p)

	Miscellaneous functions
	CurrentDataDirectory(filename)
	CurrentModelDirectory(filename)
	Evaluate(e)
	GetRegistryValue(root, subfolder, name)
	IgnoreWarnings(expr)
	IsResultComputed(x)
	ShowPdfFile(filename)

	Analytica Enterprise
	Accessing databases
	Separating columns of a database table

	Database functions
	DBLabels(dbIndex)
	DBQuery(connectionString, sql)
	DBTable(dbIndex, column) DBTable(dbIndex, columnList) DBTable(dbIndex, columnIndex)
	DbTableNames(connectionString, cat, sch, tab, typ)
	DBWrite(connectionString, sql)
	MdxQuery(connectionString, mdx)
	SqlDriverInfo(driverName)

	Reading and writing text files
	ReadTextFile(filename)
	WriteTextFile(filename, text, append, warn, sep)

	Making a browse-only model and hiding definitions
	Warning: Do not obfuscate libraries or linked submodules!

	Huge Arrays
	Creating buttons and scripts
	Assigning to global variables
	EvaluateScript(t)
	Typescript Window

	Performance Profiler library
	Performance profiling attributes and function

	Integrating with other Applications
	RunConsoleProcess(program)
	Examples

	Appendices
	Appendix A: Selecting the Sample Size
	Appendix B: Menus
	Appendix C: Analytica Specifications
	Appendix D: Identifiers Already Used
	Appendix E: Error Message Types
	Appendix F: Forward and Backward Compatibility
	Appendix G: Bibliography

	Function List
	Glossary
	Index
	Windows and Dialogs
	Quick Reference
	The Tool Bar
	Number Formats
	Suffix format

