
User Guide
Analytica 4.2

3 February, 2010



Copyright Notice
Information in this document is subject to change without notice and does not represent a commitment on the part of Lumina 
Decision Systems, Inc. The software program described in this document is provided under a license agreement. The software 
may be used or copied, and registration numbers transferred only in accordance with the terms of the license agreement. It is 
against the law to copy the software on any medium except as specifically allowed in the license agreement. No part of this doc-
ument may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, 
recording, or information storage and retrieval systems, for any purpose other than the licensee’s personal use, without the 
express written consent of Lumina Decision Systems, Inc.

This document is © 1993-2010 Lumina Decision Systems, Inc. All rights reserved. 

The software program described in this document, Analytica, includes code that is copyrighted:
© 1982-1991 Carnegie Mellon University
© 1992-2010 Lumina Decision Systems, Inc., all rights reserved.

Analytica was written using MacApp®: © 1985-1996 Apple Computer, Inc.

Analytica incorporates Mac2Win technology, © 1997 Altura Software, Inc.

Analytica incorporates the Reprise License Manager libraries licensed from Reprise Software, Inc.

Analytica incorporates he Premium Solver SDK licensed from Frontline Systems, Inc.

Analytica incorporates the PCRE library, © 1997-2008, University of Cambridge.

The Analytica® software contains software technology licensed from Carnegie Mellon University exclusively to Lumina Decision 
Systems, Inc., and includes software proprietary to Lumina Decision Systems, Inc. The MacApp software is proprietary to Apple 
Computer, Inc. The Mac2Win technology is technology to Altura, Inc. Both MacApp and Mac2Win are licensed to Lumina Deci-
sion Systems only for use in combination with the Analytica program. Neither Lumina nor its Licensors, Carnegie Mellon Univer-
sity, Apple Computer, Inc., and Altura Software, Inc., make any warranties whatsoever, either express or implied, regarding the 
Analytica product, including warranties with respect to its merchantability or its fitness for any particular purpose.

Lumina Decision Systems is a trademark and Analytica is a registered trademark of Lumina Decision Systems, Inc.

Credits
This Analytica User Guide was written and edited by Lonnie Chrisman, Max Henrion, and Richard Morgan, with important con-
tributions from Brian Arnold, Fred Brunton, Adrienne Esztergar, Jason Harlan, Isaac Henrion, Sarah Hitzeman, Lynda Korsan, 
Randa Mulford, Paul Sanford, Rich Sonnenblick, Brian Sterling, and Eric Wainwright.

Lumina Decision Systems, Inc.
26010 Highland Way
Los Gatos, CA 95033
Phone: (650) 212-1212
Fax: (650) 240-2230
www.lumina.com



 Analytica User Guide iii

Contents

About Analytica   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Welcome! .....................................................................................................................  1
If you don’t read manuals............................................................................................. 2
Hardware and software requirements..........................................................................  2
Installation and licenses...............................................................................................  3
Editions of Analytica.....................................................................................................  6
Help menu and electronic documentation....................................................................  8
Normally, usually, and defaults ....................................................................................  9
Typographic conventions in this guide.......................................................................  10
User guide Examples folder.......................................................................................  11
What’s new in Analytica 4.2? .....................................................................................  11

Chapter 1: Examining a Model   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   15
To open or exit a model ..............................................................................................16
Diagram window ........................................................................................................  17
Classes of variables and other objects ......................................................................  18
Selecting nodes .........................................................................................................  19
The toolbar.................................................................................................................  19
Browsing with input and output nodes .......................................................................  20
The Object window ....................................................................................................  21
The Attribute panel ....................................................................................................  22
Showing values in the Object window........................................................................  24
Printing....................................................................................................................... 25

Chapter 2: Result Tables and Graphs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   27
The Result window......................................................................................................28
Viewing a result as a table .........................................................................................  30
Viewing a result as a graph........................................................................................  30
Uncertainty views.......................................................................................................  31
Comparing results .....................................................................................................  36

Chapter 3: Analyzing Model Behavior   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   39
Varying input parameters...........................................................................................  40
Analyzing model behavior results ..............................................................................  41

Chapter 4: Creating and Editing a Model .  .  .  .  .  .  .  .  .  .  .  .  .  .   45
Creating and saving a model ......................................................................................46
Creating and editing nodes ........................................................................................  47
Drawing arrows ..........................................................................................................  49
How to draw arrows between different modules ........................................................  51
Alias nodes ...............................................................................................................  52
To edit an attribute .....................................................................................................  54
To change the class of an object ...............................................................................  55
Preferences dialog .....................................................................................................  56

Chapter 5: Building Effective Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   59
Creating a model........................................................................................................  60
Testing and debugging a model.................................................................................  62
Expanding your model ...............................................................................................  64

Chapter 6: Creating Lucid Influence Diagrams .  .  .  .  .  .  .  .  .  .  .   67
Guidelines for creating lucid and elegant diagrams ...................................................  69
Arranging nodes to make clear diagrams ..................................................................  70
Organizing a module hierarchy ..................................................................................  73



Contents

iv Analytica User Guide

Color in influence diagrams........................................................................................ 75
Diagram Style dialog .................................................................................................. 76
Node Style dialog ....................................................................................................... 77
Taking screenshots of diagrams ................................................................................ 78

Chapter 7: Formatting Numbers, Tables, and Graphs   .  .  .  .  .  .  .  79
Number formats ..........................................................................................................80
Date formats............................................................................................................... 82
Multiple formats in one table ...................................................................................... 84
Graphing roles............................................................................................................ 84
Graph setup dialog..................................................................................................... 87
Graph templates......................................................................................................... 93
XY comparison........................................................................................................... 96

Chapter 8: Creating and Editing Definitions .  .  .  .  .  .  .  .  .  .  .  .  103
Creating or editing a definition ................................................................................. 104
The Expression popup menu ................................................................................... 107
Object Finder dialog ................................................................................................. 108
Using a function or variable from the Definition menu ............................................ 110
Checking for valid values ......................................................................................... 111

Chapter 9: Creating Interfaces for End Users  .  .  .  .  .  .  .  .  .  .  .  115
Using input nodes .................................................................................................... 116
Creating a choice menu ........................................................................................... 117
Using output nodes .................................................................................................. 118
Input and output nodes and their original variables ................................................. 119
Using form modules ................................................................................................. 119
Adding icons to nodes.............................................................................................. 120
Graphics, frames, and text in a diagram .................................................................. 122
Default and XML model file formats ......................................................................... 123
Hyperlinks in model documentation ......................................................................... 124

Chapter 10: Using Expressions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  127
Expressions.............................................................................................................. 127
Numbers................................................................................................................... 128
Date and Time Values.............................................................................................. 128
Boolean or truth values ............................................................................................ 129
Text values............................................................................................................... 129
Operators ................................................................................................................ 130
IF a THEN b ELSE c ................................................................................................ 132
Function calls and parameters ................................................................................. 132
Math functions.......................................................................................................... 133
Numbers and text..................................................................................................... 134
Exception values INF, NAN, and NULL ................................................................... 135
Warnings .................................................................................................................. 136
Datatype functions ................................................................................................... 137

Chapter 11: Arrays and Indexes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  139
Introducing indexes and arrays ................................................................................ 140
IF a THEN b ELSE c with arrays.............................................................................. 157
Creating an index ..................................................................................................... 159
Functions that create indexes .................................................................................. 162
Defining a variable as an edit table .......................................................................... 166
Editing a table .......................................................................................................... 168



 Analytica User Guide v

Contents

Splice a table when computed indexes change....................................................... 170
Subscript and slice of a subarray ............................................................................. 171
Choice menus in an edit table.................................................................................. 173
Shortcuts to navigate and edit a table...................................................................... 173

Chapter 12: More Array Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  177
Functions that create arrays..................................................................................... 179
Array-reducing functions .......................................................................................... 182
Transforming functions............................................................................................. 187
Converting between multiD and relational tables..................................................... 191
Interpolation functions .............................................................................................. 196
Other array functions................................................................................................ 197
DetermTable: Deterministic tables ........................................................................... 201
SubTable.................................................................................................................. 203
Matrix functions ........................................................................................................ 203

Chapter 13: Other Functions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  209
Text functions............................................................................................................210
Date functions .......................................................................................................... 213
Advanced math functions......................................................................................... 216
Financial functions ................................................................................................... 216
Financial library functions......................................................................................... 221
Advanced probability functions ................................................................................ 224

Chapter 14: Expressing Uncertainty  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  227
Choosing an appropriate distribution ....................................................................... 228
Defining a variable as a distribution ......................................................................... 230
Including a distribution in a definition ....................................................................... 232
Probabilistic calculation............................................................................................ 232
Uncertainty Setup dialog .......................................................................................... 233

Chapter 15: Probability Distributions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  239
Probability distributions .............................................................................................240
Parametric discrete distributions .............................................................................. 241
Probability density and mass graphs ....................................................................... 242
The domain attribute and discrete variables ............................................................ 244
Custom discrete probabilities ................................................................................... 246
Parametric continuous distributions ......................................................................... 249
Custom continuous distributions .............................................................................. 257
Special probabilistic functions .................................................................................. 259
Multivariate distributions........................................................................................... 261
Importance weighting ............................................................................................... 265

Chapter 16: Statistics, Sensitivity, and Uncertainty Analysis   .  .  269
Statistical functions ...................................................................................................270
Weighted statistics and w parameter ....................................................................... 276
Importance analysis ................................................................................................. 277
Sensitivity analysis functions.................................................................................... 279
Tornado charts ......................................................................................................... 281
X-Y plots................................................................................................................... 283
Scatter plots ............................................................................................................. 285
Regression analysis ................................................................................................. 286
Uncertainty in regression results.............................................................................. 287



Contents

vi Analytica User Guide

Chapter 17: Dynamic Simulation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  291
The Time index ........................................................................................................ 292
Using the Dynamic() function .................................................................................. 292
More about the Time index ...................................................................................... 294
Initial values for Dynamic ........................................................................................ 297
Using arrays in Dynamic()....................................................................................... 297
Dependencies with Dynamic................................................................................... 298
Uncertainty and Dynamic ........................................................................................ 300
Dynamic on non-Time Indexes ................................................................................ 300

Chapter 18: Importing, Exporting, and OLE Linking Data   .  .  .  .  303
Copying and pasting .................................................................................................304
Using OLE to link results to other applications......................................................... 304
Linking data from other applications into Analytica .................................................. 307
Importing and exporting ........................................................................................... 310
Printing to a file ........................................................................................................ 311
Edit table data import/export format ........................................................................ 312

Chapter 19: Working with Large Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  315
Show module hierarchy preference ......................................................................... 316
The Outline window.................................................................................................. 316
Finding variables ...................................................................................................... 318
Managing attributes.................................................................................................. 319
Invalid variables ...................................................................................................... 321
Using filed modules and libraries ............................................................................. 321
Adding a module or library ....................................................................................... 322
Combining models into an integrated model ........................................................... 323
Managing windows................................................................................................... 325

Chapter 20: Building Functions and Libraries .  .  .  .  .  .  .  .  .  .  .  327
Example function...................................................................................................... 328
Using a function ....................................................................................................... 329
Creating a function ................................................................................................... 329
Attributes of a function ............................................................................................. 329
Parameter qualifiers ................................................................................................. 330
Libraries ................................................................................................................... 335

Chapter 21: Procedural Programming  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  337
An example of procedural programming .................................................................. 338
Summary of programming constructs ...................................................................... 339
Begin-End, (), and “;” for grouping expressions ....................................................... 340
Declaring local variables and assigning to them ...................................................... 340
For and While loops and recursion .......................................................................... 343
Local indexes ........................................................................................................... 347
Ensuring array abstraction ....................................................................................... 348
References and data structures ............................................................................... 352
Handles to objects.................................................................................................... 356
Dialog functions........................................................................................................ 357
Miscellaneous functions ........................................................................................... 360

Chapter 22: Analytica Enterprise .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  363
Accessing databases ............................................................................................... 364
Database functions ................................................................................................. 370
Reading and writing text files ................................................................................... 372



 Analytica User Guide vii

Contents

Reading and writing from Excel spreadsheets......................................................... 372
Reading data from the internet................................................................................. 374
Making a browse-only model and hiding definitions................................................. 374
Huge Arrays ............................................................................................................. 378
Creating buttons and scripts .................................................................................... 378
Performance Profiler library ..................................................................................... 382
Integrating with other Applications ........................................................................... 383

Appendices .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  387
Appendix A: Selecting the Sample Size  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  388
Appendix B: Menus   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  391

File menu .......................................................................................................... 391
Edit menu.......................................................................................................... 392
Object menu...................................................................................................... 393
Definition menu................................................................................................. 394
Result menu...................................................................................................... 396
Diagram menu .................................................................................................. 397
Window menu ................................................................................................... 398
Help menu......................................................................................................... 398
Right mouse button menus ............................................................................... 399

Appendix C: Analytica Specifications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  400
Memory usage .................................................................................................. 400

Appendix D: Identifiers Already Used  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  403
Appendix E: Error Message Types   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  404
Appendix F: Forward and Backward Compatibility   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  406
Appendix G: Bibliography   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  406

Function List .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  407

Glossary   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  409

Index.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  419

Windows and Dialogs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  437
Quick Reference .......................................................................................................438



Contents

viii Analytica User Guide



Introduction About Analytica

This introduction explains:

• How to use this manual
• System requirements
• How to install Analytica 
• Editions of Analytica 
• The online help system 
• Typographic conventions used in this guide 
• How to access Analytica example models 
• What’s new in Analytica release 4.2

Welcome!



Introduction About Analytica

2 Analytica User Guide

If you don’t read manuals

This User Guide describes how to use Analytica 4.2. If you are new to Analytica, we invite you to 
start with the Analytica Tutorial to learn the essentials. Most people find they can work through the 
Tutorial quite rapidly. You might then want to read a few sections of the User Guide listed in the 
next section to learn more key concepts. You can consult the rest of this guide as a reference 
when you need more depth. 

Tip For the most current information on Analytica, visit Anawiki (the Analytica Wiki online at http://
www.lumina.com/wiki). This site includes tips, libraries, webinars, models, and reference 
materials, along with a search feature. 

If you can’t find what you want, or have comments on our documents or software, please email 
us at Lumina at support@lumina.com. We are always glad to hear from Analytica users.

Click cross references If you are reading this guide as a PDF document on your computer, you can click the page num-
ber in any cross reference to jump to that page. To return to the previous location, use Acrobat’s 
Go To Previous View feature by pressing Alt+left-arrow (might vary depending on your version 
of Acrobat). 

If you don’t read manuals
Experienced modelers find most Analytica features intuitive. But, it’s helpful to get a good grasp of 
some key concepts so you can get up to speed rapidly. Here are a few chapters that you might 
find especially helpful to review.

Chapter 5:
Building Effective

Models

Offers guidelines for creating effective models, distilled from the experience of master modelers. It 
offers a practical guide for building effective models that are clear, reliable, and focus on what 
really matters — the decisions, objectives, and key uncertainties. These tips are not specific to 
Analytica, but we designed Analytica to make them especially easy to follow. See page 59.

Chapter 6: Creating
Lucid Diagrams

Gives tips on how to create influence diagrams that are truly lucid and elegant — and how to 
avoid incomprehensible spaghetti. See page 67.

Chapter 11:
Arrays and Indexes

Explains Analytica’s Intelligent Arrays™. After you grasp the essentials, they let you build com-
plex multidimensional models with surprising ease. But, you might find they take a little getting 
used to, particularly if you have spent a lot of time with spreadsheets or programming with arrays. 
We recommend that even — perhaps especially — experienced modelers review this chapter. 
See page 139.

Chapter 14: Expressing
Uncertainty

Discusses how to select appropriate probability distributions to express uncertainties. It also pro-
vides an overview of how Analytica computes probability distributions using Monte Carlo and 
other random sampling methods, and your options for controlling and displaying probabilistic val-
ues. See page 227.

Chapter 21: Procedural
Programming

With Analytica, you can create large and sophisticated models without procedural programming. 
But, if you really want to write complex procedural functions, read this chapter to understand Ana-
lytica as a programming language. See page 337.

Hardware and software requirements
To use Analytica, you need the following quite modest minimum configuration:

• Intel 486-66 MHz or better (Pentium 500 MHz+ or AMD Athlon recommended).
• 30 MB disk space
• 256 MB RAM (2 GB recommended for large models)
• 8-bit color display
• Windows XP, Server 2003, Server 2008, Vista, or Windows 7.

To run Analytica 64-bit, you’ll need a 64-bit edition of Windows.

It helps to have a faster CPU, and, especially, more RAM for large models. Analytica will benefit 
from up to 3 GB RAM if you have it, and Analytica 64-bit will benefit from all additional RAM. It is 
also handy to have a large screen, or even multiple screens, when working with a large model.

mailto:support@lumina.com
http://www.lumina.com/wiki
http://www.lumina.com/wiki


 Analytica User Guide 3

Installation and licensesIntroduction About Analytica

Installation and licenses
After downloading the Analytica 4.2 installer from http://www.lumina.com, or inserting the Analyt-
ica CD-ROM into your CD or DVD drive, just double-click the installer to start installation. It installs 
onto your hard drive the executable software, all documentation as Adobe PDF files, plus a range 
of Analytica libraries and example models. If you have installed an earlier release of Analytica, 
such as 3.1 or 4.1, the installer provides you the option to leave it there, so you can run either ver-
sion.

We recommend that you run the Analytica installer from the account where you will eventually be 
using Analytica, rather than changing to an administrator account first. However, if you change to 
an admin account first, or if you have an IT administrator install it for you, then you (or they) 
should not enter your activation key into the installer (just leave the field blank), since you want 
the license to be activated for your user account, not your administrator’s account. When the acti-
vation key is not provided during the install, you will be asked to enter it the first time you launch 
Analytica.

The setup program asks you to confirm the directory name in which to install Analytica, by default, 
C:\Program Files\Lumina\Analytica 4.2. Most users can accept the default. If you do 
not have sufficient permissions to write to this directory, then you may want to use [My Docu-
ments]\Lumina\Analytica 4.2.

Licenses You need a license to use the software. The Analytica_FreePlayer license is automatically 
included with the downloaded software, and may be used by anyone.

Two types of Analytica licenses may be purchased: individual and centrally-managed. Individual 
licenses are installed directly on your computer, while centrally-managed licenses (which includes 
floating and site licenses) are hosted by a Reprise License Manager (RLM) server.

Individual licenses When you purchase an individual license, or when you sign up for an Analytica Trial edition, 
Lumina emails you an activation key. You may enter the activation key either during installation or 
after installation from the Update License... dialog on the Analytica Help menu. When you acti-
vate a key, a license file for your computer and user account is downloaded from the Lumina’s 
internet-based activation server and placed on your computer. If you are using a computer without 
direct access to the web, an activation key can be manually activated at http://lumina.com/ana/
manualActivation.htm. With manual activation, the license file is emailed to you and you must 
save it into the Analytica install directory.

http://www.lumina.com
http://lumina.com/ana/manualActivation.htm
http://lumina.com/ana/manualActivation.htm


Introduction About Analytica

4 Analytica User Guide

Installation and licenses

Centrally-managed
licenses

If your organization has installed a centrally-managed license on an RLM server, such as a float-
ing license, you will need to know the name of the RLM server computer and possibly the port 
number (if your IT manager has configured a non-default port number). During installation or after 
installation from the Update License... dialog on the Analytica Help menu, select the option to 
use a centrally-mananged license and enter the server name (and port if required). If multiple 
licenses (e.g., for different editions) are available, you will also have the opportunity to select 
which license to use.

If you are using a 1-seat floating license, the license seat will be unavailable to other people while 
you are running Analytica. Once you exit Analytica, the license is returned to the pool for others to 
use. Likewise, if others are currently using Analytica, the floating license may be unavailable to 
you. WIth an N-seat floating license, up to N people may use Analytica simultaneously. For 
instructions on how to roam a floating license (i.e., when you take your notebook computer out of 
the office), see http://lumina.com/wiki/index.php/License_Roaming.

Wiki Access The Analytica Wiki (http://lumina.com/wiki) is a for Analytica modelers. You will have 
access to the Wiki as long as you have active support (for 12 months following your initial pur-
chase, and then with annual support renewals thereafter). During installation you have an oppor-
tunity to supply your end-user information (name, email), which is used to set up a Wiki account if 
your support is current. When the account is set up, the login and password is emailed to you. 

Expiration dates Some license codes — notably, for a Trial or an edition licensed per year — have a limited life, 
after which they expire. After expiration, the Player edition remains available, so you can still 
open, view, and evaluate your models. You just won’t be able to make or save changes. To reacti-
vate Analytica after expiration, you might need to purchase a copy. 

When you purchase a
license or upgrade to

another edition

You don’t need to download and reinstall Analytica again when you purchase a license after test-
ing the free Trial, or if you want to upgrade from, say, the Professional to Enterprise edition. Just 
select Update License... from the Help menu in Analytica and enter your new activation key into 
the Licensing Information dialog.

Tip Analytica Decision Engine (ADE) is a different application from Analytica, and requires a new 
installation, even if you already have another edition of Analytica installed.

To upgrade to a
patch release

When you upgrade a licensed copy with a patch release (e.g., 4.2.0 to 4.2.1), simply run the 
installer. The fields you entered originally will be filled in, which you can leave unless you wish to 
make changes. You do not need to re-enter an activation key that has been previous activated, 

http://lumina.com/wiki/index.php/License_Roaming
http://lumina.com/wiki


 Analytica User Guide 5

Installation and licensesIntroduction About Analytica

and can leave that field blank. The installer replaces the older release and reuses your existing 
license.

To upgrade to a minor or
major release

You can install Analytica 4.2 and retain an earlier release, such as Analytica 3.1, on your com-
puter. You need a new license code for the new release. The installer gives you the option of 
cleanly uninstalling the earlier release(s) if any are installed on your computer.

To uninstall Analytica After confirming that Analytica 4.2 is working, you usually uninstall the earlier release. To uninstall 
the earlier release:

1. From the Windows Start menu, open the Control Panel. 
2. Click Add or remove programs.
3. Find Analytica 3.1 (or whichever release you want to remove) and click the Remove button 

to start the Wizard.
4. Follow the steps through the uninstall wizard.



Introduction About Analytica

6 Analytica User Guide

Editions of Analytica

Editions of Analytica
Analytica is available in these editions. See the next page for a list of key features by edition.

Player Lets you review and run Analytica models without having to purchase a license. With the Player 
edition, you can change designated inputs, run the model, view results, and examine selected 
model diagrams and variables. It does not let you create new models, make changes other than 
to selected inputs, or save models.

Professional Provides most features, including the ability to create, edit, and save models.

Trial A free edition of Analytica that provides the full functionality of Analytica Professional for a limited 
time, usually 15 days. After that, it reverts to the functionality of Analytica Player, so you can still 
view and run any models you have created, but not save changes.

Power Player Like the Player, it lets you review models, change inputs, and view results, and does not let you 
create or edit models. Unlike the Player, it does let you save models with changed inputs. It also 
supports models that use Enterprise features, including database access, Huge Arrays, and the 
Profiler. See Chapter 22, “Analytica Enterprise” for details.

Enterprise Offers all the features of Analytica Professional, plus support for Huge Arrays, reading and writing 
databases, profiling for analysis of computational effort by variable, and obfuscation (encryption) 
of sensitive model elements. See Chapter 22, “Analytica Enterprise” for details. 

Optimizer Offers all the features of Analytica Enterprise, plus the Optimizer Library that provides powerful 
solver and optimization methods, including linear programming (LP), quadratic programming, and 
nonlinear programming (NLP). Optimizer is available as an extension to Analytica Enterprise, 
Power Player, and ADE. See the Analytica Optimizer Guide for details.

The Analytica Decision
Engine (ADE)

ADE runs Analytica models on a server computer. It provides an application programming inter-
face (API) to provide access to view, edit, and run models from another application, including a 
web server. You can create a user interface to models via a web browser, so that many end users 
can view and run a model via the Internet. You need Analytica Enterprise as the development tool 
to create models to run with ADE. The ADE Kit includes a license for Analytica Enterprise in addi-
tion to ADE.



 Analytica User Guide 7

Editions of AnalyticaIntroduction About Analytica

Compare Analytica features by edition
H=I

Features

Editions of Analytica

Pl
ay

er
 

Po
w

er
 P

la
ye

r

Tr
ia

l

Pr
of

es
si

on
al

En
te

rp
ris

e

O
pt

im
iz

er

A
D

E 

Open models, change inputs, and view results ✓ ✓ ✓ ✓ ✓ ✓ ✓

Save model with changed inputs ✓ ✓ ✓ ✓ ✓ ✓

Create and edit models ✓ ✓ ✓ ✓ ✓

No marking of printout ✓ ✓ ✓ ✓ ✓

Hierarchical influence diagrams ✓ ✓ ✓ ✓ ✓ ✓

Monte Carlo uncertainty analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓

Intelligent Arrays, see page 139 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Procedural programming, see page 337 ✓ ✓ ✓ ✓ ✓

OLE linking with Excel, see page 304 ✓ ✓ ✓ ✓ ✓ ✓

Outline Window, see page 316 ✓ ✓ ✓ ✓ ✓ ✓

Create input and output controls and forms, see 
page 116

✓ ✓ ✓ ✓

General function libraries: Math, Array, Distributions, 
Special, Statistical, Text 

✓ ✓ ✓ ✓ ✓ ✓ ✓

Advanced function libraries: Advanced math, 
Financial, and Matrix

✓ ✓ ✓ ✓ ✓ ✓ ✓

Save browse-only models and hide sensitive model 
details, see page 374

✓ ✓ ✓

Huge Arrays™ — dimension up to 100 million, see 
page 378

✓ ✓ ✓ ✓

ODBC database access, see page 370 ✓ ✓ ✓ ✓

Integration functions: RunConsoleProcess, Excel 
read/write functions, text file read/write functions

✓ ✓ ✓ ✓

Time and memory profiling, see page 382 ✓ ✓ ✓ ✓

Optimization engine (LPs, QPs, NLPs) ✓

Optimizer extension available (at extra cost) ✓ ✓

Available in 64-bit edition (at extra cost) ✓ ✓ ✓ ✓

Application programming interface (see ADE User 
Guide)

✓



Introduction About Analytica

8 Analytica User Guide

Help menu and electronic documentation

Help menu and electronic documentation
Select Help from the menu bar to open the Help menu.

Tip Most users see the left-hand version of the menu starting with User guide. The right-hand version 
appears if you have Adobe Acrobat Standard or Professional installed, which enable direct links 
into sections of a PDF document.

Content outline F1 Opens the User Guide showing chapters, sections, and subsections as an expandable outline, 
using bookmarks. Press the function key F1 as a shortcut.

Function list Opens a page listing all functions, operators, and other constructs, classified by type. Click a 
name to jump to an explanation of how to use it. This is a fast way to find a function if you don’t 
know its name.

Index Opens the User Guide to its alphabetized index. Select the first letter of the term from the book-
mark outline, and click an entry to jump to its explanation. 

Find Opens the Find dialog in Adobe Acrobat so you can search for a term. 

What’s new in 4.2? Opens “What’s new in Analytica 4.2?” in the User Guide.

User Guide F1 Opens this Analytica User Guide as a PDF document in Adobe Reader. Press the function key F1 
as a shortcut (see “Online help and electronic documentation”page 9).

Optimizer Opens the Optimizer Guide (if you have Analytica Optimizer).

Tutorial Opens the Analytica Tutorial as a PDF document in Adobe Reader.

Analytica Wiki Opens the Analytica Wiki home page in your default web browser.

Web tech support Opens Lumina’s Analytica tech support web page in your default web browser, with support infor-
mation and links to frequently asked questions.

Email tech support Starts an email message to send to Lumina tech support using your default email application.

Register Opens a web page where you can register your copy of Analytica, and copies your license code 
into the required field. You also have the opportunity to supply this information during the install.

Contact Lumina Opens a dialog with Lumina contact information: web links, phone numbers, email, and physical 
mailing address. 

Update license Opens the Licensing Information dialog so you can select a different license or edition or activa-
tion a new activation key to upgrade your license of Analytica.



 Analytica User Guide 9

Normally, usually, and defaultsIntroduction About Analytica

About Analytica Opens the startup splash screen, mentioning the Analytica edition, release number, and the name 
of the person to whom it is licensed.

Online help and electronic documentation
You can open the Tutorial, User Guide, and Optimizer Guide (when available) from the Help 
menu, or press the F1 key to open the User Guide. 

You can read and search these PDF documents using the Adobe® Reader available free from 
http://www.adobe.com. Some additional features are available if you purchase Adobe Acrobat 
Standard or Professional.

The expandable outline Click a section title to view that section. Click or icons to expand and collapse the book-
mark tree for chapters and sections of the outline.

Function list If you can’t remember the name of a function, go to the Function List, after the appendixes. This 
chapter lists functions and system variables by functional groups. From here, click a function 
name to jump to its full description.

Alphabetical index If the search box finds too many occurrences of a term, try the Index in the bookmarks. It usually 
links to the best explanation for each term.

Normally, usually, and defaults
Sometimes this guide says “normally it does this” or “usually it does that.” This isn’t because Ana-
lytica is unpredictable, or because we’re just addicted to uncertainty. It’s because Analytica has a 
lot of preference and style options, and it’s often simpler to say “normally” or “usually” when we 
mean “with the standard defaults.” 

http://www.adobe.com/


Introduction About Analytica

10 Analytica User Guide

Typographic conventions in this guide

Typographic conventions in this guide

Code examples This guide includes snippets of code to illustrate features, for example:
Index N := [1, 2, 3, 4, 5]
Variable Squares := N^2
Sum(Squares, N) → 55

This code says that there are two objects, an index N and a variable Squares. You would create 
these objects in a Diagram window by dragging from the node toolbar into the diagram (see “Cre-
ating and editing nodes”page 47). You would enter the expressions, [1, 2, 3, 4, 5] and N^2 
into their definitions (see “Creating or editing a definition”page 104). You would not enter the 
assignment “:=”. The last line says that the expression Sum(Squares, N) evaluates to the 
result 55 after the →. You might include that expression in the definition of third variable.

Array examples We use these typographic conventions to show Analytica arrays.

• An index or list and its values

N:

• A one-dimensional array, Squares

Squares 

• A two-dimensional array 

Index_a , Index_b  

• A three-dimensional array

Index_a , Index_b , Index_c = ‘displayed value’ 

Example Meaning
behavior analysis Key terms when introduced. Most of these terms are included in 

the Glossary.
Diagram Menus and menu commands, window names, panel names, 

dialog box names, function parameters.
Sequence() Name of a variable or function in Analytica.
Price - DownPmt Expressions, definitions, example code.
10^7 → 10M In example code, this means that the variable or expression 

before the “→” generates the result after it.
Enter, Control+a A key or key-combination on the keyboard. A letter, such as “a”, 

can be lower- or uppercase.

1 2 3 4 5

1 2 3 4 5
1 4 9 16 25

a b c
x value value value
y value value value
z value value value

a b c
x value value value
y value value value
z value value value



 Analytica User Guide 11

User guide Examples folderIntroduction About Analytica

User guide Examples folder
The Examples folder distributed with Analytica includes User Guide Examples as a subfolder. It 
contains Analytica models used in Chapters 9, 10, 11, 12, 14, 15, 16, and 17. Open these models 
to see the examples in more detail.

See Chapter 8 of the Tutorial for a summary of the models in the Examples folder.

What’s new in Analytica 4.2? 
Here are highlights of new and improved features in Analytica 4.2 added since the release 4.1. 
Additional detail, along with list of changes that were new to 4.1 and 4.0, can be found on the 
Analytica Wiki (at http://www.lumina.com/wiki). 

Licensing Options
In addition to individual licenses (as has been available in the past), floating licenses and centrally 
managed named-user licenses for Analytica can also be purchased. These new license types uti-
lize the Reprise license manager.

An N-seat floating license allows anyone in your organization to use Analytica, as long as no 
more than N people are simultaneoulsy using it at any given time. Floating licenses may be 
roamed (intended for notebook users who take their computer off-site).

Analytica 4.2 allows the free Player to be anonymously installed. 

When installing Analytica 4.2, activation keys (rather than license codes) are now distributed. 
When you enter a valid activation key in to the installer or into the Update License.. dialog, a 
license tailored to your machine is downloaded from an activation server and stored as a file, usu-
ally in the Analytica install directory. This replaces the earlier mechanism in which license codes 
would go stale. For computers not connected to the internet, licenses may be activated manually 
at http://lumina.com/ana/manualActivation.htm.

64-Bit Editions
64-bit editions of Analytica Enterprise and Analytica Optimizer are now available. When you eval-
uate your models in Analytica 64-bit, you are no longer constrained by the 2GB, 3GB or 4GB 
memory limitations of a 32-bit process, enabling the evaluation of much larger models.

The 64-bit editions require you to be running a 64-bit edition of the Windows operating system.

User Interface
Tables Edit and result tables support multi-line cells when lines are delineated by a new line character, 

chr(13). Press ALT-Enter to insert a new-line within a cell.

Better support for very large edit tables.

Support for in-cell checkbox controls.

Copy/pasting a value into a cell containing a choice or checkbox control retains the control and 
selects the pasted value, if the pasted value is a valid option for the control.

When adding an index to a table, you have the option to copy existing values only to the first slice, 
or to all slices.

Double clicking on a handle in a result table takes you to the node in the diagram.

Diagrams Subtle changes to input/output controls in a diagram present a more Windows-like feel when 
clicking on controls or tabing through a form.

Drawing an arrow from an index to a variable defined as a scalar asks if you want to convert the 
variable to an edit table with the given index.

Checkbox controls are now possible by defining a variable as Checkbox(0).

http://www.lumina.com/wiki


Introduction About Analytica

12 Analytica User Guide

What’s new in Analytica 4.2?

Editing index lists Support for drag-and-drop re-ordering of list elements.

Graphs and charts Ability to create stacked line plots.

You can now change the color of a series in a plot by right-clicking on a data point and selecting a 
new color.

Bands options now include 2.5% and 97.5%.

Axis range settings are now stored separately for each element along a comparison index, mak-
ing it possible to scale two columns from the same array result separately.

Memory Usage Dialog There is an all-new memory usage dialog, with both a terse and expanded view.

The new dialog provides more Windows-relevant information about how your model consumes 
memory, both RAM and page file memory. 

The dialog also contains a tracing feature that shows which variable is currently being evaluated. 
This can be useful to understanding your model’s performance, but be aware that turning this on 
dramatically slows down evaluation speed.

Engine Enhancements
Dynamic A user-defined function can now be embedded within a dynamic loop. 

The Dynamic function can be now applied over indexes other than Time (although dynamic eval-
uation on indexes other than Time may be far less efficient). To do this, use Dynamic[T](...), 
where T is the dynamic index. Inside dynamic, the A[T-1] syntax is recognized. 

Slice Assignment Slice assignment now allows assignment to matrices (with multiple slice/subscript indexes), as 
well as array abstraction across extra dimensions.

Caching Control You can configure how individual variables cache their results, always cache, never cache, or 
release cached value when all children are fully computed. Details are on the Analytica Wiki.

Recursive Nesting The 256-recursion depth limit has been removed. Now the number of recursions is limited by the 
amount of stack space.

Efficiency The internal representation of edit tables has been dramatic changed, leading to improved perfor-
mance when editing very large edit tables, or copy/pasting large data tables from Excel.

Saving of large model files has been sped up substantially.

Meta-inference When you assign a handle to a local variable, that local variable could exhibit one of two possible 
behaviors. The local could behave as if it were an alias to the object being pointed to, or it could 
act as if it were a variable in its own right currently holding an object that happens to be a handle. 
When writing meta-inferential algorithms in Analytica (algorithms that reason or manipulate the 
model itself, its structure and its contents), each is appropriate at different times. Local variables 
declared using the standard Var..Do construct exhibit both types of semantics depending on the 
expression context. To make this cleaner and less confusion, two new local variable declaration 
constructs have been introduced. If you are manipulating handles, it is recommend that you use 
these instead of Var..Do as appropriate. LocalAlias..Do declares a local variable identifier to act 
exactly as an alias of the variable that the handle points to. MetaVar..Do acts as a local variable 
itself that holds a handle.

Function Enhancements
Sorting Sort(A,I) returns the elements of an array A sorted along index I. Convenient shorthand equiva-

lent to A[I=sortIndex(A,I)].
The sorting functions Sort, SortIndex, and Rank now provide optional parameters to perform 
multi-key sorting, case insensitivity, and descending sorts.

An optional parameter instructs SortIndex to return the index position rather than index element.

Rank provides a unique-ranks option for dealing with ties, and options to pass NaN or Null values 
through without ranking them.



 Analytica User Guide 13

What’s new in Analytica 4.2?Introduction About Analytica

Regular Expressions The functions FindInText, SplitText and TextReplace now optionally except regular expres-
sions, utilizing the Perl Compatible Regular Expression Library, (c) University of Cambridge. 
These feature provide very powerful parsing capabilities that can be highly useful when reading 
and parsing textual data files.

Array/List Functions A new function, Aggregate, re-indexes an array from a fine-grain index to a coarse-grain index 
(e.g., from months to years, or from county to state). 

An optional strict parameter to Sequence respects the sign of step, possibly resulting in a 0-
length list result. For example, Sequence(5,1,step:2) returns [5,3,1], but 
Sequence(5,1,step:2,strict:true) returns the empty list [ ].

Subset(D,position:true) returns the position of elements, rather than the index element, 
providing a positional-dual to the standard subset functionality.

Size(A,ListLen:true): Returns the length of the implicit dimension of array A.

IsNull(x): A new function that returns 1 when x is exactly Null, 0 otherwise. Does not array 
abstract, so it is not the same as x=Null. 

Determ & Prob Tables DetermTable (and ProbTable) now only evaluates the cells that are actually used in the final 
result. This can save time if some options require substantial computation, and avoid errors if 
some options don’t evaluate in some cases.

The new option, SubTable(D,fulldeterm:true) provides access to the full result table for a 
DetermTable or ProbTable after evaluation, but before any selectors have been applied. Sub-
Table(P,rawProbs:true) returns the computed probabilities from a probTable, rather than a 
sample.

Array Concatenation The Concat function has been improved to make it much easier to use, particularly when concat-
enating more than 2 items. The final parameter, the result index, can be omitted (a local index will 
be created for you), and more than 2 arrays or indexes can be concatenated simply be nesting 
calls as as:

Concat(Concat(A,B,I,J),C,K)

The ConcatRows function is now built-in (formerly it was available as a user-defined function in 
the concatenation library). Also, the result index parameter of ConcatRows is optional.

Date/Time Functions An optional parameter, dateUnit, to function Sequence produces a date sequence, in year incre-
ments (dateUnit:’Y’), months (‘M’), weekdays (‘WD’), days (‘D’), hours (‘h’), minutes (‘m’) or sec-
onds (‘s’).

New built-in ParseDate function parses a textual date or time into a numeric date-time represent-
ing the number of days elapsed since the date origin.

YearFrac: New function that computes the fraction of a year elapsed between two dates, accord-
ing to various accounting year/date bases.

Statistical Median(X): A new built-in function, equivalent to GetFract(x,0.5).

Financial New MIrr and MXIrr functions compute the modified internal rate of return. 

A new optional parameter, offset, has been added to the Npv function. Npv(rate,X,T,offset:0) 
treats the first value in X as occuring in the zeroth time period, which is usually what is desired in 
cash-flow models.

Math functions A new function, Sign(X), returns -1 when X<0, 0 when x=0, 1 when X>0, and NaN when X is 
NaN.

Round(x,digits) now guarantees exact rounding when digits<6, even for cases where the result 
cannot be represented exactly by a 64-bit IEEE binary floating point number.

New built-in ParseNumber function parses a textual number into a numeric value.

Database (Analytica Enterprise) An optional key parameter to DbQuery gives you control over which values 
are to be used for the row index values. For example, DbQuery(conn,sql,key:”ID”) uses 
the values in the column named ID as the row index values.

ReadFromUrl: New function reads content from a web page, such as found on an HTTP or FTP 
site.



Introduction About Analytica

14 Analytica User Guide

What’s new in Analytica 4.2?

Excel functions New functions in the Enterprise Edition make it easy to transfer data in both directions between 
cells or named ranges in Excel spreadsheets. The SpreadsheetOpen, SpreadsheetSave, 
SpreadsheetCell, SpreadsheetRange, SpreadsheetSetCell, SpreadsheetSetRange appear 
on the database Definition menu.

Hypothetical evaluation The functions WhatIf, WhatIfAll, Dydx, Elasticity and NlpDefine now restore previously com-
puted values results downstream from the variable(s) being altered. An optional parameter, pre-
serve, can be set to false if this is not desired.

Dydx and Elasticity can now be meaningfully applied in a sample mode to a variable x defined 
by a probability distribution. Previously such a case resulted in a meaningless result since x was 
resampled after a delta change was applied to x.

System Information New options to function GetProcessInfo provide in-depth access to system memory statistics.

Modules and Libraries
Save Embedded The Save A Copy In... dialog now contains an option to Save everything in one file by embedding 

linked modules.

Obfuscation &
Browse-Only

(Enterprise) Analytica 4.2 now allows individual linked modules to be stored in an obfuscated or in 
a browse-only form, without forcing the entire model to be obfuscated or browse-only. This means 
you can distribute a library with proprietary algorithms (e.g., with various definitions hidden), 
which other users can include in their own model. Users of the library or linked-module will be 
unable to access hidden definitions (in an obfuscated module), or to change non-inputs (in a 
browse-only module) within the module, but they can use results or functions in their own model. 
Users will experience various limitations in that they are disallowed from operations that could 
potentially allow them to access hidden data, such as moving an object from an obfuscated mod-
ule to a non-obfuscated module.

Saving of Attributes When saving models and linked-modules used by models, declaration of user-defined attributes 
are now only written to each file if objects within that file utilize those attributes. Thus, you will not 
find a user-defined attribute in a library if no object in that library uses the attribute.



Chapter 1 Examining a Model

This chapter introduces the basics of how to open and view an Analytica 
model, generate results, and print them, including:

• Start a model 
• Explore the Diagram window 
• Classes of objects 
• Explore the Object window 
• Explore the Attribute panel 
• Print the contents of windows 



Chapter Examining a Model

16 Analytica User Guide

1

To open or exit a model
Models An Analytica model is a collection of variables, modules, and other objects intended to represent 

some real-world system you want to understand. Between sessions, a model is stored in an Ana-
lytica document file with the file type “.ana”.

To open a model The simplest way to open an existing model is just to double-click the icon for the model file in the 
Windows directory. 

Another way to open a model is to:

1. Start up Analytica by double-clicking the icon of the Analytica application, or selecting 
Analytica from the Windows Start menu. Analytica opens a new, untitled model.

2. In the top-left of the Analytica application window, press on the File pull-down menu, and 
select Open Model. A directory browser dialog appears to let you to find the model file you 
want.

However you start a model, Analytica shows this progress bar as it reads in the model file.

Tip Click the Stop button if you change your mind and decide not to open the model. It stops reading, 
resulting in a partially loaded model.

Next, it shows a progress bar as it checks the definitions of variables and functions in the model.

Tip If you click the Stop button, it stops checking. Diagrams might have missing arrows and cross-
hatched nodes indicating unchecked definitions. If you later ask to show the result of a variable, it 
checks any variables needed. Thus, clicking Stop simply defers some checking, and causes no 
problems with the model.

If the model contains any variables whose definitions are missing or invalid, they are listed in the 
Invalid Variables window (page 321). You can still compute results for variables with valid defini-
tions, as long as they don’t depend on variables whose definition is invalid.



 Analytica User Guide 17

Diagram windowChapter Examining a Model1

To close a model To close a model, select Close Model from the File menu. If you have made any changes to the 
model, a dialog asks you whether you want to save the changes before closing — except if you 
are using the Player Edition, which doesn’t let you save a changed model.

To open another model Analytica can open only one model at a time. To switch to another model, first close the model, by 
selecting Close Model from the File menu. Then select Open Model from the File menu. A dia-
log prompts you to locate and open another model.

To exit Analytica To exit (or quit) Analytica, select Exit from the File menu. If you have made any changes to the 
model, it prompts you to save your model first (if you are not using the Player Edition). 

Diagram window
When you open a model, it shows a Diagram window. This window usually shows an influence 
diagram, like this.

Each node depicts a variable (thin outline) or module (thick outline). The node shape and color 
tells you its class — decision, chance, objective, module, and so on. The arrows in a Diagram 
window depict the influences between variables. An influence arrow from variable A to variable 
B, means that the value of A influences B, because A is in the definition of B. So, when the value 
of A changes, it can change the value (or probability distribution) for B.

In the diagram above, the arrow from Buying price to Cost to buy means that the price of 
the house affects the overall cost of purchasing it. The influence diagram shows the essential 
qualitative structure of the model, unobscured by details of the numbers or mathematical formulas 
that can underlie that structure. For more on using influence diagrams to build clear models, see 
Chapter 6, “Creating Lucid Influence Diagrams.”

To view results To view the value of a variable, first click its node to select it.Then click the Result button  in 
the navigation toolbar to open a Result window showing its value as a table or graph. Chapter 2, 
“Result Tables and Graphs,” tells you more.

Tip If it needs to calculate the value, it shows the waiting cursor while it computes. 

Opening details from a
diagram

To see more details of a model, double-click nodes in the Diagram window: 

• Double-click a variable node (thin outline) to open its Object window (page 21). 
• Double-click a module node to (thick outline) see its Diagram window, showing the next level 

of detail of the model.

Decision

Chance
variables

Modules

Objective

Other 
variables



Chapter Examining a Model

18 Analytica User Guide

1 Classes of variables and other objects

Going to the parent
diagram

To see the diagram that contains the active module or variable, click the Parent Diagram 
button  in the navigation toolbar. The module or variable is highlighted in the parent diagram.

Tip If the active diagram is of the top model, it has no parent diagram, and the Parent Diagram button 
is grayed out.

Seeing remote inputs
and outputs

When a variable has a Remote input — that is, it depends on a variable in another module — a 
small arrowhead appears to the left of its node. Similarly, if it has a remote output, a small arrow-
head appears to its right. Press on the arrowhead to quickly view and navigate influences 
between nodes in different diagrams (modules).

To see a list of the inputs (or outputs), remote and local, press the arrowhead on the left (or right) 
of the node.

To jump to a remote input or output, select it from the list and stop pressing. It opens the Diagram 
window containing the remote variable, and highlights its node. 

Classes of variables and other objects
The shape of a node indicates the class of the variable or other object:

A rectangle depicts a decision variable — a quantity that the decision maker can control directly. 
For example, whether or not you take an umbrella to work is your decision. If you are bidding on a 
contract, it is your decision how much to bid. 

An oval depicts a chance variable — that is an uncertain quantity whose definition contains a 
probability distribution. For example, whether or not it will rain tomorrow is a chance variable 
(unless you are a rain god). And whether or not your bid is the winning bid is a chance variable in 
your model, although it is a decision variable for the person or organization requesting the bid.

A hexagon depicts an objective variable — a quantity that evaluates the relative value, desirabil-
ity, or utility of possible outcomes. In a decision model, you are trying to find the decision(s) that 
maximize (or minimize) the value of this node. Usually, a model contains only one objective.

A rounded shape (with thin outline) depicts a general variable — a quantity that is not one of the 
above classes. It can be uncertain because it depends on one or more chance variables. Use this 
class initially if you’re not sure what kind of variable you want. You can change the class later 
when it becomes clearer.

A rounded node (with thick outline) depicts a module — that is, a collection of nodes organized 
as a diagram. Modules can themselves contain modules, creating a nested hierarchy.

A parallelogram depicts an index variable. An index is used to define a dimension of an array. 
For example, Year is an index for an array containing the U.S. GNP for the past 20 years. Or 
Nation name is an index for an array of GNPs for a collection of nations. Indexes identify the row 
and column headers of a table, and the axes and key of a graph (see “Introducing indexes and 
arrays”page 140).

A trapezoid depicts a constant — that is, a variable whose value is fixed. A constant is not 
dependent on other variables, so it has no inputs. Examples of numerical constants are the 
atomic weight of oxygen (16) or the number of feet in a kilometer. It is clearer to define a constant 

Small arrowhead
indicates that this

variable has remote
inputs

Popup menu of inputs



 Analytica User Guide 19

Selecting nodesChapter Examining a Model1

for each such value you need in a model, so you can refer to them by name in each definition that 
uses it, rather than retyping the number each time.

A shape like an arrow tail depicts a function. You can use existing functions from libraries, and 
define new functions to augment the functions provided in Analytica. See Chapter 20, “Building 
Functions and Libraries.”

This node is a button — when you click a button (in browse mode), it executes its script to per-
form some useful action. You can use buttons with any edition of Analytica, but you need Analyt-
ica Enterprise or Optimizer to create a new button (see “Creating buttons and scripts”page 378).

Selecting nodes
To view or change details of a variable or other object in a diagram, you must first select a node 
(or a set of nodes). You do this in much the same way as you select files or folders in the Win-
dows File Browser, and most other applications: 

To select a node Simply click a node once to select it. Selected node(s) are highlighted with reverse color in 
browse mode, or with handles (little corner squares) in edit mode.

You can also press the Tab key to select a node. Each time you press Tab, it selects the next 
node in the diagram, in the order the nodes were created. Control+Tab cycles through the nodes 
in the reverse sequence.

To select multiple nodes Click a node while pressing the Shift key to add it to the set of selected nodes. You can remove a 
node from the selection by clicking it again while pressing Shift.

In edit mode, you can also select a group of nodes by dragging the selection rectangle to enclose 
them. Press the mouse button in a corner of the diagram — say top-left — and drag the cursor to 
the opposite corner — say bottom right. This shows the selection rectangle and selects all nodes 
within the rectangle.

To deselect all nodes Just click the background of the diagram outside any node.

The toolbar
The toolbar appears across the top of the Analytica application window. It contains buttons to 
open various views of the model, and to change between browse and edit modes. 

Navigation toolbar The first five buttons on the toolbar open a window relating to the variable or the object selected in 
the active (frontmost) window: 

Parent Diagram button: Click to open the Diagram window (page 17) for the module or model 
containing the object in the current active Diagram, Object, or Result window. It highlights the 
object you were viewing in the parent diagram. If you are viewing the top-level model, which has 
no parent, this button is grayed out. The keyboard shortcut is F2.

Outline button: Click to open the Outline window (page 316). The outline highlights the object 
you were previously looking at. The keyboard shortcut is F3.

Object button: Click to open the Object window (page 21) for the selected node in a diagram or 
the active module. The keyboard shortcut is F4.



Chapter Examining a Model

20 Analytica User Guide

1 Browsing with input and output nodes

Result button: Click to open a Result window (page 28) (table or graph) for the selected vari-
able. This button is grayed out if no variable is selected. If you have selected more than one vari-
able, it offers to create a compare variable that shows a result combining the values of all the 
variables. The keyboard shortcut is Control+r or F5.

Definition button: Click to view the definition of the selected variable. If the variable is defined as 
a probability distribution or sequence, it opens the function in the Object Finder (page 108); if the 
variable is an editable table (edit table, subtable, or probability table), it opens the Edit Table 
(page 168) window. Otherwise, an Attribute panel (page 22) or an Object window (page 21) 
opens, depending on the Edit Attributes setting in the Preferences dialog (page 56). This button 
is grayed out if no variable is selected. The keyboard shortcut is Control+e or F6.

Edit buttons These three buttons control your mode of interaction with Analytica. The shape of the cursor 
reflects which mode you are in:

Browse tool: Lets you navigate a model, compute and view results, and change inputs. It does 
not let you change other variables. See “Browse mode”page 21.

Edit tool: Lets you create new objects, and move and edit existing objects. See “Creating and 
editing nodes”page 47.

Arrow tool: Lets you draw arrows (influences) between nodes on a diagram. See “Drawing 
arrows”page 49.

Tip If the model is locked as browse-only, or if you are using the Player or Power Player edition of 
Analytica, only the browse tool is available.

Browsing with input and output nodes
When you open a model with input and output nodes, the top-level Diagram window might look 
like this (instead of an influence diagram).

You can change the values in the input nodes directly. The output node, Net present value, 
shows a Calc button. Click it to compute and see its value. Double-click the Model details node 
to open a diagram showing details of the model (the influence diagram shown above). 

Output node

Input nodes

Hand tool is highlighted
to show that you are

browsing



 Analytica User Guide 21

The Object windowChapter Examining a Model1

Browse mode
An existing model opens in browse mode. In this mode, the browse tool button is highlighted in 
the navigation toolbar, and the cursor looks like this .

In the browse mode, you can change input node values, view output node results, and examine 
the model by opening windows to see more detail.

Viewing input nodes
An input field lets you see a single number or text value. Click in the box to edit the value. If it’s a 
text value, you must put matching quotes around it (single or double).

A pull-down menu lets you choose from a list of options. Press the menu to see the list.

Click the List button to open a list of values, usually defining an Index. To change a value, click in 
its cell. For more about lists, see “Editing a list”page 161. 

Click to open an edit table showing an editable array with one or more dimensions displayed as a 
table. For more, see “Editing a table”page 168.

Click to view and edit a probability distribution in the Function Finder. For more, see “Probabilis-
tic calculation”page 232.

Viewing output node values
Click the Calc button to compute and display the value of this output variable. When computing is 
complete, it shows a number in this node, or, if it’s an array, it changes to the Result button and 
opens a Result window showing a table or graph. See Chapter 2, “Result Tables and Graphs” for 
more.

The Result button shows that an array has been calculated. Click it to open a Result window 
showing a table or graph. See Chapter 2, “Result Tables and Graphs” for more.

Opening module details
To see the structure of the model, double-click the module Model details, to display its diagram 
window (see “The Object window”page 21).

The Object window
The Object window shows the attributes of an object. All objects have a class and identifier — a 
unique name of up to 20 characters. A variable also has a title, units, description, definition, 
inputs, and outputs.



Chapter Examining a Model

22 Analytica User Guide

1 The Attribute panel

To open an Object
window

Here are some ways to open the Object window for an object X: 

• Double-click X in a Diagram window.
• Select X in its Diagram window and click the Object button in the navigation toolbar.
• Double-click the entry for X in the Outline window (page 316).
• If a Result window for X is displayed, click the Object button in the navigation toolbar.
• Double-click X in the Inputs or Outputs list of a variable in an Object window.

Returning to the parent
diagram

Click the Parent Diagram button  in the navigation toolbar to see the diagram that contains 
this node, with the node highlighted.

The Attribute panel 
The Attribute panel offers a handy way to rapidly explore the definitions, descriptions, or other 
attributes of the variables and other nodes in a Diagram window. You can open the panel below 
the diagram, and use it to view or edit any attribute of the node you select. It shows the same attri-
butes that you can see in the Object window, and often several other attributes.

Double-click an input
or output to open its

Object window

Class menu Identifier

Expression
popup menu

(page 107)

Editable field



 Analytica User Guide 23

The Attribute panelChapter Examining a Model1

Click the key icon to open the Attribute panel. Here are things you can do in this panel:

• Select another node in the diagram to see the selected attribute of a different object.
• Click the background of the diagram to see the attributes of the parent module.
• Select another option from the Attribute menu to see a different attribute.
• To enter or edit the attribute value, make sure you are in edit mode, and click in the Attribute 

panel, and start typing. (Not all attributes are user-editable.)

Select node to
see its attribute

below

Title of the
selected object

Value of the 
attribute

Attribute menu from 
which you select the 
attribute to show

Drag 
partition to 
change 
panel height

Key icon is open

Drag box to 
change 
panel 
height and 
diagram 
width



Chapter Examining a Model

24 Analytica User Guide

1 Showing values in the Object window

Different classes of objects have different sets of attributes.

If you try to see an attribute not defined for an object, it shows its description.

See the “Glossary” for descriptions of these attributes. To display other attributes or to add new 
attributes, see “Managing attributes” on page 319.

To close the Attribute panel, click the key icon again.

Showing values in the Object window
When reviewing a model and trying to understand how it works, it is useful to show the value of a 
variable and its inputs in the Object window. To switch on this option, select Show with Values 
from the Object menu. The Object window for a variable then shows the mid (deterministic) 
value of the variable and each of its inputs. 



 Analytica User Guide 25

PrintingChapter Examining a Model1

Atom and array values If a value has not yet been calculated, it shows a Calc button. Click to compute it. If the resulting 
value is an atom — a single number or text value, not an array — it shows the value in the Object 
window, as above. If the value is an array, it shows instead a Result button , which you 
can click to compute and display the array in a separate Result window.

For more about the Result window, see Chapter 2, “Result Tables and Graphs.”

Printing
To print the contents of an active window — Diagram, Outline, Object, Result Table, or Graph 
— select Print from the File menu. Selecting Print Setup on the File menu can then set printing 
options such as page orientation, paper size, or scaling. Any print settings that you specify are 
associated only with the window that was active when you selected Print Setup.

Previewing page breaks
before printing

When you select the Print preview command on the File menu, it displays a Preview window to 
show what will be printed and where page breaks will occur. You can adjust print settings such as 
scaling until you get the desired page breaks. When previewing a result table or graph, you can 
toggle the option for showing or hiding the index variable titles.

When viewing a diagram, outline, or Object window, page breaks can be viewed while working by 
enabling Show Page Breaks on the Window menu.

Scaling printouts You can adjust the magnification of your printouts using the Print Setup command on the File 
menu, or by using the Setup button on the Print Preview window, in two ways:

• Adjust to p % of normal size: Use p<100% to shrink output, or p>100% to enlarge it.
• Fit to n page(s) wide by m page(s) tall: Shrinks the output to fit on the specified pages. It 

preserves aspect ratio. It does not enlarge, so the actual number of pages printed might be 
less than n x m.

List of inputs, with
units and values

Value of
selected variable



Chapter Examining a Model

26 Analytica User Guide

1 Printing

Printing the background There is a checkbox in the Print Setup window for controlling whether a diagram’s background 
color is printed. By not printing the background color, one can save on ink or toner. Whether the 
background is printed or not is controlled by the Print influence diagram background color check-
box. By default, it does not print the background.

Printing multiple
windows

To print the contents of several windows into a single document, use the Print Report command 
in the File menu. It uses the print settings set in Print settings for each window.

Check Print Outline (All Objects) to print a list of all objects in the model, each in its parent mod-
ule, indented to show the module hierarchy.

Check Print Outline (Modules Only) to print a list of all modules (including libraries and form 
nodes), indented to show the module hierarchy.

Settings to
magnify or shrink

print output

Checkbox to print
the background

color for influence
diagrams

Diagram window
printing options

Result window
printing options

Object window
printing options



Chapter 2 Result Tables and Graphs

This chapter shows you how to:

• View Result windows as graphs or tables.
• Rearrange or pivot results, exchanging rows and columns, or graph 

axes and keys, and slicer dimensions.
• Select an uncertainty view to display probabilistic results.
• Compare two or more variables in the same table or graph.



Chapter Result Tables and Graphs

28 Analytica User Guide

2

The Result window
When you open the Result window for a variable, it computes its value if it hasn’t previously 
cached it, and displays it. If the value is an array or a probability distribution, you can display it as 
a table or graph. Here is a Result window with a table and equivalent graph.
 

To open a Result
window

Click the variable node in its influence diagram to select it, and do one of these:

• Click the Result button in the toolbar, or press key Control+r.
• Select Show Result from the Result menu.
• Select an uncertainty view option, such as Mid Value, Mean Value, or Cumulative 

probability, from the Result menu.
• In the Attribute panel below a diagram, select Value or Probvalue from the Attribute menu, 

and click the Calc or Result button.

To open a Result window for an output node, simply click its Calc or Result button.

Result controls The Result controls, in the upper-left corner of the Result window include these controls:

Press the Uncertainty View popup menu (page 31), to select how to display an uncertain quan-
tity. 

Click this button to display the result as a table.

Click this button to display the result as a graph.

Toggle between the table and graph views using the Table View and Graph View buttons.

Uncertainty View
popup menu

Table view
Graph view

Index selection area
Result controls



 Analytica User Guide 29

Chapter Result Tables and Graphs2

Index selection
The Index selection area is the top part of a Result window. For a table, it shows which index 
goes down the rows, and which goes across the columns. For a graph, it shows which index is on 
the X axis (and sometimes Y axis) and which is in the key. For either view, if the array has too 
many dimensions to display directly, it also shows slicers that select the values of the extra 
indexes. Each control has a popup menu to let you exchange indexes and rearrange (pivot) the 
view.

The index selection area of a graph or table contains these items (example variables and indexes 
in the following text refer to the figure above):

Title Shows the uncertainty view (mid, mean, etc.), the title of the variable, and its units, e.g., Mid 
Value of Costs of buying and renting ($).

Slicer index The title, units, and value of any index(es) showing dimensions not currently displayed in the table 
or graph. 

Slicer menu Press for a popup menu from which you can change the slicer value for the results displayed.

Slicer stepper arrows Click or to cycle up or down through the slicer values.

Row or key index Shows the title of the index displayed down rows for a table, or in the color key for a graph. Press 
to open a menu from which you can select another index.

Column or X axis index Shows the title of the index displayed across the columns for a table, or along the X (horizontal) 
axis for a graph. Press to open a menu from which you can select another index.

XY button Click to plot this variable against one or more other variables, or to plot one slice of this vari-
able against another slice. See “XY comparison”page 96.

Totals checkboxes Check a box to show row or column totals the table view. If you check Totals for an index and then 
pivot it to be a slicer index, “Totals” becomes its default slicer value. This lets you show total val-
ues over the slicer index in the graph or table.

The default view
When you first display a result for a variable, by default, it displays it as graph, if possible, and 
otherwise as a table. You can change this default in the Default result view in the Preferences 
dialog (page 56).

When you display the Result window again, it uses all the options you last selected when you 
viewed this variable, including table versus graph, uncertainty view, index pivoting and slicer val-
ues, and any graph settings.

Check totals for
row or column

Title of the result

Row or Column or

Slicer index for
third or higher

dimensions

X-Y buttonSlicer Slicer

key index X axis index

menu value steppers
Slicer

Popup menu



Chapter Result Tables and Graphs

30 Analytica User Guide

2 Viewing a result as a table

Recomputing results
If you change a predecessor of a variable shown in a Result window, the table or graph disap-
pears from the window and is replaced by a Calculate button.

Click Calculate to compute and display the new value.

Viewing a result as a table
Toggle to table view If a result window shows a graph, click on the top-left to switch to table view.

The index display options depend on the number of dimensions in the variable.

Row index (down) Use this menu to select which index to display down the rows of the table. Select blank to display 
a single row.

Column index Use this menu to select which index to display across the columns of the table. Select blank to 
display a single column.

Slicer index(es) If the array has more than two indexes, the extra index(es) are shown as Slicer menus. The table 
shows values only for the slice (subarray) setting the slice index to the shown slicer value. Open 
the slicer menu and select a different slicer value, or click or to step through the slicer 
values.

Formatting numbers To specify the format for the numbers in a table or along the Y (usually vertical) axis of a graph, 
show the graph and select Number Format from the Result menu, or press Control-b. The Num-
ber format dialog (page 80) offers many options, including currency signs, dates, and Booleans. 

Viewing a result as a graph
Toggle to graph view If a result window shows a table, click on the top-left to switch to graph view.

Three-dimensional table

Result controls
(page 28)

Index 
selection 
area 
(page 29)

Row index

Column index

Slicer index



 Analytica User Guide 31

Uncertainty viewsChapter Result Tables and Graphs2

The y axis, usually vertical, plots the values of the variable. The x axis, usually horizontal, shows 
the value of a selected index. The index display options depend on the number of dimensions in 
the variable.

X axis If the array has more than one index, use this menu to select which index to display along the x 
axis (usually horizontally).

Key index If the array has more than one index, use this menu to select which index to display in the key, 
usually showing each value by color.

Slicer index(es) If the array has more indexes than you can assign graphing roles (such as x axis or key), the 
extra indexes are shown as Slicer menus, as in a table view. The graph shows values only for the 
slice (subarray) setting the slice index to the shown slicer value. Open the slicer menu and 
select a different slicer value, or click  or  to step through the slicer values.

To reorder slicers If the graph has more than one slicer index, you can reorder the slicer indexes simply by dragging 
one up or down.

Graph setup options There is a rich variety of ways to customize the graph, including line style (lines, data points, sym-
bols, barcharts, stacked bars, thickness, transparency), axis ranges, log or inverted axes, grid 
and tickmarks, background colors, and font color and size. To change these settings, open the 
Graph Setup dialog (page 87) and do one of the following:

• Select Graph Setup from the Result menu.
• Double-click anywhere on a graph in the Result window.

Uncertainty views
Every variable has a certain or deterministic value, which we term its mid value. Some variables, 
notably chance variables and variables that depend on chance variables, can also have an uncer-
tain or probabilistic value, which we term its prob value. A mid value is computed using the mid 
value of each variable it depends on or the median of any probability distribution. The mid value of 
a result is not necessarily the median of its probability distribution, but usually close. 

x axis

key

Result controls
(page 28)

Index selection area
(page 29)

y axis



Chapter Result Tables and Graphs

32 Analytica User Guide

2 Uncertainty views

The Result window offers seven uncertainty views, including the mid value (which is not uncer-
tain) and six ways to display a prob value. You can select the uncertainty views from a menu in 
the top-left corner of a Result window. Or you can select a variable, and select an uncertainty 
view option from the Result menu.

The checkmark indicates the currently selected view. 

Here we illustrate each uncertainty view using the chance variable, Rate_of_inflation, 
defined as a normal distribution with a mean of 2.5 and a standard deviation of 1:

Chance Rate_of_inflation := Normal(2.5, 1)

Mid value The mid value is the deterministic value, computed by using the median instead of any input prob-
ability distribution. It is computed very quickly compared to uncertain values. It is the only option 
available for a variable that is not probabilistic.

Tip A mid value is much faster to compute than a prob(abilistic) value, since it doesn’t use Monte Carlo 
simulation to compute a probabilistic sample. It is often useful to look first at the mid value of a 
variable as a quick sanity check. Then you might select an uncertainty view, which causes its prob 
value to be computed if it has not already been cached.

Uncertainty View popup menu from 
Result window

Currently selected
uncertainty view

option

Result menu uncertainty 
view options



 Analytica User Guide 33

Uncertainty viewsChapter Result Tables and Graphs2

Mean value An estimate of the mean (or expected value) of the uncertain value, based on the random (Monte 
Carlo) sample.

Tip The mean and the other uncertainty views below are estimates based on the Monte Carlo (or Latin 
hypercube) sample. The precision of these estimates depends on the sample size and the 
sampling method. A larger sample size gives higher precision and takes more time and memory 
to compute. You can modify the sample size (page 388) and sampling method in the Uncertainty 
setup dialog (page 233) from the Result menu. 

Statistics A table of statistics of the uncertain value, usually, the minimum, median, mean, maximum, and 
standard deviation, estimated from the random sample. You can select which statistics to show in 
the Statistics tab (page 236) of the Uncertainty Setup dialog from the Result menu.

Probability bands An array of percentiles (fractiles) estimated from the random sample, by default the 5%, 25%, 
50%, 75%, and 95%iles. You can select which percentiles to show in the Probability Bands tab 
(page 236) of the Uncertainty Setup dialog from the Result menu.



Chapter Result Tables and Graphs

34 Analytica User Guide

2 Uncertainty views

Probability density Select probability density to display the uncertain distribution as a probability density function 
(PDF). 

For a probability density function, it plots values of the quantity over the X (usually horizontal) 
axis, and probability density on the Y (vertical axis). Probability density shows the relative proba-
bility of different values. High values show probable regions; low values show less probable 
regions. The peak is the mode, the most probable value. If the density is zero, it is certain that the 
quantity will not have values in that range.

Probability mass
function

If you select Probability density for a discrete variable, it displays the variable as a probability 
mass function (PMF) in a bar graph with the height of each bar indicating the probability of that 
value.

Usually, it figures out whether to use a probability density or mass function. Very rarely, you might 
need to tell it the domain is discrete. See “The domain attribute and discrete variables”page 244, 
“Is the quantity discrete or continuous?”page 228, and “Probability density and mass 
graphs”page 242 for more. 

Cumulative probability The cumulative probability distribution (CDF) plots the possible values of the uncertain quantity 
along the X (usually horizontal) axis. The Y value (usually height) of the graph at each value of X 
shows the probability that the quantity is less than or equal to that X value. The CDF must start at 
a probability of 0 on the extreme left and increase to a probability of 1 on the extreme right, never 
decreasing. 



 Analytica User Guide 35

Uncertainty viewsChapter Result Tables and Graphs2

The steeper the curve, the more likely the quantity will have a value in that region. The PDF is the 
slope (first derivative) of the CDF. Conversely, the CDF is the cumulative integral of the PDF.

Sample A sample is an array of the random values from the distribution generated by the Monte Carlo 
sampling process. The sample is the underlying form used to represent each uncertain quantity. 
All the other uncertainty views use statistics estimated from the sample. The sample view gives 
more detail than you usually want. You will likely want to view it mainly when verifying or debug-
ging a model.



Chapter Result Tables and Graphs

36 Analytica User Guide

2 Comparing results

Like any other graph, you can display a sample as a table by clicking to see the underlying 
numerical values.

Comparing results 
It’s easy to compare directly two or more variables in one table or graph.

1. Select the variables together in the diagram, using Shift+click to add each to the selection, or 
dragging a selection rectangle around them.

2. Click in the navigation toolbar, or press Control+r. 
3. Click OK in the confirmation dialog.



 Analytica User Guide 37

Comparing resultsChapter Result Tables and Graphs2

This creates a new variable with a default identifier, Compare1, with a list of the selected vari-
ables.

The result of Compare1 is a graph containing an index containing the titles of the variables being 
compared. This is the Self index of the Compare1. It also includes all the indexes of the array 
variables being compared — in this case, Time and Buying Price.

This helps clarify how the interest payments reduce (become less negative) as the principal pay-
ments on the mortgage increase (become more negative).



Chapter Result Tables and Graphs

38 Analytica User Guide

2 Comparing results



Chapter 3 Analyzing Model Behavior

This chapter shows you how to perform a parametric analysis on a 
model by:

• Selecting variables as parameters 
• Specifying alternative values for the parameters 
• Examining the results 



Chapter Analyzing Model Behavior

40 Analytica User Guide

3 Varying input parameters

A potent source of insight into a model is examining the behavior of its outputs as you systemati-
cally vary one or more of its inputs. This technique is called model behavior analysis. Each input 
that you vary systematically is called a parameter, and so this technique is also known as para-
metric analysis. Analytica makes it simple to analyze model behavior in this way. All you have to 
do is to assign a list of alternative values to selected input parameter. When you view the result of 
any output, Analytica computes and displays a table or graph showing how the output values vary 
for all combinations of the input values. 

This chapter describes how to select variables as parameters, how to specify alternative values 
for the parameters, and how to examine the results. 

Varying input parameters
The first step in analyzing model behavior is to select one or more input variables as parameters 
and to assign each parameter a list of possible values. 

Which inputs to vary? You can vary any numerical input variable of your model, including decision and chance vari-
ables. Often you will want to vary each decision variable to see which value gives the best results 
according to the objectives. You might also want to vary some chance variables to see how they 
affect the results. It is often best to look first at the decision or chance variables that you expect to 
have the largest effect on the model outputs. In complicated models, you might want to start with 
an importance analysis, to identify which chance variables are likely to be most important. (See 
Chapter 16, “Statistics, Sensitivity, and Uncertainty Analysis.”) You can then select the most 
important variables as the parameters to vary to analyze model behavior. 

How many values to
assign?

Usually it is best to assign a list of three alternative values to each parameter — a low, medium, 
and high value. In some cases, two values are sufficient. If you have a special interest in a partic-
ular parameter (for example, if you suspect it has a strongly nonlinear effect) you can assign more 
than three values to examine in more detail the model behavior as the parameter varies. Natu-
rally, the computation time increases with the number of values.

Creating a list Change the definition of each parameter to a list, thus:

1. Select the variable by clicking its node in the influence diagram. 
2. Display the variable’s definition by clicking the Definition button in the tools palette, or 

press Control+e.
3. Click the expr (Expression) menu above the definition and select the List option. (Do not 

select the List of Labels option.)

4. A dialog asks for confirmation. Click OK.

A list with one item displays, containing the old definition of the variable. 



 Analytica User Guide 41

Analyzing model behavior resultsChapter Analyzing Model Behavior3

5. Click the item to select it.
6. Type in the lowest value for the variable.
7. Press Enter and type in the next value.
8. Repeat step 7 until you have all the values you want.

Tip When you add an item to a list of two or more numbers, it uses the increment between the last two 
numbers to generate the next. If the last two values are 10 and 20, it offers 30 as the next. 

For details on how to edit a list, see “Editing a list”page 161.

If you want to create a list of successive integers, use the “..” operator, for example:
Decision Year := 2000 .. 2010

If you want to create a list of evenly spaced numbers, use the Sequence(x1, x2, dx) function 
(page 163), for example:

Decision Quarters := Sequence(2000, 2010, 0.25)

How many inputs to
vary

Typically you should start a model behavior analysis by varying just one input variable, the one 
you expect to be most important. Vary additional variables one at a time, in order of their 
expected importance. If a variable turns out to have little effect, you can restore it to its original 
value or probability distribution. If you have many inputs whose effects on model behavior you 
would like to explore, vary just a few at a time, rather than trying to vary them all simultaneously.

Each parameter that you vary becomes a new dimension of your output result array. The compu-
tation time and memory needed increase roughly exponentially as you add parameters. More-
over, you might find it hard to interpret an array with more than three or four dimensions. 
Remember that the goal is to obtain insight into what affects the model behavior and how.

Analyzing model behavior results
When you have assigned a list to one or more inputs, you can examine their effect by viewing the 
result on an output variable. If your model has an objective, start by looking at that variable.

1. Select the variable you wish to view by clicking its node in the diagram. 

2. View the result by clicking the Result button in the navigation toolbar. The result displays 
as a table or graph. 

New one-element list



Chapter Analyzing Model Behavior

42 Analytica User Guide

3 Analyzing model behavior results

The result is an array with a dimension for each input parameter that you have varied (in this 
example, Buying price and Appreciation rate). If an input parameter does not appear as 
a dimension of the result, it implies that the result variable does not depend on the input. The 
result might also have other dimensions that are not input parameters you have varied — for 
example, Time for a dynamic model. 

It is generally easiest to look first at the result graph to see the model’s general behavior. You 
need to look only at the result table if you want to see the precise numerical values. If you are 
varying more than one input parameter, try rearranging the dimensions (see “Index 
selection”page 29) to get additional insights into model behavior.

Result graph
with dimensions

reversed



 Analytica User Guide 43

Analyzing model behavior resultsChapter Analyzing Model Behavior3

Understanding
unexpected behavior

If you find the model’s behavior unexpected or inexplicable, you might want to look more deeply 
into how the behavior arises. An easy way to do this is simply to look at the results for other vari-
ables between the input(s) and the output(s) in which you’re interested. You can work forward 
from an input towards the output, or backward from the output towards the inputs. Look at the 
behavior of each intermediate variable, and see if you can understand why the inputs affect it the 
way they do. 

Typically, the reason for unexpected behavior will quickly become clear to you. It might be that 
some intermediate relationship has an effect different from what you expected. There might be an 
error in a definition. In either case, this kind of exploration can be very revealing about the model. 
You might end up improving the model or gaining a deeper understanding of the system it repre-
sents.

Understanding
model behavior

By examining result graphs, you can learn if each input affects the output, if the effect is linear or 
non-linear, and if there are interactions among inputs in their effect on the output. Below are some 
typical graph patterns and their qualitative interpretations.

• A horizontal line shows that changes in the input over the specified range have no effect on 
the output.

• A straight line shows that the output depends linearly on the input — provided that you have 
specified more than two different values for the input.



Chapter Analyzing Model Behavior

44 Analytica User Guide

3 Analyzing model behavior results

• A bent or curved line shows that there is a nonlinear dependence. (If you have only two 
values for the input, the graph will be a straight line even if there is a nonlinear dependence.)



Chapter 4 Creating and Editing a 
Model

This chapter shows you how to:

• Create a new model 
• Save changes 
• Create and edit nodes 
• Draw arrow connections between nodes 
• Create aliases 
• Edit attributes 
• Change the class of an object 
• Work with the Preferences dialog 



Chapter Creating and Editing a Model

46 Analytica User Guide

4

Creating and saving a model
To start a new model Start Analytica like any Windows application by selecting Analytica from the Windows Start 

menu or double-clicking the Analytica application file. A new, untitled model opens.

If you are already running an Analytica model, you can also select New Model from the File 
menu. Since one instance of Analytica can’t run two models at once, it needs to close the existing 
model. If you have changed it, it first prompts you to save it. 

The model’s
Object window

The model’s Object window shows information about the model, such as the author(s), and cre-
ation and save dates; it also includes space for a description of the model’s purpose. 

When you start a new model, it displays the Object window for the new model, initially untitled. 
First, type these attributes: 

• Title: A word or phrase to identify the model, typically up to 40 characters. Usually the 
identifier of the project is set automatically to the first 20 characters of the title, substituting 
underscores (_) for spaces or other characters that are not letters or numbers.

• Description: One or several lines of text describing the purpose of this model, and any other 
important information about the model or project that all users of the model should know.

• Author(s): Windows usually fills in the name of the Windows user as the default. You can 
edit or add to this if you like.

After adding these attributes into the Object window, bring the Diagram window to the top using 
one of these methods:

• Click the Parent Diagram button .

or
• Click anywhere in the Diagram window behind the Object window. 

You are now ready to draw an influence diagram for the new model.

Attributes

Blank Diagram window



 Analytica User Guide 47

Creating and editing nodesChapter Creating and Editing a Model4

Creating and editing nodes
To begin editing a diagram, if you are not already in edit mode, click the edit tool . This dis-
plays the node toolbar as an extension of the navigation toolbar.

For a description of each node shape (or class), see “Classes of variables and other 
objects”page 18.

Create a node To create a new node, press the mouse button with the cursor over the node class you want in 
the node toolbar, and drag the node to the location you want in the diagram. When creating a new 
node, you can type a title directly into it.

Edit a node title To edit the title of an existing node: 

1. Make sure you are in edit mode.
2. Click the node once to select it.
3. Click the node’s title. (Pause momentarily between mouse clicks to prevent them being 

interpreted as a double-click, which would open the node’s Object window.) 
4. Type in a new title to replace the old one. Or click a third time to put a cursor into the existing 

title where you can add text. Or double-click to select a word to replace.
5. After editing the title to your satisfaction, click outside the node (or press Tab or Alt-Enter) to 

accept the new title. 

Nodes

Selected node

Node toolbar
The edit tool is

highlighted to show
that it is selected

The node toolbar is displayed 
when either the edit tool or 
arrow tool is selected

Ch
an

ce

Va
ria

bl
e

De
cis

io
n

O
bj

ec
tiv

e

In
de

x

Fu
nc

tio
n

M
od

ul
e

Co
ns

ta
nt

Te
xt

Bu
tto

n



Chapter Creating and Editing a Model

48 Analytica User Guide

4 Creating and editing nodes

If the node is too small for the title text, it expands the node vertically to fit. It can accept a title of 
up to 128 characters, but it’s usually best not to have titles longer than about 40 characters.

Click a node once to select it, showing its handles — small black squares at its corners.

Identifiers and titles Every object has a unique identifier of up to 20 characters. An identifier must start with a letter, 
and contain only letters, digits, or underscores (_). Formulas in the definition of a variable or func-
tion refer to other variables or functions by their identifier. 

Most objects also have a title, which is usually displayed in its diagram node. A title can contain 
any number of characters of any type, including spaces. A title should be a meaningful word or 
phrase. Avoid obscure acronyms. It’s usually best to keep a title to under 50 characters.

Making an identifier
from a title

By default, when you enter a title, it also generates an identifier for the object consisting of the first 
20 characters of the title, using underscore (_) to replace any character that is not a letter or num-
ber. If the first character is not a letter, it substitutes A, because identifiers must start with a letter. 
Identifiers, unlike title, must be unique. So, if by chance an object exists with the same identifier, it 
appends a number to the new identifier to keep it unique. 

If you edit the title again, it usually asks if you want to change the identifier to match the changed 
title. Generally, it’s best to have them match. But, sometimes you might want to retain the original 
identifier. You can change this default behavior by unchecking Change identifier when title 
changes in the Preferences dialog from the Edit menu (page 56). 

Automatic update when
identifier changes

If an identifier changes, Analytica automatically updates any definitions referring to that identifier it 
to use the new version, and so keeps the model consistent.

If you want, you can edit an identifier directly in the Object window or Attribute panel, like any 
other user-editable attribute.

Show identifiers
instead of titles

By default, it shows the title of each node in a diagram or result window. To show the identifiers 
instead, select Show by Identifier from the Object menu, or press Control+y to toggle this 
behavior. 

Select a node To select a node, single-click it. Handles indicate that you have selected the node. To deselect a 
selected node, click anywhere outside of it.

To select or deselect multiple nodes, press and hold the Shift key while selecting the nodes. You 
can also select a group of nodes by dragging a rectangle around them. Move the cursor to a cor-
ner of the diagram (not in a node), press the mouse button, and drag the mouse to draw a rectan-
gle. When you release the button, all the nodes completely inside the rectangle are selected.

Move a node To move a node, press the right mouse button on the node (not on a handle) and drag it to where 
you want it.

You can also adjust the position of one or more selected nodes with the arrow keys (up, down, 
left, right). By default, each arrow press moves the node(s) by eight pixels. If you uncheck Snap-
to-grid in the Diagram menu, each arrow press moves the node(s) by one pixel.

Move a node to
another module

Simply drag the node onto the module until the module becomes highlighted. When you release 
the mouse button, the node moves into the module. It has the same location in the diagram of the 
new module that it had in the old one.

You can edit the title when
The node is resizedthe node looks like this

 to fit the text

handles



 Analytica User Guide 49

Drawing arrowsChapter Creating and Editing a Model4

Alternatively, double-click the module to open its Diagram window. Move the Diagram windows 
so both you can see both the node and the new diagram. Then drag the node to the desired loca-
tion in the new diagram.

Change the size
of a node

Click the node to show its handles. Then drag a handle until the node is the size you desire. By 
default, it fixes the center of the node at the same location, and expands or contracts its four cor-
ners. This keeps node centers aligned with the grid. If you want to move one corner, leaving the 
opposite corner fixed, uncheck Resize Centered in the Diagram menu.

Delete a node Select the node(s) and choose Clear from the Edit menu, or press the Delete key. It asks you to 
confirm your intention because deleting cannot be undone. Sometimes it is better to create a 
module and title it Trash. (There is a Trash library with a suitable icon.) Then you can drag nodes 
into it — and still retrieve them, just in case.

Cut, copy, and
paste nodes

You can use the standard Cut (Control+x), Copy (Control+c), and Paste (Control+v) commands 
from the Edit menu on one or more nodes. If you cut a node, you can paste it just once. If you 
copy a node you can paste it as many times as you wish.

Duplicate nodes Select the node(s) and choose Duplicate Nodes from the Edit menu (or press Control+d). This is 
equivalent to using Copy and Paste, but without writing to the clipboard. Duplicating a node cre-
ates a new object identical to the original, but it adds a number to its identifier to make it unique 
and locates it below and to the right of the original node.

Duplicating a set of nodes retains the same dependencies among the duplicated nodes as exists 
among the origin nodes. For example, suppose you have three variables:

Variable X := 100
Variable Y := X^2
Variable Z := X + Y

If you duplicate Y and Z, but not X, you get two new variables:
Variable Y1 := X^2
Variable Z1 := X + Y1

Note that (a) it appends “1” to the identifiers to make them distinct from their original nodes, and 
(b) the definition of Z1 refers to the unduplicated X and the duplicated variable Y1. 

Drawing arrows
Use the arrow tool to draw or remove arrows (influences) between variable nodes. Drawing an 
arrow from variable or function A to B puts A in the list of inputs of B. This makes it conveniently 
available to select from the inputs menu when creating or editing the definition of B (see “Creating 
and Editing Definitions”page 103). 

Draw an arrow To draw an arrow, first click the arrow icon in the toolbar to select the arrow tool. In arrow 
mode, the cursor changes to this arrow icon when over a diagram window.

1. Drag from the origin node (which highlights) to the destination node (which also highlights).
2. Release the mouse button, and it draws the arrow.

To speed up drawing arrows from multiple nodes to a single destination, select all the origin 
nodes. Then drag from any origin node to the destination node. When you release the mouse, it 
draws arrows from all the origin nodes.

Tip Some arrows are hidden. They do not appear even when you try to draw them. For example, by 
default, arrows to and from indexes and functions are not shown. You can change these settings 
in the Diagram Style dialog (page 76) and Node Style dialog (page 77).

To remove an arrow • Click the arrow to select it, then press the Backspace or Delete key, or
• Just redraw the arrow from the origin node to the destination node. If the origin variable is 

used in the definition of the destination, it asks if you really want to remove it.



Chapter Creating and Editing a Model

50 Analytica User Guide

4 Drawing arrows

Tip When you enter or edit a definition (page 104), Analytica automatically updates the arrows into 
the variable to reflect those other variables that it mentions (or does not mention). 

Influence cycle
or loop

An influence cycle occurs when a variable A depends on itself directly, where A → A, or indi-
rectly so that the arrows form a directed circular path, e.g., A → B → C → A. 

If you try to draw arrows that would make a cycle, it warns and prevents you. The exception is if at 
least one of the variables in the cycle is defined with the Dynamic function, and contains a time-
lagged dependence on another variable in the cycle, shown as a gray arrow (see Chapter 17, 
“Dynamic Simulation”).

Arrows linking to
module nodes

When there are arrows between variables in different modules, they are reflected by arrows to 
and from the module nodes.

Arrows between variable and module nodes are illustrated below.

Arrow from module to
variable

Arrow from variable
to module

The arrow tool is
highlighted to show

that it is selected

Arrow from variable node to variable node

Arrow from variable node to module node

Arrow from module node to variable node

Indicates that the target variable 
depends on the origin variable.

Indicates that at least one variable in the 
target module depends on the origin variable.

Indicates that the target variable depends on 
at least one variable in the origin module.



 Analytica User Guide 51

How to draw arrows between different modulesChapter Creating and Editing a Model4

How to draw arrows between different modules
There are four methods to draw arrows between nodes in different modules. Suppose you want to 
draw an arrow from the variable Buying price to the variable Mortgage loan amount in 
another module.

Draw arrow
across windows

The most direct method works when you can arrange the diagrams so that both the origin and 
destination nodes are visible on screen at the same time:

1. In arrow mode , press on the origin node, Buying price, so that it highlights.
2. Drag an arrow to the destination node, Mortgage loan amount, which also highlights, and 

release the button.

If, as in this illustration, the destination module appears in the origin diagram, the arrow points 
from the origin node Buying price to the destination module Cost to Buy; a small arrow-

Arrow from module node to module node 

Double-headed arrow between module nodes

Small arrowhead to the right or left of a variable node

Indicates that the target module contains at 
least one variable that depends on at least 
one variable in the origin module.

Indicates that each module contains at least 
one variable that depends on at least one 
variable in the other module.

Indicates that the variable has a remote input 
or output — a variable that is not inside the 
displayed variable’s module (see “Seeing 
remote inputs and outputs” on page 18).

input arrow output arrow

Destination 
nodeSource node



Chapter Creating and Editing a Model

52 Analytica User Guide

4 Alias nodes

head appears on the left edge of destination node Mortgage loan amount, showing that it has 
an input node from another diagram.

Move nodes to same
diagram to link them

A second method is to move one of the nodes into the diagram containing the other. Then you 
simply draw an arrow between them in the usual way. Finally, you move the node back to the dia-
gram it came from. This is convenient if you have large diagrams and a small screen so that its 
hard to arrange the two diagrams so that both nodes are visible at the same time.

Copy the identifier of
the origin into the

definition of the
destination

Copy the identifier of the origin variable, open the definition of the destination variable, and paste 
it in (see “Creating or editing a definition”page 104). When the definition is complete and 
accepted, it automatically draws the arrows to reflect the relationships.

Make an alias node in
the other diagram

If the origin node and destination module are in the same diagram, you can draw an arrow directly 
between them. This makes an alias node of the origin in the destination diagram. Then you can 
simply draw an arrow from the alias to the destination node. You can use a similar method when 
the origin module and destination node are in the same diagram. Drawing an arrow between them 
creates an alias of the destination in the origin module. See the next section for more about 
aliases.

Alias nodes 
An alias is a copy of a node, referring to the same variable, module, or other object as the original 
node. It’s often useful to display an alias node in a different module than its original node. For 
example, if module M1 contains variable X, and X has outputs in another module M2, it’s often 
useful to add an alias of X in M2 to display the influence of X on its outputs explicitly. This makes it 
easy to draw arrows from X to or from other variables in M2.

A variable or other object can have only one original node, but an unlimited number of alias 
nodes. 

Tip An alias node is identified by its title being shown in italics.

You can create an alias directly with the Make alias command, or indirectly by drawing an arrow 
to or from a module node. These methods are described below. 

Make Alias command Select the original node. Then choose the Make Alias option from the Object menu (or press 
Control+m). The alias node appears next to the original node. You can then drag it into another 
module.

Draw arrow between
variable and module

Draw an arrow from the original node to a module node, or from a module node to the original 
node. This creates an alias in the module. For example, draw an arrow from the variable Buying 
price to the module Cost to Buy.

Small arrowhead indicates
that this variable has

remote inputs

Original node

Alias node (title is in italics)



 Analytica User Guide 53

Alias nodesChapter Creating and Editing a Model4

It displays an arrow between the nodes.

Open up the module Cost to Buy to see the new alias.

Draw arrow between two
modules

Draw an arrow from one module node Cost to Buy to another module Total Cost.

This creates a new variable node with a default name, such as Va1, in the first module Cost to 
Buy, with an alias of Va1 in the second module Total Cost.

An alias is like
its original

An alias looks and behaves like its original node, except the fact that its label is in italics. You can 
select it, double-click it to open it Object window, move, resize, edit its label, and draw arrows to 
or from it, just like any other node. The alias and original show the same title — if you edit the title 
in one of them, it automatically changes in the other.



Chapter Creating and Editing a Model

54 Analytica User Guide

4 To edit an attribute

How alias and
original can differ

On the other hand, the properties of the node — rather than the object that it depicts — can differ 
between the original and its alias. You can modify one node’s location (obviously) and size, its 
color (using the Color palette), and its styles using the Node Style dialog. 

Tip If an alias and its original node are in the same diagram, it displays any arrows to or from only the 
original node, not the alias. If the alias is in a different module, it displays arrows connecting it to 
other nodes in that module, as they would be displayed if it were the original node.

Input and output nodes
are aliases

Input nodes (page 116) and output nodes (page 118) are kinds of alias nodes that have special 
style properties. 

To edit an attribute
You can edit most attributes of an object directly in the Attribute panel (page 22) or in the Object 
window (page 21). User-editable attributes include identifier, title, description, units, and defini-
tion. See next section on how to change class. Some attributes you cannot edit because they are 
computed, including inputs, outputs, and value.

To edit an attribute, first display it in the Attribute panel or Object window for the object, and 
make sure you are in edit mode. Then: 

1. Click in the Attribute field. A blinking text cursor and dotted outline around the attribute indicate 
that the attribute is editable.

2. Use standard text-editing methods to edit it — type, copy and paste, and use the mouse to 
select text or move the cursor.

3. To save the changes, click anywhere outside the Attribute field, press Enter, or display 
another attribute.

Cancel and undo edits To cancel changes while editing an attribute, press the Esc (escape) key to revert to the previous 
version. Except when editing a definition, click to cancel changes. To cancel changes after 
you have just made and accepted them, select Undo from the Edit menu (or press Control+z).

Attribute changes All displays of an object use its same attributes, so any change to an attribute affects all views 
that display that attribute. For example, any change to a title appears in other diagram nodes, 
object windows, or result views referring to that object by title. Any change to a definition causes 
the redrawing of arrows to reflect any changes in dependencies.



 Analytica User Guide 55

To change the class of an objectChapter Creating and Editing a Model4

To change the class of an object
You can press on the class of a variable or module in an Object window or Attribute panel to 
open a popup menu. The options depend on whether the node is a variable or a module.

To change class, just select another option from the menu. The shape of the node and other 
class-dependent properties change automatically.

Tip You cannot change the class of a function, and you cannot change a variable into a module, or 
vice versa. 

For more, see “Classes of variables and other objects”page 18. 

Module Subclasses
All modules contain other objects, including sometimes other modules. There are several different 
subclasses of module:

Model: Usually the top module in a module hierarchy, saved as a separate file (document with 
extension .ana). Any nondefault preferences (see “Preferences dialog”page 56), uncertainty 
options (see “Uncertainty Setup dialog”page 233), and graph style templates are saved with the 
model, but not other module types.

Module: A collection of nodes displayed in a single diagram. A standard module contains a set of 
other nodes, and is usually part of the module hierarchy within a model or other module type. 

Filed module: A module whose contents are saved in a file separate from the model that con-
tains it. A filed module can be shared among several models, without having to make a copy for 
each model. See page 321.

Library: A module that contains functions and sometimes variables. Read-in libraries are listed in 
the Definition menu below the built-in libraries, with a hierarchical submenu listing the functions 
they contain, giving easy access. See page 335.

Filed library: A library saved in a file separate from the model that contains it. A filed library can 
be shared among several models, without having to make a copy for each model. See page 321.

Form: A module containing input and output nodes. You can easily create input and output nodes 
in a form node by drawing arrows from their original node to the form (for inputs) or from the form 
to the variable for outputs. See Chapter 9, “Creating Interfaces for End Users.”

Variable classes

Module classes



Chapter Creating and Editing a Model

56 Analytica User Guide

4 Preferences dialog

Preferences dialog
Use the Preferences dialog to inspect and set a variety of preferences for the operation of Analyt-
ica. All preference settings are saved with the model. To open the Preferences dialog, select 
Preferences from the Edit menu.

Windows of each kind Use the options in this box to control how many windows of various kinds are displayed at once 
(see “Managing windows”page 325).

Change identifier Use the options in this box to control the changing of identifiers. See “Creating and editing nodes” 
on page 47 for a description of how identifiers are initially assigned.

One only Check this box to close an existing window (if there is one) whenever 
you open a new window. 

Any number Check this box to keep all windows open until you explicitly close them.

Result windows Enter a value in this field to indicate the number of Result windows that 
you can keep open simultaneously. The default (and minimum) number 
is 2; the maximum number is 20.

When title changes Check this box to change a variable’s identifier whenever you change 
its title. Analytica uses up to the number of specified characters (20 by 
default, range from 2 to 20), replacing spaces and returns with an 
underscore character (_), and omitting anything between parenthe-
ses.

If the box is not checked, the identifier is changed only when you 
explicitly edit it. 

Ask before renaming Check this box to see a confirmation dialog before automatic changing 
of a variable’s identifier.



 Analytica User Guide 57

Preferences dialogChapter Creating and Editing a Model4

Opens These radio buttons control where you view the definition of a selected object, when you 
click in the toolbar, press Control+e, or when you choose to edit a variable from a warning 
message:

Maintain
Recovery Info

When this checkbox is checked (the default), Analytica saves each change to a recovery file, 
starting from the last point at which the model was saved. If the application terminates unexpect-
edly due to a software or hardware problem, the next time you start Analytica, it detects the recov-
ery file and displays a dialog offering to resume the model where you left off, including all 
changes. 

The only reason to switch off this option is when you are editing huge edit tables, in which case, 
this feature can slow down editing and consume significant disk space for the recovery file. 

Unlike the other preference settings, this is stored as a user setting, and is not stored with the 
model. 

Tip Even when Maintain Recovery Info is checked, we recommend you save your model at frequent 
intervals. 

Default result view Select the radio button to specify which view you prefer as the default when you first display the 
Result window (page 28) for a variable.

If you change the view in a result window, it uses that view next time you open that result.

Checkboxes

Object window Open the Object window (page 21) and select the definition text.

Diagram attribute 
panel

Open the Attribute panel (page 22) on the appropriate Diagram win-
dow and select the definition text.

 Display result as a table.

 Display result as a graph. 

Check variable class Display a warning if:

• A variable whose class is not Chance contains a probability 
distribution.

• A constant depends on another variable (other than indexes to an 
edit table).

• An index has a value that is not a one-dimensional array, or is an 
array with another index.

Check value bounds Evaluate check attributes for variables that have them. See page 111. 

Show undefined Nodes without a valid definition display with cross-hatching:

Flag nodes 
w/descriptions

Show a red triangle in the upper-right corner of nodes that have text in 
their description attribute:

Show module 
hierarchy

Show a hierarchy bar at the top of each Diagram window showing its 
nesting level. See page 316. 

Node is filled with diagonal pattern: 
the definition is missing or is 
syntactically incorrect

Node is flagged with a red triangle to 
indicate that it has a description



Chapter Creating and Editing a Model

58 Analytica User Guide

4 Preferences dialog

Show result warnings If checked, it stops evaluation and shows a warning message, when it 
encounters a warning condition. If unchecked, it continues without dis-
playing a warning.

Use Return to enter 
data

A standard MS Windows keyboard has a Return key located on the 
alphanumeric section of the keyboard, and a separate Enter key 
located on the numeric keyboard. When this checkbox is unchecked 
(the default), the Return key starts a new line in a multi-lined text field 
(such as a definition) while the Enter key or Alt-Return signal that the 
data entry is complete. When checked, these are reversed, with Enter 
or Alt-Return starting a new line and Return completing the entry of 
data.

Safe Intermediates Analytica ensures that all intermediate arrays generated during evalu-
ation are fully rectangular. By default this is checked. If unchecked, 
some large models — especially those using dynamic simulation — 
run faster, sometimes dramatically so. Very occasionally, unchecking 
can cause incorrect results. If speed is an issue, compare results with 
this box checked and unchecked. If the values are the same, uncheck 
this checkbox to improve performance.

Auto recompute out-
going OLE links

Analytica automatically recomputes and updates OLE-linked tables 
whenever model changes affect them. With large models, it is some-
times best to uncheck this box to avoid immediate time-consuming 
recomputation after each small change. See page 303. 

Use Excel date origin When this is unchecked, Analytica represents dates as a number indi-
cating the number of days since January 1, 1904. When this is 
checked, is uses January 1, 1900, the same as Excel for Windows.

Maintain recovery info When checked, Analytica keeps a log of all changes since the last 
time you saved your model. In the event of an application or system 
crash, or power outage, Analytica can usually recover all your 
changes since the model was saved. Having this on can slow things 
down if you are making changes to really large tables or images.



Chapter 5 Building Effective Models

This chapter shows you how to build models that are:

• Focused
• Simple
• Clear
• Comprehensible
• Correct



Chapter Building Effective Models

60 Analytica User Guide

5 Creating a model

Creating useful models is a challenging activity, even for experienced modelers; effective use of 
influence diagrams can make the process substantially easier and clearer. This chapter pro-
vides tips and guidelines from master modelers (including Newton and Einstein) on how to build a 
model that is effective, one that focuses on what matters, and that is simple, clear, comprehensi-
ble, and correct. The key is to start simple and progressively refine and extend the model where 
tests of initial versions suggest it will be most important. 

Most of the material in this chapter, unlike the other chapters in this guide, is not specific to Ana-
lytica. These guidelines are useful whether you are using Analytica, a spreadsheet, or any other 
modeling tool. However, Analytica makes it especially easy to follow these guidelines, using its 
hierarchical influence diagrams, uncertainty tools, and Intelligent Arrays.

These guidelines have been distilled from many years of experience by master modelers, using 
Analytica and a variety of other modeling software. However, they are general guidelines, not 
rules to be adhered to absolutely. We suggest you read this chapter early in your work with Ana-
lytica and revisit it from time to time as you gain experience.

Creating a model
Below are general guidelines to help you build models that provide the greatest value with the 
least effort. 

Identify the objectives What are the objectives of the decision maker? Sometimes the objective is simply to maximize 
expected monetary profit. More often there is a variety of other objectives, such as maximizing 
safety, convenience, reliability, social welfare, or environmental health, depending on the domain 
and the decision maker. Utility theory and multi-attribute decision analysis provide an array of 
methods to help structure and quantify objectives in the form of utility. Whatever approach you 
take, it is important to represent the objectives in an explicit and quantifiable form if the objectives 
are to be the basis for recommending one decision option over another.

It is a useful convention to put the objective variable or variables (hexagonal nodes) on the right of 
the diagram window, leaving space on the left side for the rest of the diagram.

The most common mistake in specifying objectives is to select some that are too narrow, by con-
centrating on the most easily quantifiable objective — typically, near-term monetary costs — and 
to forget about the other, less tangible objectives. For example:

• When buying software you might want to consider the usability and reliability of different 
software packages, as well as long-term maintenance, not just cost and performance.

• In pricing a product, you might want to consider the long-term effects of increased market 
share in developing new customers and markets and not just short-term revenues.

• In selecting a medical treatment, you might want to consider the quality of life if you survive 
the treatment, and not just the probability of survival. 

For an excellent guide on how to identify and structure objectives, see Value-Focused Thinking 
by Ralph Keeney (see “Appendix G: Bibliography”page 406). 

Identify the decisions The purpose of modeling is usually to help you (or your colleagues, organization, or clients) dis-
cover which decision options best meet your (or their) objectives. You should aim, therefore, to 
include the decisions and objectives explicitly in your model. 



 Analytica User Guide 61

Creating a modelChapter Building Effective Models5

A decision variable is one that the decision maker can affect directly — which computer to buy, 
how much to bid on the contract, which medical treatment to choose, when to start construction, 
and so on. Occasionally, people want to build a model just for the sake of furthering understand-
ing, without explicitly considering any decisions. Most often, however, the ultimate purpose is to 
make a better decision. In these cases, the decision variables are where you should start your 
model.

When starting a new influence diagram, put the decision variables — as rectangular nodes — on 
the left of the diagram window, leaving space for the rest of the influence diagram to the right.

Link the decisions to the
objectives

The decisions and objectives are the starting and ending points of your model. When you have 
identified them, you have reduced the diagram construction to the process of creating the links 
between the decisions and objectives, via intermediate variables. You might wish to work forward 
from the decisions, or backward from the objectives. Some people find it easiest to alternate, 
working inward from the left and the right until they can link everything up in the middle.

It helps to identify the decisions and objectives early in model construction, to keep the focus on 
what matters. There can be a bewildering variety of variables in the situation that might seem to 
be of potential relevance, but, you only need to worry about variables that influence how the deci-
sions might affect the objectives. You can ignore any variable that has no effect on the objectives.

Focus on identifying the variables that make clear distinctions — variables whose interpretations 
won’t change with time or viewer. Extra effort here will be repaid in model accuracy and cogency.

Move from the
qualitative to the

quantitative

An influence diagram is a purely qualitative representation of a model. It shows the variables and 
their dependencies. It is usually best to create most or all of the first version of your model just as 
an influence diagram, or hierarchy of diagrams, before trying to quantify the values and relation-
ships between the variables. In this way, you can concentrate on the essential qualitative issues 
of what variables to include, before having to worry about the details of how to quantify the rela-
tionships. 

When the model is intended to reflect the views and knowledge of a group of people, it is espe-
cially valuable to start by drawing up influence diagrams as a group. A small group can sit around 
the computer screen; for a larger group, it is best if you have the means to project the image onto 
a large screen, so that the entire group can see and comment on the diagram as they create it. 
The ability to focus initially on the qualitative structure lets you involve early in the process partici-
pants who might not have the time or interest to be involved in the detailed quantitative analysis. 



Chapter Building Effective Models

62 Analytica User Guide

5 Testing and debugging a model

With this approach, you can often obtain valuable insights and early buy-in to the modeling pro-
cess from key people who would not otherwise be available. 

Keep it simple Perhaps the most common mistake in modeling is to try to build a model that is too complicated or 
that is complicated in the wrong ways. Just because the situation you are modeling is complicated 
doesn’t necessarily mean your model should be complicated. Every model is unavoidably a sim-
plification of reality; otherwise it would not be a model. The question is not whether your model 
should be a simplification, but rather how simple it should be. A large model requires more effort 
to build, takes longer to execute, is harder to test, and is more difficult to understand than a 
smaller model. And it might not be more accurate.

“A theory should be as simple as possible, but no simpler.” Albert Einstein

Reuse and adapt
existing models

Building a new model from scratch can be a challenge. If you can find an existing model for a 
problem similar to the one you are now facing, it is usually much easier to start with the existing 
model and adapt it to the new application. In some cases, you might find parts or modules of 
existing models that you can extract and combine to address a new problem. 

To find a suitable model to adapt, you can start by looking through the example models distrib-
uted with Analytica. If there is an Analytica users’ group in your own organization, it might collect 
a model library of classes of problems of interest to your organization. 

You can also check the Lumina wiki for Analytica libraries, templates, and example models (http:/
/lumina.com/wiki).

“If I have seen further than [others] it is by standing upon the shoulders of Giants.” 
Sir Isaac Newton

Aim for clarity
and insight

The goal of building a model is to obtain clarity about the situation, about which decision options 
will best further your objectives, and why. If you are already clear about what decision to make, 
you don’t need to build a model, unless, perhaps, you are trying to clarify the situation and explain 
the recommended decisions for others. Either way, your goal is greater clarity. This goal is 
another reason to aim for simplicity. Large and complicated models are harder to understand and 
explain. 

Testing and debugging a model
Even with Analytica, it is rare to create the first draft of a model without mistakes. For example, on 
your first try, definitions might not express what you really intended, or might not apply to all con-
ditions. It is important to test and evaluate your model to make sure it expresses what you have in 
mind. Analytica is designed specifically to make it as easy as possible to scrutinize model struc-
tures and dependencies, to explore model implications and behaviors, and to understand the rea-
sons for them. Accordingly, it is relatively easy to debug models once you have identified potential 
problems. 

Test as you build With Analytica, you can evaluate any variable once you have provided a definition for the variable 
and all the variables on which it depends, even if many other variables in the model remain to be 
defined. We recommend that you evaluate each variable as soon as you can, immediately after 
you have provided definitions for the relevant parts of the model. In this way, you’ll discover prob-
lems as soon as possible after specifying the definitions that might have caused them. You can 
then try to identify the cause and fix the problem while the definitions are still fresh in your mem-
ory. Moreover, you are less likely to repeat the mistake in other parts of the model. 

If you wait until you believe you have completed the model before testing it, it might contain sev-
eral errors that interact in confusing ways. Then you must search through much larger sections of 
the model to track them down. But if you have already tested the model components indepen-
dently, you’ve already removed most of the errors, and it is usually much easier to track down any 
that remain.

Test the model
against reality

The best way to check that your model is well-specified is to compare its predictions against past 
empirical observations. For example, if you’re trying to predict future changes in the composition 
of acid rain, you should try to compare its “predictions” for past years for which you have empirical 
observations. Or, if you’re trying to forecast the future profitability of an existing enterprise, you 
should first calibrate your model for past years for which accounting data is available. 

http://www.lumina.com/wiki
http://www.lumina.com/wiki


 Analytica User Guide 63

Testing and debugging a modelChapter Building Effective Models5

Test the model against
other models

Often you don’t have the luxury of empirical measurements or data for the system of interest. In 
some cases, you’re building a new model to replace an old model that is out-of-date, too limited, 
or not probabilistic. In these cases, it is usually wise to start by reimplementing a version of the old 
model, before updating and extending it. You can then compare the new model against the old 
one to check for discrepancies. Of course, differences can be due to errors in the new model or 
the old model. When you have resolved any discrepancies, you can be confident that you are 
building on a foundation that you understand.

If the model is hard to test against reality in advance of using it, and if the consequences of mis-
takes could be catastrophic, you can borrow a technique that NASA uses widely for the space 
program. You can get two independent modelers (or two modeling teams) each to build their own 
model, and then check the models against each other. It is important that the modelers be inde-
pendent, and not discuss their work ahead of time, to reduce the chance that they both make the 
same mistake. For a sponsor of models for critical applications in public or private policy, this mul-
tiple model approach can be very effective and insightful. The competition keeps the modelers on 
their toes. Comparing the models’ structure and behavior often leads to valuable insights. 

Have other people
review your model

It’s often very helpful to have outside reviewers scrutinize your model. Experts with different views 
and experiences might have valuable comments and suggestions for improving it. One of the 
advantages of using Analytica over conventional modeling environments is that it’s usually possi-
ble for an expert in the domain to review the model directly, without additional paper documenta-
tion. The reviewer can scrutinize the diagrams, the variables, their definitions and descriptions, 
and the behavior of the model electronically. You can share models electronically on diskette, 
over a network, or by electronic mail. 

Test model behavior
and sensitivities

Many problems become immediately obvious when you look at a result — for example, if it has 
the wrong sign, the wrong order of magnitude, or the wrong dimensions, or if Analytica reports an 
evaluation error. Other problems, of course, are not immediately obvious — for example, if the 
value is wrong by only a few percentage points. For more thorough testing, it is often helpful to 
analyze the model behavior by specifying a list of alternative values for one or two key inputs (see 
Chapter 3, “Analyzing Model Behavior”), and to perform sensitivity analysis (see Chapter 16, 
“Statistics, Sensitivity, and Uncertainty Analysis”). If the model behaves in an unexpected way, 
this can be a sign of some mistake in the specification. For example, suppose that you are plan-
ning to borrow money to buy a new computer, and the net value increases with the interest rate 
on the loan; you might suspect a problem in the model.

Celebrate and learn
from unexpected

behavior

If analyzing the behavior or sensitivities of your model creates unexpected results, there are two 
possibilities: 

• Your model contains an error, in that it does not correctly express what you intended. 
• Your expectations about how the model should behave were wrong. 

You should first check the model carefully to make sure it contains no errors, and does indeed 
express what you intended. Explore the model to try to figure out how it generates the unexpected 
results. If after thorough exploration you can find no mistake, and the model persists in its unex-
pected behavior, do not despair! It might be that your intuitions were wrong in the first place. This 
discovery should be a cause for celebration rather than disappointment. If models always 
behaved exactly as expected, there would be little reason to build them. The most valuable 
insights come from models that behave counter-intuitively. When you understand how their 
behavior arises, you can deepen your understanding and improve your intuition — which is, after 
all, a fundamental goal of modeling. 

Document as you build Give your variables and modules meaningful titles, so that others — or you, when you revisit the 
model a year later — can more easily understand the model from looking at its influence dia-
grams. It’s better to call your variable Net rental income than NRI23.

It’s also a good idea to document your model as you construct it by filling in the Description and 
Units attributes for each variable and module. You might find that entering a description for each 
variable and explaining clearly what the variable represents helps to keep you clear about the 
model. Entering units of measurement for each variable can help you avoid simple mistakes in 
model specification. Avoid the temptation to put documentation off until the end of the project, 
when you run out of time, or have forgotten key aspects.



Chapter Building Effective Models

64 Analytica User Guide

5 Expanding your model

Most models, once built, spend the majority of their lives being used and modified by people other 
than their original author. Clear and thorough documentation pays continuing dividends; a model 
is incomplete without it.

Expanding your model
Extend the model by

stages
The best way to develop a model of appropriate size is to start with a very simple model, and then 
to extend it in stages in those ways that appear to be most important. With this approach, you’ll 
have a usable model early on. Moreover, you can analyze the sensitivities of the simple model to 
find out where the key uncertainties and gaps are, and use this to set priorities for expanding the 
model. If instead you try to create a large model from the start, you run the risk of running out of 
time or computer resources before you have anything usable. And you might end up putting much 
work into creating an elaborate module for an aspect of the problem that turns out to be of little 
importance.

Identify ways to improve
the model

There are many ways to expand a model:

• Add variables that you think will be important. 
• Add objectives or criteria for evaluating outcomes. 
• Expand the number of decision options specified for a decision variable, or the number of 

possible outcomes for a discrete chance variable. 
• Expand a single decision into two or more sequential decisions, with the later decision being 

made after more information is revealed.
• For a dynamic model, expand the time horizon (say, from 10 years to 20 years) or reduce the 

time steps (say, from annual to quarterly time periods). 
• Disaggregate a variable by adding a dimension (say, projecting sales and costs by each 

division of the company instead of only for the company as a whole).
• Start with a deterministic model, then add probabilistic inputs to make the model probabilistic.

Before plunging in to one of these approaches to expanding a model, it’s best to list the alterna-
tives explicitly and think carefully about which is most likely to improve the model the most for the 
least effort. Where possible, perform experiments or sensitivity analysis to figure out how much 
effect alternative kinds of expansion can have. 

Changing the size or numbers of dimensions of tables is a difficult and time-consuming task in 
conventional modeling environments. Analytica makes it relatively easy, since you only need to 
change those definitions that directly depend on the dimension (for example, the edit tables), and 
Analytica propagates the needed changes automatically throughout the model.

Discover what parts are
important to guide

expansion

A major advantage of starting with a simple model is that you use it to guide extensions in the 
ways that will be most valuable in improving the model’s results. You can analyze the sensitivities 
of the simple model (for example, using Importance Analysis, page 277) to identify which 
sources of uncertainty contribute most to the uncertainty in the results. Typically, only a handful of 
variables contribute the lion’s share of the overall uncertainty. You can then concentrate your 
future modeling efforts on those variables and avoid wasting your energy on variables whose 
influence is negligible. 

Early intuitions about what aspects of a model are important are frequently wrong, and the results 
of the sensitivity analysis might come as a surprise. Consequently, it’s much safer to base model 
development on sensitivity analysis of simple models than to rely on your intuitions about where 
to spend your efforts in model construction.

When you have identified the most important variables in your simple model, there are several 
ways to reduce the uncertainty they contribute. You can refine the estimated probability distribu-
tion by consulting a better-informed expert, by analyzing more existing data, by collecting new 
data, or by developing a more elaborate model to calculate the variable based on other available 
information. 



 Analytica User Guide 65

Expanding your modelChapter Building Effective Models5

Simplify where possible There’s no reason that a model must grow successively more complex as you develop it. Sensi-
tivity analysis might reveal that an uncertainty or submodel is just not very important to the results. 
In this case, consider eliminating it. You might find that some dimensions of a table are unimport-
ant — for example, that there’s little difference in the performance of different divisions. If so, con-
sider aggregating over the divisions and eliminating that dimension from your model.

Simplifying a model has many benefits. It becomes easier to understand and explain, faster to 
run, and cheaper to maintain. These savings can afford you the opportunity to extend parts of the 
model that are more important.



Chapter Building Effective Models

66 Analytica User Guide

5 Expanding your model



Chapter 6 Creating Lucid Influence 
Diagrams

This chapter offers guidelines for creating influence diagrams that are 
clear and comprehensible by careful arrangement of nodes, well-
designed module hierarchies, and judicious use of color. It also 
describes how to adjust and align nodes, and customize styles for 
nodes and diagrams. Options include which arrows to show, node sizes, 
colors, text size, and font family. 



Chapter Creating Lucid Influence Diagrams

68 Analytica User Guide

6

Hierarchical influence diagrams can provide a lucid display of the essential qualitative structure of 
a model, uncluttered by quantitative details. 

It is also possible to create impenetrable spaghetti! 



 Analytica User Guide 69

Guidelines for creating lucid and elegant diagramsChapter Creating Lucid Influence Diagrams6

Guidelines for creating lucid and elegant diagrams
When aesthetics are involved, rules cannot be hard and fast. You can adapt and modify these 
guidelines to suit your particular applications and preferences.

Use clear, meaningful
node titles

Aim to make each diagram stand by itself and be as comprehensible as possible. Each node title 
can contain up to 255 characters of any kind, including spaces. Use clear, concise language in 
titles, not private codes or names (as are often used for naming computer variables). Mixed-case 
text (first letter uppercase and remaining letters lowercase) is clearer than all letters uppercase.

Use consistent
node sizes

Diagrams usually look best if most of the variable nodes are the same size.

Node sizes will be uniform if you set the default minimum node size in the Diagram Style dialog 
(page 76) to be large enough so that it fits the title for nodes. When creating nodes, it uses this 
default size unless the text is too lengthy, in which case it expands the node vertically to fit the 
text. For more information on how to adjust node sizes see “Adjust node size”page 70.

To make nodes the same size, select the nodes (Control+a selects all in the diagram), and select 
Make same size > Both from the Diagram menu (or press = key twice).

Use small and large
nodes sparingly

Sometimes, it is effective to make a few special nodes extra large or small. For example, start and 
end nodes, which can link to other models, often look best when they are very small. Or you can 
make a few nodes containing large input tables or modules containing the “guts” of a model larger 
to convey their importance.

Good object titlesPoor object titles

Inconsistent node sizes Consistent node sizes



Chapter Creating Lucid Influence Diagrams

70 Analytica User Guide

6 Arranging nodes to make clear diagrams

Arrange nodes
from left to right

(or top to bottom)

People find it natural to read diagrams, like text, from left to right, or top to bottom.1 Try to put the 
decision node(s) on the left or top and the objective node(s) on the right or bottom of the diagram, 
with all of the other variables or modules arranged between them. 

You might need to let a few arrows go counter to the general flow to reduce crossings or overlaps. 
In dynamic models, time-lagged feedback loops (shown as gray arrows) might appropriately go 
counter to the general flow.

Tolerate spaghetti
at first…

It can be difficult to figure out a clear diagram arrangement in advance. It is usually easiest to start 
a new model using the largest Diagram window you can by clicking the maximize box to have the 
diagram fill your screen. You might want to create key decisions and other input nodes near the 
left or top of the window, and objectives or output nodes near the right or bottom of the window. 
Aside from that, create nodes wherever you like, without worrying too much about clarity.

…reorganize later When you start linking nodes, the diagram can start to look tangled. This is the time to start reor-
ganizing the diagram to create some clarity. Try to move linked nodes together into a module. 
Develop vertical or horizontal lines of linked nodes. Accentuate symmetries, if you see them. 
Gradually, order will emerge.

Arranging nodes to make clear diagrams
Adjust node size If you have nodes of different sizes, you can make them more consistent by selecting Adjust Size 

(Control+t) from the Diagram menu. All of the selected nodes are resized to the default minimum 
node size, or the minimum size needed to enclose each node’s title, whichever is larger.

You can also resize several nodes by the same amount simultaneously by following these steps:

1. Select the nodes to resize.
2. Resize one of the selected nodes by dragging one of its handles. All other selected nodes are 

also resized.

Selected nodes can also be set to be the same width, height, or size. To set the size of selected 
nodes to be the same size use the Make Same Size submenu in the Diagram menu. The options 
are:

• Make Same Size Width — Sets all the selected nodes to the width of the widest node.
• Make Same Size Height — Sets all the selected nodes to the height of the tallest node.
• Make Same Size Both — Sets all the selected nodes to the width of the widest node and the 

height of the tallest node.

1. Or right to left for models in Arabic or Hebrew. 

Decision variables
on the left

Objective variable on the right



 Analytica User Guide 71

Arranging nodes to make clear diagramsChapter Creating Lucid Influence Diagrams6

Align to the grid It usually looks best when the centers of the nodes are aligned along a common horizontal or 
vertical line, so that many arrows are exactly horizontal or vertical. The square grid of 9x9 pixel 
blocks underlying each diagram makes this easy. When the grid is on (the default), each node 
that you create or move is centered on a grid intersection. This default makes it easier for you to 
position nodes so that arrows are exactly horizontal or vertical when nodes are aligned vertically 
or horizontally. 

To turn the grid off in edit mode, uncheck Snap to Grid from the Diagram menu. When the grid is 
off in edit mode, the grid is still visible, and you can move the nodes pixel by pixel.

If nodes are not centered on a grid point, re-center them by following these steps:

1. Select all nodes in the diagram with the Select All (Control+a) command from the Edit menu.
2. Select Align Selection To Grid from the Diagram menu (Control+j).

Align selected nodes To line up selected nodes with each other, use the Align submenu in the Diagram menu. You 
can align selected nodes in the following ways:

• Align the left edges.
• Align the centers left and right — this aligns the centers horizontally.
• Align the right edges.
• Align the left and right edges — this makes all the selected nodes the same width and aligns 

them so that their left and right edges match up. All nodes are set to the width of the widest 
node.

• Align the top edges.
• Align the centers up and down — this aligns the nodes so that their centers are at the same 

vertical height.
• Align the bottom edges.

Good alignmentPoor alignment

Align left edges Align right edgesAlign centers left Align left and
right edgesand right



Chapter Creating Lucid Influence Diagrams

72 Analytica User Guide

6 Arranging nodes to make clear diagrams

Distributing nodes To distribute selected nodes evenly, use the Space Evenly submenu in the Diagram menu. You 
can distribute selected nodes so that the centers are evenly spaced vertically (Space Evenly 
Across) or horizontally (Space Evenly Down).

Choosing which
node is in front

By default, text and picture nodes are behind arrows, and arrows are behind all other types of 
nodes (decision, chance, variable, etc.). If nodes overlap, the more recently created node is on 
top of the older node. You can change this order by selecting a node(s) and using the Send to 
Back and Bring to Front options from the right-click menu. 

Hide less
important arrows

Sometimes so many nodes are interrelated that it is hard or impossible to arrange a diagram to 
avoid arrows crossing each other or crossing nodes. It might be helpful to hide some arrows that 
show less important linkages. For example, indexes and functions are often connected to many 
other variables; that’s why arrows to and from them are switched off by default. 

You can hide all of the arrows linking indexes, functions, or modules, or the grayed feedback 
arrows in dynamic models, using the Set Diagram Style command from the Diagram menu in 
the Diagram Style dialog (page 76). You can also hide the input or output arrows from each 
node individually, using the Set Node Style command in the Node Style dialog (page 77). 

Keep diagrams compact Screen space is valuable. To save space, keep nodes close together, leaving enough space 
between them for the arrows to be visible. 

When first creating a diagram, use plenty of space. Your diagram window can be as large as your 
monitor screen. Using this space, first find a clear arrangement, which minimizes arrow crossing 
and avoids node overlaps. Then, you can usually make the diagram more compact by moving the 
nodes closer together and moving the entire diagram closer to the upper-left corner of the win-
dow. Finally, you can reduce the window size to fit the diagram.

Align top 

Align centers

Align bottom 

up and down

edges

edges



 Analytica User Guide 73

Organizing a module hierarchyChapter Creating Lucid Influence Diagrams6

Organizing a module hierarchy
In addition to properly arranging the nodes in a single diagram, you can also improve the clarity of 
your models by using module hierarchies effectively.

Group related nodes in
the same diagram

When assigning nodes to diagrams, the goal is to put groups of nodes that have many links 
among them in the same diagram, and to separate them from other groups with which they have 
few or no links. For example, the diagram below shows that a group of nodes related to annual 
housing costs have been organized into the Annual costs module within the larger model.

A spread-out diagram

A compact diagram



Chapter Creating Lucid Influence Diagrams

74 Analytica User Guide

6 Organizing a module hierarchy

Sometimes you have a good idea of how to group nodes before you create them. In such cases, 
it is easy to create the modules first, and then create and link the nodes in groups in each module.

In other cases, it might not be obvious which groupings work best. It is then often best to create all 
the nodes in a single large diagram. After drawing all the arrows, you might have a confusing spa-
ghetti diagram. At this point, try to move the nodes around to identify groups containing 5 to 15 
nodes, with many links within each group and fewer links between groups. When you arrive at a 
satisfactory grouping, create a module node for each group and move the group of variables into 
its own module.

Use 10 to 20 nodes
per diagram

When creating a hierarchy of diagrams for a model with 100 variables, you could create a single 
module with 100 nodes, 10 modules with an average of 11 nodes each, 20 modules with 6 nodes 
each, or 50 modules with 3 nodes each.2 

A module containing more than 20 nodes often looks overwhelmingly complicated, unless there 
are strong regularities in the structure. On the other hand, if modules have fewer than 5 nodes, 
you need so many modules that it is easy for users to get lost.

The range of 10 to 20 nodes per diagram is a good general goal. But don’t feel too constrained by 
it if a few diagrams are outside this range.

Contrast the module hierarchy in the simplified model (page 73) with the spaghetti (page 68). 
The relationships among objects are much easier to see and understand in the model with 10 
nodes in the top-level module and 12 nodes in the embedded module than in the complicated 
model with 24 top-level nodes.

2. Each module also creates a new node, so the total number of nodes is the number of variables plus the 
number of modules.



 Analytica User Guide 75

Color in influence diagramsChapter Creating Lucid Influence Diagrams6

Color in influence diagrams
Color can greatly improve the clarity and appeal of diagrams. The diagram’s background and its 
nodes have light colors by default. You can change the colors to meet your preferences.

Use colors judiciously Light colors work best because its easier to see the black arrows and text over light backgrounds. 
Analytica’s default colors provide a light neutral color for the background and a slightly stronger 
color for the nodes.

Garish or uncoordinated colors can be distracting. It generally looks messy to have nodes in 
many different colors. Sometimes it’s useful to use color coding beyond the default colors by 
class of node. For example, you might want to color all input nodes to identify them clearly. 

Recoloring nodes
or background

To apply colors to nodes or the background:

1. In edit mode, select Show Color Palette from the Diagram menu.

2. Select the node or nodes you want to recolor, or to recolor the background, just click the 
background. The current color of the node(s) or background appears in the single square at 
the top of the color palette. 

3. Click a color square to apply the new color to the nodes or background.

For a wider range of colors, click Other to display a full color chart.

Grouping nodes
with a text box

It often improves the look and clarity of a user interface to group related nodes in rectangular 
boxes with a contrasting color, white in this case.

To create a grouping rectangle using a text box:

1. With the diagram in edit mode, create a text node by dragging from on the node toolbar 
onto the diagram.

2. Type a title into the text node, or leave it blank as desired.



Chapter Creating Lucid Influence Diagrams

76 Analytica User Guide

6 Diagram Style dialog

3. Move and resize the node to enclose the group of inputs or outputs. You might find it 
convenient to deselect the Resize centered option from the Diagram menu. 

4. With the node selected, open the Set Node Style dialog from the Diagram menu, check the 
Border and Fill color options (and Bevel, if you like), and click OK.

5. Select the Color palette from the Diagram menu, and click the preferred color for the node, 
e.g., white. 

Usually, text nodes appear behind all other nodes, which is what you want for organizing groups. 
But if a node is not in the back and is obscuring other items, you can select Send to Back from 
the right-click button menu.

Tip The background color of a diagram also applies to the background color of any modules contained 
in the diagram — unless you explicitly override the default by setting a different background color 
for each submodule. Similarly, the color you apply to a module node also applies to any submodule 
nodes inside the module — unless you override the default by recoloring any submodule node(s).

Diagram Style dialog
Use the Diagram Style dialog to display or hide arrows for specified node classes, set the node 
size, and customize the font size and typeface for nodes. To display the Diagram Style dialog, 
select Set Diagram Style from the Diagram menu.

Show arrows to/from Check the corresponding boxes to display (or hide) arrows that go to and from nodes of each 
type, Indexes, Functions, Modules, and Dynamic. Dynamic (page 292) controls the display of 
time-lagged dependencies to variables defined with Dynamic, usually displayed as gray arrows. 

By default, diagrams show arrows to and from modules and dynamic, but not indexes and func-
tions. Showing more arrows can clutter some diagrams with criss-crossing arrows. But, showing 
fewer arrows makes important dependencies (influences) invisible. The best balance depends on 
the model.

Default node size Drag the handle in this box to set the default node size. When you create a new variable or select 
the Adjust Size command from the Diagram menu, it tries to make the node this size — if the 
node title is too large, it expands the node vertically until it fits. It is usually best to size the default 
to include at least two lines of text at the selected font size. Input and output nodes do not use this 
default; they extend horizontally to fit their text plus field or button.

Font Style To change the default font size, use the menu or type in a font size (in typographic points). Select 
the default typeface from the font menu.

Diagram arrow
display options

Diagram font
style options

Drag this anchor to
set default node size



 Analytica User Guide 77

Node Style dialogChapter Creating Lucid Influence Diagrams6

Overriding diagram
defaults

The Diagram Style dialog sets defaults for the diagram and for any modules contained in that 
diagram. You can override these defaults for particular nodes with the Node Style dialog (below), 
or for a submodule by using the Diagram style dialog for the submodule.

Node Style dialog
The Node Style dialog lets you customize the display of one or more nodes in a diagram. You 
can display or hide incoming and outgoing arrows, the text label, border, fill color, and bevel, and 
change the typeface and font size. These options override any defaults set for in the Diagram 
Style dialog.

To open the Node Style
dialog

1. Select one or more nodes in a diagram. 
2. Choose Set Node Style from the Diagram menu or the right-click menu.
3. Select the options for which you want to override the default styles.
4. Click OK.

Input arrows Check to display arrows into this node. 

Output arrows Check to display arrows out of this node. 

By default, input and output arrows are not displayed for index and function nodes.

Label Check to display the title in the node. By default, this is checked for all nodes.

Border Check to display a thin black border around the node. 

Fill color Check to display the color in the node. Otherwise the node appears transparent, and any nodes 
or arrows under it are visible. 

Bevel Check to show a bevel effect around the node. By default, this is checked only for button nodes.

By default, text nodes, input and output nodes do not show arrows, border or fill color.

Tip A grayed out checkbox indicates that this option is not the same for all selected nodes. If you leave 
it unchanged (gray), each node keeps its current setting. If you change it (on or off), it changes all 
nodes to the new setting. 

Font style To override the default diagram font, select Use custom font. Then you can select the font size 
and typestyle.

Checkbox
grayed out



Chapter Creating Lucid Influence Diagrams

78 Analytica User Guide

6 Taking screenshots of diagrams

Taking screenshots of diagrams
These are some tips for taking good screenshots of influence diagrams and other Analytica win-
dows for use in other documents or printing.

Use browse mode When making screen captures of a Diagram window, select browse mode rather than the 
edit or arrow mode to switch off the background grid, which makes the diagram clearer.

Switch off
cross-hatching

By default, the nodes of undefined variables show a cross-hatched pattern around the title. To 
remove this pattern, uncheck Show undefined in the Preferences dialog (page 56) from the Edit 
menu.

Diagram colors Use white for the background if you plan to print screenshots of the diagram on a black and white 
printer at less than 600 dpi (dots per inch). The Print command allows you to leave out the back-
ground color, if any. 

Exporting diagrams
as images

To create an image file of your influence diagram, select Export from the File menu. The image 
can be stored in a variety of formats such as BMP, JPEG, TIFF, PNG, and EMF.



Chapter 7 Formatting Numbers, 
Tables, and Graphs

This chapter shows you how to:

• Control the display of numbers, including Booleans and dates, in 
tables and graphs.

• Select styles and options for graphs.



Chapter Formatting Numbers, Tables, and Graphs

80 Analytica User Guide

7

Number formats
The Number format dialog lets you control the format of numbers to display in result tables and 
graphs — including dates and Booleans. You can select options like the number of decimal digits, 
currency signs, and commas to separate thousands. The default number format is suffix, which 
uses a letter following the number, such 10K to mean 10,000 (where K means Kilo or thousands). 

The number format of a variable is used wherever the value of that variable appears —in a result 
table, graph, input field, or output field. The number format of an index applies wherever that 
index is used, including row or column headers of a table, or along an axis of a graph that uses 
that index. 

You can enter a number into an expression or table in any format, no matter what output format it 
uses — except for dates, where you need to specify a date format, so that it interprets 10/10/
2007, for example, as a date, not two divisions.

To set the number format for a variable: 

1. Select a variable by showing its edit table, result table, or graph, or by selecting its node in a 
diagram. To apply the same format to several variables, select their nodes together in a 
diagram. 

2. Select Number format from the Result menu, or press Control+b, to show this dialog.

3. Select the format type you want from the list on the left (see “Format types” on page 80).
4. Select options you want, such as Decimal digits, Show trailing zeroes, Thousands separators, 

or Show currency symbol, from checkboxes, menus, and fields on the right. The options 
available depend on which format you selected.

5. View the example at the top of the dialog to see if the format is what you want. 
6. If so, click the Apply button.

Format types Choose one of these number formats:

Format Description Example

Suffix A letter after the number specifies powers of ten (see 
below for details)

12.35K

Exponential Scientific or exponential notation, where the number 
after the “e” gives the powers of ten

1.235e04

Fixed Point A decimal point with fixed number of decimal digits 12345.68



 Analytica User Guide 81

Chapter Formatting Numbers, Tables, and Graphs7

Suffix characters Suffix is Analytica’s default format. It uses a conventional letter after each number to specify pow-
ers of 10: 12K means 12,000 (K for kilo or thousands), 2.5M means 2,500,000 (M for Mega or mil-
lions), 5n means 0.000,000,005 (n means nano or billionths). Here are the suffix characters:

Tip Note the difference between “M” for Mega or Million and “m” for milli (1/1000). This is the only 
situation in which Analytica cares about the difference between uppercase and lowercase. 
Otherwise, it is insensitive to case (except when matching text values).

Tip In suffix format, it displays four-digit numbers without the “K” suffix — e.g., 2010, not 2.010K — 
which works better for years. For suffix, integer, or fixed point formats, it uses exponent format for 
numbers too large or small — e.g., numbers larger than 109 in integer or fixed point format, or 
larger than 1018 in suffix format.

Maximum precision The maximum number of digits including decimal digits is 15 (14 for fixed point and percent); the 
maximum precision is 15 digits (9 for integers). 

Number format options
Decimal digits The number of digits to show after the decimal point. 

Show trailing zeroes Check to show trailing zeroes in decimals, e.g., 2.100 instead of 2.1, when decimal digits are set 
to 3. 

Thousands separators Check to show commas between every third digit of the integer part, e.g., 12,345.678, instead of 
12345.678.

Show currency symbol Check to show a currency symbol. Select the symbol and placement from these menus.

Integer A whole number with no decimals 12346

Percent A percentage 12%

Date Date and date-times (see below for details) 12 Jan 2007

Boolean Displays 0 as False, any other number as True True, False

Format Description Example

Power of 10 Suffix Prefix Power of 10 Suffix Prefix

10-2 % percent

103 K Kilo 10-3 m milli

106 M Mega or Million 10-6 µ micro (mu)

109 G or B Giga or Billion 10-9 n nano

1012 T Tera or Trillion 10-12 p pico

1015 Q Quadrillion 10-15 f femto



Chapter Formatting Numbers, Tables, and Graphs

82 Analytica User Guide

7 Date formats

Placement controls the relative location of the currency symbol, e.g., $200 or 200DM, and 
whether to use a minus sign -$200 or parentheses ($200) to indicate a negative number. 

Regional settings If you select the last entry, regional, from the Symbol or Placement menu, it uses, respectively, 
the regional currency or placement settings set for your computer. You can modify these settings 
in the Regional and Language options available from the Windows Control Panel.

Date formats
A date is a number shown in date format. The date number represents the date as the number of 
days since the date origin, usually Jan 1, 1904. The fractional part, if any, represents the time-of-
day as a fraction of a 24-hour day.

The Date format in the Number Format dialog offers these options: 

Short: e.g., 8/5/2006

Abbrev: e.g., Aug-5-2006 

Long: e.g., Thursday, 05 August, 2006 

Custom: Use an existing custom format or set up a new one, as shown in the table below. 



 Analytica User Guide 83

Date formatsChapter Formatting Numbers, Tables, and Graphs7

Date format codes Custom date format uses these letter codes, conventional for Microsoft Windows.

Tip To show literal text within the date, enclose it in quotes, e.g., 'q'q → q2.

Interpreting
input dates

If you specify any date format for an input variable or edit table, you can enter dates in any 
acceptable date format. For example, a variable with a date format, interprets 1/5/2008 as 5 
January, 2008 on a computer set to USA region or 1 May, 2008 elsewhere. Without the 
date format, it would interpret 1/5/2008 as (1 divided by 5) divided by 2008! A date-time can be 
entered as e.g., 1-May-2008 15:30:20 or May 1, 2008 3:30:20 PM.

Regional and
language settings

The language for day and month names and the formats used for Short and Long dates depend 
on the regional settings for Windows. In the U.S., you might see a short date as 9/12/2008, but in 
Denmark you might see 12.9.2008. You can review and change these settings in Regional and 
Language options available from the Windows Control Panel. These apply to Analytica and all 
standard Windows applications. To modify settings, click the Customize button and select either 
the Date tab or Languages tab. For example, if you set the language to Spanish (Argentina), a 
variable with the Long date setting, the date displays as: 

StartDate → Sábado, 03 de Febrero de 2008

where
Variable StartDate := MakeDate(2008, 2, 3) 

Date format Displays as

dd-MM-yy 05-08-08

'Q'Q YYYY Q2 2008

www, d MMM yyyy Thu, 5 Aug 2008

wwww, d of MMMM, yyyy Thursday, 5 of August, 2008

d-MMM-yyyy hh:mm:ss tt 5-Aug-2008 03:45:22 PM

MM/dd/yy H:m:s 08/05/08 15:45:22

Code Description Example
d numeric day of the month as one digit 1, 2, … 31 
dd numeric day of the month as two digits 01, 02, … 31 
ddd ordinal day of month in numeric format 1st, 2nd, … 31st 
dddd ordinal day of month in text format first, second, … thirty-first 
Dddd capitalized ordinal day of month First, Second, … Thirty-first 
www weekday in three letters Mon, Tue, ... Sun 
wwww weekday in full Monday, Tuesday, … Sunday 
M month as a number 1, 2, … 12 
MM month as two-digit number 01, 02, …12 
MMM month as three letter name Jan, Feb, … Dec 
MMMM month as full name January, February, … December 
q quarter as one digit 1, 2, 3, 4 
yy year as two digits e.g., 99, 00, 01 
yyyy year as four digits e.g., 1999, 2000, 2001 
h hour on a 12-hour clock 1, 2, ... 12
H hour on a 24-hour clock 0, 1, ..., 23
hh hour on a 12-hour clock as two digits 01, 02, ... 12
HH hour on a 24-hour clock as two digits 00, 01, ... 23
m minutes 0, 1, ... 59
mm minutes as two digits 00, 01, ... 59
s seconds 0, 1, ... 59
ss seconds as two digits 00, 01, ... 59
tt AM or PM AM, PM



Chapter Formatting Numbers, Tables, and Graphs

84 Analytica User Guide

7 Multiple formats in one table

Date numbers
and the date origin

Analytica represents a date or date-time as a date number, that is, the number of days since the 
date origin. By default, the date origin is Jan 1, 1904, as used by most Macintosh applications, 
including Excel on Macintosh, and all releases of Analytica on Macintosh and Windows up to 
Analytica 3.1. If you check Use Excel date origin in the Preferences dialog, the date origin is Jan 
1, 1900, as used by default in Excel on Windows and most other Windows software. 

With Use Excel date origin checked, the numeric value of dates are the same in Analytica and 
Excel for Windows for dates falling on or after 1 Mar 1900. Because of a bug in Excel, in which 
Excel incorrectly treats Feb 29, 1900 as a valid day (1900 was not really a leap year), dates falling 
before that date do not have the same numeric index in Analytica as they do in Excel. 

When using models containing dates or date functions from Analytica releases 3.1 or earlier, you 
should keep Use Excel date origin unchecked. If you want to paste or link values from Excel or 
other Windows software to or from Analytica, you should check this option. 

Range of dates Analytica can handle dates from 1 CE to well beyond 9999 CE (CE means Common Era or Chris-
tian Era, and is the same as AD). Dates earlier than the date origin are represented as negative 
integers. Dates use the Gregorian calendar, so years divisible by 4 are leap years and those divis-
ible by 100 are not leap years, except those divisible by 400 which are leap years. 

Date arithmetic and
functions

You can simply add an integer n to a date to get the date n days ahead using the MakeDate(), 
MakeTime(), DatePart(), DateAdd(), and Today() functions (page 216).

Multiple formats in one table
Usually, the same number format applies to all numbers in a table (except its index values in col-
umn or row headers, which use the format set for the index variable). Sometimes, you might want 
to use different formats for different rows (more generally, slices) of a table. You can do this if you 
define the table as a list of variables, for example:

Index Years := 2007..2012
Variable DollarX := Table(Years)(...) { Formatted as dollars }
Variable PercentX := DollarX/40K { Formatted as percent }
Variable MultiformatX := [DollarX, PercentX]
MultiformatX →

This table uses the number format set for each variable responsible for a row here — as long as 
you don’t override their settings by setting a format for MultiformatX.

Graphing roles
A graphing role is an aspect of a graph or chart used to display a dimension (or index) of an 
array value; they include the horizontal axis, vertical axis, and key. A simple key uses colors, but 
you can expand it to include a symbol shape and size for each data point. When the array has too 
many dimensions to assign them all graphing roles, you can assign the extra indexes as slicer 
dimensions, from which you can select any value to display. For each available role, a graph 
shows a menu from which you can select the index you want to assign to that role. The flexibility 
of being able to directly assign graphing dimensions (such as indexes) to roles on the graph helps 
you find the best way to communicate multidimensional results. Graphing roles can display a con-



 Analytica User Guide 85

Graphing rolesChapter Formatting Numbers, Tables, and Graphs7

tinuous numerical scale or a discrete numerical or categorical scale — except for symbol size, 
which must be numerical. 

This example shows projections of U.S. energy consumption made by two organizations, the U.S. 
Energy Information Administration (actual) and the Alliance for Renewable Energy (fictional). The 
horizontal axis is set to Energy source, the key (color) is set to Organization, leaving the Year 
as a slicer, from which we have selected 2025.

Here we have changed graphing roles, assigning Year to the horizontal axis, Energy source to 
the color key, and Organization to the symbol key, leaving no need for a slicer.



Chapter Formatting Numbers, Tables, and Graphs

86 Analytica User Guide

7 Graphing roles

In this version, the color key and symbol key both show the Organization index. The index 
Energy source is not assigned a visible graphing role, so shows up as a slicer. It is set to Totals, 
to show total over energy sources for each organization.

These are the graphing roles available.

Vertical axis The vertical direction, labeled along the left edge of the graph. By default, it shows the actual val-
ues in the array — other roles usually show values of an index. All graphs use this role, but the 
Vertical Axis menu only appears if you have set Swap horizontal and vertical in the Graph 
setup dialog (page 87) or for XY graphs (page 96). 

Horizontal axis The horizontal direction, labeled with numbers or text along the lower edge of the graph. It always 
appears, except when you set Swap horizontal and vertical for a 1D array. In the table view, it 
becomes the column headers.

Key Defines the color of lines or symbols. By default, it appears for the second index, if the array has 
more than one dimension. The key appears below the graph — unless reset in the Style tab of 
the Graph setup dialog (page 87). In the table view, it becomes the row headers.

Color key and
symbol key

If you check Use separate color/symbol keys in the Graph setup dialog (page 87) (available for 
the two line styles that show symbols), it expands the key into two graphing roles, color key and 
symbol key. Each has its own role menu, letting you assign a second and third index.

Symbol size key If you further check Allow variable symbol size, it adds symbol size as a fourth graphing role. You 
can specify the range of sizes from smallest to largest in typographic points, corresponding to 
smallest and largest values of the corresponding index. (It only works for a numerical index.) 
Symbol key and symbol size key do not appear in the table view.

Slicers If the array has a dimension not assigned to a visible graphing role, it appears as a slicer — a 
menu above the graph. The value you select from a slicer menu applies to the entire graph, so the 
graph does not show values for other elements of the slicer. You can also select “Totals” from a 
slicer to show the total over all numerical values over that index. Slicers appear the same in the 
table as in the graph view. If you have more than one slicer, you can reorder them from top to bot-
tom, in edit mode, simply by dragging a slicer up or down.



 Analytica User Guide 87

Graph setup dialogChapter Formatting Numbers, Tables, and Graphs7

Graph setup dialog
The Graph setup dialog lets you apply a wide variety of graphing styles and options to the 
selected graph, or as the new defaults for all graphs in this model. It also lets you use or define 
graph templates, to apply a standard collection of styles and options to a graph.

When you display the result of a variable, it shows it as a table or graph, according to how you last 
viewed it. The first time you view a result, it appears as a graph, unless you changed the default 
result view in the Preferences dialog. 

When displaying a graph, Analytica uses the default graphing settings, unless you have selected 
other settings for it. You can modify these with the Graph setup dialog. 

To open the Graph
setup dialog

First display a graph. Then do one of these: 

• Select Graph Setup from the Result menu. 
• Select Graph Setup from the right mouse button menu.
• Double-click the graph in the Result window.

The graph setup dialog has six tabs. All tabs show the template panel and these three buttons: 

• Apply: Apply any changes to settings to the current graph, and close the dialog. 
• Set Default: Save any changed settings on the current tab as the default for all graphs, and 

close the dialog. It does not affect any settings that you have not changed since you opened 
the Graph setup dialog. Changing a default affects all graphs that use the default, but not 
graphs for which you override the default (in the past or future). 

• Cancel: Close the dialog without changing or saving anything. 

Chart Type tab 
This tab shows options for modifying the style and arrangement of the graph. 



Chapter Formatting Numbers, Tables, and Graphs

88 Analytica User Guide

7 Graph setup dialog

Line style

Swap horizontal and
vertical

Check this box to exchange the x and y axes, so that x axis is vertical and y axis is horizontal. If x 
values are discrete with long labels, swapping axes gives a more easily legible bar graph. 

3D effects Check to use three-dimensional style to view graphs. For a bar graph line style, it offers the 
choice of Box or Cylindrical shapes for the bars. 

Line style settings Displays when you select a line style showing lines. 

• Area fill: Check to fill in the area beneath each line with a solid color. If there are multiple 
lines, the graph has a key index. It draws the fill areas from last to first element of the key 
index, which works well if the y values are sorted from smallest to largest over the key index. 
Otherwise, later values obscure earlier ones. Here’s an example.

• Transparency: Drag the cursor to change transparency of fill colors between opaque and 
transparent. Transparency lets you see fill lines and areas that would otherwise be obscured 
behind others. 

• Line thickness: Select the thickness of lines to display. (Only for styles that show lines.) 
• Use separate color/symbol keys: Check to display two key index roles, one indicated by color 

and the other by symbol type or size. 
• Allow variable symbol size: Check to have the size of symbols vary with their value. 
• Symbol size: Enter a number to specify size of symbols in typographic points. 
• Min symbol size and Max symbol size: If you check Allow variable symbol size, use these 

fields to specify the range of symbol sizes from smallest and largest. 

Line segments join the data points.

Line segments, with a symbol at each data point.

A symbol at each data point with no lines.

A pixel at each data point, with no line.

A histogram or step function, with a vertical line and horizontal line from 
each data point to the next.

A bar centered on each x value, with height showing the y value. Forces the 
graph to be discrete.



 Analytica User Guide 89

Graph setup dialogChapter Formatting Numbers, Tables, and Graphs7

Bar graph settings Displays when you select Bar graph line style: 

• Stacked bars: Check to show bars stacked one on top of the other over the key index, 
instead of side by side. The values for each bar are cumulated over the key index. 

• Variable origin: Check if you want to set the origin (starting point) for each bar other than zero 
(the default). The graph then displays a Bar Origin menu to let you select the bar origin. 

• Bar overlap: With stacked bars, they overlap 100%. You can specify partial overlap between 
0 and 100%. 

Axis Ranges tab 
This tab lets you control the display for each axis, vertical and horizontal, including scaling, range, 
and tickmarks. 

Autoscale Uncheck this box if you want to specify the range for the axis, instead of letting Analytica select 
the range automatically to include all values. 

Max and Min The maximum and minimum values of the range to use when you have unchecked Autoscale. 

Include zero Check if you want to include the origin (zero) in the range. 

Approx. # ticks Specify the number of tick marks to display along the axis. Analytica might not match the number 
exactly, in the interests of clarity. 

Reverse order Check this box if you want to show the values ordered from large to small instead of the default 
small to large. 

Categorical Treat this axis as categorical. Usually, Analytica figures out the quantity is categorical without 
help. Occasionally, if the values are numerical, you might want to control it yourself. See “Proba-
bility density and mass graphs”page 242.

Log scale Check if you want to display this on a log scale. This is useful for numbers that vary by several 
orders of magnitude. It uses a “double log” scale with zero if the values include negative and pos-
itive numbers. 

Set default If you have changed settings for an axis that is an index of the variable being graphed, clicking 
this button applies these changes to that index for all graphs that use that index. For example, if 
the scale is the Index Time, you can use this to change the Time scale (e.g., start and end year) 
for every graph that displays a value over Time, unless you want to override that default in 
another graph. 

Style tab
The Style tab lets you modify the display of the style and color of the grid, frame, and tick marks, 
and where to display the key. 



Chapter Formatting Numbers, Tables, and Graphs

90 Analytica User Guide

7 Graph setup dialog

Grid Select the radio button to control the display of the grid over the graphing area. You can also 
select the color. A light or medium gray is often a good choice. 

Frame Select the radio button to control the display of the lines framing the graphing area. You can also 
select the color for the frame. It is usually best to make the frame the same color as the grid, or a 
darker shade of the same color. 

Tick marks The top radio buttons control where to show tick marks. The lower ones control how they are dis-
played. 

Display key Select the radio button to control where to display the key on the graph. Select the Show border 
checkbox to display an outline rectangle around the key. 

Text tab 
The Text tab lets you change the font, size, style, and color on the graph for the text of axis titles, 
axis labels (i.e., numbers or text identifying points along each axis), key titles, and key labels (i.e., 
identifying values in the key).

Font Select the font family. Graphic designers recommend using the same font for all text, which you 
can easily do by leaving all except axis titles as “(Same as axis titles).” 

Size The size in typographic points. Set to 0 if you want that type of text to not display. 



 Analytica User Guide 91

Graph setup dialogChapter Formatting Numbers, Tables, and Graphs7

Color Select the color. 

Bold, Italics, and
Underline

Check these boxes to add bold, italic, and underlined formats to the text. 

Axis Label Rotation Enter a number from -90 to 90 degrees to rotate the labels for each axis. For example, for a bar 
graph with many long labels along the horizontal axis, they won’t all fit. By rotating them by 45 or 
90 degrees, you can make them all fit without getting truncated. 

Adapt displayed font
sizes to graph height

If you check this box, the font size automatically adjusts when you make the graph window larger 
or smaller. This can be useful when you give a demo and want to expand graphs so they are eas-
ily readable to people at the back of the room. The font sizes match those specified at the default 
graph height of 300 pixels. 

Background tab 
This tab lets you control the fill color, gradient, or pattern on the graph background. The main area 
covers the entire graph window (exclusive of the top area containing indexes). The plot area is the 
rectangle showing the graph values. If you leave or set the Fill to None for the Plot area or Key 
area, they show the same fill settings (if any) as the Main area. 

Fill Select from: 

• None: No fill. Default to blank (white) background.



Chapter Formatting Numbers, Tables, and Graphs

92 Analytica User Guide

7 Graph setup dialog

• Solid: Use a solid fill with the selected Color 1.
• Gradient: Use a gradient of color, going from Color 1 to Color 2, in the direction you specify 

in Gradient style.
• Hatch: Use a hatched fill using the selected Hatch Style with Color 1 and Color 2.

Graphic designers recommend avoiding hatched backgrounds, and using solid or gradient back-
grounds with pale colors, if at all. The data should not be overwhelmed by the background. 

Preview tab 
This tab shows the graph using the current settings so that you can see their effects before you 
decide to Apply or Cancel them.

Categorical and Continuous Plots 
Distinctions regarding whether your results are treated as being categorical, continuous, or dis-
crete impact how the data is plotted. Analytica usually infers the appropriate distinctions, but 
occasionally you might need to provide explicit setting information.

The discrete vs. continuous distinction is determined by the domain attribute, and determines 
whether probability plots are density and cumulative density plots (continuous) or probability 
mass and cumulative probability (discrete) plots. 

The categorical vs. continuous distinction determines how a graphing axis is laid out. Continuous 
dimensions require numeric values. The determination of whether a graphing dimension is cate-
gorical or continuous is partially determined by the domain attribute. However, the values actually 
occurring in the dimension are determined by the chart type (bar or non-bar chart) and by the Cat-
egorical checkbox in the axis range setting. 

Exporting graph image type 
You can export a graph as an image file in most common formats, including BMP, JPEG, TIFF, 
PNG, and Enhanced Windows Metafile (EMF): 

1. Display the graph the way you want. 
2. Select Export from the File menu, to open the Save Graph Image as file browser dialog.



 Analytica User Guide 93

Graph templatesChapter Formatting Numbers, Tables, and Graphs7

3. If you want to change the defaults, edit the File name and select the Save as type, i.e., the 
file format. 

4. Click Save. 

Graph templates
Graph templates let you apply a collection of graph settings to several graphs, or even to all the 
graphs in a model. Analytica 4.2 includes several standard templates. You can also define your 
own templates to create standard graphing styles for a model, project, or an entire organization.

To use a graph style template 
To apply an existing graph template to a graph: 

1. Double-click your graph to open the Graph setup dialog. 
2. From the Style template menu at the bottom of the dialog, select the template you want. 
3. To see what the templates look like, click the Preview tab. As you select each template from 

the Style template menu, it applies it to the selected graph. All template settings are reflected 
in the settings in the other tabs. 

4. If you want to modify any other settings beyond what the template specifies, you can do so 
now. 

5. When you are happy with the results (check them in the Preview tab), click Apply, or if you 
don’t like any of them, click Cancel. 

To stop using a graph style template 
If you have a graph that uses a template T, and you want to unlink it from the template, change 
the Style Template menu back from T to Global Default. It asks “Do you want to retain these 
styles for this graph?” If you answer yes, it copies the template settings to be local for this vari-
able, so it looks the same, but future changes to the template have no effect. If you answer no, it 
removes the template settings from this graph so it reverts to the global defaults. 

To define a new graph style template 
To create a new graph template so you can reuse a collection of graph settings for other vari-
ables: 

1. Open the Graph setup dialog by double-clicking the graph with the settings you want to reuse, 
or if you want to save only new settings, open it for a new variable. 

2. If you want to modify or add any settings, make those changes. You can also make a new 
template with changes to an existing template. In that case, select the existing template and 
click Apply template. 

3. Click the Preview tab to see what all settings look like. 
4. From the Style Template menu, select New Template. 
5. Type in a name for the template. 
6. Click the Set Template button. 

You have now created a new template, which will be saved with the model. You can apply this 
template to any graph in the model. 



Chapter Formatting Numbers, Tables, and Graphs

94 Analytica User Guide

7 Graph templates

To modify a graph style template
To modify an existing graph style template T: 

1. Open the Graph setup dialog by double-clicking a graph for variable V. 
2. If variable V does not already use template T, select T from the Style template menu. 
3. Modify any Graph settings you want for T. 
4. Check the effect in the Preview tab. 
5. When satisfied, click Set Template. 

Tip Any changes you make to a template affect all variables that use it, except for any local settings 
that override them for a particular variable. 

Combining local, template, and model default settings
You can apply graph settings, and most uncertainty settings, at three levels:

Local Clicking Apply in the Graph setup or Uncertainty Setup dialog applies any settings you have 
modified in the dialog to the current variable. These settings override any global or template set-
tings. 

Graph template By selecting a style template in the Graph setup dialog and clicking Apply, you apply the tem-
plate settings to the current variable. The template overrides any global settings, but not local set-
tings. 

Model defaults Clicking Set Default in the Graph setup or Uncertainty Setup dialog changes the global 
defaults for the model for any settings you have modified in the dialog. 

Tip If you change a global setting by clicking Set default, that setting changes for all graphs that do 
not override it by a template or a local setting. 

The Uncertainty sample tab of the Uncertainty Setup dialog is an exception. Settings on that 
tab — e.g., Sample size — are always defaults that affect the entire model. They cannot be local 
and are not saved in a graph template.

Saving defaults as a template model
Analytica comes with a wide variety of standard defaults for graph settings, uncertainty options, 
preferences, diagram style, and more. If you want to save nonstandard default settings for these, 
perhaps also including graph templates and libraries so that you can use them for new models, 
the easiest method is to create a new template model:

1. Find or build a model that has all the default settings you want, including any graph settings, 
uncertainty settings, preferences, diagram style, graph templates, and user-defined attributes. 
It could also contain any libraries that you want in all the new models.

2. Select Save as from the File menu to save the model under a new name, e.g., 
Template.ana.

3. Delete all the contents of the model that you won’t need for new models.
4. Select Exit from the File menu and save the model.

Whenever you want to start a new model using these defaults, double-click Template.ana, and 
save the model under a new name. To protect your template model from you accidentally chang-
ing it by saving a new model over it with the same name: 

1. In the Windows Finder, open the folder containing Template.ana.
2. Right-click Template.ana, and select Properties.
3. Check the Read-only attribute, and click OK. 



 Analytica User Guide 95

Graph templatesChapter Formatting Numbers, Tables, and Graphs7

Graph templates and setting associations
Chart type and

uncertainty views
Graph settings from the Chart type tab are associated with particular uncertainty views. For 
example, if you set Line style to symbols only (instead of the default pixel per data point) for a 
Sample plot, that line style applies to any sample plot, but not to other uncertainty views Mid, 
Mean, Statistics, PDF, or CDF. Thus, you can set a different Style setting for each uncertainty 
view, except Mid, Mean, and Probability Bands, which share the same style.

Settings for discrete
vs. continuous

Analytica maintains separate line-style settings for continuous and discrete (categorical) plots. 
So, pivoting a continuous dimension to the x-axis to replace what was a discrete dimension can 
change the plot from a bar graph to line graph, and uses the corresponding settings. 

Axes and indexes If the horizontal axis is an index (as it usually is), any settings on the Axes Ranges tab apply to 
that index only. For example, suppose variable Earthquake_damage is indexed on the horizon-
tal axis by Richter_scale. You set Richter_scale to Log scale, and save into a template T. 
If you use template T for another variable Y also indexed by Richter_scale, it also displays 
Richter_scale on a log scale. But, if Y is not indexed by Richter_scale, the axis setting has 
no effect. 

Uncertainty options and
graph templates

A graph template also saves non-default settings made in the Uncertainty setup dialog tabs: 
Statistics, Probability bands, Probability density, or Cumulative probability. These settings 
apply to the corresponding uncertainty view of any variable using the template. Changes to the 
Uncertainty sample tab, however — e.g., to Sample size —set global defaults, which affect the 
entire model. They are not associated with particular variable, or saved in a graph template. 

Changing the global default 
Global defaults are the default settings used by every graph unless overridden in the Graph 
setup dialog for that graph or by a template that it uses. If the Style Template menu says Global 
default, it means that the graph uses the global defaults with no template. 

To modify the global defaults: 

1. Select a new variable with no graph settings, or a graph whose settings you want to make the 
global default. 

2. Double-click the graph to open Graph setup dialog. 
3. If you want, make further changes to the settings, and review them in the Preview tab. 
4. From the Style template menu, select Global Default, if it isn’t already selected. 
5. Click Set default button. 

Note: Changes to global defaults change all existing and new graphs that use those defaults; 
that is, all that are not overridden by any graph settings specifically set for that graph or 
by a template that it uses. 

To rename a graph style template 
1. Open the Graph setup dialog, by double-clicking a graph. 
2. In the Style template menu, select the graph template you want to rename. 
3. Click the Style template menu to select the old name. 
4. Type in the new name. 
5. Click Set template. 

Note: The template “name” is actually its Title attribute, not its identifier. So, renaming a 
template does not affect any variables that use it. 



Chapter Formatting Numbers, Tables, and Graphs

96 Analytica User Guide

7 XY comparison

XY comparison
When you display a standard (non XY) graph of a variable, V, it plots the values of V up the verti-
cal (y) axis against an index of V along the horizontal (x) axis. If V has more than one dimension, 
you can choose which index to plot horizontally from the Horizontal Axis menu. In contrast, with 
XY comparison you can plot V against another variable, U, along the horizontal (x) axis, over a 
Common Index of V and U. You can also plot one slice of V against another slice over a Com-
parison Index. (See “Scatter plots”page 285 to use XY comparison for scatter plots.)

XY comparison sources dialog
This dialog lets you set options for XY comparison and extends or adds menus to the XY graph 
described below.

To open the dialog Click the XY button in top-right corner of Result window (graph or table). You must be in edit or 
arrow mode, so it is not available in Analytica editions or models confined to browse mode. 

Use comparison index Check this box if you want to compare one slice of the variable against another slice, slices 
selected from the comparison index. The graph shows the Comparison Index menu from which 
you can select the index you want. The Vertical Axis and Horizontal Axis menus then offer 
slices from the comparison index so that you can choose which two slices to plot against each 
other.

Use another variable Check this box if you would like to compare the base variable by plotting it against one or more 
other variables (or simple expressions). When you check it, the following items appear:

Add Click this button to open the Object Finder dialog to select a variable against which to plot the 
base variable. You can also use the Object Finder to select a function or operation from one of 
the relevant libraries. You can add up to five items.

Remove Select a item from the list of other variables, and click this button to remove it from the list of vari-
ables for comparison.



 Analytica User Guide 97

XY comparisonChapter Formatting Numbers, Tables, and Graphs7

Menus added to XY Comparison graph
An XY comparison graph adds a Common Index and, sometimes, a Comparison Index to the 
usual graphing roles menus on a graph or table.

Comparison index This menu lists the indexes of the base variable. The Horizontal Axis and Vertical Axis menus 
each let you choose a slice from the selected comparison index to plot against each other. It 
appears on the graph when Use comparison index is checked in the XY comparison sources 
dialog. 

Common index This defines the correspondence among the variables or slices to be plotted against each other. 
Each value of the common index identifies a data point on the graph, with vertical (X) and hori-
zontal (Y) values from the variables or slices you have selected for those graphing roles. For a 
scatter plot, the common index should be Iteration (Run). It appears on the graph when one or 
both checkboxes on the XY comparison sources dialog are selected.

If Use another variable is checked in the XY comparison sources dialog, Common Index is an 
index in common to the base variable and other variable(s). If the variables have more than one 
index in common, Common Index is a menu from which you can choose the index you want.

If Use comparison index is checked in the XY comparison sources dialog, Common Index 
shows the index(es) of the base variable not selected for Comparison Index. Common Index is 
a menu if the variable has more than two indexes — leaving more than one for Common Index.

Example: Plot one variable against another
For example, suppose you have an index and two variables:

Index Degrees := Sequence(0, 360, 5)
Variable V := Sin(Degrees)
Variable U := Cos(Degrees)

For a standard graph of V against its index, Degrees, select V from the diagram and click the 
Result button (Control+r). Repeat with U to display the graph for U against Degrees.



Chapter Formatting Numbers, Tables, and Graphs

98 Analytica User Guide

7 XY comparison

For these graphs, we selected the symbol plus line line style (page 88) from Graph setup to 
show the data points for each value of Degrees.

With XY Comparison, you can graph U against V, instead of against its index Degrees:

1. Change to edit mode. In the Graph window for U, click the XY button in the top-right corner 
(above) to open the XY Comparison sources dialog. 

2. Select the checkbox Use another variable.
3. Click the Add button to open the Object Finder dialog.

XY comparison button



 Analytica User Guide 99

XY comparisonChapter Formatting Numbers, Tables, and Graphs7

4. Select the variable V, and click OK. You can now see V listed in the XY comparison sources 
dialog. 

5. Click OK.

The graph of U now plots the values of U on the vertical (y) axis against corresponding values of 
V on the horizontal (x) axis. By “corresponding” we mean for each value of Degrees, in the Com-
mon Index. If U and V had more than one index in common, it would show a menu from which 
you could select the index you want.



Chapter Formatting Numbers, Tables, and Graphs

100 Analytica User Guide

7 XY comparison

Example: Compare variables using comparison index
You can also use XY comparison to compare one slice of a variable against another slice of the 
same variable. This is especially useful when you combine several variables as a list. Let’s add a 
third variable to U and V defined above:

Variable W := Sin(2*Degrees)

The parameter 2*Degrees creates a sine curve with twice the frequency. Here is an easy way to 
create a list to compare several variables.

1. Select the three nodes for the variables to compare, U, V, and W, and click Result (Control+r).
2. When it prompts “Do you want to compare more than one result?” click OK.

It creates a new variable Compare1, and shows the standard (not XY) graph comparing U, 
V, and W against index Degrees.

3. Make sure you are in edit mode. In the graph window for Compare1, click the XY button in the 
top-right corner to open the XY comparison sources dialog. 



 Analytica User Guide 101

XY comparisonChapter Formatting Numbers, Tables, and Graphs7

4. Select the checkbox Use comparison index and click OK.

This sideways figure 8 results because W is a sine wave with twice the frequency of V. You can 
select other pairs of variables to compare, from U, V, and W, from the Vertical and Horizontal 
Axis menus — for example, changing to W against V puts the figure 8 the right way up.



Chapter Formatting Numbers, Tables, and Graphs

102 Analytica User Guide

7 XY comparison

You can also select Degrees from the Horizontal Axis menu to revert to a standard (non XY) 
graph of the selected variable against Degrees.



Chapter 8 Creating and Editing 
Definitions

This chapter shows you how to:

• Create definitions
• Edit definitions
• Use the Object Finder
• Check the validity of a variable’s value



Chapter Creating and Editing Definitions

104 Analytica User Guide

8 Creating or editing a definition

This chapter introduces the tools for creating and editing mathematical models by giving each 
variable a formula that defines how to compute its value in its definition. The definition of a vari-
able can be a simple number, text, a probability distribution, or a more complicated expression. It 
can also be a list or table of numbers or other expressions. Subsequent chapters present more 
details about using mathematical expressions, arrays, and probability distributions.

Creating or editing a definition
To create or edit the definition of a variable, first be sure that the edit tool is selected. Select 
the variable of interest and do any of the following:

• Click in the toolbar, or press Control+e.
• Select Edit Definition from the Definition menu.
• Double-click the variable to open its Object window. Then click in the definition field.
• Click the key icon to open the Attribute panel of the diagram. Select Definition from the 

Attribute popup menu. Then click in the definition field.

If you have drawn arrows into this variable from other variables (Down_payment and 
Buying_price in this example), they appear in the menu. Select an input to paste its 
identifier into the definition. (The menu doesn’t appear if the variable has no inputs.)

Tip If you are editing in the Attribute panel, a handy way to insert the identifier of a node into the 
definition is to click the node while pressing the Alt key. This only works for nodes in the same 
diagram.

To edit a definition that is a simple number, text, or other expression:

1. Select the definition.
2. Edit it by typing, by deleting, or by using the standard text editing operators — that is, Copy 

(Control+c), Cut (Control+x), and Paste (Control+v).

See Chapter 10, “Using Expressions,” for the syntax of numbers, operators, simple expressions, 
and mathematical functions.

You can change the definition to one of several commonly used expressions with the Expression 
popup menu (page 107).

Inputs popup menu

Attribute panel

Object window

Variable 
title

expr popup 
menu

Cancel 
button

Accept 
button

Definition 
field



 Analytica User Guide 105

Creating or editing a definitionChapter Creating and Editing Definitions8

Special editing key
combinations

These special mouse and key combinations are useful when editing a definitions: 

If you also press Shift with any arrow movements, it selects the text between old and new cursor 
positions for copy/paste operations, etc.

Parenthesis matching Analytica expressions sometimes contain several levels of nested parentheses. To help keep 
parentheses clear, when you place the cursor just to the right of a parenthesis, it makes it and its 
matching parenthesis bold. This works for left or right parentheses, square brackets, or curly 
brackets (used for comments). It helps you see whether you have the right number and types of 
parentheses in complex expressions, without resorting to counting.

The Alt+Control+arrow keys also help. For example, pressing Alt+Control+right-arrow when the 
cursor is at A moves the cursor to B. Then pressing Alt+Control+left-arrow moves it back again:

Comments in definitions It is wise to document your models generously. Usually, it’s best to document what a variable or 
function represents in its Description attribute, and also explain its algorithm if it’s not obvious. 
For complex, multiline definitions, it’s also useful to insert comments within the definition. Com-
ments can also be used to disable portions of expressions while debugging.

Enclose comments in curly brackets:
Variable X := -b*Sqrt(B^2 - 4*A*C)/A { Positive quadratic root }

You can insert a comment at any point in an expression where whitespace is allowed. Analytica 
ignores anything inside a comment when parsing or evaluating an expression. If you start a com-
ment with “{” , then your comment cannot contain the “}” character within the comment. 

Tip Analytica does not preserve comments in the cells of an edit table — so it’s not worth entering 
comments there.

Identifiers To refer to the value of another variable, use its identifier. To place a variable’s identifier at the 
insertion point in the definition, do any of the following:

• If the variable is an input, select it from the Inputs popup menu.
• Type in the variable’s identifier. To see all nodes in the active diagram labeled by their 

identifiers (instead of their titles), select Show By Identifier from the Object menu 
(Control+y). (Note that entering Control+y a second time switches the diagram back to 
displaying the nodes by their titles.)

• Select Paste Identifier from the Definition menu and use the Find button or identifier menu 
items in the Object Finder dialog (page 108). 

• If the definition is being edited from the Attribute panel, you can insert the identifier of a 
variable in the same module window by holding down the Alt key and clicking the node. The 

Key or key combination Action

double-click Selects the entire identifier containing the cursor.

option-click a node Inserts identifier of the node at the cursor position.

left-arrow ←, right-arrow → Moves cursor one character left or right.

up-arrow, down-arrow Moves one line up or down.

Control+left-arrow, 
Control+right-arrow

Moves to the beginning or end of the next word or identifier.

Alt+Control+left-arrow, 
Alt+Control+right-arrow

Moves the cursor from the adjacent parenthesis to the next 
matching parenthesis, left or right.

c * ( - (Ln(Uniform(1f,1) ) )^(1/k)

A B



Chapter Creating and Editing Definitions

106 Analytica User Guide

8 Creating or editing a definition

identifier of the clicked node is inserted at the caret position. This shortcut isn’t available from 
the Object window or for nodes is different modules.

Functions You can paste functions at the insertion point by doing either of the following:

• Select Paste Identifier from the Definition menu to open the Object Finder dialog 
(page 108).

• Select the function from its library in the Definition menu (page 110).

Syntax check After entering or editing a definition, press Alt-Enter or click the accept button to perform a 
syntax check of the revised definition and accept the changes.

Click the cancel button to cancel your changes.

The definition warning icon appears next to the definition if it is not syntactically correct. Click 
the icon to see a message about what might be wrong. 

A definition’s syntax check can reveal syntax errors (page 404). For example, if a definition con-
tains text that is not an identifier, the following dialog appears. 

Automatically updating the diagram
After you give a variable a valid definition, the influence diagram containing that variable might 
change.

Cross-hatching
disappears

Normally, any node whose definition is missing or invalid displays with a cross-hatch pattern.

After you enter a valid definition, the cross-hatching disappears and the node becomes clear.

You can remove cross-hatching even from invalid variables by unchecking Show Undefined in 
the Preferences dialog from the Edit menu.

Definition 
Warning icon

Cross-hatch pattern: the definition is 
missing or is syntactically incorrect

Node is clear: the definition 
is syntactically correct



 Analytica User Guide 107

The Expression popup menuChapter Creating and Editing Definitions8

Arrow updating After you enter or edit a definition, it ensures that the arrows going into the node to properly reflect 
its inputs. It adds an arrow from any extra variable you mentioned, and removes an arrow from 
any variable you didn’t use in the definition.

The Expression popup menu
Click expr to see the Expression popup menu. The expr menu shows the type of the definition, 
which is an empty expression in the following figure.

Use this popup menu to change the definition to one of several common kinds of expressions. 
The entries in this menu depend on the class of the node being defined.

Expression Shows the definition as a mathematical expression, even if it was 
defined using the other expression types in this popup menu. See 
page 127.

List Creates an ordered set of expressions or numbers. See page 161.

List of Labels Creates an ordered set of text labels. See page 160.

Sequence Creates a list of numerical values. See page 159.

Table Creates an array of numbers or expressions. See page 160.

Probability Table Creates an array defining probabilities (numbers or expressions) across 
the domain of a discrete (chance) variable. See page 246.

Distribution Creates an uncertain definition by selecting a function from the Distribu-
tion System library. See page 230.

expr popup menu

Current definition type



Chapter Creating and Editing Definitions

108 Analytica User Guide

8 Object Finder dialog

Object Finder dialog
The Object Finder dialog lets you browse built-in functions, your own library functions, and all the 
objects in your model to insert into a definition. You can open the Object Finder dialog in two 
ways:

• To insert the desired function or identifier at the cursor position in the definition, select Paste 
Identifier from the Definition menu.

or
• To replace the entire definition with the desired function, select Other from the expr menu.

Choice Creates a popup menu for choosing one or all elements from a list. See 
page 117.

Other Opens the Object Finder dialog, which is described in the next section. 
Changes the definition to the function or variable that you select from the 
Object Finder. See page 108.

Library popup
menu

Contents of
selected library

Parameters to
selected function

Description of
selected function

Find button for 
searching for 
model objects



 Analytica User Guide 109

Object Finder dialogChapter Creating and Editing Definitions8

Select the desired set or library from the Library menu.

These are the top items in the Library menu:

Use the Find button to search for an object by its identifier or title.

The Found objects library in the Object Finder dialog then lists all objects whose identifier or 
title matches in their first n characters (the n characters you type into the search box).

To use a function, identifier, or system expression in a definition, select it. For a function, enter the 
required parameters in the parameter fields.

Found Objects Objects found from Find button (see below)

All Available All objects and functions, from model and built-in

All Modules Objects from all module in the models

Current Module Objects in the current module

Inputs Inputs to the selected node

Identifier menu items

Contents of the
selected library

(e.g., Math)

Find button for 
searching for 
model objects



Chapter Creating and Editing Definitions

110 Analytica User Guide

8 Using a function or variable from the Definition
menu

Click OK to place the function, identifier, or expression in the definition.

Using a function or variable from the Definition menu 
The Definition menu lists built-in libraries of functions, system variables, and operators, as well 
as any libraries you have added. It shows these as a hierarchical menu that so you can rapidly 
find what you need and paste it into the definition you are editing. To find and paste a function or 
other object from a library:

1. Move the cursor to the place in the definition that you want to insert a function or other item.
2. From the Definition menu, select the library you want, and then the function or other item. 



 Analytica User Guide 111

Checking for valid valuesChapter Creating and Editing Definitions8

3. This pastes the item function into the definition, along with its formal parameters or operands, 
if any, each enclosed in angle brackets << >>.

4. Now edit each parameter or operand to replace it with the appropriate identifier or expression. 
As usual, you can type it, select an item from the expr menu or the Inputs menu, or paste 
another object from the Definitions menu.

Checking for valid values
You can create an automatic check on the validity of the value of a variable by setting its check 
attribute. For example, to check that the value of Percent_damage is between 0 and 100, set its 
check attribute:

Check:= Percent_damage>=0 AND Percent_damage<=100

If the check attribute evaluates to False, whenever the variable is evaluated, it shows a warning 
dialog and the opportunity to edit the definition.

You can always view and edit the check attribute in the Attribute panel, if you open it below a 
diagram. If you want to view or edit it in Object windows, you must first cause it to be shown:

Displaying the
check attribute

1. Select Attributes from the Object menu to open the Attributes dialog (see “Managing 
attributes”page 319).

2. Scroll down the attribute list and find Check.
3. Click Check once to select it, and a second time to add a checkmark next to it. The checkmark 

indicates that the attribute is displayed in the Object window.
4. Click OK.

Now the check attribute appears in Object windows for all variables. You can also set it to 
appear for functions by repeating the steps above but selecting Functions from the Class menu 
in the Attributes dialog.

Defining the check Either open the Object window for the variable, or open the Attribute panel below the diagram 
and select Check from the Attribute menu. Enter a Boolean (logical) expression in the Check 
field that returns true (1) if the value is acceptable, or false (0) if not. The expression should refer 
to the variable by its identifier or as Self. For example, to check that the value for the Lifetime 
of a car is more than 0 and less than 12 years, define the check to match one of the following 
samples.

Check attribute



Chapter Creating and Editing Definitions

112 Analytica User Guide

8 Checking for valid values

If the Check expression refers to another variable, it makes a dependency from the variable 
being checked to the variable mentioned. It usually shows an arrow from that variable. 

Triggering a check If a variable X depends on no other variables, or if it is defined as an edit table and does not oper-
ate over the indexes of the table, it performs the check whenever you change its input value or a 
cell of the edit table. Otherwise, it performs the check each time it evaluates the checked variable 
X — that is, when you first view a result for X or a variable on which X depends. If you view or 
compute a probabilistic value for X, it warns if any sample value of X fails the check. More gener-
ally, if the value of the Check expression is an array, it fails if any atom in the array is false (0). If 
you compute first its mid value of X and then its prob value, it causes two evaluations, one check 
on the mid value and a second on the prob value. 

If you change the definition of X or any variable on which it depends, including any variable men-
tioned in its Check expression, it performs the check again next time you view X or a variable that 
depends on it.

Cell-by-cell validation in
edit tables

When you define a check attribute for a variable defined as an edit table, Analytica will test and 
flag each cell individually as long as the check attribute does not operate over any of the table 
indexes and the values in the edit table cells do not have the potential of triggering a lengthy eval-
uation. Cells that fail the validation are displayed with a red background when viewing the edit 
table, a message balloon appears with a tail pointing to the bad cell when an out-of-range entry is 
first entered. If the check expression operates over a table index, this feature is disabled and the 
check is performed only after the final entries are stored.

If any cell in the table contains a general expression that references other variables, then the cell-
by-cell checking is disabled. This is to prevent the possibility of a delay for the user if a large part 
of the model must be evaluated; therefore, the cell-by-cell checking is only appropriate for tables 
where expressions would not be entered. If the check expression operates over any table index, 
such as Sum(Self,Projects)<5, then this would indicate that the check is a validation on the 
table as a whole, rather than on individual cells, and in this case the cell-by-cell checking is again 
disabled. When disabled, checks are validated at evaluation time as would occur with non-edit 
table variables.

If a check fails If a check fails — evaluates to False — the warning dialog offers the option of editing the vari-
able’s definition, cancelling, or continuing. If you continue, it does not perform the check again 
unless you change the definition of the variable or a variable it depends on.

Custom error messages The default warning when a check fails shows the Check expression. This is OK for modelers, 
but might be obscure for end users. If you call the Error() function (page 360) in the check, it dis-
plays the message you pass to Error() instead of the default warning. Using this, you can craft a 
more helpful message. The warning gives the same options.



 Analytica User Guide 113

Checking for valid valuesChapter Creating and Editing Definitions8

To disable checking You can disable all value checking by unchecking Check value bounds in the Preferences dialog 
(page 56) from the Edit menu. This checkbox is checked by default. 



Chapter Creating and Editing Definitions

114 Analytica User Guide

8 Checking for valid values



Chapter 9 Creating Interfaces for End 
Users

This chapter shows you how to create a user interface containing input 
and output nodes for easy access for other people who might use your 
model. It also describes how to design a clear user interface, apply 
icons and graphics, and include hyperlinks to web pages.



Chapter Creating Interfaces for End Users

116 Analytica User Guide

9 Using input nodes

For a complex model, you can make it easier to use, especially by other people, by creating a 
user interface. A user interface is simply a diagram containing input and output nodes. These 
inputs and outputs are selected variables that users can change (inputs) or view (outputs). By 
gathering input and output nodes into a single user interface diagram, users have quick access 
from a central window, even if the underlying variables are located in other parts of the module 
hierarchy. 

Input nodes allow the user to see and change the values of variables directly in a diagram. Input 
nodes can be a field to enter a number or text value, a button that opens an edit table or probabil-
ity distribution, or a pull-down menu. Output nodes show atoms (single numbers or text values) in 
the diagram, and show a button for uncertain or array-valued variables, so that users can open 
tables or graphs with a single click. 

Input and output nodes are a kind of alias node linked to the original node. These nodes usually 
show the title and units of a variable to the left of the input or output field or button.

Users of your model can then easily view and modify input variables, and view the results, without 
navigating the details of the model, unless they wish to. 

This diagram shows input nodes on the left side and output nodes on the right side. To see the 
details of the model, you would double-click the Details node to open up its diagram. 

See Chapter 1, “Examining a Model.”

Using input nodes
An input node lets you, or your end user, see and easily change the value of a variable directly in 
the diagram, without opening an Attribute view or Object window (see “Browsing with input and 
output nodes”page 20). In browse mode you can change only the values and definitions of input 
nodes.

An input node is an alias of a variable that you want to treat as an input to the model (see “An 
alias is like its original”page 53).

The type of definition of the original variable determines the appearance of the input node. If you 
want your users to be able to change the type of definition, instruct them on how to open an Attri-
bute view or Object window and use the expr menu (page 230).

Input field
A single number or text value (scalar) displays as an input field. You can have Analytica check if 
the input value is acceptable by using the Check attribute (page 111); the check is performed on 
input of a new value.



 Analytica User Guide 117

Creating a choice menuChapter Creating Interfaces for End Users9

Input popup menu
A choice displays as an input popup menu. To create an input menu for an input node, see “Cre-
ating a choice menu” on page 117.

List
A list or list of labels displays as a List button. See “Creating an index” on page 159.

Edit table
An edit table displays as an Edit Table button. See “Defining a variable as an edit table” on 
page 166.

Probability distribution
A probability distribution displays a button with the name of the distribution. See “Defining a vari-
able as a distribution” on page 228.

Creating an input node To create an input node from a variable:

1. Make sure you are in edit mode.
2. Select the variable.
3. Select Make Input Node from the Object menu. The input node appears in the same diagram 

next to the selected node.
4. Move the input node to the location you want.
5. Adjust the size of the node.

Tip To make several input nodes at once, select the nodes and then choose Make Input Node.

Creating a choice menu
For the classes of nodes that can be used for parametric analysis, such as decision and chance, 
the expr menu includes the Choice option. The Choice option provides a way to offer the user a 
choice of selecting one or all values from a list.

Creating a menu from a
list

If the original variable is already defined as a list of numbers or labels, create a popup menu to 
select from the list as follows:

1. Show the definition of the variable as a list, either in the Attribute view or the Object window.
2. Click the expr menu and select the Choice option. Click OK to the question “Replace current 

definition with a Choice?” and click OK again to “Replace current definition?” when prompted.

3. The Object Finder dialog displays with parameter I=Self and n=0. Click OK.

The definition field of the original variable now displays as a popup menu, and in browse mode, 
the input node displays as a popup menu. The original definition (list of numbers or labels) is now 
available as the domain of the variable — the possible outcomes. In the expression view, the 
popup menu displays as the Choice() function (page 172).



Chapter Creating Interfaces for End Users

118 Analytica User Guide

9 Using output nodes

Tip To define Var1 as a popup menu of another variable Var2, that is defined as a list, select Choice 
from the expr menu, and set the first parameter to I=Var2 in the Object Finder dialog).

Tip To hide the All option on the popup, enter inclAll=False as the third parameter in the Object 
Finder dialog.

Creating a new
definition

If a variable has no previous definition, when you select Choice from the expr menu, a domain 
(possible outcomes) of List of labels is created, with one element in the list.

To change the domain to List of numbers, press the Domain popup menu and select List of 
numbers.

Edit the list of values as you would edit a list of labels or list of numbers (see page 161).

Note: The values in the domain are evaluated deterministically.

Using output nodes
An output node gives you, or your end user, rapid access to a selected result in the model. You 
can use output nodes to focus attention on particular outputs of interest.

An output node displays a result value in the view style — i.e., whether table or graph, the indexes 
displayed, and the uncertainty view — last selected for display and saved with the model. It also 
shows the uncertainty view icon (see “Uncertainty views” on page 31). 

If the result is a single value (mid value or mean), it displays directly in the output field.

If the result is a table, the output node displays a Result button. Click the button to display the 
table or graph.

After you display the table or graph, you can use the result toolbar to change the view.

If the value of an output has not yet been computed, the Calc button appears in the node. Click 
the Calc button to compute and display the value. 

Creating an output node To create an output node from a variable:

1. Make sure you are in edit mode.
2. In a Diagram window, select the node of the variable for which you wish to create an output 

node.
3. Select Make Output Node from the Object menu. The output node appears in the diagram 

next to the selected node.
4. Move the output node to the location you want.
5. Adjust the size of the node.



 Analytica User Guide 119

Input and output nodes and their original variablesChapter Creating Interfaces for End Users9

The view style of the output result (table or graph) is the format you last set for it (see “Formatting 
Numbers, Tables, and Graphs” on page 79). 

Resizing controls

You can resize input and output nodes by dragging their corner handles, just like other nodes. But 
for these, its usually most convenient to deselect Resize centered from the Diagram menu so 
you can align them either along their right edges, or both edges.

You can also drag the left edge of the control field, button, or menu left or right to change its width. 
This is especially useful for choice menus when you want to expand the width to be large enough 
for the widest menu option. 

When using a pull-down menu containing long text values, you might want to adjust the pull-down 
control as necessary to accommodate your longest text value. Input and output nodes contain 
text and graphics, in addition to the control itself. The node resizing handles that appear as small 
black squares at the corners of the node adjust the size of the bounding rectangle that holds all 
these items, but does not change the width of the control itself. To change the width of a control (a 
pull-down menu, textedit box, or button), position the mouse over the left edge of the control, 
depress the mouse button and drag the cursor to the left or right.

Input and output nodes and their original variables
The title and units of an input or output node are obtained from the original node. To edit them, 
edit the title and units of the original node (see page 54). If you edit the title or units of the original 
node, the input or output node’s title or units changes to match the original.

By default, an input or output node shows its original node’s title (label) in the original font, with no 
node outline or arrows. The node takes its color from its original node when the node is created. 
Later changes to the original node color do not change the color of the input or output node.

To change the appearance of an input or output node alone, use the Set Node Style and Show 
Color Palette options from the Diagram menu (see “Node Style dialog” on page 77 and “Recolor-
ing nodes or background” on page 75). When you use these options to change the appearance of 
an input or output node, its original node does not change. Similarly, using these options to 
change the appearance of an original node does not affect its previously created input or output 
node.

Using form modules
It is often helpful to group input and output nodes into a single diagram for easy access by model 
users. The form module makes it easy for you to create input and output nodes in the form by 
drawing arrows between the form and variables.

Creating a form module 1. Make sure a diagram window is active with the edit tool selected.
2. Drag the module icon from the node toolbar and position it in the diagram.
3. Type in a title for the module — for example, User interface.
4. Open the Attribute panel at the bottom of the diagram window.
5. With the new form module still selected, press to open the Attribute popup menu, and select 

Class. 
6. The class Module appears in the Attribute panel. Press to open a popup menu of module 

classes.

Drag corners to resize node

Drag left or right to resize 
control



Chapter Creating Interfaces for End Users

120 Analytica User Guide

9 Adding icons to nodes

7. Select Form from the menu.

Creating input and
output nodes in a form

module

An input or output node is an alias to another variable in the model. Creating an input or output 
node is similar to creating an alias node (page 52). To create a set of input and/or output nodes in 
the form module:

1. Adjust the diagram(s) on your screen so the form node and the source variables for the input 
or output nodes are all visible — they might be in the same or different diagrams.

2. In the toolbar, click to enter arrow mode.
3. To create an input node for variable X, draw an arrow from the form node to X. It creates 

an input node for X inside the form module. 
4. To create an output node for variable Y, draw an arrow from Y to the form node. It creates 

an output node for Y inside the form module.
5. When you have finished creating input and output nodes, double-click the form node to open 

its diagram window.
6. In the toolbar, click to enter edit mode.
7. Rearrange and resize the input and output nodes for clarity. It is sometimes clearest to 

arrange the input nodes on the left side and the output nodes on the right side. 

A form module is like any other module, except when you draw arrows into or out of a form mod-
ule, it creates outputs or inputs, instead of normal alias nodes in the module. But, you can also 
create standard variables and modules inside a form. If you have too many nodes to fit comfort-
ably in a single diagram, you might wish to organize them into additional modules (which need not 
be forms) to enclose related groups of inputs and outputs.

Adding icons to nodes
You can add an icon to any node in a diagram. The Icon window contains an enlarged space that 
you can use for creating or editing an icon.

Opening the Icon
window

To add an icon: 

1. Make sure that the edit tool is selected.
2. Select the node that you wish to illustrate.
3. Choose Edit Icon from the Diagram menu to open the Icon window.



 Analytica User Guide 121

Adding icons to nodesChapter Creating Interfaces for End Users9

Drawing or editing
an icon

You can draw or edit the icon one pixel at a time using mouse clicks, or you can draw lines by 
holding down the mouse button as you drag the cursor.

• To make a dark pixel light or a light pixel dark, click the pixel.
• To draw a line or curve hold down the mouse button while you move the cursor. If the starting 

pixel of the line or curve is black the line or curve is black; if the starting pixel of the line or 
curve is white the line or curve is white.

• To set the node’s icon, click the Accept button .
• To restore the original icon in the window (or to clear the window if there was no previous 

icon), click the Revert button .

You can copy and paste an icon from one place in a model to another using the standard Copy 
(Control+c) and Paste (Control-v) commands. You can delete an icon from a node by selecting it 
and using the Cut (Control+c) command or the Delete key.

The same node with an icon added. 
Adjust the size of the node as 
necessary to show the icon and title.



Chapter Creating Interfaces for End Users

122 Analytica User Guide

9 Graphics, frames, and text in a diagram

Graphics, frames, and text in a diagram
Adding graphics You can add a graphic image created in another application to any node or to the diagram back-

ground. Both color bitmaps and PICT graphics can be pasted in.

To paste in a graphic:

1. Copy (Control+c) the graphic to the clipboard from within a graphics application.
2. Make sure that the edit tool is selected in Analytica.
3. Select the node or the diagram window where you want the graphic to appear.
4. Paste (Control+v) the graphic from the clipboard.

When you paste a graphic into the diagram window, a special node of class picture is created. 
Picture nodes can be placed on top of variable, module, and function nodes.

To remove a graphic, select it and press Delete, or choose Clear from the Edit menu.

Converting image
formats

Some applications post bitmap graphics on the system clipboard in compressed image formats 
such as PNG or JPEG. When Analytica recognizes a compressed format, it imports the image 
and stores it internally in that format. Unfortunately, most applications post images only as full 
uncompressed bitmaps. Large uncompressed bitmaps can consume a lot of space and result in 
very large model files; therefore, when Analytica 4.2 pastes an uncompressed bitmap, it converts 
it and stores it internally as compressed (lossless) PNG format. Any transparency and alpha 
blending present in the original image are preserved by this conversion.

Earlier releases of Analytica do not recognize these compressed bitmap formats. If someone else 
loads your model in Analytica release 4.0 or earlier, these images will not display. If you want your 
bitmap images to display when your model is loaded into Analytica 4.0 or earlier, you must con-
vert them back into the Legacy Bitmap format after it has been pasted into your model. To do this:

• Make sure the edit tool is selected.
• Select the image node to convert.
• Select Change Picture Format from the Diagram menu.
• In the Change Picture Format dialog, select the new format to use.

These steps can be used to convert any image into any desired internal image format. In some 
cases, certain conversions can further reduce the amount of memory (and thus model file size) 
consumed by the image. Legacy Bitmap files might lose some information in the image (such as 
transparency and alpha blending), and might consume much more space.

Images that are stored in the Mac PICT format do not display from Analytica Web Publisher 
(AWP) and cannot be rendered by the Analytica Decision Engine (ADE). Images in this format 
might be present in older Analytica models. Using the above steps, these images should be con-
verted to EMF if you intend to post your model on AWP or render them from ADE.

Adding a frame You can create a rectangular frame for nodes in a diagram in either of the following ways:

• Paste a graphic into the diagram window to create a picture node, then delete the graphic. 
This leaves a blank picture node. Use the Node Style dialog (page 77) to display the border 
of the node. Other nodes can be placed on top of this node.

• Create a decision node and leave the title blank. Give it a definition of 0 (or any number) to 
remove the cross-hatch pattern. Use the Node Style dialog (page 77) to hide the label and fill 
color. Create this frame first, then create the nodes to be framed and place them in the frame. 
If you create a framing decision node after you create the nodes to be framed, the nodes are 
“under” the framing decision node; they are visible, but you cannot select them. To place the 
decision node underneath the other nodes, select the decision node while in edit mode, right 
mouse click and select the Send to Back command from the pop-up menu.

• Create a text node by dragging a text node from the text button on the toolbar. Use the 
Node Style dialog (page 77) to add a fill color and border to the node. 

Adding text To add text to a diagram, drag a text node from the text button on the toolbar to the diagram 
and enter the desired text. This creates a new node with a special class text. Use the handles to 
resize the node, and use the Node Style dialog (page 77) to change the font or to change the 
background from transparent to filled.



 Analytica User Guide 123

Default and XML model file formatsChapter Creating Interfaces for End Users9

Default and XML model file formats
Analytica supports two formats for saving models — the default format and an XML format. Both 
formats are fairly easy-to-read text files, which you can view and edit in standard text editors and 
word-processor applications. (See examples below.) 

Analytica normally saves a new model in the default format. You can change to the XML format in 
by checking Save in XML Format in the Save as dialog when you first select Save from the File 
menu, or whenever you select Save as. It remembers and reuses the format you select in future 
sessions.

Sample default
file format

The default format lists each object with each attribute on a separate line. The first line gives its 
class and identifier. Subsequent lines give each attribute name, followed by “:” followed by the 
attribute value. Here is part of a sample model file in the default format:

{ From user Richard Morgan, Model Sample_old_file_format ~~
at Jun 1, 2007 3:56 PM}
Softwareversion 4.0.0

Model Sample_old_file_format 
Title: Sample of old file format
Author: Richard Morgan
Date: Jun 1, 2007 11:55 PM
Savedate: Jun 1, 2007 3:56 PM

Objective Net_income
Title: Net income
Units: $ millions
Definition: Revenues - Expenses
Nodelocation: 304,64,1

Variable Revenues
Title: Revenues
Units: $ millions
Definition: 700 * (1+ 0.10)^(Year - 2003)
Nodelocation: 176,32,1

Variable Expenses
Title: Expenses
Units: $ millions
Definition: Table(Year)(750,750,780,800,850)
Nodelocation: 176,96,1

Close Sample_old_file_format

Sample XML
file format

Here is part of the same model, saved in the XML format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ana user="Richard" project="Sample_XML_file_format" generated=" Jun 
1, 2007 3:57 PM" softwareversion="4.0.0" software="Analytica">

<model name="Sample_XML_file_format">
<title>Sample XML file format</title>
<author>Richard Morgan</author>
<date> Jun 1, 2007 11:55 AM</date>
<saveauthor>Richard Morgan</saveauthor>



Chapter Creating Interfaces for End Users

124 Analytica User Guide

9 Hyperlinks in model documentation

<savedate>Fri, Jun 1, 2007 3:57 PM</savedate>
<fileinfo>0,Model Sample_XML_file_format,
2,2,0,1, C:\Documents\Upgrade guide\Netincome example XML.ANA 
</fileinfo>

<objective name="Net_income">
<title>Net income</title>
<units>$ millions</units>
<definition>Revenues - Expenses</definition>
<nodelocation>304,64,1</nodelocation>
<nodesize>48,24</nodesize>
<valuestate>2,313,273,197,250,0,MIDM

</valuestate>
<numberformat>1,D,4,2,0,1</numberformat>
</objective>

<Variable name="Revenues">
<title>Revenues</title>
<units>$ millions</units>
<definition>700 * (1+ 0.10)^(Year - 2003) 

</definition>
<nodelocation>176,32,1</nodelocation>
<nodesize>48,24</nodesize>

</Variable>
<Variable name="Expenses">

<title>Expenses</title>
<units>$ millions</units>

<definition>Table(Year)(750,750,780,800,850)
</definition>
<nodelocation>176,96,1</nodelocation>
<nodesize>48,24</nodesize>

</Variable>
</model>
</ana>

Hyperlinks in model documentation
A description, or other text attribute of a variable or other object, can contain a hyperlink to any 
web page. This is useful for linking to detailed explanations, data, or references for a model, or 
even to related downloadable Analytica models. In browse mode, hyperlinks appear convention-
ally underlined in blue. When you click a hyperlink, your computer shows the indicated web page 
in your default web browser. 

To define or edit a hyperlink, enter edit mode, and use a standard HTML link syntax of the form 
<a href="http://www.lumina.com">Click here</a>

When you switch to browse mode, the HTML code displays as a hyperlink.



 Analytica User Guide 125

Hyperlinks in model documentationChapter Creating Interfaces for End Users9

In edit mode

In browse mode



Chapter Creating Interfaces for End Users

126 Analytica User Guide

9 Hyperlinks in model documentation



Chapter 10 Using Expressions

The definition of each variable is an expression, such as
(- B + Sqrt(B^2 - 4*A*B))/(2*A)

This chapter describes the elements of an expression, and their syntax, 
including:

• Literal values, including numbers, Boolean or truth values, and text 
values 

• Arithmetic, comparison, and logical operators, such as + - / * ^ < > 
= AND OR

• IF a THEN b ELSE c 
• Function calls and parameters and math functions 
• Exception values INF, NAN, and NULL 
• Warnings 
• Datatype functions 

Expressions



Chapter Using Expressions

128 Analytica User Guide

10 Numbers

The definition of a variable or function is an expression, such as:
(-B + Sqrt(B^2 - 4*A*B))/(2*A)

An expression can consist of or contain a literal number (including Boolean or date), a text value, 
an identifier of a variable, an arithmetic expression, a comparison or logical expression, IF THEN 
ELSE, or a function call, such as Sqrt(B).

See Chapter 21, “Procedural Programming,” for details on more advanced constructs, such as 
BEGIN ... END statements, For and While loops, local variables and assignments.

Numbers
You can enter a number into an expression using any available number formats in (see “Number 
formats” on page 80), including:

2008, 12.345, 0.00123, 5.3E20, 5.3E-20, $100,000

Suffix format uses a letter or symbol suffix to denote a power of ten, such as:
25K, 200M, 123p, 20%

Suffix format provides a simple, familiar way to specify large or small numbers. See “Suffix char-
acters” (page 81) for details.

You can usually enter numbers using most number format types directly into an expression no 
matter what number format was specified for the variable defined by the expression. The excep-
tions are:

1. You may use commas to separate groups of three digits, such as 123,456.00, only if the 
expression consists of that single number. If the number is part of an expression with other 
elements, such as 12*123,456, you may not use comma separators because the syntax 
would be ambiguous. You should use simply 12*123456.

2. Dates, date-times, or times-of-day must be typed in a very specific format when the number 
format is not set to date, or when they appear within an expression with other elements. See 
“Date and Time Values” below. 

Integers Analytica treats integers and real numbers both as floating point numbers internally. Using the 
default suffix number format, it displays numbers that are very close to integers as integers.

Precision Analytica uses double-precision using 8 bytes to represent each floating point number. This 
means that the maximum internal precision of numbers is 15 significant digits. Some calculations, 
especially those that involve small differences between large numbers or large numbers of addi-
tions, might result in less precision than this maximum.

Largest and smallest
numbers

Analytica can represent positive numbers between about 10-320 and 1.797 x10+308. If a calcula-
tion would result in a number smaller than about 10-320, it rounds it down zero:

1/10^1000 → 0

If the result would be larger than 1.797 x10+308 it returns INF (infinity):
10^1000 → INF

For more, see “Exception values INF, NAN, and NULL” on page 135.

Date and Time Values
Dates and times are treated as numeric quantities, denoting the number of days elapsed since 
the date origin (usually 1-Jan-1904, or 1-Jan-1900 if the Use Excel date origin preference is 
checked). Dates can be entered directly into an expression, at any point in an expression and 
regardless of the number format setting, using the syntax d-MMM-yyyy, such as 27-Jan-2010, 
using a 3-letter English-language month abbreviation. Times can be entered in the format 
hh:mm:ss [tt], such as 10:27:00pm or 22:27:00, which becomes a fractional value between 0 
and 1. A combined date-time can be entered as, e.g., 27-Jan-2010 10:27:00pm. In the gen-
eral case, you cannot enter other date formats within an expression. For example, 1/27/2010 



 Analytica User Guide 129

Boolean or truth valuesChapter Using Expressions10

would be interpreted as two divide operators, (1/27)/2010, and regional (non-English) month 
names, e.g., 27-Ene-2010, are not recognized.

You can enter dates and times in more general formats, and in region/culture-specific styles, 
when the number format is set to Date and the date, time or date-time is the only element appear-
ing in the expression. In this case, Analytica recognizes almost all commonly used formats, such 
as 27-January-2010, 1/27/2010, 1-27-2010, or Jan 27, 2010. When you enter a date in 
a format such as 1/2/2010 or 1-2-2010, the date is interpreted based on your regional setting. 
For example, in the US, these would parse to 2-Jan-2010, while in Europe they would generally 
parse as 1-Feb-2010. Non-English month names are also recognized in languages that use char-
acters only from the standard Analytica character page (which includes most western European 
languages). For example, 27-Enero-2010 is recognized if you are in Spain.

Boolean or truth values
A Boolean or truth value can be True and False, or, equivalently, the number 1 or 0. For exam-
ple:

False OR True → True
1 AND 0 → False
1 OR 0 → True

It actually treats every nonzero number as True. For example:
2 AND True → True

Boolean values are represented internally as the numbers 1 and 0. By default, a Boolean result 
displays as 0 or 1. To display them as False or True, change the number format of the variable 
to Boolean (see “Number formats” on page 80). 

Text values
You specify a text value by enclosing text between single quotes, or between double quotes, for 
example:

'A', "A25", 'A longish text - with punctuation.'

A text value can contain any character, including any digit, comma, space, and new line. To 
include a single quote(') or apostrophe, type two single quotes in sequence, such as:

'Isn''t this easy?'

The resulting text contains only one apostrophe. Or you can enclose the text value in double 
quotes:

"Don't do that!"

Similarly, if you want to include double quotes, enclose the text in single quotes:
'Did you say "Yes"?'

You can enter a text value directly as the value of a variable, or in an expression, including as an 
element of a list (see “Creating an index”page 159 and “Expression view”page 160) or edit table 
(see “Defining a variable as an edit table”page 166). Analytica displays text values in results with-
out the enclosing quotes. Also see “Converting number to text” on page 134.

For comparison and sort order for text, see “Alphabetic ordering of text values” on page 130.

For functions that work with text values, see “Text functions” on page 210.

For converting between numbers and text, see “Numbers and text” on page 134.



Chapter Using Expressions

130 Analytica User Guide

10 Operators

Operators 
An operator is a symbol, such as a plus sign (+), that represents a computational operation or 
action such as addition or comparison. Analytica includes the following sets of standard opera-
tors.

Arithmetic operators The arithmetic operators apply to numbers and produce numbers:

Comparison operators Comparison operators apply to numbers and text values and produce Boolean values.

Alphabetic ordering of
text values

When applied to text values, the comparison operators, >, >=, >=, and <, use alphabetic ordering 
based on the numerical ASCII codes of the text values. For example:

'Analytica' < 'Excel' Æ 1 (True)

Using the numerical (ASCII) representation of the characters, means:

1. Digits precede letters:
'9' < 'A' Æ 1 (True)

2. Uppercase letters precede lowercase letters: 
'Analytica' > 'excel' Æ 0 (False)

If you want to alphabetize without regard to case, use TextUppercase or TextLowerCase to 
convert letters to the same case.

TextUpperCase('Analytica') < TextUpperCase('excel') Æ 1 (True)

3. Letters with accents, umlauts, cedillas, ligatures, and other decoration come after 
undecorated letters, hence alphabetic ordering might be different from what you expect.

Sortindex(d, i) sorts text values in d using this ASCII ordering scheme. But, Rank() works only 
on numbers, not text values.

Operator Meaning Examples

x + y plus 3+2 → 5

x - y binary minus 3- 2 → 1

-x unary minus -2 → -2

x*y product 3*2 → 6

x/y or x÷y division 3/2 (= ) → 1.5

x^y to the power of 3^2 = 32 → 9
4^.5 =  → 2

3
2
---

4
1
2
---

Operator Meaning Examples → (1 = true, 0 = false)

< less than 2<2
'A'<'B'

→ 0
→ 1

<= less than or equal to 2<=2
'ab'<='ab'

→ 1
→ 1

= equal to 100=101
'AB'='ab'

→ 0
→ 0

>= greater than or equal to 100>=1 
'ab'>='cd'

→ 1
→ 0

> greater than 1>2
'A'>'a'

→ 0
→ 1

<> not equal to 1<>2
'A'<>'B'

→ 1
→ 1



 Analytica User Guide 131

OperatorsChapter Using Expressions10

Logical operators Logical operators apply to Boolean values and produce Boolean values.

Scoping operator (::) It is possible that a model created in a previous release might contain a variable or function with 
the same identifier as a new built-in variable or function. In this situation, an identifier name 
appearing in an expression might be ambiguous. 

Prepending :: to the name of a built-in function causes the reference to always refer to the built-
in function. Otherwise, the identifier refers to the user’s variable or function. With this convention, 
existing models are not changed by the introduction of new built-in functions.

Example Suppose a model from an older release of Analytica contains the user-defined function 
Irr(Values, I). Then:

Operator binding precedence
A precedence hierarchy resolves potential ambiguity when evaluating operators and expressions. 
The precedence for operators, from most tightly bound to least tightly bound is:

1. parentheses ()
2. function calls
3. Not
4. @I, \A, \[I]A, #R.
5. A.I
6. A[I=x]
7. Attrib of Obj
8. ^
9. - (unary, negative)
10. *, /
11. +, - (binary, minus)
12. m..n
13. <, >, <=, >=, =, <>
14. And, Or
15. & (text concatenation)
16. :=
17. If … Then … Else, Ifonly … Then … Else, Ifall … Then … Else
18. Sequence of statements separated by semicolons, sequence of elements or parameters 

separated by commas

Within each level of this hierarchy, the operators bind from left to right (left associative).

Examples The following arithmetic expression:
1 / 2 * 3 - 3 ^ 2 + 4

is interpreted as:
((1 / 2) * 3) - (3 ^ 2) + 4

Operator Meaning Examples

b1 AND b2 true if both b1 and b2 are true, 
otherwise false

5>0 AND 5>10 → False

b1 OR b2 true if b1 or b2 or both are 
true, otherwise false

5>0 OR 5>10 → True

NOT b true if b is false, otherwise 
false

NOT (5>0) → False

Irr(Payments, Time) User’s Irr function

::Irr(Payments, Time) The built-in function



Chapter Using Expressions

132 Analytica User Guide

10 IF a THEN b ELSE c

The following logical (Boolean) expression:
IF a and b > c or d + e < f ^ g THEN x ELSE y + z

is interpreted as:
IF ((a and (b > c)) or ((d + e) < (f ^ g))) THEN x ELSE (y + z)

IF a THEN b ELSE c
This conditional expression returns b if a is true (1) or c if a is false (0), for example:

Variable X := 1M
Variable Y := 1
IF X > Y THEN X ELSE Y Æ 1M

returns the larger of X and Y.

It is possible to omit the ELSE clause:
IF X > Y THEN X

If the condition is false, it gives a warning. If you ignore the warning, it returns NULL.

Conditional expressions get more interesting when they work on arrays. See “IF a THEN b ELSE 
c with arrays” on page 157.

Function calls and parameters
Analytica provides a large number of built-in functions for performing mathematical, array, statisti-
cal, textual, and financial computations. There are also probability distribution functions for uncer-
tainty and sensitivity analysis. Other more advanced or specialized functions are described in 
Chapter 13, “Other Functions.” The Enterprise edition of Analytica also includes functions for 
accessing external ODBC data sources. Finally, you can write and use your own user-defined 
functions (see “Building Functions and Libraries” on page 327).

Position-based
function calls

The conventional position-based syntax to call a function uses this form:
FunctionName(param1, param2, ...)

You follow the function name by a comma-separated list of parameters enclosed between paren-
theses, with the parameters in the specified sequence. In most cases, parameters can them-
selves be expressions built out of constants, variable names, operators, and function calls. Here 
are some simple examples of expressions involving functions.

Exp(1) → 2.718281828459
Sqrt(3^2 + 4^2) → 5
Mod(7, 3) → 1
Pmt(8%, 30, -1000) → $88.83
Normal(500, 100)

Some functions have optional parameters. In that case, you can simply omit the trailing parame-
ters that will use their default values.

Name-based
function calls

Analytica also offers name-based parameter syntax as an alternative for calling most functions: 
You name each parameter, followed by a colon (:) and the value passed to that parameter. Since 
the parameters are named, you can list them in any order. For example, this function has four 
parameters, of which you can provide any two to define the distribution:

Lognormal(median, gsdev, mean, stddev)

Calling it using name-based syntax:
Lognormal(mean: 10, stddev: 1.5)

is equivalent to the following using position-based syntax, which uses commas to indicate that the 
first two parameters are omitted:



 Analytica User Guide 133

Math functionsChapter Using Expressions10

Lognormal( , , 10, 1.5)

because mean and stddev (standard deviation) are the third and fourth parameters. Name-
based syntax is useful for functions with many optional parameters. It’s usually easier to read 
name-based function calls because you don’t need to remember the ordering of the parameters.

Math functions
These functions can be accessed from the Math library from the Definition menu. 

Abs(x) Returns the absolute value of x.
Abs(180) → 180
Abs(-210) → 210

Ceil(x) Returns the smallest integer that is greater than or equal to x.
Ceil(3.1) → 4 Ceil(5) → 5
Ceil(-2.9999) → -2 Ceil(-7) → -7

Ceil(x,digits) Returns the smallest number with the indicated of digits to the right of the decimal that is greater 
than or equal to x.

Ceil(Pi,4) → 3.1416
Ceil(-12345,-2) → -12300

Floor(x) Returns the largest integer that is smaller than or equal to x.
Floor(2.999) → 2 Floor(3) → 3
Floor(-2.01) → -3 Floor(-5) → -5

Floor(x,digits) Returns the largest number with the indicated number of digits past the decimal that is less than 
or equal to x.

Floor(Pi,4) → 3.1415
Floor(-12345,-2) → -12400

Round(x) Returns the value of x rounded to the nearest integer. 
Round(1.8) → 2 Round(-2.8) → -3
Round(1.499) → 1 Round(-2.499) → -2

Round(x,digits) Rounds the value of x to the indicated number of decimal digits to the right of the decimal point.
Round(Pi,1) → 3.100 Round(Pi,3) → 3.142
Round(14243.4,-2) → 14200

Note: The Number Format setting determines how many digits are included when a number is 
displayed, while Round(x,digits) returns a new rounded number so that the rounded 
value can be used in subsequent computations.

Exp(x) Returns the exponential of x, e raised to the power of x.
Exp(5) → 148.4
Exp(-4) → 0.01832

Ln(x) Returns the natural logarithm of x, which must be positive.
Ln(150) → 5.011
Ln(Exp(5)) → 5

Logten(x) Returns the logarithm to the base 10 of x, which must be positive.
Logten(180) → 2.255
Logten(10 ^ 30) → 30

Sign(x) Returns -1 when x is negative, 1 when x is positive, 0 when x is zero, and NaN when x is NaN.
Sign(-15.2) → -1 Sign(7.3) → 1
Sign(0) → 0 Sign(0/0) → NaN



Chapter Using Expressions

134 Analytica User Guide

10 Numbers and text

Sqr(x) Returns the square of x.
Sqr(5) → 25
Sqr(-4) → 16

Sqrt(x) Returns the square root of x. 
Sqrt(25) → 5
Sqrt(-1) → NAN

Mod(x, y) Returns the remainder (modulus) of x/y. 
Mod(7, 3) → 1
Mod(12, 4) → 0
Mod(-14, 5) → -4

Factorial(x) Returns the factorial of x, which must be between 0 and 170. 
Factorial(5) → 120
Factorial(0) → 1

If x is not an integer, it rounds x to the nearest integer before taking the factorial.

Cos(x), Sin(x), Tan(x) Returns the cosine, sine, and tangent of x, x assumed in degrees.
Cos(180) → -1
Cos(-210) → -0.866
Sin(30) → 0.5
Sin(-45) → -0.7071
Tan(45) → 1

Arctan(x) Returns the arctangent of x in degrees (the inverse of Tan). 
Arctan(0) → 0
Arctan(1) → 45
Arctan(Tan(45)) → 45

See also “Arccos(x), Arcsin(x), Arctan2(y, x)” on page 216.

Degrees(r), Radians(d) Degrees gives degrees from radians, and radians gives radians from degrees: 
Degrees(Pi/2) → 90
Degrees(-Pi) → -180
Radians(-90) → -1.57079633
Radians(180) → 3.141592654

Numbers and text
Converting

number to text
If you apply the & operator or JoinText() to numbers, they convert the numbers to text values, 
using the number format specified for the variable or function in whose definition they appear. You 
can use this effect to convert (“coerce”) numbers into text values, for example:

123456789 & '' → '123.5M' 
123456789 & '' → '$123,456,789.00'
'The date is: ' & 38345 → 'The date is: Thursday, December 25, 2008'

Tip The actual result depends on Number Format setting for the variable or function in whose definition 
the expression appears. The first example assumes the default Suffix format. The second 
assumes Fixed Point format, with currency and thousands separators checked, and two decimal 
digits. The third assumes the Long Date format. Use the Number format dialog on the Result 
menu to set the formats.

Converting
text to number

You can use the Evaluate() function to convert a text representation of a number into an actual 
number, for example:



 Analytica User Guide 135

Exception values INF, NAN, and NULLChapter Using Expressions10

Evaluate('12350') → 12.35K

Evaluate() (page 360) can convert any number format that Analytica can handle in an expression 
— and no others. Thus, it can handle decimals, exponent format, dates, True or False, a $ at 
the start of a number (which it ignores), and letter suffixes, like K and M.

An alternative method, for converting text to a number is to use the Coerce Number qualifier on a 
user-defined function (see “Parameter qualifiers” on page 330). For example, you could define a 
user-defined function such as:

ParseNum(X: Coerce Number) := X

Exception values INF, NAN, and NULL
INF, NAN, and Null are system constants that arise in exceptional cases.

INF (infinity) INF is the result of a numerical calculation whose absolute value is larger than largest number 
Analytica can represent. This could be an overflow — that is a valid real number greater than 
1.797 x10+308:

10^1000 → INF

or it could be a division by zero or other result that is mathematically infinite:
1/0 → INF

INF can be positive or negative:
-1 * 10^1000 → -INF

You can use INF as a value in an expression. You can perform useful, mathematically correct 
arithmetic with INF, such as:

INF + 10 → INF
INF/0 → INF
10 - INF → -INF
100/0 = INF → True

NAN NAN is the result of a numerical calculation that is an undetermined or imaginary number, includ-
ing numerical functions whose parameter is outside their domain:

INF - INF → NAN
0/0 → NAN
INF/INF → NAN
Sqrt(-1)→ NAN
ArcSin(2)→ NAN

It usually gives a warning if you apply a function to a parameter value outside its range, such as 
the two examples above — unless you have pressed “Ignore warnings” (see “Warnings” on 
page 136).

Any arithmetic operation, comparison, or function applied to NAN returns NAN:
0/0 <> NAN → NAN

Analytica’s representation and treatment of NAN is consistent with IEEE Floating point standards. 
NAN stands for “Not A Number,” which is a bit misleading, since NAN really is a kind of number. 

Constant Meaning

INF Infinity or a real number larger than can be represented, e.g., 1/0

NAN Not a Number: Actually, the result is known to be “number” but not well 
defined, e.g., 0/0

Null The result of an operation where the desired data is not there, such as 
X[I = '?'], where index I does not have the value '?'



Chapter Using Expressions

136 Analytica User Guide

10 Warnings

You can detect NAN in an expression using the IsNaN() function (page 137).

Null Null is a result that is ill-defined, usually indicating that there is nothing at the location requested, 
for example a subscript using a value that does not match a value of the index:

Index I := 1..5
X[I=6] → Null

Other operations and functions that can return Null include Slice(), Subscript(), Subindex(), 
and MDTable().

You can test for Null using the standard = or <> operators, such as:
X[I=6] = Null → True

or you can use IsUndef(X[I=6]).

Warnings
Warnings can occur during evaluation, for example when trying to take the square root of a nega-
tive number, for example:

Variable X := Sequence(-2, 2)
Variable Y := Sqrt(X) →

This Warning dialog gives you the option to ignore this and future warnings. If you select Ignore 
Warnings, Y yields:

Y → [NAN, NAN, 0, 1, 1.414]

The NAN values can be propagated further into a model. 

Tip If you click the Ignore warnings button, it will ignore all warnings from this variable and all other 
variables in this and future sessions with this model. Ignoring warnings could lead to you getting 
NAN or NULL results for unknown reasons. If this happens, you can switch warnings back on by 
checking Show result warnings in the Preferences dialog.

Analytica displays warning conditions detected while evaluating an expression only if the resulting 
value assigned to a variable contains an explicit error. In the following example, the NAN resulting 
from evaluating Sqrt(X) for negative X does not appear in the result, so it does not display a 
warning:

Variable Z := IF X<0 THEN 0 ELSE Sqrt(X)
Z → [0, 0, 0, 1, 1.414]

Because (X<0) evaluates to an array containing both True (1) and False (0) values, the expres-
sion evaluates Sqrt(X), and generates NAN as for Y above. But, the conditional means that 
resulting value for Z contains no NANs, and so Analytica generates no warning when Z is evalu-
ated. 

You can also make use of the return value, even if it might be errant, as in the following example:
VAR x := Sqrt(y);
IF IsNaN(x) THEN 0 ELSE x



 Analytica User Guide 137

Datatype functionsChapter Using Expressions10

The common warning “subscript or slice value out of range” returns Null, for example:
Index I := 1..5
X[I=6] → Null

If you want to ignore warnings for a single variable, you can use the IgnoreWarnings() function 
around the definition.

Datatype functions
A value can be a number, text, Null, or a reference (see “References and data structures” on 
page 352 for more on references). Integers, reals, Boolean, and date values, are all represented 
as numbers. You can use these functions from the Special library of Definition menu to deter-
mine the type.

IsNumber(x) Returns True if x is a number, including a Boolean, date, INF or NAN.
IsNumber(0) → True
IsNumber(False) → True
IsNumber(INF) → True
IsNumber('hi') → False
IsNumber(5) → True
IsNumber('5') → False
IsNumber(NAN) → True

IsText(x) Returns True if x is a text value.
IsText('hello') → True
IsText(7) → False
IsText('7') → True

IsNaN(x) Returns True if x is “not a number,” i.e., NAN. INF or regular numbers do not qualify, nor does a 
text or Null.

0/0 → NAN
IsNaN(0/0) → True
IsNaN(5) → False
IsNaN(INF) → False
IsNaN('Hello') → False

IsNull(x) To test if x is exactly Null. Returns false if x is an array.

x = NULL To test if an atomic x is Null. When x is an array, returns True or False for each element of the 
array.

IsUndef(x) Returns True if atomic x is Null or the internal value Undefined (usually indicating uncom-
puted). When x is an array, returns True or False for each element of the array.

IsReference(x) Returns True if x is a reference to a value.

IsHandle(x) Returns True if x is a handle to an Analytica object.

TypeOf(x) Returns the type of expression x as a text value, usually one of "Number", "Text", "Refer-
ence", or "Null". INF and NAN are both of type "Number":

TypeOf(2008) → "Number"
TypeOf('2008') → "Text"
TypeOf(INF) → "Number"
TypeOf(0/0) → "Number"



Chapter Using Expressions

138 Analytica User Guide

10 Datatype functions



Chapter 11 Arrays and Indexes

Analytica offers powerful features for working with indexes and arrays, 
with one, two, or many dimensions. Collectively, we refer to them as 
Intelligent Arrays™. This chapter provides an extended introduction to 
the essential concepts, followed by more details on:

• Conditional expressions (page 157)
• Creating an index (page 159)
• Editing a list (page 161)
• Functions that create indexes (page 162)
• Defining a variable as an edit table (page 166)
• Editing a table (page 168)
• Selecting a slice or subarray (page 171)
• Choice menus in an edit table (page 173)
• Shortcuts to navigate and edit a table (page 173)

For more, see Chapter 12, “More Array Functions.”



Chapter Arrays and Indexes

140 Analytica User Guide

11 Introducing indexes and arrays

Arrays The value of a variable can be a single number, Boolean, text value, or reference — more gener-
ally, an atom — or it can be an array, a collection of such values, viewable as a table with one or 
more dimensions. Here’s an array with two dimensions.

Indexes The dimensions of the variable Maintenance_cost are identified by the indexes Car_type 
and by Year.

Intelligent Arrays Each index is a separate variable and can be used as a dimension of many arrays. For example, 
other arrays can be indexed by Car type or Year. The fact that Analytica identifies each dimen-
sion by a named index provides the basis for the ease and flexibility with which you can create, 
calculate with, and display arrays with one or many dimensions. It lets expressions and functions 
work with arrays just the same way they work with single numbers. They automatically generalize 
to work with arrays without you having to bother with subscripts and For loops the way you would 
with other computer languages. We call this set of features Intelligent Arrays™. 

Learning key concepts There are some subtleties to the effective use of Analytica’s Intelligent Arrays. To fully appreciate 
them, you might find you need to let go of some of your past experience with spreadsheets or pro-
gramming languages. But, once you grasp the key ideas, they will seem quite simple and natural. 
Many Analytica users end up thinking that these features are what make Analytica most valuable. 
We recommend that you start by reading through the “Introducing indexes and arrays” below, 
which illustrates key concepts and features. You can then refer to the rest of this chapter and the 
next chapter, “More Array Functions” on page 177, as needed for details.

Introducing indexes and arrays
In this section, we demonstrate the concepts and features of indexes and arrays by building a 
model to compare the costs of three automobiles, including fuel costs, maintenance, depreciation, 
and a rebate for a hybrid car. We will end up with a model that looks like this.



 Analytica User Guide 141

Introducing indexes and arraysChapter Arrays and Indexes11

Create an index Suppose you want to compare the fuel cost of three different vehicles, each with different fuel effi-
ciency. First let’s define an index Car_type, listing the three different types of cars as text values. 
You create a new index by dragging the index node from the node menu. Type the title Car type 
into the node. In its definition attribute, select List of Labels from the expr menu.

Type the car types Standard, Hybrid, and SUV (Sports Utility Vehicle) into individual cells of the 
index. Press Enter to add the next cell. 



Chapter Arrays and Indexes

142 Analytica User Guide

11 Introducing indexes and arrays

Create an edit table Now we create a new variable by dragging it from the node menu, typing its title Miles per 
gallon1 into the node, and drawing an arrow to it from the index Car_type. 

Tip By default, diagrams do not display arrows to or from index nodes after you have drawn them. For 
clarity, we display them by checking Show arrows to/from Indexes in the Set Diagram style 
dialog from the Diagram menu. See “Diagram Style dialog” on page 76.

In the attribute panel above, we show the definition of Miles_per_gallon, and select Table 
from the expr menu. This opens the Indexes dialog to let you choose which index(es) to use for 
the table dimensions.

It starts with Car_type as the selected index because you drew the arrow from it (see “Indexes 
dialog” on page 167). Click OK to accept. An edit table appears, indexed by Car_type, with cells 
initialized to 0.

You can now edit the cells of the table. Type in a number for each Car_type.

1. We apologize to our readers outside the U.S. for using the archaic units, gallons and miles!



 Analytica User Guide 143

Introducing indexes and arraysChapter Arrays and Indexes11

This completes the edit table for Miles per gallon.

Combine a scalar (0D)
and 1D array

Now let’s calculate the annual fuel cost for each car type. We create three new variables, 
Miles_per_year, Fuel_price, and Fuel_cost and draw the arrows.

Type these definitions for the new variables:
Miles_per_year := 10K
Fuel_price:= 3.00
Fuel_cost := Fuel_price * Miles_per_year / Miles_per_gallon

Select Fuel_cost and click the Result button to show this result table.

Array abstraction with
arithmetic operators

This table for Fuel_cost was computed using Miles_per_gallon for each Car_type, and 
the single (scalar) numbers, 3.00 for Fuel_price and 10K for Miles_per_year. The arithme-
tic operations * and / work equally well when one or both operands is an array as when it is a sin-
gle number – also known as an atom or scalar value. The same is true for +, -, and ^. This is an 
example of array abstraction, central to Intelligent Arrays™. 

Define another edit table Now let’s add in the maintenance costs. We create a new variable Maintenance_cost, defined 
as an edit table, based on the Car_type index, just as we did for Miles_per_gallon.



Chapter Arrays and Indexes

144 Analytica User Guide

11 Introducing indexes and arrays

We now create Operating_cost as the sum of Fuel_cost and Maintenance_cost. Here is 
the diagram showing the definition of the new variable.

Operation on two
1D tables with the

same index

Here is the result.

It is the sum of Fuel_cost and Maintenance_cost, both 1D arrays indexed by Car_type, so 
the result is also indexed by Car_type. Each cell of the result is the sum of the corresponding 
cells of the two input variables.

Make an index as a
sequence of numbers

Now let’s add another index, Year, so that we can extend the model to compute the costs for mul-
tiple years. We create the new index as before. In its definition we enter 2008..2012, to specify 
the start and end year.



 Analytica User Guide 145

Introducing indexes and arraysChapter Arrays and Indexes11

The value of Year is now the sequence of years from 2008 to 2012. (See “Creating an index” on 
page 159 and “Functions that create indexes” on page 162 for other ways to define indexes.)

Compound annual
growth of fuel
price by year

What happens if Fuel_price changes over time? Let’s model Fuel_price starting with its cur-
rent value of 3.00 ($/gallon) multiplied by a compound annual growth rate (CAGR) of 8% per 
year:

Fuel_price_cagr := 8%
Fuel_price := 3.00 * (1 + Fuel_price_cagr)^(Year – 2008)

This expression says that Fuel_Price starts at 3.0 in Year 2008 (when the exponent (Year 
– 2008) is zero. For each subsequent year, we raise (1 + 8%) to the power of the number of 
years from the start year, 2008 — i.e., standard compound growth. Here’s the result.

Click the graph icon  to view this as a graph.

Combine two 1D arrays
with different indexes

Now look at Fuel_cost. Its has three inputs, Miles_per_year, which is still a single number, 
10K, Miles_per_gallon, which is indexed by Car_type, and Fuel_price, which is now 
indexed by Year. The result is a two-dimensional table indexed by both Car_type and Year. It 
contains every combination of Miles_per_gallon by Car_type and Fuel_price by Year.



Chapter Arrays and Indexes

146 Analytica User Guide

11 Introducing indexes and arrays

Result of operation
contains all indexes of

operands

This illustrates a general rule for Intelligent Arrays, that the result of an operation contains the 
union of the sets of indexes of its operands. 

Pivot a table,
exchanging rows and

columns

In the table above, it shows Car_type down the rows and Year across the columns. To pivot the 
table — i.e., exchange rows and columns — select the other index from the menu defining the 
columns (or the rows).

(We expanded the window size so that all rows are visible.)

Rows and columns are
just for display of tables

Unlike other computer languages, with Analytica, you don’t need to worry about the ordering of 
the indexes in the table. Rows and columns are simply a question of how you choose to display 
the table. They are not intrinsic to the internal representation of an array.

Add a dimension
to an edit table

Maintenance costs also changes over time, so we need to add Year as dimension. Simply draw 
an arrow from Year to Maintenance_cost.

When it prompts “Do you wish to add Year as a new index of the table in Maintenance_cost?” 
click Repeat Values. Now open the edit table for Maintenance_cost. It has added Year as a 
second dimension, copying the number for each Car_type across the years.

Notice that it shows the same values for each Year, following the rule that a value is constant 
over a (previously) unused index. Now you can edit these numbers to reflect how maintenance 
cost increases over time.



 Analytica User Guide 147

Introducing indexes and arraysChapter Arrays and Indexes11

Combine two 2D arrays
with the same indexes

Let’s look at the value of Operating_cost again.

Since its inputs, Fuel_cost and Maintenance_cost, are both indexed by Car_type and 
Year, the result is also indexed by those two indexes. Each cell contains the sum of the corre-
sponding cells from the two input variables. The diagram now looks like this.

A list of numbers
for parametric

sensitivity analysis

Suppose you’re not sure how many miles you drive per year. You want to examine three scenar-
ios. You include three values in Miles_per_year by specifying a list of numbers enclosed in 
square brackets:

Miles_per_year := [5K, 10K, 15K]

Even though Miles_per_year is not defined as an index node, it becomes an implicit index. 
This is an example of model behavior analysis, described in “Varying input parameters” on 
page 40.

Combine three
1D arrays with

different indexes

Now all three inputs to Fuel_cost are one-dimensional arrays, each with a different index. Its 
result is a three-dimensional table, computed for each combination of three input variables, so 
indexed by Miles_per_year, as well as Year and Car_type.



Chapter Arrays and Indexes

148 Analytica User Guide

11 Introducing indexes and arrays

The new third index, Miles_per_year, appears as a slicer index, initially showing the slice for 
5000 miles/year. You can click the down-arrow for a menu to choose another value, or click the 
diagonal arrows or to step through the values for miles/year. See “Index selection” on 
page 29.

Pivot a 3D table You can also pivot a table to display, for example, the Car_type down the rows and 
Miles_per_year across the columns, for a selected Year in the slicer.

Combine a 2D and
3D array with two
common indexes

When we look at Operating_cost again, it also now has three dimensions. Again the result has 
the union of the indexes of its operands.

It is the sum of fuel cost and maintenance cost, each of which is indexed by Car_type and Year 
as before, but now Fuel_cost has the third index, Miles_per_year. The result contains all 
three dimensions. 

Propagation of indexes
without changing

downstream definitions

Note how each time we add an index to an input variable, or change a variable, e.g., 
Miles_per_year, to be a list of values, the new dimensions automatically propagate through 
the downstream variables. The results have the desired dimensions (the union of the input dimen-
sions) without any need to modify their definitions to mention those indexes explicitly.

Sum over an index If we want to sum over Year to get the total cost, we define a new variable:
Variable Total_operating_cost := Sum(Operating_cost, Year)



 Analytica User Guide 149

Introducing indexes and arraysChapter Arrays and Indexes11

We mention the index Year, over which we want to calculate the sum. But, we do not need to 
mention any of the other indexes of the parameter Operating_cost. 

The built-in function Sum(x, i) is called an array-reducing function, because it reduces its 
parameter x by one dimension, namely i. There are a variety of other reducing functions, includ-
ing Max(x, i), Min(x, i), and Product(x, i) (see “Array-reducing functions” on page 182). These 
functions explicitly specify the index over which they operate. Since they mention it by name, you 
don’t need to know or worry about any ordering of dimension in the array.

X[i = v]: subscript The subscript construct lets you extract a slice or subarray from an array, say the values for the 
Hybrid Car_type:

Operating_cost[Car_type = 'Hybrid'] →

You can also select multiple subscripts in one expression:
Fuel_cost[year = 2012, Car_type = 'SUV', Miles_per_year = 10K] → 
1775

For more, see “x[i=v]: Subscript construct” on page 171.

Name-based
subscripting

You can list the indexes in any order since you identify them by name. Again you don’t need to 
remember which dimension is which. This is called name-based subscripting syntax, in con-
trast to the more conventional sequence-based subscripting. In addition to absolving you from 
having to remember the ordering, name-based subscripting generalizes flexibly as you add or 
remove dimensions of the model. 

When the subscripting
value v is an array

The value v in x[i=v] can itself be an array. For example, if you wanted to get the operating cost 
only for even years: 

Operating_cost[Miles_per_year = 10K, Year = [2008, 2010, 2012]]

Purchase price and
depreciation

To complete the model, let’s add the Purchase_price, an edit table indexed by Car_type (just 
as we created Miles_per_gallon).



Chapter Arrays and Indexes

150 Analytica User Guide

11 Introducing indexes and arrays

To annualize this, we compute the annual depreciation, using a depreciation rate of 18% per year 
— typical for an automobile:

Variable Depreciation_rate := 18%
Variable Annual_depreciation := Purchase_price * Depreciation_rate *

(1 - Depreciation_rate) ^ (Year - 2008)

It calculates this formula for each Year, raising (1 - Depreciation_rate) to the power of 
the number of years from 2008.

IF THEN ELSE
with arrays

Suppose that there is a government rebate of $2000 when you purchase a hybrid. You could cre-
ate an edit table by Car_type and Year with -$2000 for Hybrid in 2008 and $0 in all other cells. 
(The rebate is negative because we are treating the numbers as costs.) A more elegant method is 
to define it as a conditional expression based on Year and Car_type:

Variable Hybrid_rebate := IF Year = 2008 AND Car_type = 'Hybrid'
THEN -2000 ELSE 0

It calculates the expression for each value of the indexes, in this case Year and Car_type, with 
this result.

The subexpression Year = 2008 returns an array indexed by Year containing 1 (true) for 2008 
and 0 (false) for the other years. Subexpression Car_type = 'Hybrid' returns an array 
indexed by Car_type, containing 1 (true) for 'Hybrid' and 0 (False) for the other Car_type. 
Therefore, the expression Year = 2008 AND Car_type = 'Hybrid' returns an array 
indexed by both Year and Car_type, containing 1 (true) only when both subexpressions are 
true, that is 1 for Hybrid in 2008 and 0 for the other cells. The entire IF expression therefore 
returns -2000 for the corresponding top-left cell and 0 for the others. (See “IF a THEN b ELSE c 
with arrays” on page 157 for more.)



 Analytica User Guide 151

Introducing indexes and arraysChapter Arrays and Indexes11

Compare a list of
variables

To summarize the results, it is useful to compare the four types of cost, Fuel_cost, 
Maintenance_cost, Purchase_price, and Hybrid_rebate, in one table. Let’s make a vari-
able Cost_summary, and first define it as an empty list, i.e., square brackets with nothing 
between them yet:

Variable Cost_summary := []

Now draw an arrow from each of the four variables you want to view to Cost_summary, in the 
sequence you want them to appear. Each time you draw an arrow into a variable defined as a list, 
it automatically adds that variable into the list. (If the origin variable was already in the list, it 
removes it again.) Here is the diagram showing the resulting definition for Cost_summary.

Tip This diagram does not display arrows from index nodes to avoid confusion with crossing arrows. 
We switched these off by restoring Show arrows to/from Indexes to unchecked (the default) in 
the Diagram style dialog from the Diagram menu.

The resulting definition is a list of variables (see “List of variables” on page 163).

The result for Cost_summary is four-dimensional, adding a new index, also labeled 
Cost_summary, showing the variables in the list.



Chapter Arrays and Indexes

152 Analytica User Guide

11 Introducing indexes and arrays

Constant value over an
index not in array

Note that only Fuel_cost depends on Miles_per_year. The other three quantities, mainte-
nance, depreciation, and rebate, are expanded over that index in the table, using the same num-
ber for each value of Miles_per_year. This is an example of a general principle: An array that 
does not contain index i as a dimension is treated as though it has the same value over each ele-
ment of i when there is a need to expand it to include i as a dimension.

Totals in a table To see the total over the costs and over the Years, check the two Totals boxes next to the row 
and column menus.

Self index The new index containing the titles of the four cost variables in the list is also called 
Cost_summary. Thus, the identifier Cost_summary serves double-duty as an index for itself. 
This is known as a self index, and can be accessed using the IndexValue() function (see “Index-
Value(i)” on page 200).

If we want to compute the sum of the four costs, we can use Sum(x, i) to sum array x over index 
i. In this case, we sum Cost_summary over its self index, also Cost_summary:

Variable Total_cost_by_year := Sum(Cost_summary, Cost_summary)

Sum(x, i) We also want to compute the average cost per mile over all the years. First we compute total cost 
over time, using the Sum() function:

Variable Total_cost := Sum(Cost_summary, Year)

As before, we need to specify the index over which we are summing, Year, but we don’t need to 
mention any other indexes, such as Car_type and Miles_per_year, which are irrelevant to 
this summation.

Next we calculate the Total_miles over Year:
Variable Total_miles := Sum(Miles_per_year, Year)



 Analytica User Guide 153

Introducing indexes and arraysChapter Arrays and Indexes11

Note that Miles_per_year is not indexed by Year. The principle of Constant value over unused 
indexes implies that Miles_per_year has the same value for each Year. Hence, the result is 
the miles per year multiplied the number of years, in this case 5.

Finally, we define:
Variable Cost_per_mile := Total_cost/Total_miles

Add a new item to
an index

What if you want to extend this model to include Compact as a fourth Car_type? Open one of 
the edit tables indexed by Car_type, say Miles_per_gallon. Click the last Car_type, SUV, 
to select that row (or column), and press Enter or the down-arrow key ↓. It says “Changing the 
size of this index will affect table definitions of other variables. Change data in tables indexed by 
Car_Type?” This warns that adding a new Car_type will affect all the edit tables indexed by 
Car_type. Click OK, and it adds a new bottom row, with the same label SUV as the previous bot-
tom row, and with value 0. Double-click the index label in this bottom row, and type the new 
Car_type, Compact, to replace it. Then enter its value, say 30 (miles/gallon).

Expanding index for
other edit tables

Now open the edit table for Maintenance_cost, and you will see a new row for Compact 
already added, initialized to 0 in each cell. You just need to enter numbers for 
Maintenance_cost for the Compact car, as shown here.

Next enter numbers for the Maintenance_cost for the Compact car.

Then enter a purchase price for the Compact car.



Chapter Arrays and Indexes

154 Analytica User Guide

11 Introducing indexes and arrays

Automatic propagation
of changes to index

Now you’ve entered the data for Compact Car_type into the three edit tables, and you’re done. 
All the computed tables automatically inherit the expanded index and do the right thing — without 
you needing to make any change to their definitions. For example, Cost_summary now looks like 
this.

Finally, let’s compute the net present value cost as the objective, using the reducing function 
Npv(discount, x, i). (See “Npv(discountRate, values, i, offset)” on page 219.) We define:

Variable Discount_rate := 12%
Objective NPV_cost := NPV(Discount_rate, Total_cost_by_year, year)

Here is the final diagram, showing NPV_Cost.



 Analytica User Guide 155

Introducing indexes and arraysChapter Arrays and Indexes11

Monte Carlo sampling
and Intelligent Arrays

Almost any variable in Analytica can be uncertain — that is, probabilistic. Each probabilistic quan-
tity is represented by a random sample of values, generated using Monte Carlo (or Latin hyper-
cube) simulation. Each random sample is an array indexed by a special system variable Run. The 
value of Run is a sequence of integers from 1 to Sample_size, a system variable specifying the 
sample size for simulation. See “Appendix A: Selecting the Sample Size” on page 388. For most 
operations and functions, Run is just another index, and so is handled just like other indexes by 
the Intelligent Arrays. You can see it when you choose the Sample uncertainty view. In other 
uncertainty views, such as Mean or CDF, the values displayed are computed from the underlying 
sample. See “Uncertainty views” on page 31.



Chapter Arrays and Indexes

156 Analytica User Guide

11 Introducing indexes and arrays

Progressive refinement
of a simple model

As we developed this simple model, we refined it by adding indexes progressively. First, we 
defined Car_type, then Year, and finally we changed Miles_per_year from a single value to 
a list of values for parametric analysis. Creating Cost_summary added a fourth index, consisting 
of the four cost categories. It is often a good idea to build a model like this — starting with a simple 
version of a model with no or few indexes, and then extending or disaggregating it by adding 
indexes — and also sometimes removing indexes if they don’t seem important. 

This approach to development is sometimes called progressive refinement. By starting simple, 
you get something working quickly. Then you expand it in steps, adding refinements where they 
seem to be most useful in improving the representation. A more conventional approach, trying to 
implement the full detail from the start, risks finding that it’s just too complicated, so it takes a long 
time to get anything that works. Or, you might find that some of the details are excessive — they 
just weren’t worth the effort.

Progressive refinement is a much easier in Analytica than in a spreadsheet and most other com-
puter languages — where extending or adding a dimension requires major surgery to the model 
to add subscripting and loops. With Intelligent Arrays, to extend or add an index, you only need to 
change edit tables or definitions that actually do something with the new index. The vast majority 
of formulas generalize appropriately to handle a modified or new dimension without needing any 
changes.

Summary of Intelligent
Arrays and array

abstraction

Analytica’s Intelligent Arrays make quite easy what would be very challenging in a spreadsheet or 
in a conventional computer language which would force you to add loops and subscripts to every 
array variable every time you add a dimension. 

If you find yourself using a lot of subscripts or For loops (see “For and While loops and recursion” 
on page 343), you are probably not using Intelligent Arrays properly. Take the time to understand 
them, and you should find that you can greatly simplify your model.

Almost every operator, construct, and function in Analytica supports array abstraction, automati-
cally generalizing as you add or remove dimensions to their operands or parameters. (See 
“Ensuring array abstraction” on page 348 for the few exceptions and how to handle them if you 
want to make sure that your model fully supports this array abstraction.) 

General principles of
Intelligent Arrays™

Omit irrelevant indexes: An expression need not mention any index that it does not operate 
over.

A value is constant over unused index: A value (atom or array) that does not have i as a index 
is treated as constant over each value of the unused index i (has the same value over all values 
of i) by any construct or function that operates over that index.

Rows and columns are features of displayed tables, not arrays: You can choose which index 
to display over the rows or columns. You (almost) never need to care about the order in which 
indexes are used in an array.

The indexes of a result of an expression contain the union of the indexes of its component 
arrays: The result of an operation or expression contains the union of the indexes of any arrays 
that it uses — that is, all indexes from the arrays, without duplicating any index that is in more 
than one array. There are two unsurprising exceptions:

• When the expression contains an array-reducing function or construct, such as Sum(x, i) or 
x[i=v], the result will not contain the index i over which it is reduced.

• When the expression creates an index, the result will also contain the new index.

To be more precise, we can define the behavior of Intelligent Arrays thus: For any expression or 
function F(x) that takes a parameter or operand x that might be an array indexed by i, for all val-
ues v in index i: 

F(x[i=v]) = F(x)[i=v]

In this way, Analytica combines arrays without requiring explicit iteration over each index. 

Exceptions to array
abstraction

The vast majority of operators, constructs, and functions fully support Intelligent Arrays — that is, 
they generalize appropriately when their operands or parameters are arrays. However, very few 
do not accept parameters that are arrays, notably the sequence operator (..), Sequence() func-
tion, and While loop. When you use these, you need to take special care to ensure that your mod-



 Analytica User Guide 157

IF a THEN b ELSE c with arraysChapter Arrays and Indexes11

els perform array abstraction conveniently when you add or modify dimensions. See “Ensuring 
array abstraction” on page 348 for details.

IF a THEN b ELSE c with arrays
The IF a THEN b ELSE c (page 132) construct generalizes appropriately if any or all of a, b, and 
c are arrays. In other words, it fully supports Intelligent Arrays. For example, if condition a is an 
array of Booleans (true or false values), it returns an array with the same index, containing b or c 
as appropriate:

Variable X := -2..2
If X > 0 THEN 'Positive' ELSE IF X < 0 THEN 'Negative' ELSE 'Zero'→
X 

If b and/or c are arrays with the same index(es) as a, it returns the corresponding the values from 
b or c according to whether a is true or false:

IF X >= 0 THEN Sqrt(X) ELSE 'Imaginary'→ 
X 

In this case, the expression Sqrt(X) is also indexed by X. The IF expression evaluates 
Sqrt(X) for each value of X, even the negative ones, which return NAN, even though they are 
replaced by Imaginary in the result.

To avoid evaluating all
of b or c

When If a Then b Else c is evaluated, the expression a is first evaluated completely. If its 
result is true, or if it results in an array where any value in the array is true, then the expression b 
is evaluated completely as an array operation, meaning the expression is evaluated for all values 
of all indexes contained within b. Similarly, if a is false or a is an array and any element is false, 
the expression is c is evaluated in its entirety. Once both are computed, the appropriate values 
are picked out of these results according to the result of a. Sometimes, you want to avoid evaluat-
ing elements of b or c corresponding to elements of a that give errors or NULL results, to avoid 
wasting computation time on intermediate results that won’t be used in the final result, or because 
the computations cause evaluation errors, not just warnings. In such cases, you can use explicit 
iteration, using a For or While loop over index(es) of a. See “Begin-End, (), and “;” for grouping 
expressions” on page 340.

Omitting ELSE If you omit the ELSE c part, it usually gives a warning when it is first evaluated.
 

If you click Ignore Warnings, it returns NULL for elements for which a is false:
IF X >= 0 THEN Sqrt(X)→ 
X 

-2 -1 0 1 2
'Negative' 'Negative' 'Zero' 'Positive' 'Positive'

-2 -1 0 1 2
'Imaginary' 'Imaginary' 0 1 1.414

-2 -1 0 1 2
«Null» «Null» 0 1 1.414



Chapter Arrays and Indexes

158 Analytica User Guide

11 IF a THEN b ELSE c with arrays

After you have clicked Ignore Warnings, it does not give the warning again, even after you save 
and reopen the model.

Tip Usually, you should omit the ELSE c part of an IF construct only in a compound expression (see 
“Begin-End, (), and “;” for grouping expressions” on page 340), when the IF a THEN b is not the 
last expression, but rather is followed by ";". In this situation, the NULL result is not part of the result 
of the compound expression, and it gives no warning, as shown in this example: 

BEGIN
VAR A[] := Min([X,Y]);
IF A<0 THEN A:=0;
Sqrt(A)

END

Caveats of conditional
side effects

In the expression above, the empty brackets following A define A as array with no indexes (i.e., as 
atomic). Analytica will ensure that within the body of the expression where A is used, A will always 
be atomic, even if X or Y are array-valued. To do this, Analytica might need to iterate the expres-
sion. If you feel compelled to embed an assignment inside a THEN or ELSE clause, you should 
always make sure that the condition being tested is a scalar and not an array. In this case, 
because A has been declared to be 0-dimensional, the expression A<0 is guaranteed to be sca-
lar. If you cannot guaranteed that the IF clause will always be scalar, even if other indexes are 
added to your model in the future, then you should avoid using assignment from within a THEN or 
ELSE clause since Analytica evaluates IF-THEN-ELSE and an array operation. Without the 
brackets declaring A to be scalar, the IF clause would say “IF any value of A is less than zero 
THEN evaluate the assignment”, so the result would be an array of zeroes even if there is only a 
single negative number in X and Y. A better way to encode a conditional assignment, which prop-
erly array abstracts and has the intended effect, is as follows:

BEGIN
VAR A := Min( [X,Y] );
A := IF A<0 THEN 0 ELSE A;
Sqrt(A)

END

The dimensions of the
result

If a is an array containing some True and some False values, IF a THEN b ELSE c, evaluates 
both b and c. The result contains the union of the indexes of all operands, a, b, and c. But, if a is 
an atom or array whose value(s) are all true (1), it does not bother to evaluate c and returns an 
array with the indexes of a and b. Similarly, if all atoms in a are false (0), it does not bother to eval-
uate b and returns an array with the indexes of a and c. This means that the values in the condi-
tion a can affect whether b and/or c are evaluated, and which indexes are included in the result. 

IFALL a THEN b
ELSE c

If you don’t want the dimensions of the result to vary with the value(s) in a, use the IFALL con-
struct. This is like the IF construct, except that it always evaluates a, b, and c, and so the result 
always contains the union of the indexes of all of three operands. 

IFALL requires the ELSE c clause. If omitted, it gives a syntax error.

IFONLY a THEN b
ELSE c

IFALL has the advantage over IF (and IFONLY) that the dimensions of the result are always the 
same, no matter what the values of the condition a. The downside is that if a is an array and all its 
atoms are True (or all are False), it wastes computational effort calculating c (or b) even though 
its value is not needed for the result. IFALL also might waste memory (and therefore also time) by 
including the index(es) that are only in c (or b) even though the result has the same values over 
those indexes. The standard IF construct might also waste some memory when all of the values 
of array a are True (or all are False), because the result includes any index(es) of a that are not 
indexes of b (or c), even though the result must be the same over such index(es). 

In situations, where this is a concern, you can use a third conditional construct, IFONLY a THEN 
b ELSE c. Like IF, when all atoms of a are True (or all False), it evaluates only b (or only c). 
But, unlike IF, the result in these cases does include any index(es) of a that are not indexes of 
b (or c, respectively). Thus, IFONLY can be more memory-efficient.



 Analytica User Guide 159

Creating an indexChapter Arrays and Indexes11

Summarizing IF, IFALL,
and IFONLY

In most cases, you can just use IF without worrying about IFALL or IFONLY. The only reason to 
use IFALL is when you want to avoid the possibility that the dimensions of results can vary with 
values of inputs. The only reason to use IFONLY is when memory is tight and it’s common for 
condition a to be all true or all false. 

To summarize the differences between these three constructs: If condition a is an atom or array 
containing only true (only False) values, IF and IFONLY evaluate only b (only c), whereas IFALL 
always evaluates both b and c. The result of IFONLY contains the indexes of only b (only c). The 
result of IF contains the indexes of a and b (or c). The result of IFALL always contains the 
indexes of a, b, and c, and so its dimensions do not depend on the values of a. 

If condition a is an array containing mixed true and false atoms, all three constructs behave iden-
tically: They evaluate a, b, and c, and the result contains the union of the indexes of a, b, and c.

IFALL requires the ELSE part. It is optional for IF and IFONLY, but strongly recommended except 
when it is one of multiple statements, and not the last, in a compound expression, enclosed in 
parentheses or BEGIN ... END.

Creating an index
An index is a class of variable used to identify a dimension of an array. The same index can iden-
tify the same dimension shared by many arrays. Sometimes, variables of other classes, such as a 
decision, can also be used as an index to identify a dimension of an array. For clarity, use an 
index variable whenever possible.

You create an index much like any other variable:

Create an index node 1. Select the edit tool and open a Diagram window.
2. Drag the parallelogram shape from the node palette to the diagram.
3. Type a title into the new index node.
4. Open the definition attribute for the new index:

• Either double-click the index node to open its Object window
• Or, select the index node, open the Attribute panel (page 22) and select Definition 

(page 104) from the Attribute menu.
5. Press the expr menu above the definition field, to see these options. 

(If the variable already has a definition, Analytica confirms that you wish to replace it. Click 
OK to replace the definition with a one-element list.) 

Define as a List 6. Select List (of numbers) or List of Labels according to whether you want to enter a list of 
numbers or text values. It will display a list with one item in the definition field.

7. Click the cell to select it, and Type in a number for List or text for List of Labels.
8. Press Enter or down-arrow to add a cell for the next item. Type in its value.
9. Repeat until you have entered all the values you want.

List icon for the expr popup 
menu

New one-element list



Chapter Arrays and Indexes

160 Analytica User Guide

11 Creating an index

Autofill a list It gives the first cell of a list the default value of 1 (or the previous definition if it had one). When 
you press Enter or down-arrow, it adds a cell adding 1, or the increment between the two preced-
ing cells, to the value of the preceding cell.

Expression view You can display a list or list of labels as a list view, the default view showing as a column of cells, 
or as an expression view, showing it as a list of items between square brackets. Select 

from the toolbar to show the expression view. For example, here is a list of numbers in 
each view.

List of labels In a list of labels, every value is text. In the expression view, each label is enclosed in single quo-
tation marks.

To include a single quote (apostrophe) as part of the text in a label in expression view, insert two 
adjacent single quotes, or enclose in double quotes (see “Text values” on page 129):

['can''t','won''t','didn''t']

Mixing numbers
and text

A list can include a mix of text and numbers. In both views the text is contained in single quotation 
marks as shown below. 

Values entered into a list

List view Expression view
[1, 2, 3, 4, 5]

List view Expression view
['Alabama', 'Alaska', 'Arizona','Arkansas']

List view Expression view
[1, 'Alabama', 2, 'Alaska']



 Analytica User Guide 161

Creating an indexChapter Arrays and Indexes11

If you attempt to mix numbers and text in a list of labels, all the values are treated as text, as 
shown below.

Tip A list cell can contain any valid expression, including one that refers to other variables or one that 
evaluates to an array. If you are defining an index object, whose sole purpose should be to serve 
as an index and not as an array result, then each element should evaluate to a scalar; otherwise, 
a warning will result. For general variables, the use of expressions that return array results is often 
very useful.

Editing a list
You can edit a list by changing, adding, or deleting cells (list items).

Insert a cell To insert a cell anywhere other than at the end of the list, select a cell and choose Insert Rows 
(Control+i) from the Edit menu. The value in the selected cell is duplicated in the new cell.

To add a cell at the end of the list, select the last cell and press Enter or the down-arrow key.

To insert several contiguous cells in the middle of the list, select the number of cells you want to 
insert and choose Insert Rows (Control+i) from the Edit menu. It duplicates the value of the last 
selected cell as the default for the new cells.

Delete a cell To delete one or more contiguous cells, select them and:

• Choose Delete Rows from the Edit menu.
• Or, just press Control+k or Delete.

Tip If you add or delete a cell in a list that is an index of one or more edit tables, it will warn you that it 
will change the corresponding slices of the tables (see “Editing a table” on page 168).

Navigating a list Use the up and down-arrow keys to move the cursor up and down the list, or simply click the cell 
you want. 

Defining an index as a sequence
Create a list with the

Sequence option
To define an index as a list of equally spaced numbers, it is usually easier to select the Sequence 
function from the expr menu (instead of List).

Then it shows the Sequence() function in the Object Finder (page 163).

List view Expression view
['1', 'Alabama', '2', 'Alaska']



Chapter Arrays and Indexes

162 Analytica User Guide

11 Functions that create indexes

After entering the Start, End, and Stepsize values, click OK; the definition field shows the 
Sequence button with its parameters.

For more see “Sequence(start, end, stepSize, strict, dateUnit)” on page 163.

Tip To change the start, end, or stepsize parameters of a sequence, click the Sequence button.

To define an index as a sequence of successive integers, you can use the “..” operator in the 
expression view, for example:

Index Year := 2000 .. 2012

See “m .. n” on page 163.

Functions that create indexes
It is usually easiest to define an index as a list, list of labels, or sequence, as described above 
(see “Creating an index” on page 159). Sometimes, you need to define an index using a more 
general expression, as a list of expressions, a list of variables, or a function such as Subset(), 
Concat(), and SortIndex(). This section describes these and other functions that you can use to 
create indexes.

[ u1, u2, u3, … um ]
A simple way to define an index is specify its definition as a list of values separated by commas 
and surrounded by square brackets. The values can be numbers, text values, or other expres-
sions.

Examples [8000, 12K, 15K]
['VW', 'Honda', 'BMW']

These lists are equivalent to using the List or List of Labels options in the expr menu, as 
described in “Creating an index” on page 159.



 Analytica User Guide 163

Functions that create indexesChapter Arrays and Indexes11

List of variables
A list of variables contains identifiers of variables in square brackets, separated by commas. Usu-
ally, the simplest way to create a list of variables is to define the variable initially as an empty list, 
for example:

Variable CompareVars := []

When you draw an arrow from a variable, A, into CompareVars, it will automatically add A as the 
next item in the list:

CompareVars := [A]

Suppose you draw arrows from B and C, the definition will become:
CompareVars := [A, B, C]

When you draw an arrow from a variable already in the list, it removes it from the list. Suppose we 
draw an arrow from B to CompareVars, it will become:

CompareVars := [A, C]

The result of CompareVars is an array of the values of the variables it contains, with a self index, 
also called CompareVars, that usually shows the titles of the variables. 

If any or all the variables contain arrays, the result contains the union of the indexes of the con-
tained variables. For example if A is an atom (not an array) and C is indexed by c, the result will 
be indexed by I. The slice of CompareVars for A will have the same value of A repeated for each 
value of A. See “Compare a list of variables” on page 151 for an example.

Self index The result will contain an extra index, a self index of CompareVars, comprising the list of the 
variables. 

Clickable titles or
identifiers in table

Usually these display the titles of the variables in a table or graph result. (If you select Show by 
Identifier from the Object menu (or press Control+y) it toggles to show the identifiers instead of 
titles. If you double-click a title (or identifier) in a table, it will open the Object window for that vari-
able. The values in the self index are actually handles to the variables. See “Handles to objects” 
on page 356 for more.

m .. n
Returns a sequence of successive integers from m to n — increasing if n < m, or decreasing if n 
> m. For example:

2003..2006 → [2003, 2004, 2005, 2006]
5 .. 1 → [5, 4, 3, 2, 1]

It is equivalent to Sequence(m, n). 

Tip The parameters n and m must be atoms, that is single numbers. Otherwise, it would result in a 
non-rectangular array. See “Functions expecting atomic parameters” on page 349 on how to use 
this in a way that supports array abstraction.

Sequence(start, end, stepSize, strict, dateUnit)
Creates a list of numbers increasing or decreasing from start to end by increments (or decre-
ments) of stepSize, which is optional and defaults to 1. When the strict parameter is omitted or 
false, stepSize must be a postiive number and the sequence will decrement by stepSize when 
end is less than start, guaranteeing at least one element. When strict is specified as true, a pos-
itive stepSize increments and negative stepSize returns a decrementing sequence, possibly with 
zero elements if end would come before start.

The optional dateUnit parameter is used when creating a sequence of dates, with increments in 
units of Years (dateUnit:'Y'), Months ('M'), Days ('D' or omitted), Weekdays ('WD'), Hours 
('h'), minutes ('m') or seconds ('s').

All parameters must be deterministic scalar numbers, not arrays.



Chapter Arrays and Indexes

164 Analytica User Guide

11 Functions that create indexes

You can also select this function using the Sequence option from the expr menu, as described in 
“Create a list with the Sequence option” on page 161. 

The expression m .. n using the operator ".." is equivalent to Sequence(m, n, 1). 

Library Array

Examples If end is greater than start, the sequence is increasing: 
Sequence(1,5) →

If start is greater than end, the sequence is decreasing: 
Sequence(5, 1) → [5, 4, 3, 2, 1]

Unless strict is true:
Sequence(5, 1, strict:true) → []
Sequence(5, 1, -2, strict:true ) → [5, 3, 1]

If start and end are not integers, and you omit stepSize, it rounds them: 
Sequence(1.2, 4.8) → [1, 2, 3, 4, 5]

If you specify stepSize, it can create non-integer values:
Sequence(0.5, 2.5, 0.5) → [0.5, 1, 1.5, 2, 2.5]

Concat(i, j)
Returns a list containing the elements of index i concatenated to the elements of index j. Thus the 
number of items in the result is the sum of the number of items in i and the number of items in j. 
See “Concat(a1, a2, i, j, k)” on page 198 for how to concatenate two arrays.

Index Year1 := 2006 .. 2008
Index Years2 := 2009 .. 2010
Index YearsAll :=Concat(i, j) → [2006, 2007, 2008, 2009, 2010]

Subset(d)
Returns a list containing all the elements of d’s index for which d’s values are true (that is, non-
zero). d must be a one-dimensional array.

The optional parameter position:true can be specified to return the positions along d’s index for 
which d’s values are true. You would need to use positions if your index might contain duplicate 
values.

The basic use of Subset does not allow d to contain more than one dimension. An extended use 
that can be applied to multi-dimensional array parameters is described further in “Subset(d,posi-
tion,i,resultIndex )” on page 200.

When to use Use Subset() to create a new index that is a subset of an existing index.

Library Array

Example Subset(YearsAll < 2010) → [2006, 2007, 2008, 2009]
Subset(YearsAll>2007 and YearAll<2010, position:true) → [3,4]

List view Expression view
[1,2,3,4,5]



 Analytica User Guide 165

Functions that create indexesChapter Arrays and Indexes11

CopyIndex(i)
Makes a copy of the values of index i, to be assigned to a new index variable, global or local. For 
example, suppose you want to create a matrix of distances between a set of origins and destina-
tions, which are each the same set of cities:

Index Origins
Definition:= ['London', 'New York', 'Tokyo', 'Paris', 'Delhi']
Index Destinations
Definition:= CopyIndex(Origins)

Variable Flight_times := Table(Origins, Destinations)

If you defined Destinations as equal to Origins, without using Copyindex(), Destina-
tions would be indexed by Origins, and the resulting table would have only one dimension 
index. By defining Destinations with CopyIndex(), it becomes a separate index, so that the 
table has two dimensions.

Sortindex(d, i)
Assuming d is an array indexed by i, SortIndex() returns the elements of index i, reordered so 
that the corresponding values in d would go from smallest to largest value. The result is indexed 
by i. If d is indexed by dimensions other than i, each “column” is individually sorted, with the 
resulting sort order being indexed by the extra dimensions. To obtain the sorted array d, use this:

d[i=Sortindex(d, i)]

When d is a one-dimensional array, the index parameter i is optional. When omitted, the result is 
an unindexed list. Use the one-parameter form only when you want an unindexed result, for 
example to define an index variable. The one-parameter form does array abstract when a new 
dimension is added to d.

Library Array

Examples Maint_costs →
Car_type 

SortIndex(Maint_costs, Car_type) →
Car_type 

SortIndex(Maint_costs) →
SortIndex 

Define Sorted_cars as an index node:
INDEX Sorted_cars := Sortindex(Maint_costs)
Maint_costs[Car_type = Sorted_cars] →

Unique(a, i)
Returns a maximal subset of i such that each indicated slice of a along i is unique. 

VW Honda BMW
1950 1800 2210

VW Honda BMW
Honda VW BMW

Honda VW BMW

Honda VW BMW
1800 1950 2210



Chapter Arrays and Indexes

166 Analytica User Guide

11 Defining a variable as an edit table

The optional parameter position:true returns the positions of element in i, rather than the ele-
ments themselves. Specifying caseInsensitive:true ignores differences in upper and lower case 
in text values when determining if values are unique. 

When to use Use Unique() to remove duplicate slices from an array, or to identify a single member of each 
equivalence class.

Library Array
DataSet →
PersonNum , Field 

Unique(DataSet, PersonNum) → [1, 2, 3]
Unique(DataSet[Field='Company'], PersonNum) → [1, 3]

Defining a variable as an edit table
To define a variable as an edit table, you choose Table from the expr menu above its definition:

1. Select the variable and open its definition using one of these options:
• Use the variable’s Object window.
• From the Attribute panel of the Diagram window, select Definition from the Attribute 

popup menu.
• Press Control+e.

2. Press the expr menu above the definition field and select Table.

If it already has a definition, click OK to confirms that you wish to replace it.

3. It opens the Indexes dialog so you can select the table’s indexes (dimensions). It already lists 
under Selected indexes any index variables from which you have drawn an arrow to this 
variable. You can keep them, remove them, or add more indexes.

LastName FirstName Company
1 Smith Bob Acme
2 Jones John Acme
3 Johnson Bob Floorworks
4 Smith Bob Acme



 Analytica User Guide 167

Defining a variable as an edit tableChapter Arrays and Indexes11

4. Select a variable from the Indexes list and click the move button , or double-click the 
variable, to select it as an index of the table. Repeat for each index you want.

5. Click OK to create the table and open the Edit Table window (page 168) for editing the table’s 
values.

Indexes dialog
The Indexes dialog contains these features (see figure above):

To create an index You can create an index variable in the course of creating a table, in the following way:

1. Select new index from the Indexes list in the Indexes dialog.
2. Enter a title for the index.

3. Click the Create button. 
4. To make the new index an index of the table, click the button. 
5. Enter the values of the Index in the Edit Table window (see the following section).

To remove an index
from an array

1. Select the index from the Selected Indexes list.
2. Click the button.

Removing an index leaves the subarray for the first item in that index as the value of the entire 
array.

System index variables
Run and Time

Analytica includes two system index variables: Run and Time. You can generally treat these vari-
ables like any index variable.

Description of selected 
variable

Check to show all variables 

Selected variable Move button

Indexes for the table

Values of the
selected
variable

Preview A list of the values of the selected index variable. If the selected variable 
is not a list, it says "Can’t use as index."

All Variables check-
box

If checked, the Indexes list includes all variables in the model. If not 
checked, it lists only variables of the class Index and Decision, plus 
the variable being defined (Self) and Time. If you select Self as an 
index, the variable itself holds the alternative index values.

Selected Indexes A list of all indexes already selected for this variable.

New index Select to create a new index.

Select new
index

Enter index title



Chapter Arrays and Indexes

168 Analytica User Guide

11 Editing a table

Run is the index for the array of sample values for probabilistic simulation. You can examine the 
array with the sample uncertainty mode (page 35) or the Sample() function (page 275).

Time is the index for dynamic simulation (page 291). It is the only index permitted for cyclically 
dependent modeling.

Editing a table
To open the Edit Table window, click the Edit Table button in either:

• The Object window (page 21)
• The Attribute panel (page 22) of the diagram

In the Attribute panel, select Definition (page 104) from the Attribute popup menu.

The Edit Table window The Edit Table window looks much like the Result window table view (page 30). The difference 
is that you can add indexes and edit the values in cells.

Edit a cell Click the cell, and start typing to replace what’s in it. To add to what’s there, click three times to get 
a cursor in the cell, and type. You can use left-arrow and right-arrow keys to move the cursor. See 
“Shortcuts to navigate and edit a table” on page 173 for more. Press Enter to accept the value 
and to select the next cell, or click in another cell.

Tip You can enter an expression into a table cell with operations, function calls, and so on. But, if the 
expression is complex, it’s easier to enter it as the definition of a new variable, and then just type 
the name of the variable into the table.

Select a cell Click the cell once. 

Select a range of cells Drag the cursor from a cell at one corner of a rectangular region to the cell at the opposite corner. 

Copy and paste a cell or
region

You can copy a cell or a range (two-dimensional rectangular region) of cells from a table or paste 
a cell into a region, just as with a spreadsheet: 

1. Select the source cell or region as above, and choose Copy from the Edit menu or press 
Control+c. 

2. Select the destination cell (or top-left cell of the destination region), and choose Paste from 
the Edit menu or press Control+v. 

If you select a destination region that is n times larger (width, height, or both) than the source cell 
or region, it repeats the source n times in the destination.

Accept Click to accept all the changes you have made to the table. If you close a table, it also 
accepts the changes, unless you click .

Cancel Click to cancel all the changes you have made to the table since you opened it or last clicked 
.

Copy and paste to or
from a spreadsheet

Copy and paste of a cell or region works much the same from a spreadsheet to an Analytica table 
or vice versa. If necessary, you can easily pivot the Analytica table so its rows and columns corre-
spond with those in the spreadsheet. It copies numbers in exponential format with full precision, 
no matter what number format is used in the table, so that other applications can receive them 
with no problems.



 Analytica User Guide 169

Editing a tableChapter Arrays and Indexes11

Copy an entire table To copy a table, including its row and column headers, click the top-left cell to select the whole 
table. You can also copy a table with more than two dimensions: Select Copy table from the Edit 
menu. When you paste into a spreadsheet, it includes the name of the table, and all indexes, 
including the slicer index(es) for the third and higher dimensions.

Editing or extending indexes in an edit table
One convenient aspect of Intelligent Arrays is that you can edit and extend the indexes of an 
array right in the edit table, to change index values, insert or remove rows or columns, or, more 
generally, subarrays. 

This works for an index defined as a list of numbers or list of labels. If an index is defined in 
another way — for example as m .. n or Sequence(x1, x2, dx) — you must edit the origi-
nal index. Either way, all edit tables that use the changed index are automatically modified 
accordingly. See “Splice a table when computed indexes change” on page 170 for more informa-
tion.

To edit or extend an index, either you must be in edit mode or the index variable you want to 
modify must have an input node. See “Creating an input node” on page 117.

Edit a cell in a row
or column index

Click the cell once to select its row or column. Then double-click the cell to select its contents. 
Start typing to replace the text or number. Remember, the same change happens to all tables that 
use that index.

Append
a row

Click the bottom element of the row index to select the bottom row, and press the down-arrow 
key.

Append
a column

Click the rightmost element of the column index to select the right column, and press the right-
arrow key.

Insert a row
or column

1. Click the row or column header to select the row or column before which you wish to insert a 
new one.

2. Select Insert Rows (or Insert Columns) from the Edit menu, or press or Control+i.

Normally, the new row or column contains zeros. You can change this default with the system 
variable Sys_tableCellDefault. You can also set table-specific default values, using the 
TableCellDefault attribute. See “Splice a table when computed indexes change” on page 170 
for details.

Delete a row
or column

1. Click the row or column header to select the row or column you wish to delete.
2. Choose Delete Rows or Delete Columns from the Edit menu, or press Control+k.

Tip When you try to add an item to an index or delete an item from an index that is also used by another 
edit table, it warns you that “Changing the size of this index will affect table definitions of other 
variables.” and gives the option of whether to continue. Adding an item will add a new slice 
containing zeros, just as it does for the one you are editing. Similarly, deleting an item will delete 
a slice from these other edit table. 

Tip If you intend your model to be used by end users with the Player or Power Player editions (that are 
fixed in browse mode) or intend to save your model as browse-only (if you have the Enterprise 
Edition), you can decide whether you want to allow your end users to be able to edit indexes as 
described above. Create an input node for each index that you want to let them change. Or don’t 
to prevent them from changing an index.

Add an index To add an index, use one of these two methods:

• Draw an arrow from the index to the node containing the table. When it asks if you want to 
add the index as a new dimension of the table, answer Yes.

• Click in the edit table to open the Indexes dialog (page 167). Double-click the index you 
want to add, and click OK.



Chapter Arrays and Indexes

170 Analytica User Guide

11 Splice a table when computed indexes change

When adding a new dimension to an edit table, it copies the values of the table to each new sub-
array over the new index. Thus, the expanded table has the same values for every element of the 
new index. This has no effect on other edit tables.

Remove an index To remove an index, use one of these two methods:

• Draw an arrow from the index to the node containing the table. When it asks if you want to 
remove the index as a dimension of the table, answer Yes.

• Or, click in the edit table to open the Indexes dialog (page 167). Double-click the index 
you want to remove, and click OK.

Tip When removing a dimension from an edit table, it replaces the entire table by its subarray for the 
first value of the index you are removing. It deletes all the rest. Be careful, because you will lose 
all the data in the rest of the table! This has no effect on other edit tables.

Splice a table when computed indexes change
A computed index is an index that depends on other variables (that is, not an explicit list of num-
bers or labels). Computed indexes use functions that return indexes, such as Sequence(), Con-
cat(), or Subset(), for example:

Index Year := Start_year .. Horizon_year
Index K := Concat(i, j)
Index S := Subset(Year < 2002)

Splicing is what happens to an editable table (table, determtable, or prob table) when it uses a 
computed index that changes because of a change to one of its inputs. The change can cause 
slices to be added, deleted, or reordered. By default, if the changed index has an item with the 
same value (number or text) as the previous version, all editable tables retain the old data for the 
slice identified by that item, even if items are removed, reordered, or added. For example:

Variable Start_year := 2005
Index Year := Start_year .. (Start_year+2)
Variable Revenues := Table(Year)(100, 200, 300)
Revenues→
Year 

Suppose, you change:
Start_year := 2006

Then by default, Revenues will change to:
Year 

Thus, it loses the cell for 2005. Cells for 2006 and 2007 retain their original values, and it adds a 
new cell with default 0 for the new year, 2008. This is called associational correspondence, 
because it retains the association between index label and value, even if the positions change.

Alternatively, if you change one or more index values to new text labels or numbers, it retains the 
same values of for the nth slice, even though the index value changes. This is called positional 
correspondence, because it retains correspondence where the nth position contains the same 
value.

The default splicing behavior is mixed correspondence, preserving associational correspon-
dence where labels are the same, and preserving positional correspondence where possible oth-
erwise. It is possible to change this splicing behavior for each editable table to pure 

2005 2006 2007
100 200 300

2006 2007 2008
200 300 0



 Analytica User Guide 171

Subscript and slice of a subarrayChapter Arrays and Indexes11

associational correspondence — retaining values only where index values are the same — or 
pure positional correspondence — going only by position in the index, irrespective of index val-
ues. See attribute CorrespondenceMethod in the Analytica wiki for details. 

Subscript and slice of a subarray
These constructs and functions let you select a slice or subarray out of an array. 

x[i=v]: Subscript construct
This is the most common method to extract a subarray:

x[i = v]

It returns the subarray of x for which index i has value v. If v is not a value of index i, it returns 
NULL, and usually gives a warning. 

If x does not have i as a index, it just returns x. The reason is that if an array x is not indexed by i, 
it means x is constant over all values of i. (The principle is described in “Constant value over an 
index not in array” on page 152.)

You can apply the subscript construct to an expression, simply by putting the square bracket 
immediately after the expression:

(Revenue - Cost)[Time = 2010]

Indexing by name
not position

You can subscript over multiple dimensions, for example:
x[i=v, j=u]

The ordering of the indexes is arbitrary, so you get the same result from:
x[j=u, i=v]

Indexing by name means that you don’t have to remember or use any intrinsic ordering of indexes 
in an array, such as rows or columns, inner or outer, common to most computer languages.

The value v can be an array with some index other than i of values from the index i. For example, 
v might be a subset of i. In that case, the result is an array with the index(es) of v containing the 
corresponding elements of x. 

Subscript(x, i, v)
This function is identical to the subscript construct x[i=v], using different syntax.

x[@i=n]: Slice construct
The slice construct has an @ sign before the index. It is different from the subscript construct in 
that it refers to the numerical position rather than associating the value of index i. It returns the nth 
slice of x over index i:

x[@i=n]

The number n should be an integer between 1 (for the first element of index i) and Size(i) for 
the last element of i. If n is not an integer in this range, it returns NULL, and returns a warning 
(unless warnings have been turned off). 

Like the subscript construct, it can slice over multiple indexes, for example:
x[@i=n, @j=m]

And also like the subscript construct, the ordering of the indexes is arbitrary.

Mixing subscript and
slice constructs

You can mix slice and subscript operations in the same expression in any order:
x[@i=1, j=2, k=3]

http://lumina.com/wiki/index.php/CorrespondenceMethod


Chapter Arrays and Indexes

172 Analytica User Guide

11 Subscript and slice of a subarray

Slice(x, i, v)
This function is identical to the slice construct x[@i=v], using different syntax.

Slice(x, n)
If Slice() has only two parameters, and x has a single dimension, it returns the nth element of 
x. For example:

Index Quarters := 'Q' & 1..4
Slice(Quarters, 2) → 'Q2'

This method is the only way to extract an element from an unindexed array, for example:
Slice(2000..2003, 4) → 2003

It also works to get the nth slice of a multidimensional array over an unindexed dimension, for 
example:

Slice(Quarters & ' ' & 2000..2003, 4) → Array(Quarters, ['Q1 2003', 
'Q2 2003', 'Q3 2003', 'Q4 2003'])

Tip If x is a scalar, or if x is an array with two or more indexed dimensions and no unindexed 
dimensions, Slice(x, n) simply returns x. 

Library Array

Examples Here, Analytica returns the values in Cost corresponding to the first element in Car_type, that 
is, the values of VW:

Slice(Cost, Car_type, 1) →
Mpg 

Here, n is an array of positions:
Slice(Cost, Car_type, [1, 2]) →
Mpg 

Preceding time slice: x[Time-1]
x[Time-n] refers to the built-in index Time (see “The Time index” on page 292). It returns the 
value of variable x for the time period that is n periods prior to the current time period. This func-
tion is only valid inside the Dynamic() function (page 292). 

Choice(i, n, inclAll)
Appears as a popup menu in the definition field, allowing selection of the nth item from i (see 
“Creating a choice menu” on page 117). Choice() must appear at the topmost level of a definition. 
It cannot be used inside another expression. The optional inclAll parameter controls whether the 
"All" option (n=0) appears on the popup (inclAll defaults to True).

Examples Choice(Years, 2) → 1986

If n=0, and inclAll is true, it returns all values of i: 
Choice(Years, 0, 1) →
Years 

26 30 35
2185 1705 1585

26 30 35
1 2185 1705 1585
2 2810 2330 2210

1985 1986 1987 1988



 Analytica User Guide 173

Choice menus in an edit tableChapter Arrays and Indexes11

Choice menus in an edit table
You can include a drop-down (pull-down) menu in any cell of an edit table to let end users select 
an option for each cell. Here is an example, in browse mode. 

You use the Choice() function (page 172) in the edit table cells, similar to using Choice to specify 
a single menu for a variable: 

1. Create a variable X as an edit table, in the usual way, selecting Table from the expr menu 
above its definition. 

2. Create an index variable, e.g., k, containing the list of options you want to make available from 
the menu(s), usually as a list of numbers or a list of labels. 

3. In the edit table of X, in edit mode, enter Choice(k, 1, 0) into the first cell that you want 
to contain a menu. The second parameter 1 means that the first element of k is the default 
option. The third parameter 0 means that it does not show All as an option, normally what you 
want. 

4. Copy and paste Choice(k, 1, 0) from the first cell to any others you want also to contain 
the menu. You can also use other indexes than k if you want to include menus with other 
options. Here is an example viewed in edit mode, with drop-down menus in some but not all 
cells. 

5. Select X, then select Make Input from the Object menu to make an input node for it. Move 
the input node to a good location. 

Tip The variable containing the edit table with menus must have an input node — otherwise, you won’t 
be able to select from the menus or edit other cells in browse mode.

Shortcuts to navigate and edit a table
These mouse operations and keyboard shortcuts let you navigate around a table, select a region, 
and search for text. They are the same as in Microsoft Excel, wherever this makes sense. Con-
trol+Page Up and Control+Page Down are exceptions. 

The current cell is highlighted, or the first cell you selected in a highlighted rectangular region. In a 
region, the anchor cell is the corner opposite the current cell. If you select only one cell, the 
Anchor and Current are the same cell. 

Mouse operations

Mouse Click Click in a cell to make it the current cell. 



Chapter Arrays and Indexes

174 Analytica User Guide

11 Shortcuts to navigate and edit a table

Shortcuts to edit a table These shortcut keys speed up editing a table. Inserting and deleting rows and columns works 
only if the index(es) are defined as an explicit list, not if it is computed or a sequence:

Search a table

Arrow keys

Home key

Page key

Mouse Shift+Click Select the region from the previous anchor to this cell. 

Mouse drag Select the region from the cell in which you depress the left mouse 
button to the cell in which you release the button. 

Mouse wheel Scroll vertically without changing the selection. 

Control+mouse wheel Scroll horizontally without changing the selection. 

down-arrow If you have selected the last row, add a row. 

left-arrow If you have selected the right column, add a column. 

Control+i If you have selected a row header, insert a row. If you have selected 
a column header, insert a column.

Control+k Delete a selected row or column. 

Control+v Paste copied cells from the clipboard into the table into the selected 
region. If you copy a region and have selected a single cell, it pastes 
into the region with the current cell as the top-left, if it fits. If you paste 
a cell or region into a larger region, it repeats the copied material to 
fill out the destination region.

Control+f Open the Find dialog to search for text in the table. Search from the 
current cell and select the first matching cell, if any. 

Control+g Repeat the previous Find, starting in the next cell. 

arrow (right, left, up, 
down)

Move one cell in the given direction. At the end of row, right arrow 
wraps to the start of the next row. At the end of the last row, it wraps 
to top-left cell. Similarly, for the other keys. 

Shift+arrow Move the current cell one cell in the given direction. The Anchor cell 
stays put, causing the selected region to grow or shrink. It does not 
wrap. 

Control+arrow Move to the end of row or column in the given direction. 

Shift+Control+arrow Move current cell to the end of row or column in the given direction, 
leaving the Anchor where it is, causing the selected region to grow 
(or flip). 

End, arrow Two key sequence. Same as Control+arrow. 

End, Shift+arrow Two key sequence. Same as Shift+Control+arrow. 

Home Move the anchor to the first column, and sets the current cell to be 
the anchor (so only one cell is selected). If you are in the row 
headers, moves the anchor and current to the first row. 

Control+Home Select the top-left cell in the table. (Selects one cell.) 

Control+End Select the bottom-right cell in the table. (Selects one cell.) 

Shift+Control+Home Select the region between the anchor and the top-left cell. (Leaves 
current as top-left.) 

Page Up, Page Down Move the current cell up or down by the number of rows visible in the 
window, and scrolls up or down to show that cell. (Selects one cell.) 



 Analytica User Guide 175

Shortcuts to navigate and edit a tableChapter Arrays and Indexes11

Other keys

Control+Page Up, 
Control+Page Down

Move the current cell left or right by the number of columns visible in 
the window, scrolling horizontally to show the new current cell. (This 
is not the same as Excel, in which Control+Page Up, Control+Page 
Down toggle between worksheets. Since we don't have worksheets, 
these do something else useful.) 

Shift+Page Up, 
Shift+Page Down

Move the current cell by the number of rows or columns that currently 
display on the screen, and scroll vertically by one page. Anchor stays 
the same, so that the currently selected region expands or shrinks by 
one page length. 

Shift+Control+Page Up, 
Shift+Control+Page 
Down

Same as Shift+Page Up, but horizontally rather than vertically. 

Tab Move one cell right. Same as right arrow. 

Shift+Tab Move one cell left. Same as left arrow. 

Enter, Shift+Enter If editing, accept change, selection remains on cell just edited. If not 
editing, but in edit mode, current cell becomes anchor cell and begin 
editing that cell. 

Return If editing, accept changes. Move anchor down one cell, wrapping to 
top of next column if anchor is at the bottom. Set current cell to 
anchor (so only one cell is selected). If not editing, just move, do not 
start editing. 

Shift+Return If editing, accept changes. Move anchor cell up one cell, wrapping to 
bottom of previous column if at top. Set current to anchor, so only one 
cell is selected. 

Control+a Select all (body) cells. If a row/col header is selected, selects all 
rows/cols. 



Chapter Arrays and Indexes

176 Analytica User Guide

11 Shortcuts to navigate and edit a table



Chapter 12 More Array Functions

This chapter describes a variety of more advanced array functions, 
including functions that:

• Create arrays (page 179)
• Reduce the number of dimensions in an array (page 182)
• Transform an array into another with the same dimensions 

(page 187)
• Interpolate values from arrays of x and y values (page 196)
• Other array functions (page 197)
• DetermTables (page 201)
• SubTables (page 203)
• Work with matrices (page 203)



Chapter More Array Functions

178 Analytica User Guide

12

This chapter describes several classes of function and other constructs that work with arrays. If 
you have not already ready it, we recommend that you read “Introducing indexes and arrays” on 
page 140 in the previous chapter, before reading about the functions in this chapter. 

Example variables Several examples in this chapter refer to these indexes and array variables:
Index Car_type := ['VW', 'Honda', 'BMW'] 
Index Years := 2005 .. 2009
Index Time := 0 ..4
Index CarNum := 1..7
Index MaintType := ['Repair','Scheduled','Tires']

Variable Car_prices :=
Car_type , Years 

Variable Miles :=
Car_type , Years 

Variable Miles_per_gallon:=
Car_type 

Variable Rate_of_inflation :=
Years 

Variable Cost_of_ownership :=
Car_type , Time  

Variable NumMaintEvents :=
MaintType ,CarNum

2005 2006 2007 2008 2009
VW $16,000 $17,000 $18,000 $19,000 $20,000
Honda $18,000 $19,000 $20,000 $22,000 $24,000
BMW $25,000 $26,000 $28,000 $30,000 $32,000

2005 2006 2007 2008 2009
VW 8000 7000 10K 6000 9000
Honda 10K 12K 11K 14K 13K
BMW 5000 8000 8000 7000 10K

VW Honda MBW
32 34 18

2005 2006 2007 2008 2009
1 1.01 1.02 1.04 1.03

0 1 2 3 4
VW 2810 2951 3098 3253 3416
Honda 3535 3847 3897 4166 4365
BMW 3185 3294 3409 3529 3656

1 2 3 4 5 6 7
Repair 10 4 9 4 4 1 4
Scheduled 0 2 0 1 2 0 5



 Analytica User Guide 179

Functions that create arraysChapter More Array Functions12

Variable NumRepairs :=
CarNum 

Functions that create arrays
Usually, the most convenient way to create an array of numbers or text values is as an edit table. 
When viewing the definition of the variable, choose Table from the expr menu to create an edit 
table (see “Defining a variable as an edit table” on page 166). If you want to define a table by 
explicitly listing its indexes and providing expressions to generate its values or sub-arrays, you 
might find Array() more convenient.

If you select expr from the expr menu, it displays it as a table expression in the Definition field 
(rather than a separate edit table), listing the indexes and values.

Array(i1, i2, … in, a)
Assigns a set of indexes, i1, i2, … in, as the indexes of the array a, with i1 as the index of the out-
ermost dimension (changing least rapidly), i2 as the second outermost, and so on. a is an expres-

Tires 0 2 0 0 1 0 0

1 2 3 4 5 6 7
10 4 9 4 4 1 4

1 2 3 4 5 6 7

An array 
viewed as a 
table

Table

An array 
viewed as an 
expression

expr menu



Chapter More Array Functions

180 Analytica User Guide

12 Functions that create arrays

sion returning an array which typically has at least n dimensions, each dimension with the number 
of elements matching the corresponding index. You can use array to change the index variable(s) 
from one to another with the same number(s) of elements. Array() is one of the few places where 
you actually need to worry about the order of the indexes in the array representation. 

Use Array() to specify an array directly as an expression. Array() is similar to Table() (page 181); 
in addition, it lets you define an array with repeated values (see Example 3), and change indexes 
of a previously defined array (see Example 4).

Library Array

Example 1 Definition viewed as an expression: 
Index Car_type := ['VW', 'Honda', 'BMW']
Array(Car_type, [32, 34, 18])

Definition viewed as a table:
Car_type 

Example 2 If an array has multiple dimensions, then the elements are listed in nested brackets, following the 
structure of the array as an array of arrays (of arrays..., and so on, according to the number of 
dimensions).

Definition viewed as an expression: 
Array(Car_type, Years, [[8K,7K,10K,6K,9K],
[10K,12K,11K,14K,13k], [5K,8K,8K,7K,10k]])

Definition viewed as a table:
Car_type , Years 

The size of each array in square brackets must match the size of the corresponding index. In this 
case, there is an array of three elements (for the three car types), and each element is an array of 
four elements (for the four years). An error message displays if these sizes don’t match. See also 
“Size(u,listLen)” on page 200.

Example 3 If an element is a scalar where an array is expected, Array() expands it to create an array with the 
scalar value repeated across a dimension.

Definition viewed as an expression:
Array(Car_type, Years, [[8K,7K,10K,6K,9K], 13K, [5K,8K,8K,7K,10k]])

Definition viewed as a table:
Car_type , Years 

Example 4 Use Array() to change an index of a previously defined array. 
Index Car_model := ['Jetta', 'Accord', '320']
Variable Table_a:= Table(Car_type) (32, 34, 18)
Variable Table_b:= Array(Car_model, Table_a) →

VW Honda BMW
32 34 18

2005 2006 2007 2008 2009
VW 8000 7000 10K 6000 9000
Honda 10K 12K 11K 11K 13K
BMW 5000 8000 8000 7000 10K

2005 2006 2007 2008 2009
VW 8000 7000 10K 6000 9000
Honda 13K 13K 13K 13K 13K
BMW 5000 8000 8000 7000 10K



 Analytica User Guide 181

Functions that create arraysChapter More Array Functions12

Car_model 

Tip There are some significant disadvantages to using the Array() function to change the index of an 
array in the fashion demonstrated in Example 4. Specifically, if a second dimension were later 
added to Table_a, the index that the Array() function changes might not be the one you intended. 
The preferred method for changing the index, which does fully generalize when Table_a has 
many dimensions, is to use the slice operator (see Tip on re-indexing) as follows:

Table_a [ @Car_type = @car_model ]

Table(i1, i2, … in) (u1, u2, u3, … um)
This function is automatically created when you select Table from the expr menu to create an edit 
table. You can view it as an expression in this form in the definition of the variable by selecting 
expression from the expr menu. It. creates an n-dimensional array of m elements, indexed by the 
indexes i1, i2, … in. In the set of indexes, I1 is the index of the outermost dimension, varying the 
least rapidly.

The second set of parameters, u1, u2 … um, specifies the values in the array. The number of val-
ues, m, must equal the product of the sizes of all of the dimensions. 

Each u is an expression that evaluates to a number, text value or probability distribution. It can 
also evaluate to an array, causing the dimensions of the entire table to increase. u cannot be a lit-
eral list.

Both sets of parameters are enclosed in parentheses; the separating commas are optional except 
if the table values are negative.

Use Table() to specify an array directly as an expression. Table() is similar to Array() (page 179); 
Table() requires m numeric or text values.

A definition created as a table from the expr menu uses Table() in expression view.

Library Array

Example 1 Definition viewed as an expression: 
Table(Car_type) (32, 34, 18)

Definition viewed as a table: 
Car_type 

Example 2 Definition viewed as an expression: 
Table(Car_type, Years)
(8K,7K,10K,6K,9K,10K,12K,11K,14K,13K,5K,8K,8K,7K,10K)

Definition viewed as a table: 
Car_type , Years 

Example 3 A table created with blank (zero) cells appears in expression view of the definition without the sec-
ond set of parameters:

Table(Car_type, Years)

Jetta Accord 320
32 34 18

VW Honda BMW
32 34 18

2005 2006 2007 2008 2009
VW 8000 7000 10K 6000 9000
Honda 10K 12K 11K 11K 13K
BMW 5000 8000 8000 7000 10K



Chapter More Array Functions

182 Analytica User Guide

12 Array-reducing functions

It looks like this when viewed as an edit table:
Car_type , Years 

Array-reducing functions
An array-reducing function operates across a dimension of an array and returns a result that 
has one dimension less than the number of dimensions of its input array. When applied to an 
array of n dimensions, a reducing function produces an array that contains n-1 dimensions. 
Examples include, Sum(x, i), Product(x,i), Max(x, i), Min(x, i), and others described below. The 
subscript construct x[i=v] and related subscript and slice functions also reduce arrays by a 
dimension (see “Subscript and slice of a subarray” on page 171).

The function Sum(x, i) illustrates some properties of reducing functions.

Examples Sum(Car_prices, Car_type) →
Years 

Sum(Car_prices, Years) →
Car_type 

Sum(Sum(Car_prices, Years), Car_type) → 334K

See “Example variables” on page 178 for example array variables used here and below.

Tip The second parameter, i, specifying the dimension over which to sum, is optional. But if the array, 
x, has more than one dimension, Analytica might not sum over the dimension you expect. For this 
reason, it is safer always to specify the dimension index explicitly in Sum() or any other array-
reducing function.

Reducing over an
unused index

If the index, i, is not a dimension of x, Sum(x, i) returns x unreduced (i.e., with the same number 
of indexes), but multiplied by the size (number of elements) of i. The reason is that if x is not 
indexed by i, it means that it has the same value for all values of i. This is true even if x is an atom 
with no dimensions:

Variable x := 5
Sum(x, Car_type) → 15

This is because Car_type has three elements (3 x 5 = 15). For Product:
Product(x, Car_type) → 125

That is, it multiplies x three times (53 = 125). 

In this way, if we later decide to change the value for x for each value of Car_type, we can rede-
fine x as an edit table indexed by Car_type. Any expression containing a Sum() or other reduc-
ing function on x works correctly whether it is indexed by Car_type or not. 

Elements that
are ignored

The array-reducing functions described in this section ignore elements of an array that have the 
special value Null. For example, the Average(x,i) function sums all the non-null elements of x 
and divide by the number of elements that are not null.

2005 2006 2007 2008 2009
VW 0 0 0 0 0
Honda 0 0 0 0 0
BMW 0 0 0 0 0

2005 2006 2007 2008 2009
59K 62K 66K 71K 76K

VW Honda BMW
90K 103K 141K



 Analytica User Guide 183

Array-reducing functionsChapter More Array Functions12

When a NaN value (signifying an indeterminate number) appears as an element of an array, the 
result of the function that operates on the array will usually be NaN as well. NaN values result 
from indeterminate operations such as 0/0, and the fact that they propagate forward in this fash-
ion helps ensure that you will not accidentally compute an indeterminate result without realizing it. 
However, in some cases you might wish to ignore NaN values in an array-reducing operation. The 
array-reducing functions Sum, Product, Average, Min, and Max all accept an optional parame-
ter, ignoreNaN that can be set to True. IgnoreNan requires a named-parameter syntax, for 
example:

Max(x,i,ignoreNaN:True)

When you operate over an array containing some text and some numeric values, the Sum, Min 
and Max functions can be instructed to ignore all the non-numeric values using an optional 
ignoreNonNumbers parameter, for example:

Max(x,i,ignoreNonNumbers:True)

Reducing over
multiple indexes

The array-reducing functions Sum, Product, Average, Min, Max, ArgMin, and ArgMax all allow 
you to specify more than one index as a convenient way to reduce over multiple indexes in a sin-
gle call. For example:

Sum(x,i,j,k)

This is equivalent to:
Sum(Sum(Sum(x,i),j),k)

Sum(x, i)
Returns the sum of array x over the dimension indexed by i. 

Library Array

Examples Sum(Car_prices, Years) →
Car_type 

See “Example variables” on page 178 for example array variables used here and below.

Product(x, i) 
Returns the product of all of the elements of x, along the dimension indexed by i. 

Library Array 

Examples Product(Car_prices, Car_type) →
Years 

Average(x, i)
Returns the mean value of all of the elements of array x, averaged over index i.

Library Array 

Examples Average(Miles, Years)→
Years 

VW Honda BMW
90K 103K 141K

2005 2006 2007 2008 2009
7.2T 8.398T 10.08T 12.54T 15.36T

VW Honda BMW
8000 12K 7600



Chapter More Array Functions

184 Analytica User Guide

12 Array-reducing functions

Max(x, i)
Returns the highest valued element of x along index i. 

Library Array

Examples Max(Miles, Years) →
Car_type 

To obtain the maximum of two numbers, first turn them into an array: 
Max([10, 5]) → 10

See “Example variables” on page 178 for example array variables used here and below.

Min(x, i)
Returns the lowest valued element of x along index i. 

Library Array 

Examples Min(Miles, Years) →
Car_type 

To obtain the minimum of two numbers, first turn them into an array:
Min([10, 5]) → 5

Argmax(a, i)
Returns the item of index i for which array a is the maximum. If a has more than one value equal 
to the maximum, it returns the index of the last one.

Library Array

Example Argmax(Miles, Car_type) →
Years 

Argmin(a, i)
Returns the corresponding value in index i for which array a is the minimum. If more than one 
value equals the minimum, returns the index of the last occurrence.

Library Array

Example Argmin(Car_prices, Car_type) →
Years 

CondMin(x: Array[i], cond: Boolean[i]; i: IndexType)
CondMax(x: Array[i], cond: Boolean[i]; i: IndexType)

Conditional Min and Max. CondMin() returns the smallest, and CondMax() returns the largest 
values along a given index, i, that satisfies condition cond. 

VW Honda BMW
10K 14K 10K

VW Honda BMW
6000 10K 5000

2005 2006 2007 2008 2009
Honda Honda Honda Honda Honda

2005 2006 2007 2008 2009
BMW VW BMW VW VW



 Analytica User Guide 185

Array-reducing functionsChapter More Array Functions12

Tip These functions do not support named parameter syntax. 

Library none

Examples CondMin(Cost_of_ownership, Time>=2, Time)→
Car_type 

Subindex(a, u, i)
Returns the value of index i for which array a (indexed by i) is equal to u. If more than one value 
of a equals u, it returns the last value of i that matches u. If no value of a equals u, it returns 
Null. If a has index(es) in addition to i, or if u is an array with other indexes, those indexes also 
appear in the result. 

Library Special

Examples Subindex(Car_prices, 18K, Car_type) →
Years 

Subindex(Car_prices, 12K, Years) →
Car_type 

If u is an array of values, an array of index values is returned.
Subindex(Car_prices, [12K, 21K], Car_type) →
Subindex , Years 

PositionInIndex(a, x, i)
Returns the position in index i — that is, a number from 1 to the size of index i — of the last ele-
ment of array a equal to x; if no element is equal, it returns 0. 

When array a is multidimensional, the result is reduced by one dimension, dimension i.

Library Array

Example When the array is one-dimensional:
Index I := ['A', 'B', 'C']
Variable A := Array(I, [1, 2, 2])
PositionInIndex(A, 1, I) → 1
PositionInIndex(A, 2, I) → 3
PositionInIndex(A, 5, I) → 0

Tip PositionInIndex() is the positional equivalent of Subindex(). It is useful when i contains duplicate 
values, in which case Subindex() would return an ambiguous result. 

VW Honda BMW
3098 3897 3409

2005 2006 2007 2008 2009
Honda «null» VW «null» «null»

VW Honda BMW
2007 2005 «null»

2005 2006 2007 2008 2009
18K Honda «null» VW «null» «null»
19K «null» Honda «null» VW «null»



Chapter More Array Functions

186 Analytica User Guide

12 Array-reducing functions

Tip Parameter a is optional. When omitted, it returns the position of x in the index i, or 0 if not found. 
The syntax @[i=x] (see “@: Index Position Operator” on page 186) returns the same result as 
PositionInIndex(,x,i):

PositionInIndex(,'B',I) → 2
@[I = 'B'] → 2
PositionInIndex(,'D',I) → 0
@[I = 'D'] → 0

More examples and tips When the array is multidimensional:

Taking the same example from above:
PositionInIndex(Car_prices, 18K, Car_type) →
Years 

@: Index Position Operator
The position of value x in an index i is the integer n where x is the nth element of i. n is a number 
between 1 and Size(i). The first element of i is at position 1; the last element of i is at position 
Size(i). The position operator @ offers three ways to work with positions: 

• @i → an array of integers from 1 to Size(i) indexed by i. 
• @[i=x] → the position of value x in index i, or 0 if x is not an element of i.
• e[@i=n] → the nth slice of the value of expression e over index i. 

Examples Index Car_type := 

@Car_type → 
Car_type 

@[Car_type='Honda']→ 2
Car_type[@Car_type=2] → 'Honda'

More examples
and tips

Index Time: 

Years := Time+2007 →: 

@Time → 
Time 

@[Time=2] → 3
@Time = 3 → 
Time 

2005 2006 2007 2008 2009
2 0 1 0 0

VW Honda BMW

VW Honda BMW
1 2 3

0 1 2 3 4

2007 2008 2009 2010 2011

0 1 2 3 4
1 2 3 4 5

0 1 2 3 4
0 0 1 0 0



 Analytica User Guide 187

Transforming functionsChapter More Array Functions12

Time[@Time=3] → 2
(Time+2007)[@Time=3] → 2009

Tip You can use this operator to re-index an array by another index having the same length but 
different elements. For example, suppose Revenue is indexed by Time, this following gives the 
same array but indexed by Years: Revenue[@Time=@Years]

Area(y, x, x1, x2,i)
Returns the area (sum of trapezoids) under the piecewise-linear curve denoted by the points 
(xi,yi), landing in the region . The arrays x and y must share the common index i, or 
when either x or y is itself an index, i can be safely omitted. x1 and x2 are optional; if they are not 
specified, the area is calculated across all values of x. 

If x1 or x2 fall outside the range of values in i, the first value (for x1) or last value (for x1) are 
used. Area() computes the total integral across x, returning a value with one less dimension than 
y. Compare Area() to Integrate() (page 190).

Library Array

Example Area(Cost_of_ownership, Time, 0, 2) →
Car_type

Transforming functions
A transforming function operates across a dimension of an array and returns a result that has 
the same dimensions as its input array.

The function Cumulate(x, i) illustrates some properties of transforming functions.

Example Cumulate(Car_prices,Years) →
Car_type , Years 

The second parameter, i, specifying the dimension over which to cumulate, is optional. But if the 
array, x, has more than one dimension, Analytica might not cumulate over the dimension you 
expect. For this reason, it is safer always to specify the dimension index explicitly in any trans-
forming function.

Cumulate(x, i)
Returns an array with each element being the sum of all of the elements of x along dimension i up 
to, and including, the corresponding element of x. 

If x is not indexed by i, Cumulate(x, i) operates as if x were indexed by i, but constant across i. 
Using this, a convenient trick for numbering the elements of an index is to use Cumulate(1, i).

Library Array

Example Cumulate(Cost_of_ownership, Time) →
Car_type , Time

x1 x x2≤ ≤

VW Honda BMW
5905 7563 6591

2005 2006 2007 2008 2009
VW 16K 33K 51K 70K 90K
Honda 18K 37K 57K 79K 103K
BMW 25K 51K 79K 109K 141K

0 1 2 3 4
VW 2810 5761 8859 12.11K 15.53K
Honda 3535 7382 11.28K 15.45K 19.81K
BMW 3185 6479 9888 13.42K 17.07K



Chapter More Array Functions

188 Analytica User Guide

12 Transforming functions

Cumulate(1,Car_type) →
Years 

See “Example variables” on page 178 for example array variables used here and below.

Uncumulate(x, i, firstElement)
Uncumulate(x, i) returns an array whose first element (along i) is the first element of x, and each 
other element is the difference between the corresponding element of x and the previous element 
of x. Uncumulate(x, i, firstElement) returns an array with the first element along i equal to 
firstElement, and each other element equal to the difference between the corresponding element 
of x and the previous element of x.

Uncumulate(x, i) is the inverse of Cumulate(x, i). Uncumulate(x, i, 0) is similar to a discrete dif-
ferential operator. 

Library Array

Example Uncumulate(Cost_of_ownership, Time) →
Car_type , Time

Uncumulate(Cost_of_ownership, Time,0) →
Car_type , Time

See “Example variables” on page 178 for example array variables used here and below.

Cumproduct(x, i)
Returns an array with each element being the product of all of the elements of x along dimension 
i up to, and including, the corresponding element of x. 

Library Array

Example Cumproduct(Cost_of_ownership, Time) →
Car_type , Time  

Rank(x, i)
Returns an array of the rank values of x across index i. The lowest value in x has a rank value of 
1, the next-lowest has a rank value of 2, and so on. i is optional if x is one-dimensional. If i is omit-
ted when x is more than one-dimensional, the innermost dimension is ranked.

If two (or N) values are equal, they receive the same rank and the next higher value receives a 
rank 2 (or N) higher. You can use an optional parameter, Type, to control which rank is assigned 
to equal values. By default, the lowest rank is used, equivalent to Rank(x,i,Type:-1). Alternatively, 

VW Honda BMW
1 2 3

0 1 2 3 4
VW 2810 141 147 155 163
Honda 3535 312 50 269 199
BMW 3185 109 115 120 127

0 1 2 3 4
VW 0 141 147 155 163
Honda 0 312 50 269 199
BMW 0 109 115 120 127

0 1 2 3 4
VW 2810 8.292M 25.69G 83.57T 285.5Q
Honda 3535 13.6M 53G 220.8T 963.7Q
BMW 3185 10.49M 35.77G 126.2T 461.4Q



 Analytica User Guide 189

Transforming functionsChapter More Array Functions12

Rank(x,i,Type:0) uses the mid-rank and Rank(x,i,Type:1) uses the upper-rank. 
Rank(x,i,Type:Null) assigns a unique rank to every element (the numbers 1 thru N) in which tied 
elements may have different ranks.

By default, Rank assigns an arbitrary ranking to NaN or Null values. Alternatively, you can pass 
these through to the result as NaN or Null using Rank(x,i,passNaNs:true, passNulls:true).

Rank(x,i,descending:true) assigns the largest value a rank 1, the second largest a rank 2, and 
so on. When x contains textual values, the optional boolean parameter caseInsensitive can be 
specified as true to ignore upper-lower case differences during the comparisons. A multi-key rank 
can be processed by indexing each key with a new index, and specifying this index for optional 
keyIndex parameter. In a multi-key rank, x[@KeyIndex=1] determines the rank order, except 
that ties are then resolved using x[@KeyIndex=2], any ties there are resolved using x[@Key-
Index=3], and so on. The parameters descending and caseInsensitive may also be indexed 
by they keyIndex when they vary by key.

Library Array

Examples Basic example:
Rank(Years) →
Years

Rank(Car_prices, Car_type) →
Car_type , Years 

Optional Type parameter example:
Index RankType := [-1,0,1, Null]

Rank(NumRepairs,CarNum,Type:RankType) →
Rank_type , CarNum

Multi-key example:
Rank(NumMaintEvents,CarNum,KeyIndex:MaintType) →
CarNum

See “Example variables” on page 178 for example array variables used here and below.

Sort(x, i)
Returns the elements of x, reordered along index i in sorted order. The equivalent can be accom-
plished using the SortIndex function as:

x[i=SortIndex(x,i)]

2005 2006 2007 2008 2009
1 2 3 4 5

2005 2006 2007 2008 2009
VW 1 1 1 1 1
Honda 2 2 2 2 2
BMW 3 3 3 3 3

1 2 3 4 5 6 7
-1 7 2 6 2 2 1 2 Lowest rank for duplicates, 2 (default)
0 7 3.5 6 3.5 3.5 1 3.5 Mid rank for duplicates, 3.5
1 7 5 6 5 5 1 5 Upper rank for duplicates, 5
Null 7 2 6 3 4 1 5 Unique rank for duplicates

1 2 3 4 5 6 7
7 4 6 2 3 1 5



Chapter More Array Functions

190 Analytica User Guide

12 Transforming functions

To perform a multi-key sort, in which the first key determines the sort order unless there are ties, 
in which the second key breaks the ties, the third key breaks any remaining ties, etc., collect the 
key criteria along an index K and specify the optional keyIndex parameter, e.g.:

Sort(Array(K,[key1,key2,key3]),i,keyIndex:K)

Specifying optional parameter descending:true reorders from largest to smallest, and 
caseInsensitive:true ignores lower/upper case in textual comparisons. Either of these may 
also be indexed by the keyIndex when the order or case-insensitivity varies by key.

Multi-key example:
Sort(NumMaintEvents, CarNum, KeyIndex: MaintType, descending:true)→
MaintType ,CarNum

Integrate(y, x, i)
Returns the integral of the piecewise-linear curve denoted by the points (xi,yi), computed by 
applying the trapezoidal rule of integration to the arrays of points x,y over index i. Integrate() 
computes the cumulative integral across i, returning a value with the same number of dimensions 
as y. Compare Integrate() to Area() (page 183) and Cumulate() (page 187). 

When x is itself an index, then i can be omitted and y is an array indexed by x. Likewise, if y is an 
index, i can be omitted and x is indexed by y.

Library Array

Example Integrate(Cost_of_ownership, Time) →
Car_Type , Time

Tip There are subtle relationships among Area(), Integrate(), Sum() and Cumulate(): 
When Area() operates over the entire index it returns the last value of the Integrate() series. Both 
of these functions are based on trapezoidal integration, meaning that they integrate the averages 
of each adjacent pair over the boundaries of the index. Similarly, Sum() returns the last value of 
Cumulate(). But in this case the operation is a simple addition, not a trapezoidal integration.

Normalize(y, x, i)
Returns a re-scaled version of array y, such that the area under the piecewise-linear curve 
denoted by the points (xi,yi) is re-scaled to be one. Normalize is equivalent to

y / Area(y,x,,,i)

The arrays x and y must both contain numeric values, and should share i as a common index. 
When either x or y is itself the shared index, the parameter i can be omitted, but it is a good prac-
tice to include it anyway.

Tip Normalize() does not force the values along index i to sum to 1, nor does it force the sum of 
squares to be 1. To do these operations divide y by Sum(y, i) or by Sqrt(Sum(y^2,i)). We 
recommend always including the third parameter, i, when using Normalize(), even when the 
shared index is passed for x, since this helps to avoid errors or confusion with these other senses 
of normalization.

1 2 3 4 5 6 7
Repair 10 9 4 4 4 4 1
Scheduled 0 0 5 2 2 1 0
Tires 0 0 0 2 1 0 0

0 1 2 3 4
VW 0 2881 5905 9081 12.42K
Honda 0 3691 7563 11.59K 15.86K
BMW 0 3240 6591 10.06K 13.65K



 Analytica User Guide 191

Converting between multiD and relational tablesChapter More Array Functions12

Library Array

Example Normalize(Cost_of_Ownership, Time, Time) →
Car_type , Time

See “Example variables” on page 178 for example array variables used here and below.

Converting between multiD and relational tables
The MDArrayToTable() function “flattens” a multi-dimensional array into a two-dimensional rela-
tional table. When a simple relational transformation is desired, the table will have one row for 
each array element and only one column (the right-most column) containing those element val-
ues. Alternatively MDArrayToTable() can produce a fact table in which values occupy multiple 
columns divided over a specified index, referred to as the Value Index. Both of these methods are 
described in separate sections below. The third section applies to both kinds of tables and 
describes partial transformations in which the MDArrayToTable() function will only operate on a 
subset of indexes, leaving the rest in array form.

The MDTable() function does the inverse, creating a multi-dimensional array from a table of val-
ues. Viewing tabular results in a multi-dimensional form via MDTable() often provides informative 
new perspective on existing data.

Many external application programs, including spreadsheets and relational databases, are limited 
to two-dimensional tables. Thus, before transferring multi-dimensional data between these appli-
cations and Analytica, it might be necessary to convert between multi-dimensional arrays and 
two-dimensional tables.

MDArrayToTable(A, I, L)
(pure relational transformation)

Transforms a multi-dimensional array, A, into a two-dimensional array (i.e., a table) indexed by I 
and L. The result contains one row along I for each element of A. Each column along L, except 
the far right column, represents a coordinate index from the array. Index columns are populated 
with the coordinate values for the element. The far right column contains the actual value of the 
element.

Before using MDArrayToTable(), you must first define the index I with the appropriate number of 
elements. If the number of elements in I is equal to size(A)the resulting table will contain all 
array elements. If the number of elements in I is equal to the number of non-empty elements of A, 
the resulting table will contain only the non-empty elements of the array. If the number of elements 
in I is anything else, an error will occur. The optional parameters omitNull and omitZero control 
what is considered to be empty.

Library Array

Example Starting with “Array_3x3x3” indexed by “Number”, “Letter”, and “Hue”

Number  Number Number
Letter Letter Letter,

Hue = “red” Hue = “green” Hue = “blue”

0 1 2 3 4
VW 0.2263 0.2377 0.2495 0.2620 0.2752
Honda 0.2229 0.2426 0.2457 0.2627 0.2752
BMW 0.2333 0.2413 0.2497 0.2585 0.2678

1 2 3 1 2 3 1 2 3
A 45 19 92 A 34 25 45 A 21 65 95
B 13 21 81 B 11 62 19 B 48 33 12
C 12 43 47 C 84 45 53 C 57 56 23



Chapter More Array Functions

192 Analytica User Guide

12 Converting between multiD and relational tables

Row := sequence(1,size(Array_3x3x3))
Col := ['Number','Letter','Hue','Values']

MDArrayToTable(Array_3x3x3,Row,Col) → 

Row Col

The resulting table populates Index columns with the corresponding index labels for the array ele-
ment. Set the optional parameter positional to true to return the index positions rather than 
index labels:

MDArrayToTable(Array_3x3x3,Row,Col,positional:true) → 

Row Col

Column headings can be customized using a one-dimensional variable to associate headings and 
indexes:

Index Headings := ['X','Y','Z','Values']
Variable Index2Heading := Table(Headings) 
('Number','Letter','Hue','Anything')
MDArrayToTable(Array_3x3x3,Row,Index2Heading,positional:true) → 

Row Col

Number Letter Hue Values
1 1 A red 45
2 1 A green 34
3 1 A blue 21
4 1 B red 13
...
26 3 C green 53
27 3 C blue 23

Number Letter Hue Values
1 1 1 1 45
2 1 1 2 34
3 1 1 3 21
4 1 2 1 13
...
26 3 3 2 53
27 3 3 3 23

X Y Z Values
1 1 1 1 45
2 1 1 2 34
3 1 1 3 21
4 1 2 1 13
...
26 3 3 2 53
27 3 3 3 23

All but the last column
elements specify indexes 
from the array

The last column element contains the 
name heading of the value column. It 
does not specify an index



 Analytica User Guide 193

Converting between multiD and relational tablesChapter More Array Functions12

MDArrayToTable(A, I, L,ValueIndex)
(fact table transformation)

The MDArrayToTable() function creates a fact table whenever the optional ValueIndex parame-
ter is used. This format allows you to have multiple columns of values divided along one of the 
original array indexes, the designated ValueIndex. The headings of each value column are typi-
cally the elements of the value index. In this type of transformation, the value index is not consid-
ered to be a positional coordinate of the original array. Instead, the array is interpreted as having 
a reduced coordinate system spanned only by the remaining indexes, with each coordinate loca-
tion containing multiple values.

Example Starting with the same array from the example above, you can specify Hue as the value index. 
The array would be considered to have only two remaining coordinate dimensions: Number and 
Letter. This changes the effective size of the array, and therefore the length of the row index:

Row := 1..Sum(1,Number,Letter) or equivalently: Row := 1..9

The L parameter includes index columns as before, but the value column now contains the ele-
ments of the value index:

Col := Concat(['Number','Letter'],Hue) or equivalently:
Col := ['Number','Letter','Red','Green','Blue']

Include Hue as the ValueIndex parameter:
MDArrayToTable(Array_3x3x3,Row,Col,Hue)→

Row Col

MDArrayToTable()
(partial transformation)

In both examples above, the MDArrayToTable() function completely “flattened” the entire array 
into a two-dimensional table. But every array can be regarded as a stack of smaller sub-arrays, 
each having one less dimension than the whole. If MDArrayToTable() operates on only one of 
these sub-arrays, the result will also be a flat two-dimensional table. If it operates on each of the 
sub-arrays individually, the result will be a stack of tables which can no longer be described as 
completely “flat”. Extending this idea, it is possible to imagine a plane of tables or a cube of tables 
if the original array starts off with enough dimensions. This essentially describes the idea of a par-
tial transformation. The MDArrayToTable() function is not obliged to operate on all available array 
indexes. In fact there are often advantages to leaving some dimensions intact since they can still 
be analyzed using Analytica’s array abstraction features.

Specifying which dimensions are to be preserved in an MDArrayToTable() transformation 
involves a specialized coding technique described by some advanced users in New Jersey as, 
“fugetaboutit!” If you simply forget about certain indexes and remove all references to them in the 
MDArrayToTable() function and its parameters, the result will be an array of tables with dimen-
sions along the omitted indexes. This is true whether or not the ValueIndex parameter is used. In 
any case the length of the I parameter must be equal to the number of elements (or mutually non-
empty elements) in each of the flattened sub-arrays.

Number Letter Red Green Blue
1 1 A 45 34 21
2 1 B 13 11 48
3 1 C 12 84 57
4 2 A 19 25 65
...
8 3 B 81 19 12
9 3 C 47 53 23

The right-most n column elements are elements of the 
value index, where n is the size of the value index. 
(In this example Hue has three elements)

First column elements 
specify remaining coordi-
nate indexes in the array.



Chapter More Array Functions

194 Analytica User Guide

12 Converting between multiD and relational tables

MDTable(T, rows, cols, vars, conglomerationFn, defaultValue, ValueColumn)

Returns a multi-dimensional array from a two-dimensional table of values. If n is the total number 
of columns and m is the number of value columns in the table T, the following structure is 
assumed: The first n-m columns of T specify coordinates, and the right-most m columns contain 
data values. When there is only one data value in each row (a single value column) the table is 
described as a pure relational table. When there are multiple value columns it is described as a 
fact table.

rows and cols specify the vertical and horizontal indexes of the two-dimensional table. The 
length of the rows index is equal to the number of data records in the table. The length of cols is 
equal to the total number of columns.

The optional parameter ValueColumn specifies the index over which multiple value columns are 
divided in a fact table. If ValueColumn is omitted, the table is assumed in pure relational format, 
having a single value column.

The parameter vars is a list of index identifiers specifying the coordinate dimensions of the final 
array. It is optional if the table is in pure relational format (single value column). If vars is omitted, 
the dimensions of the final result are specified by the first n-1 elements of cols, where n is the 
number of elements in cols.

If a fact table (multiple value columns) is being transformed then you must use vars to specify the 
coordinate indexes of the array. The elements of vars must correspond to the coordinate columns 
of the table or an error will result. The number of elements in vars should be equal to n-m where 
n is the number of elements in cols and m is the number of value columns. Note that the list of 
coordinate indexes does not include the value index. 

It is possible that two or more rows of T specify identical coordinates. In this case, a conglomera-
tion function is used to combine the values for the given cell. The conglomerationFn parameter 
is a text value specifying which conglomeration function is to be used. Possible values are "sum" 
(default), "min", "max", "average", and "product".

It is also possible that no row in t corresponds to a particular cell. In this case, the cell value is set 
to defaultValue, or if the defaultValue parameter is omitted, the cell value is set to undefined. 
Undefined values can be detected using the IsUndef() function.

Library Array

Example Starting with the fact table produced in the previous section:

Rows , Cols

Index rows := 1..9
Index cols := ['Number','Letter','Red','Green','Blue']
Index Hue := ['Red','Green','Blue']

Number Letter Red Green Blue
1 1 A 45 34 21
2 1 B 13 11 48
3 1 C 12 84 57
4 2 A 19 25 65
...
8 3 B 81 19 12
9 3 C 47 53 23



 Analytica User Guide 195

Converting between multiD and relational tablesChapter More Array Functions12

MDTable(T,rows,cols,['Number','Letter'],ValueColumn:Hue)→

Number  Number Number
Letter Letter Letter,

Hue = “red” Hue = “green” Hue = “blue”

Example Modifying the table by changing the (1,C) coordinate to (1,B), it now contains a missing value at 
(1,C) and redundant values at (1,B):

Rows , Cols

MDTable(T,rows,cols,['Number','Letter'],'average','N/A',Hue)→

Number  Number Number
Letter Letter Letter,

Hue = “red” Hue = “green” Hue = “blue”

MDTable()
(partial transformation)

If the input is a partially flattened array of tables, no special action is necessary. The pre-existing 
dimensions will automatically be rolled up into the final array without any reference being made to 
them. This is consistent with the general principles of array abstraction in Analytica.

1 2 3 1 2 3 1 2 3
A 45 19 92 A 34 25 45 A 21 65 95
B 13 21 81 B 11 62 19 B 48 33 12
C 12 43 47 C 84 45 53 C 57 56 23

Number Letter Red Green Blue
1 1 A 45 34 21
2 1 B 13 11 48
3 1 B 12 84 57
4 2 A 19 25 65
...
8 3 B 81 19 12
9 3 C 47 53 23

1 2 3 1 2 3 1 2 3
A 45 19 92 A 34 25 45 A 21 65 95
B 12.5 21 81 B 47.5 62 19 B 52.5 33 12
C N/A 43 47 C N/A 45 53 C N/A 56 23



Chapter More Array Functions

196 Analytica User Guide

12 Interpolation functions

Interpolation functions
These three functions interpolate across arrays. Given arrays y and x with a common index i, 
these functions interpolate a value for y corresponding to value v along the x axis.
 

LinearInterp() and CubicInterp() use these variables:
Index_a:

Index_b:

Array_a:
Index_a , Index_b 

Stepinterp(x, y, v, i)
Returns the element or slice of array y for which v has the smallest value less than or equal to x. 
x and y must both be indexed by i, and x must be increasing along index i. If v is greater than all 
values of x, it returns the element of y for which x has the largest value. 

When an optional parameter, LeftLookup, is specified as True, it returns the element or slice of y 
corresponding to the largest value in x that is less than or equal to v.

If v is an atom (scalar value), the result is an array indexed by all indexes of a except x’s index. If 
v is an array, the result is also indexed by the indexes of v.

If the first parameter x is an index of y, the fourth parameter is optional. Stepinterp(x, y, v) is sim-
ilar to y[x=v] except that y[x=v] selects based on v being equal to x, while Stepinterp(x, y, v) 
selects based on v being greater than or equal to x.

Stepinterp() can be used to perform table lookup.

Library Special

Examples To see the values in Car_prices corresponding to Years >= 2007.5:
Stepinterp(Years, Car_prices, 2007.5, Years) →
Car_type 

a b c

1 2 3

1 2 3
a 7 -3 1
b -4 -1 6
c 5 0 -2

Cubicinterp*

♦

*

Δ

♦

X

Y

V

Stepinterp

Linearinterp

Δ

VW Honda BMW
2008 19K 22K 30K



 Analytica User Guide 197

Other array functionsChapter More Array Functions12

Here v is a list of two values:
Stepinterp(Years, Car_prices, [2007,2008], Years) →

Linearinterp(x, y, v, i)
Returns linearly interpolated values of v, given y representing an arbitrary piecewise linear func-
tion. x and y must both be indexed by i, and x must be increasing along i. y is an array of the cor-
responding output values for the function (not necessarily increasing and might be more than one 
dimension). v might be probabilistic and/or an array. 

For each value of v, Linearinterp() finds the nearest two values from x and interpolates linearly 
between the corresponding values from y. If v is less than the minimum value in x, it returns the 
first value in y. If v is greater than the maximum value in x, it returns the last value in y. 

Library Special

Example Linearinterp(Index_b, Array_a, 1.5, Index_b) →
Index_a 

Cubicinterp(x, y, v, i)
Returns the natural cubic spline interpolated values of y along x, interpolating for values of v. x 
and y must both be indexed by i, and x must be increasing along i. 

For each value of v, Cubicinterp() finds the nearest values from x, and using a natural cubic 
spline between the corresponding values of y, computes the interpolated value. If v is less than 
the minimum value in x, it returns the first value in y; if v is greater than the maximum value in x, 
it returns the last value for y.

Library Special

Example Cubicinterp(Index_b, Array_a, 1.5, Index_b) →
Index_a 

Other array functions

Aggregate(x,map,i,targetIndex)
Converts from an array x indexed by fine-grain index i, to an array indexed by the coarser-grained 
index targetIndex. Map is an array indexed by i, specifying for each element if i the value of tar-
getIndex that the i-value maps to. An optional parameter, positional:true, can be specified if 
map contains the target index position rather than the target index value.

Aggregate is used when many index elements in i correspond to the same targetIndex element. 
By default, the values mapping to the same target position are aggregated by summing them. An 
optional parameter, type, can be used to specify alternative aggregation methods. Common 
aggregation methods include: “Sum”, “Max”, “Min”, “Average”, “Median”, but in general any built-
in or user-defined function able to accept two parameters, an array and index, such as with a dec-
laration: (A : Array[I] ; I : Index ), can be named.

An optional parameter, defaultValue, specifies the value to use when no value maps to a given 
target position. 

Library Array

VW Honda BMW
2007 18K 20K 28K
2007 19K 22K 30K

a b c
2 -2.5 2.5

a b c
0.6875 -2.875 2.219



Chapter More Array Functions

198 Analytica User Guide

12 Other array functions

Example To use aggregate, you need to define the many-to-one map, here from Time to TimePeriod:
Index Period := ['Early', 'Middle', 'Late']
Variable Time2Period:= 
Time 

Aggregate(Cost_of_ownership, Time2Period, Time, Period ) →
CarType , Period

Aggregate(Cost_of_ownership,Time2Period,Time,Period,type:'Average') 
→
CarType , Period

Concat(a1, a2, i, j, k)
Appends array a2 to array a1. i and j are indexes of a1 and a2, respectively. k is the index of the 
resulting dimension, and usually consists of the list created by concatenating i and j. When k is 
omitted and the result has two or more dimensions, a local index named .k will automatically be 
created by concatenating the elements of i and j, and the result will be indexed by this .k.

The parameter i (or j) can be omitted when a1 (or a2) is one-dimensional, if a1 (or a2) is indexed 
by a local index .k created by a previous call to Concat, when a1 (or a2) contains an implicit 
dimension, or when a1 (or a2) is atomic. The default to a local index .k makes it easy to nest calls 
to Concat when concatenating three or more arrays (or indexes) together. When a1 (or a2) is not 
array valued an i (or j) is omitted, a single element is concatenated to the front of a2 (or to the end 
of a1).

Library Array

Examples These examples use these variables:
Index Years := 

Index More_years: 

Index All_years := Concat(Years, More_years) → 

More_prices: Car_type , More_years 

0 1 2 3 4
'Early' 'Middle' 'Middle' 'Late' 'Late'

Early Middle Late
VW 2810 6049 6669
Honda 3535 7744 8531
BMW 3185 6703 7185

Early Middle Late
VW 2810 3025 3335
Honda 3535 3872 4266
BMW 3185 3352 3593

2005 2006 2007 2008 2009

2010 2011 2012

2005 2006 2007 2008 2009 2010 2011 2012

2010 2011 2012
VW 21K 22K 24K
Honda 25K 28K 29K
BMW 32K 33K 35K



 Analytica User Guide 199

Other array functionsChapter More Array Functions12

Concat(Car_prices, More_prices, Years, More_years, All_years) →
All_years , Car_type 

Example of nested usage and local .k index:
Concat(Car_prices,Concat(' ',Miles, ,Years),Years) →
Car_type , .K 

See “Example variables” on page 178 for example array variables used here and below.

ConcatRows(a, rowIndex, colIndex, concatIndex) 
Takes an array, a indexed by rowIndex and colIndex, and concatenates each row, flattening the 
array by eliminating the row dimension. The result is indexed by the concatIndex, which must be 
an index with size(rowIndex) * size(colIndex) elements. If concatIndex is omitted, a local index 
named .concatIndex is introduced defined as 1..N, where N is size(rowIndex)*size(colIn-
dex).

Library Array 

Example ConcatRows(Car_prices,Car_type,Years) →
.ConcatIndex

See “Example variables” on page 178 for example array variables used here and below.

IndexNames(a)
Returns a list of the identifiers of the indexes of the array a as text values.

Library Array

Example IndexNames(Car_prices) → ['Car_type','Years']

IndexesOf(a)
Returns a list of the indexes of the array a as handles (see “Handles to objects” on page 356).

It is similar to IndexNames(), except that it returns handles instead of identifiers as text values. It 
is possible for an array to have more than one local index having identical names. This is not rec-
ommended, but where it occurs, the index handles returned by IndexesOf() are unambiguous. 

Library Array

Example IndexesOf(Car_prices) → [Car_type, Years]

VW Honda BMW
2005 16K 18K 25K
2006 17K 19K 26K
2007 18K 20K 28K
2008 19K 22K 30K
2009 20K 24K 32K
2010 21K 25K 32K
2011 22K 28K 33K
2012 24K 29K 35K

2005 2006 2007 2008 2009 2005 2006 2007 2008 2009
VW 16K 17K 18K 19K 20K 8000 7000 10K 6000 9000
Honda 18K 19K 20K 22K 24K 10K 12K 11K 14K 13K
BMW 25K 26K 28K 30K 32K 5000 8000 8000 7000 10K

1 2 3 4 5 13 14 15
16K 17K 18K 19K 20K ... 28K 30K 32K



Chapter More Array Functions

200 Analytica User Guide

12 Other array functions

IndexValue(i)
Some variables have both an index value and a result value. Examples include a self-indexed 
array; a variable or index defined as a list of identifiers or list of expressions; and a Choice list 
with a self-domain. IndexValue(i) returns the index value of i, where (i) alone would return its 
result value. 

Library Array Functions

Example Index L := [i, j, k, "value"]
Index rows := 1..Size(A)
Variable Flat_A := MdArrayToTable(A, rows, IndexValue(L))

Size(u,listLen)
Returns the number of atoms (elementary cells) in array u. The size of an atom (including the 
special value null) is 1. The size of an empty list is 0.

Size(I) can be used to find the number of elements in an index I, provided that I is a pure 
index and not a self-indexed array. When X is a self-indexed array, Size(X) returns the number 
of cells in the array, while Size(IndexValue(X)) returns the number of elements of X’s self-
index.

If an array A contains an implicit dimension, it is not possible to use Size(IndexValue(...)) 
to obtain the length of the implicit dimension, since the implicit dimension has no name to refer to 
it by. Setting the optional parameter listLen:true returns the length of the implicit index, or null if 
there it has no implicit index.

Library Array Functions

Examples Size(Years) → 4
Size(Car_prices) → 12
Size(10) → 1
Size([]) → 0
Size([Years,Car_prices]) → 24
Size([Years,Car_prices],listLen:true) → 2

Subset(d,position,i,resultIndex )
Subset(d) returns the subset of d’s index values that correspond to true values in d. This basic 
usage, explained in “Subset(d)” on page 164, cannot be employed when d has more than one 
dimension, that is, it does not array abstract. The optional parameters i and resultIndex provide 
an array-abstractable form that can be applied to multi-dimensional arrays, where the parameter i 
specifies the index to take the subset over, and resultIndex specifies the index for the final result. 
When the number of true elements exceeds N (the number of elements in resultIndex), the index 
values corresponding to the first N true values are returned. For the cases where there are fewer 
than N true values, the result is padded with null values. Setting the optional position parame-
ter to true returns the index positions, rather than the index elements, of the true values.

Library Array

Example Index MultiEventCars := 1..4

Subset(Miles > 12,000,i:Car_type,resultindex:Car_type) →
Years

In the above example, Miles values for Honda exceeded 12,000 in 2008 and 2009. 

See “Example variables” on page 178 for example array variables used here and below.

2005 2006 2007 2008 2009
<<null>> <<null>> <<null>> Honda Honda



 Analytica User Guide 201

DetermTable: Deterministic tablesChapter More Array Functions12

DetermTable: Deterministic tables
A DetermTable provides an input view like that of an edit table (see page 168), allowing you to 
specify values or expressions in each cell for all index combinations; however, unlike a table, the 
evaluation of a determtable conditionally returns only selected values from the table. It is called a 
determtable because it acts as a deterministic function of one or more discrete-valued variables. 
You can conceptualize a determtable as a multi-dimensional generalization of a select-case 
statement found in many programming languages, or as a value that varies with the path down a 
decision tree.

The following shows the edit view of a determ table, in which you can enter a different miles per 
gallon for each car type. Car_type has been changed from being an index in previous examples 
to a decision node here, defined as a Choice, with the Hybrid selected.

When Miles_per_gallon is evaluated, its result contains only the miles per gallon for the 
selected car type.

In comparison, the result of evaluating a straight table would include all values for all car types.

DetermTable inputs The dimensions of a determtable may be a combination of normal indexes and discrete variables. 
Each discrete variable used must have a domain that explicitly contains all possible values, and it 
is these values that are used for the dimension in the determtable edit view. The selection occurs 
over the discrete variables, so that DetermTable() behaves differently from Table() only when at 
least one of the dimensions is a discrete variable. The definition of each discrete variable speci-
fies which value from its domain is selected. 

When you define a discrete variable to serve as an input to DetermTable(), it is convenient to 
use a choice menu (see “Creating a choice menu” on page 117) with the index for the Choice( ) 
function set to Self. You must then set the domain attribute to either List, List of Label, or Index. 
The List and List of Labels options allow you to exist all possible values explicitly. An Index 
domain pulls the list of possible values from a separate index object that already contains the list 
of possible values.

Creating a DetermTable To define a variable as a determtable:

1. Decide on the inputs — the discrete conditioning variables.
2. Press the expr menu above the definition field and select Other....



Chapter More Array Functions

202 Analytica User Guide

12 DetermTable: Deterministic tables

Analytica opens the Object Finder dialog (page 108).
3. Select Array from the Library popup menu and select Determtable from the function list.

4. Click the Indexes button to open the Indexes dialog, which lets you choose discrete 
conditioning variable(s).

5. Click OK to accept the indexes and open an Edit Table window.
6. Enter the outcomes corresponding to each outcome of your discrete inputs.

Expression view of a
determtable

When you select the expression view of a definition that was created as a determtable, it looks 
like this: 

Determtable(i1, i2, … in) (r1, r2, r3, … rm)

This describes an n-dimensional conditional deterministic table, indexed by the indexes and dis-
crete conditioning variables i1, i2, … in. The last index, in, is the innermost index, varying the 
most rapidly. r1, r2, … rm are the outcomes in the array. 

Converting a Table to a
DetermTable

To convert an existing table to a determTable, view either the Object Window or Attribute pane for 
the variable and use the pull-down to change the definition type to Other.... Answer Yes when 



 Analytica User Guide 203

SubTableChapter More Array Functions12

asked to replace the current definition, and the Object Finder dialog (page 108) appears. From 
the Array library select DetermTable and press OK.

An alternative way to convert a table to a determTable is to view the table definition in expression 
mode and change the first word Table to DetermTable. 

Use in Parametric
Analysis

A parametric analysis varies one or more model inputs across several hypothetical values, com-
puting results for each combination of inputs. Array abstraction makes it very easy to conduct 
parametric analyses in Analytica; however, the computational complexity and memory require-
ments scale multiplicatively as you vary more and more input variables simultaneously, resulting 
in practicality limits on the number of inputs that can be simultaneously varied. 

Determtables provide a useful tool for coping with the complexity / dimensionality trade-off. You 
can select a subset of input variables to vary parametrically, examine your model outputs as these 
vary, then re-run your model after selecting a different subset of inputs to vary. Using Choice 
menus for the inputs, and determTables for any tables based on those input dimensions, makes it 
possible to change your parametric inputs rapidly to quickly explore relationships elucidated by 
your model. Obtaining this agility is often a simple matter of converting existing tables to determ-
Tables.

Subscript equivalence You can achieve the equivalent functionality of DetermTable() without using the DetermTable() 
function, but DetermTable is a nice convenience that saves having an extra node in your model. 
As an alternative to a determtable, you can create a standard edit table in a variable, A, and then 
obtain the desired slice in a second variable, B, by defining it as A[u=u,v=v], where u and v are 
the discrete conditioning variables. This works because u and v are both self-indexed (with the 
possible values being the self-index values) and also have their own value (the selected value).

SubTable
The purpose of SubTable is to provide the user an alternative editable view of part of an edit 
table. If a variable a is defined as an edit table, a variable b defined as SubTable(a[i=x]) lets the 
user use u to view and edit a subarray of a, for which index i of a has value x. Any change you 
make to cells of b is reflected in a, and vice versa. The actual values are stored in edit table a. 

SubTable(a[i = x]) A subtable can also show subarrays of a in a different order, if x is an array containing some or all 
values of i in a different sequence. b can also use different number formats.

A subtable also works if a is defined using any editable table functions, including edit table (table), 
probability table (probtable), deterministic table (determtable), or even another subtable. 

SubTable() must be the main expression in the definition of a variable. It cannot be a subexpres-
sion or inside a function. Its parameter must be a slice or subscript operator. For example, in the 
simplest form: 

SubTable(a[i=x])

where x is an element of index i and x is a value of i. Many other variations are also useful includ-
ing: 

SubTable(a[i=x])
SubTable(a[i=x, j=y])
SubTable(a[i=b])
SubTable(a[@i=c])

If the subarray returned by Subtable() is an atom (i.e., a single value with no indexes), you can 
edit it in a table view, or, if you define an input node for it, directly as an input field.

Matrix functions
A matrix is a square array, that is an array that has two dimensions of the same length. It can also 
have other dimensions, not necessarily of the same length. Matrix functions perform a variety of 
operations of matrices and other arrays. 



Chapter More Array Functions

204 Analytica User Guide

12 Matrix functions

Standard mathematical notation for matrix algebra, and most computer languages that work with 
matrices, distinguish rows and columns. In Analytica, rows and columns are not basic to an array: 
They are just ways you can choose to display an array in a table. Instead, it uses a named index 
to label each dimension. So, when using a matrix function, like any Analytica function that work 
with arrays, you specify the dimensions you want it to operate over by naming the index(es) as a 
parameter(s). For example:

Transpose(X, I, J)

This exchanges indexes I and J for matrix X. You don’t need to remember or worry about which 
dimension is the rows and which the columns. X can also have other indexes, and the function 
generalizes appropriately. 

Dot product of two matrices
The dot product (i.e., matrix multiplication) of MatrixA and MatrixB is equal to:

Sum(MatrixA * MatrixB, i)

where i is the common index.

Example Variable MatrixA:
j , i 

Variable MatrixB:
k , i 

Sum(MatrixA * MatrixB, i) →
k , j 

MatrixMultiply(a, aRow, aCol, b, bRow, bCol) 
Performs a matrix multiplication on matrix a, having indexes aRow and aCol, and matrix b, hav-
ing indexes bRow and bCol. The result is indexed by aRow and bCol. a and b must have the 
specified two indexes, and can also have other indexes. bCol and bRow must have the same 
length or it flags an error. If bRow and bCol are the same index, it returns only the diagonal of the 
result.

Library Matrix

Example Matrices
C x D
index1 , index2  index2 , index3 

MatrixMultiply(C, index1, index2, D, index2, index3) →

1 2 3
a 4 1 2
b 2 5 3
c 3 2 7

1 2 3
l 3 2 1
m 2 5 3
n 4 1 2

a b c
l 16 19 20
m 19 38 37
n 21 19 28

1 2 a b c
1 1 2 1 3 0 1
2 1 0 2 0 1 1



 Analytica User Guide 205

Matrix functionsChapter More Array Functions12

index1 , index3 

When the inner index is shared by C and D, the expression Sum(C*D, index2) is equivalent to 
their dot product (page 204).

Tip The way to multiply a matrix by its transpose is: 
MatrixMultiply(A, I, J, Transpose(A,I,J), I, J)

It does not work to use MatrixMultiply(A, I, J, A, J, I) because the result would have 
to be doubly indexed by I.

Transpose(c, i, j)
Returns the transpose of matrix c exchanging dimensions i and j, which must be indexes of the 
same size.

Library Matrix

Example Transpose(MatrixA, i, j) →
j , i 

Invert(c, i, j)
Returns the inversion of matrix c along dimensions i and j.

Library Matrix

Example Set number format to fixed point, 3 decimal digits.
Invert(MatrixA, i, j) →
j , i 

Determinant(c, i, j)
Returns the determinant of matrix c along dimensions i and j.

Library Matrix

Example MatrixA:
j , i 

Determinant(MatrixA, i, j) → 89

a b c
1 3 2 3
2 3 0 1

1 2 3
a 4 2 3
b 1 5 2
c 2 3 7

1 2 3
a 0.326 -0.034 -0.079
b -0.056 0.247 -0.090
c -0.124 -0.056 0.202

1 2 3
a 4 1 2
b 2 5 3
c 3 2 7



Chapter More Array Functions

206 Analytica User Guide

12 Matrix functions

Decompose(c, i, j) 
Returns the Cholesky decomposition (square root) matrix of matrix c along dimensions i and j. 
Matrix c must be symmetric and positive-definite. (Positive-definite means that v * C * v > 0, 
for all vectors v.)

Cholesky decomposition computes a lower diagonal matrix L such that L * L' = C, where L' is 
the transpose of L.

Library Matrix

Example Matrix
L , M 

Decompose(Matrix, L, M) →
L , M 

EigenDecomp(a: Numeric[i, j]; i, j: Index)
Computes the Eigenvalues and Eigenvectors of a square, symmetric matrix a indexed by i and j. 
EigenDecomp() returns a result indexed by j and .item (where .item is a temporary index with the 
two elements ['value','vector']). Each column of the result contains one Eigenvalue/
Eigenvector pair. The Eigenvalue is a number, the Eigenvector is a reference to a rows-indexed 
Eigenvector. If result is the result of evaluating EigenDecomp(), then the Eigenvalues are given 
by result[.item='value'], and the Eigenvectors are given by #result[.item='vec-
tor']. Each Eigenvector is indexed by i. 

Given a square matrix a, a non-zero number (λ) is called an Eigenvalue of a, and a non-zero vec-
tor x the corresponding Eigenvector of a when:

a x = λ x

An NxN matrix does have N (not-necessarily unique) Eigenvalue-Eigenvector pairs. When A is a 
symmetric matrix, the Eigenvalues and Eigenvectors are real-valued. Eigen-analysis is widely 
used in Engineering and statistics.

Tip The matrix a must be square and symmetric. Mathematically, Eigen decompositions do exist for 
square non-symmetric matrices, but the algorithm used here is limited only to symmetric matrices, 
since symmetric decompositions are guaranteed to be real-valued, while, in general, Eigen 
decompositions can be complex.

Library Matrix

Example Covariance Matrix
stock1 , stock2 

1 2 3 4 5
1 6 2 6 3 1
2 2 4 3 1 3
3 6 3 9 3 4
4 3 1 3 8 4
5 1 3 4 4 7

1 2 3 4 5
1 2.4495 0 0 0 0
2 0.8165 1.8257 0 0 0
3 2.4495 0.5477 1.6432 0 0
4 1.2247 0 0 2.5495 0
5 0.4082 1.4606 1.3389 1.3728 1.0113

INTC MOT AMD
INTC 30.47 13.26 18.9



 Analytica User Guide 207

Matrix functionsChapter More Array Functions12

EigenDecomp(Covariance, Stock1, Stock2) →
.item , stock2 

SingularValueDecomp(a, i, j, j2) 
SingularValueDecomp() (singular value decomposition) is often used with sets of equations or 
matrices that are singular or ill-conditioned (that is, very close to singular). It factors a matrix a, 
indexed by i and j, with Size(i)>=Size(j), into three matrices, U, W, and V, such that:

a = U . W . V (7)

where U and V are orthogonal matrices and W is a diagonal matrix. U is dimensioned by i and j, W 
by j and j2, and V by j and j2. In Analytica notation: 

Variable A := Sum(Sum(U*W, J) * Transpose(V, J, J2), J2)

The index j2 must be the same size as j and is used to index the resulting W and V arrays. 

SingularValueDecomp() returns an array of three elements indexed by a special system index 
named SvdIndex with each element, U, W, and V, being a reference to the corresponding array. 
Use the # (dereference) operator to obtain the matrix value from each reference, as in:

Index J2 := CopyIndex(J)
Variable SvdResult := SingularValueDecomp(A, I, J, J2)
Variable U := #SvdResult[SvdIndex='U']
Variable W := #SvdResult[SvdIndex='W']
Variable V := #SvdResult[SvdIndex='V']

MOT 13.26 16.58 14.67
AMD 18.9 14.67 17.11

INTC MOT AMD
value 1.025 9.232 53.9
vector «ref1» «ref2» «ref3»

«ref1» 
stock1

«ref2» 
stock1

«ref3» 
stock1

INTC 0.2845 INTC 0.6548 INTC -0.7002
MOT 0.518 MOT -0.7196 MOT -0.4625
AMD -0.8067 AMD -0.2312 AMD -0.5439

INTC MOT AMD



Chapter More Array Functions

208 Analytica User Guide

12 Matrix functions



Chapter 13 Other Functions

This chapter describes a variety of useful functions from built-in and 
added libraries:

• Text functions that work with text values, to transform, search, split, 
and join them (see page 210)

• Date functions for working with date numbers (see page 213)
• Advanced math functions (see page 216)
• Financial functions (see page 216)
• A library of extra financial functions, including functions for valuing 

options (see page 221)
• Advanced probability functions (see page 224)



Chapter Other Functions

210 Analytica User Guide

13

Text functions
These functions work with text values (page 129) (sometimes known as strings), available in the 
built-in Text library. 

Asc(t)
Returns the ASCII code (a number between 0 and 255) of the first character in text value t. This is 
occasionally useful, for example to understand the alphabetic ordering of text values.

Chr(n)
Returns the character corresponding to the numeric ASCII code n (a number between 0 and 
255). Chr() and Asc() are inverses of each other, for example:

Chr(65) Æ 'A', Asc(Chr(65)) Æ 65
Asc('A') Æ 65, Chr(Asc('A')) Æ 'A'

Chr() is useful for creating characters that cannot easily be typed, such as Tab, which is Chr(9) 
and carriage return (CR), which is Chr(13). For example, if you read in a text file, x, you can use 
SplitText(x, Chr(13)) to generate an array of lines from a multiline text file. 

TextLength(t)
Returns the number of characters in text t. 

TextLength('supercalifragilisticexpialidocious') → 34

SelectText(t, m, n)
Returns text containing the mth through the nth character of text t (where the first character is 
m=1). If n is omitted it returns characters from the mth through the end of t.

SelectText('One or two', 1, 3) → 'One'
SelectText('One or two', 8) → 'two'

FindInText(substr, text, start, case Insensitive, 
re, return, subpattern, 
repeat, repeatSubpattern, repeatIndex)

Returns the position of the first occurrence of the text substr within text, as the number of char-
acters to the first character of text. If substr does not occur in text, it returns 0. FindInText() is 
case-sensitive unless the optional parameter caseInsensitive is true. For example:

Variable People := 'Amy, Betty, Carla'
FindInText('Amy', People) → 1
FindInText('amy', People) → 0
FindInText('amy', People, caseInsensitive:true) → 1
FindInText('Betty', People) → 6
FindInText('Fred', People) → 0

The optional third parameter, start, specifies the position to start searching at, for example, if you 
want to find a second occurrence of substr after you have found the first one. 

FindInText('i','Supercalifragilisticexpialidocious') → 9
FindInText('i','Supercalifragilisticexpialidocious',10) → 14

Setting the optional parameter, re, to True causes substr to be interpreted as a Perl-compatible 
regular expression. The optional return parameter alters what is returned by FindInText, accord-
ing to the possible values:

• ‘P’ (or ‘Position’): The position of the matching text or subpattern (default)
• ‘L’ (or ‘Length’): The length of the matching text or subpattern.



 Analytica User Guide 211

Chapter Other Functions13

• ‘S’ (or ‘Subpattern’): The text matched the regular expression or subpattern.
• ‘#’ (or ‘#Subpatterns’): The number of subpatterns in the regular expression.

Parentheses within a regular expression denote subpatterns, numbered in a depth first fashion. 
Subpatterns can also be named using the regular expression format “(?<name>...)”. You can 
the match information for any subpattern by specifying the subpattern number or subpattern 
name in the optional subpattern parameter.

FindInText('d.*T', 'FindInText', re:1) → 4
FindInText('d.*T', 'FindInText', re:1,return:['L','S']) → [4,'dInT']
FindInText('(\d\d\d)-(\d\d\d\d)', '650-212-1212', re:1, return:’S’,

subpattern:[0,1,2]) → ['212-1212',’212’,’1212’]
FindInText('a*(?<bcd>b+(c+)(d*))','zyabdaabbcccfd', re:1,

subpattern:['bcd',0,1,2,3]) → [8,6,8,10,13]

Normally FindInText returns information on the first match, but by using any of the three optional 
repeat parameters can be used to find all matches in text. When multiple matches are returned, 
the result will be an array and an index is required to index the matches found. When 
repeat:true is specified, the function creates a local index named .Repeat with elements 
1..n to index the result for the n matches found. Alternatively, you can specify your own pre-
existing index in the repeatIndex parameter. If your index contains n elements, then only the first 
n matches are returned. Finally, you can specify a regular expression subpattern, either num-
bered or named, in the repeatSubpattern parameter. In that case, a local index is created using 
the matching text for that subpattern as the index labels. When a named (textual) subpattern is 
specified, the subpattern name is used as a local index name.

The following examples parses XML text, returning an array of ages with a local index named 
.Name, where the labels of the local index are the names of each person:

FindInText('<person.*?name="(?<name>(.*?))".*?>.*?' & 
'<age>(?<age>.*?)</age>.*?' & 

'</person>', 
xmlText, re:true, 
return:'S', repeatSubpattern:'name', subpattern:'age')

Tip Consult the Analytica Wiki for more detailed information on using regular expressions. The Wiki 
contains additional information on regular expression syntax, and far more detail on the more 
advanced regular expression matching options. In the Analytica Wiki, see pages on Regular 
Expressions and FindInText.

TextTrim(t,
leftOnly, rightOnly, trimChars)

Removes leading and trailing spaces from the text. To remove characters other than spaces, 
specify the characters to remove in the optional trimChars parameter.

TextTrim(' Hello World ') → 'Hello World'
TextTrim(' Hello World ',leftOnly:True) → 'Hello World '
TextTrim(' Hello World ',rightOnly:True) → ' Hello World'
TextTrim(' [One,Two,Three] ',trimChars:' []') → 'One,Two,Three'

TextReplace(text, pattern, subst, all, caseInsensitive, re)
If all is omitted or False, it returns text with the first occurrence of pattern replaced by subst. If 
all is True, it returns text with all occurrences of text pattern replaced by subst. Pattern is 
matched in a case-sensitive fashion unless caseInsensitive is True.

TextReplace('StringReplace, StringLength', 'String', 'Text') 
→ 'TextReplace, StringLength'

TextReplace('StringReplace, StringLength', 'String', 'Text', True) 



Chapter Other Functions

212 Analytica User Guide

13

→ 'TextReplace, TextLength'

When the optional re parameter is True, pattern is treated as a Perl-compatible regular expres-
sion. In this mode, the character sequence \0 in subst is replaced by the matching text, and \1, 
\2, ..., \9 are replaced by the subtext matched by the corresponding numbered subpattern 
in the regular expression. The character sequence <name> in subst is replaced by the subtext 
matched to the indicated named subpattern.

TextReplace('Hello world','\w+','«\0»',all:True, re:True)
→ '«Hello» «world»'

TextReplace('Hello world', '(.{1,7}).*', '\1…', re:True) 
→ 'Hello w…'

TextReplace(text: 'swap first and last',
pattern: '(?<first>\w+)(?<mid>.*)(?<last>\b\w+)',
subst:'<last><mid><first>', re:True)
→ 'last first and swap’

TextReplace('swap first and last', '(\w)(\w*)(\w)', '\3\2\1', 
re:1, all:1 ) → 'pwas tirsf dna tasl'

Joining Text: a & b
The & operator joins (concatenates) two text values to form a single text value, for example:

'What is the' & ' number' & '?'
→ 'What is the number?'

If one or both operands are numbers, it converts them to text using the number format of the vari-
able whose definition contains this function call (or the default suffix format if none is set), for 
example:

'The number is ' & 10^8 → 'The number is 100M'

This is also useful for converting (or “coercing”) numbers to text. 

JoinText(a, i, separator, finalSeparator)
Returns the elements of array a joined together into a single text value over index i. If elements of 
a are numeric, they are first converted to text using the number format settings for the variable 
whose definition contains this function call. For example:

I:= ['A', 'B', 'C']
JoinText(I, I) → 'ABC'
A:= Array(I, ['VW', 'Honda', 'BMW'])
JoinText(A, I) → 'VWHondaBMW'

If the optional parameter separator is specified, it is inserted as a separator between successive 
elements, for example:

JoinText(A, I, ', ') → 'VW, Honda, BMW'

The optional parameter finalSeparator, if present, specifies a different separator between the 
second-to-last and last elements of a. 

JoinText(A, I, '; ', '; and') → 'VW; Honda; and BMW'

SplitText(text, separator, caseInsensitive, re)
Returns a list of text values formed by splitting the elements of text value text at each occurrence 
of separator separator. For example:

SplitText('VW, Honda, BMW', ', ') → ['VW', 'Honda', 'BMW']

SplitText() is the inverse of JoinText(), if you use the same separators. For example:
Var x:=SplitText('Humpty Dumpty sat on a wall.', ' ') 
→ ['Humpty', 'Dumpty', 'sat', 'on', 'a', 'wall.']



 Analytica User Guide 213

Date functionsChapter Other Functions13

JoinText(x, , ' ') → 'Humpty Dumpty sat on a wall.'

When separator contains letters, setting caseInsensitive to True matches in a lower/upper 
case-insensitive manner. When the re parameter is True, separator is interpreted as a Perl-com-
patible regular expression.

Variable s := 'Yes, Virginia. There is a Santa Claus!'
SplitText(s, '[\s,\.!]+', re:1)

→ ['Yes', 'Virginia', 'There', 'is', 'a', 'Santa', 'Claus', '']
SplitText(TextTrim(s,trimChars:' ,.!'), '[\s,\.!]+', re:1)

→ ['Yes', 'Virginia', 'There', 'is', 'a', 'Santa', 'Claus']

Tip With SplitText(), text must be a single text value, not an array. Otherwise, it might generate an 
array of arrays of different length. See “Functions expecting atomic parameters” on page 349 on 
what to do if you want apply it to an array.

TextLowerCase(t)
Returns the text t with all letters as lowercase. For example:

TextLowerCase('What does XML mean?') 
→ 'what does xml mean?'

TextUpperCase(t)
Returns the text t with all letters as uppercase. For example:

TextUpperCase('What does XML mean?') 
→ 'WHAT DOES XML MEAN?'

TextSentenceCase(Text, preserveUC)
Returns the text t with the first character (if a letter) as uppercase, and any other letters as lower-
case. For example:

TextSentenceCase('mary ann FRED Maylene') 
→ 'Mary ann fred maylene'

TextSentenceCase(SplitText('mary ann FRED Maylene', ' ')) 
→ ['Mary', 'Ann', 'Fred', 'Maylene']

TextSentenceCase('they are Fred and Maylene', true) 
→'They are Fred and Maylene'

ParseNumber(text,badVal)
Parses a text value into a number. Dates are not parsed by this function (use ParseDate for 
dates). The result is independent of the number format setting. Values that are already numeric 
are returned. The optional badVal parameter specifies the value returned when text is unparse-
able, which defaults to Null. The usage ParseNumber(x,x) can be used when x is an array 
and you want to pass unparseable entries through.

ParseNumber('12.43K') → 12.43K
ParseNumber('hello') → «null»
ParseNumber(14.3) → 14.3
Var x:=['3,214',14,'foo'] Do ParseNumber(x,x) → [ 3214, 14,'foo']

Date functions
These functions work with date and time numbers — that is, the integer portion is number of 
days since the date origin, usually Jan 1, 1904, and the fractional portion is the fraction of a day 



Chapter Other Functions

214 Analytica User Guide

13 Date functions

elapsed since midnight. See “Date numbers and the date origin” on page 84. A date number dis-
plays as a date if you select a date format using the Number format dialog from the Result 
menu. 

MakeDate() generates a date number from the year, month, and day. DatePart extracts the year, 
month, day, or other information from a date number. DateAdd() adds a number of days, weeks, 
months, or years to a date. Today() returns today’s date.

MakeDate(year, month, day)
Gives the date value for the date with given year, month, and day. If omitted, month and day 
default to 1. Parameters must be positive integers.

Examples MakeDate(2007, 5, 15) → 15-May-2007
MakeDate(2000) → 1-Jan-2000

Library Special Functions

MakeTime(h, m, s)
Gives the fraction of a day elapsed since midnight for the given hour, minute and second. The 
hour, h, is typically between 0 and 23 inclusive (but can be greater than 23 when encoding a dura-
tion of more than one day). Minutes and seconds must be between 0 and 59 inclusive. 

Examples MakeTime(12, 0, 0) → 0.5
MakeTime(15, 30, 0) → 0.6458 { 3:30:00 pm }

Library Special Functions

DatePart(date, part)
Given a date-time value date, it returns the year, month, day, hour, minute, or seconds as a num-
ber, according to the value of part, which must be an uppercase character:

• Y gives the four digit year as a number, such as 2006. 
• Q gives the quarter as a number between 1 and 4.
• M gives the month as a number between 1 and 12. 
• D gives the day as number between 1 and 31.
• W gives the day of the week as a number from 1 (Sunday) to 7 (Saturday). 
• H gives the hour on a 24-hour clock (0 to 23).
• h gives the hour on a 12-hour close (1 to 12).
• m gives the minutes (0 to 59).
• s gives the seconds (0 to 59.99).

Other date options for part are: YY→'06', MM→'01', MMM → 'Jan', MMMM → 'January', 
DD→'09', ddd → '1st', dddd → 'first', Dddd → 'First', www → 'Mon', wwww → 
'Monday', and q → 1 to 4 for number of quarter of the year.

Other time options for part are: HH→'15', hh→'03', mm→'05', and ss→'00'.

DatePart can also weeks or weekdays elapsed since the date origin or in the current year.

• wd (or wd+) gives the number of weekdays since the date origin including the indicated day. 
• wd- gives the number of weekdays since the date origin not including the indicated day.
• #d gives the day number in the current year
• #w gives the week number in the current year (the week starting on Sunday)
• #wm gives the week number in the current year (the week starting on Monday)

The #w and #wm options consider the week containing Jan 1 to be week 1. Options e#w and e#wm 
return the European standard in which week1 is the first week containing at least 3 days.

Examples DatePart(MakeDate(2006, 2, 28), 'D') → 28



 Analytica User Guide 215

Date functionsChapter Other Functions13

This makes a sequence of all weekdays between Date1 and Date2: 
Index J:= Date1 .. Date2; 
Subset(DatePart(J, "W")>=2 AND DatePart(J, "W")<=6)

This computes the number of weekdays between two dates, including both endpoints:
DatePart(date2,'wd+') - DatePart(date1,'wd-')

Library Special Functions

DateAdd(date, n, unit)
Given a date value date, it returns a date value offset by n years, months, days, weekdays, 
hours, minutes or seconds, according to whether unit is Y, Q, M, D, WD, h, m, or s. If n is negative, 
it subtracts units from the date.

Examples DateAdd() is especially useful for generating a sequence of dates, e.g., weeks, months, or quar-
ters, for a time index: 

DateAdd(MakeDate(2006, 1, 1), 0..12, "M") 
→ ["1 Jan 2006", "1 Feb 2006", "1 Mar 2006", ... "1 Jan 2007"]

If an offset would appear to go past the end of a month, it returns the last day of the month:
DateAdd( MakeDate(2004, 2, 29), 1, 'Y' ) → 2005-Feb-28
DateAdd( MakeDate(2006, 10, 31), 1, 'M' ) → 2006-Nov-30

Since the dates 2005-Feb-29 and 2006-Nov-31 don’t exist, it gives the last day of the preced-
ing month. 

Adding a day offset, DateAdd(date, n, "D"), is equivalent to date+n. DateAdd(date, n, 
"WD") adds the specified number of weekdays to the first weekday equal to or falling after date. 

Library Special Functions 

Today(withTime, utc)
Returns the current date (or optionally date and time) as a date number — the number of days 
since the date origin, usually Jan 1, 1904. Unlike other functions, it gives a different value depend-
ing on what day (and time) it is evaluated. It is most often called with no parameters, Today( ), in 
which case the result is an integer representing the date in your local time zone. Including the 
optional parameter, Today(withTime:True) returns the current time of day in the fractional part. 
Today(withTime:true,utc:True) returns the coordinated universal date-time rather than the local 
date-time.

Since variables usually cache (retain) their value after computing it, the date could become out of 
date if the Analytica session extends over midnight. But, it will be correct again when you restart 
the model.

Library Special Functions 

ParseDate(date,badVal)
Parses a textual date or time into a numeric value representing the number of days elapsed since 
the date origin. The parsing occurs independent of the number format setting for the variable 
being evaluated. The second optional parameter, badVal, specifies the return value when date is 
not textual or cannot be parsed as a date. When omitted, badVal default to Null. 

ParseDate("July 22, 2009") → 2009-Jul-22 { 38554 }
ParseDate("38554") → «null»
ParseDate("3:00 pm") → 0.625
ParseDate("7/22/2009 15:00:00") → 2009-Jul-22 3:00pm { 38554.625 }
Var x:=["hello","7-22-2009"] Do ParseDate(x,x) → ["hello",38554]

Note: The results in this example assume the default date origin of 1-Jan-1904 and that 
Windows is set to United States regional settings.



Chapter Other Functions

216 Analytica User Guide

13 Advanced math functions

Advanced math functions
These functions can be accessed under the Definition menu Advanced Math command, or in 
the Object Finder dialog, Advanced Math library. Functions in this section are generally for more 
advanced mathematical users than those found in “Math functions” on page 133. There are addi-
tional advanced math functions covered in “Importance weighting” on page 265.

Arccos(x), Arcsin(x), Arctan2(y, x) 
The inverse trigonometric functions. For each the parameter x is between 0 and 1, and the result 
is in degrees. Arccos returns a result between 0 and 180 degrees:

Arccos(1) → 0
Arccos(Cos(45)) → 45

Arcsin returns a result between -90 and 90 degrees:
Arcsin(1) → 90
Arcsin(Sin(45)) → 45

Arctan2 gives the arctangent of y/x without losing information about which quadrant the point is 
in. The result is the angle in degrees between the x axis and the point (x, y) in the two dimen-
sional plane, in the range (-180, 180):

Arctan2(-1,1) → -45
Arctan2(0,-1) → 180
Arctan2(0, 0) → 0

BesselJ(x,n), BesselY(x,n), BesselI(x,n), BesselK(x,n)
Bessel functions of the first kind (J), second kind (Y), and modified Bessel functions of the first (I) 
and second (K) kinds. These are used in engineering applications involving harmonics in cylindri-
cal coordinates. The second parameter, n, is the order of the Bessel function and can be integer 
or fractional. When n is non-integer, x must be non-negative. These functions are not exposed on 
the Advanced Math library menu.

Cosh(x), Sinh(x), Tanh(x)
The hyperbolic cosine, sine, and tangent of x, x assumed to be in degrees.

Cosh(0) → 1
Sinh(0) → 0
Tanh(INF) → 1

Lgamma(x)
Returns the Log Gamma function of x. Without numeric overflow, this function is equivalent to 
ln(GammaFn(X)). Because the gamma function grows so rapidly, it is often much more conve-
nient to use LGamma() to avoid numeric overflow.

LGamma(10) → 12.8

Financial functions
These functions can be accessed under the Definition menu Financial command, or in the 
Object Finder dialog, Financial library. The function names and parameters match those in 
Microsoft Excel, where they are equivalent. Of course, the Analytica versions support array 
abstraction, which makes them more flexible.



 Analytica User Guide 217

Financial functionsChapter Other Functions13

Parameters The same parameters occur in many of the financial functions. These parameters are described 
here. Dollar amounts for both parameters and return values of functions are expressed as the 
amount you receive. If you make a payment, the amount is negative. If you receive a payment, 
the amount is positive.

Cumipmt(rate, nPer, pv, startPeriod, endPeriod, type )
Returns the cumulative interest paid on an annuity between, and including, startPeriod (shown 
as sp in equation below) and endPeriod (shown as ep in equation below). The annuity is 
assumed to have a constant interest rate and periodic payments. This is equal to:

Example Interest payments during the first year on a $100,000 loan at 8% is:
CumIPmt(8%/12, 360, 100K, 1, 12) → -7,969.81

The result is negative since these are payments.

Cumprinc(rate, nPer, pv, startPeriod, endPeriod, type)
Returns the cumulative principal paid on an annuity between, and including, startPeriod (shown 
as sp in equation below) and endPeriod (shown as ep in equation below). The annuity is 
assumed to have a constant interest rate and periodic payments. The result is equal to:

Example The total principal paid during the first year on a $100,000 loan at 8% is:
CumPrinc(8%/12, 360, 100K, 1, 12) → -835.36

The result is negative since these are payments.

rate The interest rate per period. For example, if periods are months, the rate should be 
adjusted to the monthly rate, not the annual rate (e.g., 8%/12, or 1.08^(1/12)-1 
with monthly compounding).

nPer Number of periods in the lifetime of an annuity. 

per The period (between 1 and nPer) being computed. 

pv The present value of the annuity. For example, for a loan this is the loan amount 
(positive if you receive the loan, negative if you are the lender).

fv The future value of the annuity. This is the remaining value of the annuity after the 
final payment. In the case of a loan, for example, this is the balloon payment at the 
end (positive if you are the lender, negative if you pay the balloon amount). This 
parameter is usually optional with a default value of zero.

pmt The total payment per period (interest + principal). If you receive payments, this is 
positive. If you make payments, this is negative.

type Indicates whether payments are due at the beginning or end of each period.

True Payments are due at the beginning of each period, with the first payment due 
immediately.

False (default) Payments are due at the end of each period.

Ipmt rate n nPer Pv 0 Type,,,,,( )

n sp=

ep

∑

PPmt Rate n Nper Pv 0 Type,,,,,( )

n sp=

ep

∑



Chapter Other Functions

218 Analytica User Guide

13 Financial functions

Fv(rate, nPer, pmt, pv, type)
Returns the future value of an annuity investment with constant periodic payments and fixed inter-
est rate. The result is positive if you receive money at the end of the annuity’s lifetime, and nega-
tive if you must make a payment at the end of the annuity’s lifetime.

Examples You invest $1000 in an annuity that pays 6% annual interest, compounded monthly (0.5% per 
month), that pays out $50 at the end of each month for 12 months, and then refunds whatever is 
left after 12 months. The amount refunded is:

Fv(0.5%, 12, 50, -1000) → $444.90

You borrow $50,000 at a fixed annual rate of 12% (1% per month). You make monthly payments 
of $550 for 15 years, and then pay off the remaining balance in a single balloon payment. That 
final balloon payment is (the negative is because it is a payment for you):

-Fv(1%, 15*12, -550, 50000) → $25,020.99

You open a fixed-rate bank account that pays 0.5% per month in interest. At the beginning of each 
month (including when you open the account) you deposit $100. The amount in the account at the 
end of the each of the first three years is:

Fv(0.5%, [12, 24, 36], -100, 0, True) → 
[$1239.72, $2555.91, $3953.28]

Ipmt(rate, per, nPer, pv, fv, type)
Returns the interest portion of a payment on an annuity, assuming constant period payments and 
fixed interest rate. 

Example The interest you pay in the 24th month on a 30-year fixed $100K loan at an 8%/12 monthly inter-
est rate is (the result of IPmt is negative since this is a payment for you):

-IPmt(8%/12, 24, 12*30, 100K) → $655.59

Irr(values, i, guess)
Returns the internal rate of return (IRR) of a series of periodic payments (negative values) and 
inflows (positive values). The IRR is the discount rate at which the net present value (NPV) of the 
flows is zero. The array values must be indexed by i.

If the cash flow never changes sign, Irr() has no solution and returns NaN (not a number). If a 
cash flow changes sign more than once, Irr() might have multiple solutions, and returns the first 
solution found. The implementation uses an iterative gradient-descent search to locate a solution. 
The optional argument, guess, can be provided as a starting value for the search (default is 
10%). When there are multiple solutions, the one closest to guess is usually returned. If no solu-
tion is found within 30 iterations, Irr() returns NaN.

To compute the IRR for a non-periodic cash flow, use XIRR().

Example Earnings: Time

Irr(Earnings, Time) → 17.15%

MIrr(values,i,financeRate,reinvestRate)
Computes the modified internal rate of return for a series of periodic cash flows, given in values 
over the index i. The MIrr is the rate of return of an investment when capital invested must be bor-
rowed at financeRate, and intermediate returns are re-invested at reinvestRate. Because the 
result of MIrr is expressed as a rate-of-return, it shares the intuitive appeal of Irr as a measure of 
the quality of a cash flow, while avoiding the many pitfalls and distortions associated with Irr. The 
MIrr is defined by the following formula

2009 2010 2011 2012 2013 2014
-1M -500K -100K 100K 1M 2M



 Analytica User Guide 219

Financial functionsChapter Other Functions13

Example Earnings: Time

MIrr(Earnings,Time,8%,4%) → 15.24%

Tip To compute MIrr for a non-periodic cash flow, use XMIrr().

Nper(rate, pmt, pv, fv, type)
Returns the number of periods of an annuity with constant periodic payments and fixed interest 
rate.

Example You invest $10,000 in an annuity that pays 8% annually. Each year you withdraw $1,000. Your 
annuity lasts for:

NPer(8%, 1000, -10K) → 20.91 (years)

Npv(discountRate, values, i, offset)
Returns the net-present value of a cash flow with equally spaced periods. The values parameter 
contains a series of periodic payments (negative values) and inflows (positive values), indexed by 
i. Future values are discounted by discountRate per period. The optional offset parameter spec-
ifies the offset of the first value relative to the current time period. By default, offset is 1, indicating 
that the first value is discounted as if it is one step in the future. Npv(..,offset:0) applies no 
discount to the first value, which should be used when the cash flow starts in the current time 
period. The NPV is given by:

The first value is discounted as if it is one step in the future. To treat the first value as occuring in 
the first time period, set the optional offset parameter to zero. 

Tip To compute the NPV for a non-periodic cash flow, use Xnpv().

Example Earnings: Time

At a discount rate of 5%, the net present value of this cash flow is:

Npv(5%, Earnings, Time) → $865,947.76

Pmt(rate, nPer, pv, fv, type)
Returns the total payment per period (interest + principal) for an annuity with constant periodic 
payments and fixed interest rate.

Example You obtain a 30-year fixed mortgage at 8%/12 per month for $100K. Your monthly payment is 
(note that the result of Pmt() is negative since this is a payment for you):

-Pmt(8%/12, 30*12, 100K) → $733.76

MIrr x i f r, , ,( ) Npv r x x 0>( )⋅ i, ,( ) 1 r+( )n 1+⋅

Npv f x– x 0<( )⋅ i, ,( ) 1 f+( )n 1+⋅
----------------------------------------------------------------------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞ 1 n⁄

1–=

2009 2010 2011 2012 2013 2014
-1M -500K -100K 100K 1M 2M

Values I j=[ ]

1 DiscountRate+( )j
----------------------------------------------------

j offset=

n 1 offset–+

∑

1999 2000 2001 2002 2003 2004
-1M -500K -100K 100K 1M 2M



Chapter Other Functions

220 Analytica User Guide

13 Financial functions

Ppmt(rate, per, nPer, pv, fv, type)
Returns the principal portion of a payment on an annuity with constant period payments and fixed 
interest rate.

Example You have a 30-year fixed $100K loan at a rate of 8%/12 monthly. On your 24th payment, the 
amount of your payment that goes towards principal is (note that the result of PPmt() is negative 
since this is a payment for you):

-PPmt(8%/12, 24, 12*30, 100K) → $78.18

Pv(rate, nPer, pmt, fv, type)
Returns the present value of an annuity. The annuity is assumed to have constant periodic pay-
ments to you of pmt per period for nPer periods, with a return of rate per period.

Example To receive $100 per month from an annuity that returns 6%/12 per month for the next 10 years, 
you would need to invest (note that the result from Pv() is negative since you are paying to make 
the investment):

-Pv(6%/12, 10*12, 100) → $9,007.35

Rate(nPer, pmt, pv, fv, type, guess)
Returns the interest rate (per period) for an annuity. The value returned is the interest rate that 
results in equal payments of pmt per period over the nPer periods of the annuity.

In general, Rate() can have zero or multiple solutions. The implementation uses an interactive 
search algorithm. The optional guess can be provided as a starting point for the search, which 
usually results in the solution closest to guess being returned. If no solution is found in 30 itera-
tions, Rate() returns NaN.

Example You obtain a 30-year mortgage at a supposed 7% annual percentage rate for $100K. To do so, 
you pay $2,000 up front in “points”, and another $1,500 in fees. Assuming you hold the loan for its 
full term, the effective interest rate of your loan (for you) is:

Rate(30, Pmt(7%, 30, 100K), 100K-3500) → 7.36%

Xirr(values, dates, i, guess)
Returns the annual internal rate of return (IRR) for a series of payments (negative values) and 
inflows (positive values) that occur at non-periodic intervals. Both values and dates must be 
indexed by i. The values array constrains the cash flow amounts, the dates array contains the 
date of each payment or inflow, where each date is Analytica’s expressed as the number of days 
since Jan. 1, 1904. The rate is based on a 365 day year.

If the cash flow never changes sign, there is no solution and Xirr() returns NaN. If the cash flow 
changes sign more than once, Xirr() can have multiple solutions, but returns only the first solution 
found. The optional parameter, guess, can be provided as a starting point for the iterative search, 
and Xirr() generally finds the solution closest to guess. If not provided, guess defaults to 10%. If 
no solution is found within 30 iterations, Xirr() returns NaN.

To compute the IRR for a series of period payments, use Irr(). 

Example EarningAmt: J

EarningDate: J

XIrr(EarningAmt, EarningDate, J) → 9.32%

1 2 3 4
-400K -200K 100K 600K

1 2 3 4
July 5, 2009 Dec 1, 2009 Jan 21, 2010 Aug 10, 2011



 Analytica User Guide 221

Financial library functionsChapter Other Functions13

Tip EarningDate can be entered by selecting Number Format from the Result menu while editing 
the table for EarningDate. From the Number format dialog, select a date format, then enter the 
dates.

XMIrr(values,dates,i,financeRate,reinvestRate)
Computes the modified internal rate of return for a series of non-periodic cash flows occurring on 
arbitrary dates. The parameters values and dates should share the index i, with values contain-
ing the cash flow amounts and dates containing the corresponding date on which that cash flow 
occurs. Each date is specified as a number indicating the number of days elapsed since the date 
origin. The MIrr is the rate of return of an investment when capital invested must be borrowed at 
financeRate, and intermediate returns are re-invested at reinvestRate.

Example EarningAmt: J

EarningDate: J

XMIrr(EarningAmt, EarningDate, J, 8%, 4%) → 8.62%

Xnpv(rate, values, dates, i)
Returns the net present value (NPV) of a non-periodic cash flow with a constant discount rate. 
rate is the annual discount rate for a 365 day year. Both values, the cash-flow amounts, and 
dates, the date of each payment (negative value) or inflow (positive value), must be indexed by i.

See also Npv().

Example Using the cash flow shown in the example for XIrr() above, the net present value at a 5% discount 
rate is:

XNpv(5%, EarningAmt, EarningDate, J) → $42,838.71

YearFrac(startDate, endDate, basis)
Returns the fraction of the year represented by the number of whole days between two dates. The 
startDate and endDate are numeric, denoting the number of days elapsed since the date origin. 
The result is always positive, with the result being the span between the lesser and greater of the 
two dates. Use this function when you wish to compute the proportion of a whole year as applica-
ble to certain financial instruments. The optional basis parameter selects the accounting method 
to be used, as follows:

0 (or omitted) = US (NASD) 30/360

1 = actual/actual

2 = Actual/360

3 = Actual/365

4 = European 30/360

Financial library functions
The following functions are not built-in to Analytica, but are located in the Financial library that 
comes with Analytica.

1 2 3 4
-400K -200K 100K 600K

1 2 3 4
July 5, 2009 Dec 1, 2009 Jan 21, 2010 Aug 10, 2011



Chapter Other Functions

222 Analytica User Guide

13 Financial library functions

Calloption(S, X, T, r, theta) 
This function calculates the value of a call option using the Black-Scholes formula. For further 
information on the Black-Scholes model for option pricing see Basic Black-Scholes: Option Pric-
ing and Trading by Timothy Falcon Crack.

Parameters • S = price of security now
• X = exercise price
• T = time in years to exercise
• r = risk-free interest rate
• theta = volatility of security

Library Financial (add-in library)

Example Calloption(50, 50, 0.25, 0.05, 0.3) → 3.292

Syntax Calloption(S, X, T, r, theta: Numeric) 

Putoption(S, X, T, r, theta) 
This function calculates the value of a put option using the Black-Scholes formula.
For further information on the Black-Scholes model for option pricing see Basic Black-Scholes: 
Option Pricing and Trading by Timothy Falcon Crack.

Parameters • S = price of security now
• X = exercise price
• T = time in years to exercise
• r = risk-free interest rate
• theta = volatility of security

Library Financial (add-in library)

Example Putoption(50, 50, 0.25, 0.05, 0.3) → 2.67

Syntax Putoption(S, X, T, r, theta: Numeric) 

Capm(Rf, Rm, Beta) 
CAPM calculates the expected stock return under the Capital Asset Pricing Model.
For further information on the Capital Asset Pricing Model see Black, F., Jensen, M., and Scholes, 
M. “The Capital Asset Pricing Model: Some Empirical Tests,” in M. Jensen ed., Studies in the The-
ory of Capital Markets. (1972). 

Parameters • Rf = risk free rate

• Rm = market return

• Beta = beta of individual stock. Beta is the relative marginal contribution of the stock to the 
market return, defined as the ratio of the covariance between the stock return and market 
return, to the variance in the market return.

Library Financial (add-in library)

Example Capm(8%, 12%, 1.5) → 0.14

Syntax Capm(Rf, Rm, Beta: Numeric) 

CostCapme(rOpp, rD, Tc, L) 
This function calculates Miles and Ezzell’s (M/E) formula for adjusting the weighted average cost 
of capital for financial leverage. The M/E formula works when the firm adjusts its future borrowing 
to keep debt proportions constant. 

Parameters • rOpp = opportunity cost of capital
• rD = expected return on debt



 Analytica User Guide 223

Financial library functionsChapter Other Functions13

• Tc = net tax saving per dollar of interest paid. This is difficult to pin down in practice and is 
usually taken as the corporate tax rate.

• L = debt-to-value ratio

Library Financial (add-in library)

Example CostCapme(14%, 8%, 35%, 0.5) → 0.1252

Syntax CostCapme(rOpp, rD, Tc, L: Numeric)

CostCapmm(rAllEq, Tc, L) 
This function calculates Modigliani and Miller’s (M/M) formula for adjusting the weighted 
average cost of capital for financial leverage. The M/M formula works for any project that is 
expected to:

1. Generate a level, perpetual cash flow.
2. Support fixed permanent debt.

Parameters • rAllEq = cost of capital under all-equity financing
• Tc = net tax saving per dollar of interest paid. This is difficult to pin down in practice and is 

usually taken as the corporate tax rate.
• L = debt-to-value ratio

Library Financial (add-in library)

Example CostCapmm(20%, 35%, 0.4) → 0.172

Syntax CostCapmm (rAllEq, Tc, L: Numeric) 

Implied_volatility_c(S, X, T, r, p) 
This function calculates the implied volatility of a call option, based on using the Black-Scholes 
formula for options.

Parameters • S = price of security now

• X = exercise price

• T = time in years to exercise

• r = risk-free interest rate

• p = option price

Library Financial (add-in library)

Example Implied_volatility_c(50, 35, 4, 6%, 15) → 3.052e-005

Syntax Implied_volatility_c(S, X, T, r, p: atomic numeric) 

Implied_volatility_p(S, X, T, r, p) 
This function calculates the implied volatility of a put option, based on using the Black-Scholes 
formula for options.

Parameters • S = price of security now
• X = exercise price
• T = time in years to exercise
• r = risk-free interest rate
• p = option price

Library Financial (add-in library)

Example Implied_volatility_p(50, 35, 4, 6%, 15) → 9.416e-001

Syntax Implied_volatility_p(S, X, T, r, p: atomic numeric) 



Chapter Other Functions

224 Analytica User Guide

13 Advanced probability functions

Pvperp(C, rate) 
Pvperp() calculates the present value of a perpetuity (a bond that pays a constant amount in per-
petuity).

Parameters • C = constant payment amount
• rate = interest rate per period

Library Financial (add-in library)

Example Pvperp(200, 8%) → 2500

Syntax Pvperp(C, rate: Numeric)

Pvgperp(C1, rate, growth) 
Pvgperp() calculates the present value of a growing perpetuity (a bond that pays an amount 
growing at a constant rate in perpetuity).

Parameters • C1 = payment amount in year 1
• rate = interest rate per period
• growth = growth rate per period

Library Financial (add-in library)

Example Pvgperp(200, 8%, 6%) → 10K

Syntax Pvgperp(C1, rate, growth: Numeric) 

Wacc(Debt, Equity, rD, rE, Tc) 
Wacc() calculates the after-tax weighted average cost of capital, based on the expected return on 
a portfolio of all the firm’s securities. Used as a hurdle rate for capital investment.

Parameters • Debt = market value of debt
• Equity = market value of equity
• rD = expected return on debt
• rE = expected return on equity
• Tc = corporate tax rate

Library Financial (add-in library)

Example Wacc(1M, 3M, 8%, 16%, 35%) → 0.133

Syntax Wacc(Debt, Equity, rD, rE, Tc: Numeric)

Advanced probability functions
The following functions are not actual probability distributions, but they are useful for various 
probabilistic analyses, including building other probability distributions. You can find them in the 
Advanced math library from the Definition menu.

BetaFn(a, b) The beta function, defined as:

BetaI(x, a, b) The incomplete beta function, defined as:

The incomplete beta function is equal to the cumulative probability of the beta distribution at x. It 
is useful in a number of mathematical and statistical applications.

BetaFn a b,( ) xa 1– 1 x–( )b 1– xd
0

1

∫=

BetaI x a b, ,( ) 1
Beta a b,( )
-------------------------- xa 1– 1 x–( )b 1– xd

0

X

∫=



 Analytica User Guide 225

Advanced probability functionsChapter Other Functions13

The cumulative binomial distribution, defined as the probability that an event with probability p 
occurs k or more times in n trials, is given by:

The student’s distribution with n degrees of freedom, used to test whether two observed distribu-
tions have the same mean, is readily available from the beta distribution as:

The F-distribution, used to test whether two observed samples with  and degrees of freedom 
have the same variance, is readily obtained from BetaI as:

BetaIInv(p, a, b) The inverse of the incomplete beta function. Returns the value X such that BetaI(x, a, b)=p.

Combinations(k, n) “n choose k.” The number of unique ways that k items can be chosen from a set of n elements 
(without replacement and ignoring the order).

Combinations(2, 4) → 6

They are: {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}

Permutations(k, n) The number of possible permutations of k items taken from a bucket of n items.
Permutations(2, 4) → 12

They are: {1,2}, {1,3}, {1,4}, {2,1}, {2,3}, {2,4}, {3,1}, {3,2}, {3,4}, {4,1}, {4,2}, {4,3}

CumNormal(x, mean,
stddev)

Returns the cumulative probability:

for a normal distribution with a given mean and standard deviation. mean and stddev are optional 
and default to mean = 0, stddev = 1.

CumNormal(1) - CumNormal(-1) → .683

That is, 68.3% of the area under a normal distribution is contained within one standard deviation 
of the mean.

CumNormalInv(p, m, s) The inverse cumulative probability function for a normal distribution with mean m and standard 
deviation s. Returns the value X where:

mean and stddev are optional and default to mean = 0, stddev = 1.

Erf(x) The error function, defined as:

ErfInv(y) The inverse error function. Returns the value X such that Erf(X)=y.
ErfInv(Erf(2)) → 2

GammaFn(x) Returns the gamma function of x, defined as:

Pr BetaI p k n k– 1+, ,( )=

Student x n( ) 1 BetaI n n x2+( )⁄ n 2⁄ 1 2⁄, ,( )–=

n1 n2

F x n1 n2, ,( ) BetaI n2 n1x n2+( )⁄( )=

p Pr x X≤[ ]=

p Pr x X≤[ ]=

Erf x( ) 2
π

------- e t2– td
0

x

∫=

Γ x( ) tx 1– e t– td
0

∞

∫=



Chapter Other Functions

226 Analytica User Guide

13 Advanced probability functions

The gamma function grows very quickly. For example, when n is an integer, GammaFn(n+1) = n!. 
For this reason, it is often preferable to use the LGamma() function.

GammaI(x, a, b) Returns the incomplete gamma function, defined as:

a is the shape parameter, b is an optional scale factor (default b=1). Some textbooks use 
as the scale factor. The incomplete gamma function is defined for .

The incomplete gamma function returns the cumulative area from zero to x under the gamma dis-
tribution.

The incomplete gamma function is useful in a number of mathematical and statistical contexts.

The cumulative Poisson distribution function, which encodes the probability that the number of 
Poisson random events (x) occurring will be less than k (where k is an integer) where the 
expected mean number is a, is given by (recall that parameter b is optional).

 

GammaIInv(y, a, b) The inverse of the incomplete gamma function. Returns the value x such that 
GammaI(x, a, b) = y. b is optional and defaults to 1.

GammaI x a b, ,( ) 1
Γ a( )
----------- e t– tb 1– td

0

x b⁄

∫=

λ 1 a⁄= x 0≥

P x k<( ) GammaI k a,( )=



Chapter 14 Expressing Uncertainty

This chapter shows you how to:

• Choose a distribution 
• Define a variable as a distribution 
• Include a distribution in a definition 
• Use Analytica’s built-in probability distributions 



Chapter Expressing Uncertainty

228 Analytica User Guide

14 Choosing an appropriate distribution

Analytica makes it easy to model and analyze uncertainties even if you have minimal background 
in probability and statistics. The graphs below review several key concepts from probability and 
statistics to help you understand the probabilistic modeling facilities in Analytica. This chapter 
assumes that you have encountered most of these concepts before, but possibly in the distant 
past. If you need more information, see “Glossary” on page 409 or refer to an introductory text on 
probability and statistics.

Choosing an appropriate distribution
With Analytica, you can express uncertainty about any variable by using a probability distribution. 
You can base the distribution on available relevant data, on the judgment of a knowledgeable indi-
vidual, or on some combination of data and judgment. 

Answer the following questions about the uncertain quantity to select the most appropriate kind of 
distribution:

• Is it discrete or continuous?
• If continuous, is it bounded?
• Does it have one mode or more than one?
• Is it symmetric or skewed?
• Should you use a standard or a custom distribution?

We will discuss how to answer each of these in turn.

Is the quantity discrete
or continuous?

When trying to express uncertainty about a quantity, the first technical question is whether the 
quantity is discrete or continuous. 

Mode Median

Mean

Lower 
Tail

P
ro

ba
bi

lit
y 

D
en

si
ty

Lower 
Bound

1.0

25%ile 50%ile 75%ile Upper 
Bound

.5

.75

0.0

.25

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Upper 
Tail

Uncertain quantity X

Discrete Continuous



 Analytica User Guide 229

Choosing an appropriate distributionChapter Expressing Uncertainty14

A discrete quantity has a finite number of possible values — for example, the gender of a person 
or the country of a person’s birth. Logical or Boolean variables are a type of discrete variable 
with only two values, true or false, sometimes coded as yes or no, present or absent, or 1 or 0 — 
for example, whether a person was born before January 1, 1950, or whether a person has ever 
resided in California.

A continuous quantity can be represented by a real number, and has infinitely many possible 
values between any two values in its domain. Examples are the quantity of an air pollutant 
released during a given period of time, the distance in miles of a residence from a source of air 
pollution, and the volume of air breathed by a specified individual during one year. 

For a large discrete quantity, such as the number of humans residing within 50 miles of Disney-
land on December 25, 1980, it is often convenient to treat it as continuous. Even though you know 
that the number of live people must be an integer, you might want to represent uncertainty about 
the number with a continuous probability distribution.

Conversely, it is often convenient to treat continuous quantities as discrete by partitioning the set 
of possible values into a small finite set of partitions. For example, instead of modeling human 
age by a continuous quantity between 0 and 120, it is often convenient to partition people into 
infants (age < 2 years), children (3 to 12), teenagers (13 to 19), young adults (20 to 40), middle-
aged (41 to 65), and seniors (over 65 years). This process is termed discretizing. It is often con-
venient to discretize continuous quantities before assessing probability distributions. 

Does the quantity
have bounds?

If the quantity is continuous, it is useful to know if it is bounded before choosing a distribution — 
that is, does it have a minimum and maximum value?

Some continuous quantities have exact lower bounds. For example, a river flow cannot be less 
than zero (assuming the river cannot reverse direction). Some quantities also have exact upper 
bounds. For example, the percentage of a population that is exposed to an air pollutant cannot be 
greater than 100%. 

Most real world quantities have de facto bounds — that is, you can comfortably assert that there 
is zero probability that the quantity would be smaller than some lower bound, or larger than some 
upper bound, even though there is no precise way to determine the bound. For example, you can 
be sure that no human could weigh more than 5000 pounds; you might be less sure whether 500 
pounds is an absolute upper bound. 

Many standard continuous probability distributions, such as the normal distribution, are 
unbounded. In other words, there is some probability that a normally distributed quantity is below 
any finite value, no matter how small, and above any finite value, no matter how large.

Nevertheless, the probability density drops off quite rapidly for extreme values, with near expo-
nential decay, in fact, for the normal distribution. Accordingly, people often use such unbounded 
distributions to represent real world quantities that actually have finite bounds. For example, the 
normal distribution generally provides a good fit for the distribution of heights in a human popula-
tion, even though you might be certain that no person’s height is less than zero or greater than 12 
feet.

How many modes
does it have?

The mode of a distribution is its most probable value. The mode of an uncertain quantity is the 
value at the highest peak of the density function, or, equivalently, at the steepest slope on the 
cumulative probability distribution. 

Exact Lower Bounds Exact Upper Bounds

mode modes



Chapter Expressing Uncertainty

230 Analytica User Guide

14 Defining a variable as a distribution

Important questions to ask about a distribution are how many modes it has, and approximately 
where it, or they, are? Most distributions have a single mode, but some have several and are 
known as multimodal distributions. 

If a quantity has two or more modes, you can usually view it as a combination of two or more pop-
ulations. For example, the distribution of ages in a daycare center at leaving time might include 
one mode at age 3 for the children and another mode at age 27 for the parents and caretakers. 
There is obviously a population of children and a population of parents. It is generally easier to 
decompose a multimodal quantity into its separate components and assess them separately than 
to assess a multimodal distribution. You can then assess a unimodal (single mode) probability 
distribution for each component, and combine them to get the aggregate distribution. This 
approach is often more convenient, because it lets you assess single-mode distributions, which 
are easier to understand and evaluate than multimodal distributions.

Is the quantity
symmetric or skewed?

A symmetrical distribution is symmetrical about its mean. A skewed distribution is asymmetric. A 
positively skewed distribution has a thicker upper tail than lower tail; and vice versa, for a nega-
tively skewed distribution.

Probability distributions in environmental risk analysis are often positively skewed. Quantities 
such as source terms, transfer factors, and dose-response factors, are typically bounded below 
by zero. There is more uncertainty about how large they might be than about how small they 
might be. 

A standard or custom
distribution?

The next question is whether to use a standard parametric distribution — for example, normal, 
lognormal, or beta — or a custom distribution, where the assessor specifies points on the cumula-
tive probability or density function.

Considering the physical processes that generate the uncertainty in the quantity might suggest 
that a particular standard distribution is appropriate. More often, however, there is no obvious 
standard distribution to apply.

It is generally much faster to assess a standard distribution than a full custom distribution, 
because standard distributions have fewer parameters, typically from two to four. You should usu-
ally start by assigning a simple standard distribution to each uncertain quantity using a quick judg-
ment based on a brief perusal of the literature or telephone conversation with a knowledgeable 
person. You should assess a custom distribution only for those few uncertain inputs that turn out 
to be critical to the results. Therefore, it is important to be able to select an appropriate standard 
distribution quickly for each quantity. 

Defining a variable as a distribution
To define a variable as an Analytica probability distribution, first select the variable and open 
either the variable’s Object window or the Attribute panel (page 22) of the diagram with Defini-
tion (page 104) selected from the Attribute popup menu.

To define the distribution:

1. Click the expr menu above the definition field and select Distribution.

Symmetric

Positive Skew Negative Skew



 Analytica User Guide 231

Defining a variable as a distributionChapter Expressing Uncertainty14

The Object Finder opens, showing the Distribution library.

2. Select the distribution you wish to use.
3. Enter the values for the parameters. You can use an expression or refer to other variables by 

name in the parameter fields.
4. Click OK to accept the distribution.

If the parameters of the distribution are single numbers, a button appears with the name of the 
distribution, indicating that the variable is defined as a distribution. To edit the parameters, click 
this button. 

If the parameters of the distribution are complex expressions, the distribution displays as an 
expression. For example:

Normal((Price/Mpy) * Mpg, Mpg/10)

Entering a distribution
as an expression

Alternatively, you can directly enter a distribution as an expression:

1. Set the cursor in the definition field and type in the distribution name and parameters, for 
example:
Normal(.105, 0.015)

Library popup menu: Distribution 
library is selected

Parameters to the
distribution

Example probability density, 
indicating parameters

Button with the name of the 
distribution Parameters of the distribution



Chapter Expressing Uncertainty

232 Analytica User Guide

14 Including a distribution in a definition

2. Press Alt-Enter or click the button.

You can also paste a distribution from the Distribution library in the Definition menu (see “Using a 
library” on page 335).

You can edit a distribution as an expression, whether it was entered as a distribution from the Dis-
tribution library or as an expression, by selecting expr from the expr menu.

Including a distribution in a definition
You can enter a distribution anywhere in a definition, including in a cell of an edit table. Thus, you 
can have arrays of distributions. 

To enter a distribution:

1. Set the insertion point where you wish to enter the distribution in the definition field or edit table 
cell.

2. Enter the distribution in any of the following ways:
• Type in the name of the distribution.
• Paste it from the Distribution library under the Definition menu.
• Select Paste Identifier from the Definition menu to paste it from the Object Finder.

3. Type in missing parameters, or replace parameters enclosed as <<x>>.

Probabilistic calculation
Analytica performs probabilistic evaluation of probability distributions through simulation — by 
computing a random sample of values from the actual probability distribution for each uncertain 
quantity. The result of evaluating a distribution is represented internally as an array of the sample 
values, indexed by Run. Run is an index variable that identifies each sample iteration by an inte-
ger from 1 to Samplesize.

You can display a probabilistic value using a variety of uncertainty view options (page 31) — 
the mean, statistics, probability bands, probability density (or mass function), and cumulative dis-
tribution function. All these views are derived or estimated from the underlying sample array, 
which you can inspect using the last uncertainty view, Sample.

Example A:= Normal(10, 2) →
Iteration (Run) 

Tip The values in a sample are generated at random from the distribution; if you try this example and 
display the result as a table, you might see values different from those shown here. To reproduce 
this example, reset the random number seed to 99 and use the default sampling method and 
random number method (see “Uncertainty Setup dialog” on page 233). 

For each sample run, a random value is generated from each probability distribution in the model. 
Output variables of uncertain variables are calculated by calculating a value for each value of 
Run.

1 2 3 4 5 6
10.74 13.2 9.092 11.44 9.519 13.03



 Analytica User Guide 233

Uncertainty Setup dialogChapter Expressing Uncertainty14

Example B:= Normal(5, 1) →
Iteration (Run)

C:= A + B →
Iteration (Run) 

Notice that each sample value of C is equal to the sum of the corresponding values of A and B.

To control the probabilistic simulation, as well as views of probabilistic results, use the Uncer-
tainty Setup dialog (page 233).

Tip If you try to apply an array-reducing function (page 182) to a probability distribution across Run, 
Analytica returns the distribution’s mid value. 

Example:
X:= Beta(2, 3)
Mid(X) → 0.3857 and Max(X, Run) → 0.3857

To evaluate the input parameters probabilistically and reduce across Run, use Sample() 
(page 275).

Example:
Max(Sample(X), Run) → 0.8892

Uncertainty Setup dialog
Use the Uncertainty Setup dialog to inspect and change the sample size, sampling method, sta-
tistics, probability bands, and samples per plot point for probability distributions. All settings are 
saved with your model.

To open the Uncertainty Setup dialog, select Uncertainty Options from the Result menu or 
Control+u. To set values for a specific variable, select the variable before opening the dialog.

The five options for viewing and changing information in the Uncertainty Setup dialog can be 
accessed using the Analysis option popup menu.

Uncertainty sample To change the sample size or sampling method for the model, select the Uncertainty Sample 
option from the Analysis option popup menu.

1 2 3 4 5 6
5.09 4.94 4.65 6.60 5.24 6.96

1 2 3 4 5 6
15.83 18.13 13.75 18.04 14.76 19.99



Chapter Expressing Uncertainty

234 Analytica User Guide

14 Uncertainty Setup dialog

The default dialog shows only a field for sample size. To view and change the sampling method, 
random number method, or random seed, press the More Options button.

Sample size This number specifies how many runs or iterations Analytica performs to estimate probability dis-
tributions. Larger sample sizes take more time and memory to compute, and produce smoother 
distributions and more precise statistics. See “Appendix A: Selecting the Sample Size” on 
page 388 for guidelines on selecting a sample size. The sample size must be between 2 and 
32,000. You can access this number in expressions in your models as the system variable Sam-
plesize.

Sampling method The sampling method is used to determine how to generate a random sample of the specified 
sample size, m, for each uncertain quantity, X. Analytica provides three options:

• Simple Monte Carlo
The simplest sampling method is known as Monte Carlo, named after the randomness 
prevalent in games of chance, such as at the famous casino in Monte Carlo. In this method, 
each of the m sample points for each uncertainty quantity, X, is generated at random from X 
with probability proportional to the probability density (or probability mass for discrete 
quantities) for X. Analytica uses the inverse cumulative method; it generates m uniform 
random values, ui for i=1,2,...m, between 0 and 1, using the specified random number 
method (see below). It then uses the inverse of the cumulative probability distribution to 
generate the corresponding values of X, 

Xi where P( ) = ui for i=1,2,...m.

With the simple Monte Carlo method, each value of every random variable X in the model, 
including those computed from other random quantities, is a sample of m independent 
random values from the true probability distribution for X. You can therefore use standard 
statistical methods to estimate the accuracy of statistics, such as the estimated mean or 

Press here to see
additional uncertainty

sample parameters.

x Xi≤



 Analytica User Guide 235

Uncertainty Setup dialogChapter Expressing Uncertainty14

fractiles of the distribution, as for example described in “Appendix A: Selecting the Sample 
Size” on page 388.

• Median Latin hypercube (the default method)
With median Latin hypercube sampling, Analytica divides each uncertain quantity X into m 
equiprobable intervals, where m is the sample size. The sample points are the medians of the 
m intervals, that is, the fractiles 

Xi where P( ) = (i-0.5)/m, for i=1,2,...m.

These points are then randomly shuffled so that they are no longer in ascending order, to 
avoid nonrandom correlations among different quantities.

•  Random Latin hypercube
The random Latin hypercube method is similar to the median Latin hypercube method, 
except that instead of using the median of each of the m equiprobable intervals, Analytica 
samples at random from each interval. With random Latin hypercube sampling, each sample 
is a true random sample from the distribution. However, the samples are not totally 
independent.

Choosing a sampling
method

The advantage of Latin hypercube methods is that they provide more even distributions of sam-
ples for each distribution than simple Monte Carlo sampling. Median Latin hypercube is still more 
evenly distributed than random Latin hypercube. If you display the PDF of a variable that is 
defined as a single continuous distribution, or is dependent on a single continuous uncertain vari-
able, using median Latin hypercube sampling, the distribution usually looks fairly smooth even 
with a small sample size (such as 20), whereas the result using simple Monte Carlo looks quite 
noisy.

If the variable depends on two or more uncertain quantities, the relative noise-reduction of Latin 
hypercube methods is reduced. If the result depends on many uncertain quantities, the perfor-
mance of the Latin hypercube methods might not be discernibly better than simple Monte Carlo. 
Since the median Latin hypercube method is sometimes much better, and almost never worse 
than the others, Analytica uses it as the default method.

Very rarely, median Latin hypercube can produce incorrect results, specifically when the model 
has a periodic function with a period similar to the size of the equiprobable intervals. For example:

X:= Uniform(1, Samplesize)
Y:= Sin(2*Pi*X)

This median Latin hypercube method gives very poor results. In such cases, you should use ran-
dom Latin hypercube or simple Monte Carlo. If your model has no periodic function of this kind, 
you do not need to worry about the reliability of median Latin hypercube sampling.

Random number
method

The random number method is used to determine how random numbers are generated for the 
probability distributions. Analytica provides three different methods for calculating a series of 
pseudorandom numbers.

• Minimal Standard (the default method)

The Minimal Standard random number generator is an implementation of Park and Miller’s 
Minimal Standard (based on a multiplicative congruential method) with a Bays-Durham 
shuffle. It gives satisfactory results for less than 100,000,000 samples.

• L’Ecuyer
The L’Ecuyer random number generator is an implementation of L’Ecuyer’s algorithm, based 
on a multiplicative congruential method, which gives a series of random numbers with a 
much longer period (sequence of numbers that repeat). Thus, it provides good random 
numbers even with more than 100,000,000 samples. It is slightly slower than the Minimal 
Standard generator.

• Knuth
Knuth’s algorithm is based on a subtractive method rather than a multiplicative congruential 
method. It is slightly faster than the Minimal Standard generator.

x Xi≤



Chapter Expressing Uncertainty

236 Analytica User Guide

14 Uncertainty Setup dialog

Random seed This value must be a number between 0 and 100,000,000 (108). The series of random numbers 
starts from this seed value when:

• A model is opened.
• The value in this field is changed.
• The Reset once box is checked, and the Uncertainty Setup dialog is closed by clicking the 

Accept or Set Default button.

Reset once Check the Reset once box to produce the exact same series of random numbers.

Statistics option To change the statistics reported when you select Statistics as the uncertainty view for a result, 
select the Statistics option from the Analysis option popup menu. 

Probability Bands
option

To change the probability bands displayed when you select Probability Bands as the uncertainty 
view for a result, select the Probability Bands option from the Analysis option popup menu.

Probability density
and cumulative

probability options

To change how probability density or the cumulative probability values are drawn or to change 
their resolution, select the respective option from the Analysis option popup menu.



 Analytica User Guide 237

Uncertainty Setup dialogChapter Expressing Uncertainty14

Analytica estimates the probability density function and cumulative distribution function, like other 
uncertainty views, from the underlying array of sample values for each uncertain quantity. As with 
any simulation-based method, each estimated distribution has some noise and variability from 
one evaluation to the next.

Samples per plot point This number controls the average number of sample values used to estimate each point on the 
probability density function (PDF) or cumulative distribution function (CDF) curves.

For a small number of samples per plot point (less than or equal to 10), more points are each esti-
mated from fewer sample values and so are more susceptible to random noise. If the quantity is 
defined by a single probability distribution, and if you use median Latin hypercube method (the 
default), this noise is slight and the curve looks smooth. In other cases, the noise can have a large 
effect, and using a larger number of samples per plot point produces a smoother curve. There is a 
trade-off; with larger numbers the smoothing can miss details of the shape of the curve. PDFs 
might be much more susceptible to random noise than CDFs, so you might wish to use larger 
numbers for PDFs than CDFs. Ultimately, to reduce the noise, use a larger sample size (for 
details on selecting the sample size, see “Appendix A: Selecting the Sample Size” on page 388).

Equal probability steps With this option, Analytica uses the sample to estimate a set of m+! fractiles (quantiles), Xp, at 
equal probability intervals, where p=0, q, 2q, ... 1, and q = 1/m. The cumulative probability is plot-
ted at each of the points Xp, increasing in equal steps along the vertical axis. Points are plotted 
closer together along the horizontal axis in the regions where the density is the greatest. In the 
probability density graph view, the areas under the density function between successive fractiles 
are equal because they each represent the same probability, q. The density between two succes-
sive fractiles is plotted at the mid point (on the horizontal axis) of the two fractiles.

Equal X axis steps With this option, Analytica estimates cumulative probability using equally spaced points along the 
X axis. In the probability density graph view, it shows a histogram where the height of each hori-
zontal is estimated as the fraction of the sample values that fall within that X interval. 



Chapter Expressing Uncertainty

238 Analytica User Guide

14 Uncertainty Setup dialog



Chapter 15 Probability Distributions

This chapter describes how to define uncertain quantities using proba-
bility distributions, discrete or continuous. You can use standard para-
metric distributions, such as Normal, Uniform, Bernoulli, binomial, or 
custom distributions, where you specify points in tables or arrays. You 
can also create multivariate distributions over an array of uncertain 
quantities.



Chapter Probability Distributions

240 Analytica User Guide

15

Probability distributions
The built-in Distribution library (available from the Definition menu) offers a wide range of distri-
butions for discrete and continuous variables. (See “Is the quantity discrete or continuous?” on 
page 228 and “Glossary” on page 409 for an explanation of this distinction.) Some are standard 
or parametric distributions with just a few parameters, such as Normal and Uniform, which are 
continuous, and Bernoulli and Binomial, which are discrete. Others are custom distributions, 
such as CumDist, which lets you specify an array of points on a cumulative probability distribu-
tion, and Probtable (page 247), which lets you edit a table of probabilities for a discrete variable 
conditional on other discrete variables.

There are a variety of ways to create arrays of uncertain quantities, or multivariate distributions 
(page 261). You may set parameters to array values, specify an index to the optional Over param-
eter, or use functions from the Multivariate library.

Parametric Discrete Parametric Continuous Multivariate

• Bernouli() page 241 • Uniform() page 249 • Normal_correl() page 262

• Binomial() page 241 • Triangular() page 250 • Correlate_with() page 262

• Poisson() page 241 • Normal() page 250 • Dist_reshape() page 263

• Geometric() page 242 • Lognormal() page 251 • Correlate_dists() page 263

• Hypergeometric() page 242 • Beta() page 252 • Gaussian() page 263

• Uniform() page 242 • Exponential() page 253 • Multinormal() page 263

• Gamma() page 254 • BiNormal() page 263

Custom Discrete • Logistic() page 254 • Dirichlet() page 263

• Probtable() page 246 • StudentT() page 255 • Multinomial() page 264

• Determtable() page 247 • Weibull() page 256 • UniformSpherical() page 264

• Chancedist() page 248 • ChiSquared() page 257 • MultiUniform() page 264

• Normal_serial_correl() page 265

Special Probabilistic • Dist_serial_correl() page 265

• Certain() page 259 Custom Continuous • Normal_additive_gro() page 265

• Shuffle() page 259 • Cumdist() page 257 • Dist_additive_growth() page 265

• Truncate() page 259 • Probdist() page 258 • Normal_compound_gro() page 265

• Random() page 260 • Dist_compound_growth() page 265



 Analytica User Guide 241

Parametric discrete distributionsChapter Probability Distributions15

Parametric discrete distributions

Bernoulli(p)
Defines a discrete probability distribution with probability p of result 1 and probability (1 - p) of 
result 0. It generates a sample containing 0s and 1s, with the proportion of 1s is approximately p. 
p is a probability between 0 and 1, inclusive, or an array of such probabilities. The Bernoulli distri-
bution is equivalent to:

If Uniform(0, 1) < P Then 1 Else 0

Library Distribution

Example The domain, List of numbers, is [0, 1].
Bernoulli_ex:= Bernoulli (0.3) →

Binomial(n, p)
An event that can be true or false in each trial, such as a coin coming down heads or tails on each 
toss, with probability p has a Bernoulli distribution. A binomial distribution describes the number of 
times an event is true, e.g., the coin is heads in n independent trials or tosses where the event 
occurs with probability p on each trial.

The relationship between the Bernoulli and binomial distributions means that an equivalent, if less 
efficient, way to define a Binomial distribution function would be:

Function Binomial2(n, p)
Parameters: (n: Atom; p)
Definition: Index i := 1..n;

Sum(FOR J := I DO Bernoulli(p), i)

The parameter n is qualified as an Atom to ensure that the sequence 1..n is a valid one-dimen-
sional index value. It allows Binomial2 to array abstract if its parameters n or p are arrays. 

Poisson(m)
A Poisson process generates random independent events with a uniform distribution over time 
and a mean of m events per unit time. Poisson(m) generates the distribution of the number of 
events that occur in one unit of time. You might use the Poisson distribution to model the number 
of sales per month of a low-volume product, or the number of airplane crashes per year.



Chapter Probability Distributions

242 Analytica User Guide

15 Probability density and mass graphs

Geometric(p)
The geometric distribution describes the number of independent Bernoulli trials until the first suc-
cessful outcome occurs, for example, the number of coin tosses until the first heads. The param-
eter p is the probability of success on any given trial. 

Hypergeometric(s, m, n)
The hypergeometric distribution describes the number of times an event occurs in a fixed number 
of trials without replacement, e.g., the number of red balls in a sample of s balls drawn without 
replacement from an urn containing n balls of which m are red. Thus, the parameters are: 

Uniform(min, max, Integer: True)
The Uniform distribution with the optional integer parameter set to True returns discrete distribu-
tion over the integers with all integers between and including min and max having equal probabil-
ity.

Uniform(5, 14, Integer: True) → 

Probability density and mass graphs
When you select the Probability density as the uncertainty view (page 31) for a continuous 
variable, it graphs the distribution as a Probability Density function. The height of the density 
shows the relative likelihood the variable has that value.

s The sample size, e.g., the number of balls drawn from an urn without replacement. 
Cannot be larger than n. 

m The total number of successful events in the population, e.g, the number of red balls in 
the urn.

n The population size, e.g., the total number of balls in the urn, red and non-red. 



 Analytica User Guide 243

Probability density and mass graphsChapter Probability Distributions15

Technically, the probability density of variable X, means the probability per unit increment of X. 
The units of probability density are the reciprocal of the units of X — if the units of X are dollars, 
the units of probability density are probability per dollar increment

If you select Probability density as the uncertainty view for a discrete variable, it actually graphs 
the Probability Mass function — using a bar graph style to display the probability of each dis-
crete value as the height of each bar.

Similarly, if you choose the cumulative probability uncertainty view for a discrete variable, it 
actually displays the cumulative probability mass distribution as a bar graph. Each bar shows 
the cumulative probability that X has that value or any lower value.



Chapter Probability Distributions

244 Analytica User Guide

15 The domain attribute and discrete variables

Is a distribution discrete
or continuous?

Almost always, Analytica can figure out whether a variable is discrete or continuous, and so 
choose the probability density or probability mass view as appropriate — so you don’t need to 
worry about it. If the values are text, it knows it must be discrete. If the numbers are integers, such 
as generated by Bernoulli, Poisson, binomial, and other discrete parametric distributions, it also 
assumes it is discrete. 

Infrequently, a discrete distribution can contain numbers that are not integers, which it might not 
recognize as discrete, for example:

Chance Indiscrete := Poisson(4)*0.5

In this case, you can make sure it does what you want by specifying the domain attribute of the 
variable as discrete (or continuous). The next section on the domain attribute explains how.

The domain attribute and discrete variables
The domain attribute specifies the set of possible values for a variable. You rarely need to view 
or change a domain attribute explicitly. The most common reason to set the domain is for a vari-
able defined as a custom discrete distribution, especially ProbTable. You can do this by editing it 
directly as an index in the probtable view (page 246), so you can usually ignore the information 
below. The rare case you need it is to specify a distribution as discrete, when Analytica would not 
otherwise figure it out — because it has non-integer numerical value.

By default, the domain type is Automatic, meaning Analytica figures it out when it needs to. Usu-
ally, this is obvious (see previous section). For a discrete quantity, the domain can be a list of 
numbers or a list of labels. If the domain is continuous, it means that any number is valid. 

Editing the domain You can view and edit the domain like any other attribute of a variable, in the Attribute panel:

1. Select the variable.
2. Open the Attribute panel, and select Domain from the Attribute menu.
3. Select the domain type from the popup menu.



 Analytica User Guide 245

The domain attribute and discrete variablesChapter Probability Distributions15

The domain type Automatic: The default, meaning Analytica should figure it out.

Continuous: Any number. All other types are discrete. 

Discrete Numeric and Categorical: Discrete but its values are unspecified. 

List of Numbers: You specify a list of numbers.

List of Labels: You specify a list of label (text) values, as illustrated. 

Index: You enter the name of an index variable, to use its values as the domain, or another 
variable to copy its domain values.

4. If you choose List of Numbers or List of Labels, you enter the list values in the usual way 
(see “Creating an index” on page 159).

Domain in the
Object window

You can also view and edit the domain attribute in the Object window if you set it to do so in the 
Attributes dialog (see “Managing attributes” on page 319).

Tip The domain of a discrete variable should include all its possible values. If not, its probability mass 
function might sum to less than 1.



Chapter Probability Distributions

246 Analytica User Guide

15 Custom discrete probabilities

Custom discrete probabilities
These functions let you specify a discrete probability distribution using a custom set of values, 
text (label) values, or numbers.

Probtable(): Probability Tables
To describe a probability distribution on a discrete variable whose domain is a list of numbers or 
list of labels, you use special kind of edit table called a probability table (or probtable) (see 
“Arrays and Indexes” on page 139).

Create a
probability table

To define a variable using a probability table:

1. Determine the variable’s domain — number or labels for its possible values.
2. Select the variable and view its definition attribute in the Object window or Attribute panel 

(page 22) of the Diagram window.
3. Press the expr menu above the definition field and select Probability Table.

If the variable already has a definition, it confirms that you wish to replace it.

Tip If the definition of a variable is already a probability table, a ProbTable button appears in the 
definition. Click it to open the Edit Table window (see “Defining a variable as an edit table” on 
page 166).

4. The Indexes dialog opens to confirm your choices for the indexes of the table. It already 
includes the selected variable (Self) among the selected indexes. Other options are 
variables with a domain that is a list of numbers or list of labels. Add or remove any other 
variables that you want to condition this variable on.

Tip Self is required as an index of a probability table. It refers to the domain (possible values) of this 
variable.

5. Click the OK button. An Edit Table window appears.



 Analytica User Guide 247

Custom discrete probabilitiesChapter Probability Distributions15

6. Enter the possible values for the domain in the left column. As in any edit table, press Enter 
or down-arrow in the last row to add a row. Select Insert row (Control+i) or Delete row 
(Control+k) from the Edit menu. If they are numbers, they must be in increasing order.

7. Enter the probability of each possible outcome in the second column. The probabilities should 
sum to 1. You may enter literal numbers or expressions.

Example If P is a variable whose value is a probability (between 0 and 1) and the possible weather out-
comes are sunny and rainy, you might define a probability table for weather like this.

Expression view of
probability table

The Weather probability table when viewed as an expression, looks like this.
Probtable(Self)(P, (1-P))

The domain values do not appear in the expression view, and it is not very convenient for defining 
a probability table. More generally, the expression view of a multidimensional probability table 
looks like this:

Probtable(i1, i2, … in) (p1, p2, p3, … pm)

This example is an n-dimensional conditional probability table, indexed by the indexes i1, i2, … 
in. One index must be Self. p1, p2, p3, … pm are the probabilities in the array. m is the product 
of the sizes of the indexes i1, i2, … in.

Add a conditioning
variable

You might wish to add one or more conditioning variables to a probability table, to create condi-
tional dependency. Each discrete conditioning variable adds a dimension to the table. For exam-
ple, in the Weather probability table (see page 246), the probability of rain might depend on the 
season. So you might have Season as a conditioning variable, defined as a list of labels: 

Variable Season := ['Winter', 'Spring', 'Summer', 'Fall']

1. Open the Edit Table window by clicking the ProbTable button.
2. Click the indexes button to open the Indexes dialog.
3. Click the All Variables checkbox above the left hand list.
4. Move the desired variable, e.g., Season, to add it as an index.
5. Click OK to accept the changes.

The resulting table is indexed by both the domain of your variable and the domains of the condi-
tionally dependent variables. You need to enter a probability for each cell. The probabilities must 
sum to one over the domain of the variable (sunny and rainy in the example), not over the con-
ditioning index(es).

Tip You must have already specified the variables as probability tables, before adding them with the 
Indexes dialog.

Determtable(): Deterministic conditional table
Determtable() defines the value of a variable as a deterministic (not uncertain) function of one or 
more discrete variables. It gives a value conditional on the value of one or more discrete vari-
ables, often including a probabilistic discrete variable and a discrete decision variable defined as 
a list. DetermTable() is described in Chapter 11, “Arrays and Indexes,” on page 201, but we also 
include it in this section on discrete probability distributions, even though it is not probabilistic, 

Domain



Chapter Probability Distributions

248 Analytica User Guide

15 Custom discrete probabilities

because you usually use it in conjunction with Probtable and other discrete distributions. It is an 
editable table, like Probtable, but with a single (deterministic) value, number, or text, in each cell.

The Determtable() function looks like an edit table or a probability table, with an index (dimen-
sion) from each discrete variable on which it depends. Unlike Probtable, it does not need a self 
index. Its result is probabilistic if any of its conditioning variables are probabilistic. 

For the steps to create a determTable, see “Creating a DetermTable” on page 201.

Example In “Create a probability table” on page 246, Weather is defined as a probability table. If P, the 
probability of “sunny” is 0.4, then the probability of “rainy” is 0.6. Party_location is a decision 
variable with values ['outdoors', 'porch','indoors']. value_to_me is a determtable, 
containing utility values (or “payoffs”) for each combination of Party_location and Weather.

Evaluating value_to_me gives the value of each party location, considering the uncertain distri-
bution of Weather. The mean value of value_to_me is the expected utility.

Chancedist(p, a, i)
Creates a discrete probability distribution, where a is an array of outcome values, numbers or 
text, and p is the corresponding array of probabilities. a and p must both be indexed by i. 

When to use Use Chancedist() instead of ProbTable() when:

• The array of outcome a is multidimensional.

or
• You want to use other variables or expressions to define the outcomes or probability arrays.

Library Distribution

Example Index_b:

Array_q:
Index_b 

Red White Blue

Red White Blue
0.3 0.2 0.5



 Analytica User Guide 249

Parametric continuous distributionsChapter Probability Distributions15

The domain of the variable is a list of labels: ['Red','White','Blue'].
Chancedist(Array_q, Index_b, Index_b) →

Parametric continuous distributions
Tip To produce the example graphs of distributions below, we used a sample size of 1000, equal 

sample probability steps, samples per PDF of 10, and we set the graph style to line. Even if you 
use the same options, your graphs can look slightly different due to random variation in the Monte 
Carlo sampling.

Uniform(min, max)
Creates a uniform distribution between values min and max. If omitted, they default to 0 and 1. If 
you specify optional parameter Integer: True, it returns a discrete distribution consisting of only 
the integers between min and max, each with equal probability. See “Uniform(min, max, Integer: 
True)” on page 242. 

When to use If you know nothing about the uncertain quantity other than its bounds, a uniform distribution 
between the bounds is appealing. However, situations in which this is truly appropriate are rare. 
Usually, you know that one end or the middle of the range is more likely than the rest — that is, 
the quantity has a mode. In such cases, a beta or triangular distribution is a better choice.

Library Distribution

Example Uniform(5, 10) →



Chapter Probability Distributions

250 Analytica User Guide

15 Parametric continuous distributions

Triangular(min, mode, max)
Creates a triangular distribution, with minimum min, most likely value mode, and maximum max. 
min must not be greater than mode, and mode must not be greater than max.

When to use Use the triangular distribution when you have the bounds and the mode, but have little other infor-
mation about the uncertain quantity.

Library Distribution

Example Triangular(2, 7, 10) →

Normal(mean, stddev)
Creates a normal or Gaussian probability distribution with mean and standard deviation stddev. 
The standard deviation must be 0 or greater. The range [mean-stddev, mean+stddev] encloses 
about 68% of the probability.

When to use Use a normal distribution if the uncertain quantity is unimodal and symmetric and the upper and 
lower bounds are unknown, possibly very large or very small (unbounded). This distribution is 



 Analytica User Guide 251

Parametric continuous distributionsChapter Probability Distributions15

particularly appropriate if you believe that the uncertain quantity is the sum or average of a large 
number of independent, random quantities.

Library Distribution

Example Normal(30, 5) →

Lognormal(median, gsdev, mean, stddev)
Creates a lognormal distribution. You can specify its median and geometric standard deviation 
gsdev, or its mean and standard deviation stddev, or any two of these four parameters. The geo-
metric standard deviation, gsdev, must be 1 or greater. It is sometimes also known as the uncer-
tainty factor or error factor. The range [median/gsdev, median x gsdev] encloses about 68% 
of the probability — just like the range [mean - stddev, mean + stddev] for a normal distribution 
with standard deviation stddev. median and gsdev must be positive.

If x is lognormal Ln(x) has a normal distribution with mean Ln(median) and standard deviation 
Ln(gsdev).

When to use Use the lognormal distribution if you have a sharp lower bound of zero but no sharp upper bound, 
a single mode, and a positive skew. The gamma distribution is also an option in this case. The 
lognormal is particularly appropriate if you believe that the uncertain quantity is the product (or 
ratio) of a large number of independent random variables. The multiplicative version of the central 
limit theorem says that the product or ratio of many independent variables tends to lognormal — 
just as their sum tends to a normal distribution.

Library Distribution

Examples Lognormal(5, 2) →
Lognormal(mean: 6.358, Stddev: 5) →



Chapter Probability Distributions

252 Analytica User Guide

15 Parametric continuous distributions

Beta(x, y, min, max)
Creates a beta distribution of numbers between 0 and 1 if you omit optional parameters min and 
max. x and y must be positive. If you specify min and/or max, it shifts and expands the beta dis-
tribution to so that they form the lower and upper bounds. The mean is:

 

When to use Use a beta distribution to represent uncertainty about a continuous quantity bounded by 0 and 1 
(0% or 100%) with a single mode. It is particularly useful for modeling an opinion about the frac-
tion (percentage) of a population that has some characteristic. For example, suppose you are try-
ing to estimate the long run frequency of heads, h, for a bent coin about which you know nothing. 
You could represent your prior opinion about h as a uniform distribution: 

Uniform(0, 1)

Or equivalently:
Beta(1, 1)

If you observe r heads in n tosses of the coin, your new (posterior) opinion about h, should be:
Beta(1 + r, 1 + n - r)

If the uncertain quantity has lower and upper bounds other than 0 and 1, include the lower and 
upper bounds parameters to obtain a transformed beta distribution. The transformed beta is a 
very flexible distribution for representing a wide variety of bounded quantities.

Library Distribution

Examples Beta(5, 10) →

x
x y+
---------- max min–( )× min+



 Analytica User Guide 253

Parametric continuous distributionsChapter Probability Distributions15

Beta(5, 10, 2, 4) →

Exponential(r)
Describes the distribution of times between successive independent events in a Poisson process 
with an average rate of r events per unit time. The rate r is the reciprocal of the mean of the Pois-
son distribution — the average number of events per unit time. Its standard deviation is also 1/r. 

A model with exponentially distributed times between events is said to be Markov, implying that 
knowledge about when the next event occurs does not depend on the system’s history or how 
much time has elapsed since the previous event. More general distributions such as the gamma 
or Weibull do not exhibit this property. 



Chapter Probability Distributions

254 Analytica User Guide

15 Parametric continuous distributions

Gamma(a, b)
Creates a gamma distribution with shape parameter a and scale parameter b. The scale parame-
ter, b, is optional and defaults to b=1. The gamma distribution is bounded below by zero (all sam-
ple points are positive) and is unbounded from above. It has a theoretical mean of and a 
theoretical variance of . When , the distribution is unimodal with the mode 
at . An exponential distribution results when . As , the gamma distribu-
tion approaches a normal distribution in shape.

The gamma distribution encodes the time required for a events to occur in a Poisson process with 
mean arrival time of b.

Tip Some textbooks use Rate=1/b, instead of b, as the scale parameter.

When to use Use the gamma distribution with a>1 if you have a sharp lower bound of zero but no sharp upper 
bound, a single mode, and a positive skew. The Lognormal distribution is also an option in this 
case. Gamma() is especially appropriate when encoding arrival times for sets of events. A 
gamma distribution with a large value for a is also useful when you wish to use a bell-shaped 
curve for a positive-only quantity.

Library Distribution

Examples Gamma distributions with mean=1

Logistic(m, s)
The logistic distribution describes a distribution with a cumulative density given by:

The distribution is symmetric and unimodal with tails that are heavier than the normal distribution. 
It has a mean and mode of m, variance of:

a b⋅
a b2⋅ a b>

a 1–( ) b⋅ a 1= a ∞→

F x( ) 1

1 e
x m–( )–

s
---------------------

+

---------------------------=

π2 s2×
3

----------------



 Analytica User Guide 255

Parametric continuous distributionsChapter Probability Distributions15

and kurtosis of 6/5 and no skew. The scale parameter, s, is optional and defaults to 1. 

The logistic distribution is particularly convenient for determining dependent probabilities using 
linear regression techniques, where the probability of a binomial event depends monotonically on 
a continuous variable x. For example, in a toxicology assay, x might be the dosage of a toxin, and 
p(x) the probability of death for an animal exposed to that dosage. Using p(x) = F(x), the logit of p, 
given by:

Logit(p(x)) = Ln(p(x) / (1-p(x))) = x/s - m/s

This has a simple linear form. This linear form lends itself to linear regression techniques for esti-
mating the distribution — for example, from clinical trial data. 

Example Logistic(10, 10)

StudentT(d)
The StudentT describes the distribution of the deviation of a sample mean from the true mean 
when the samples are generated by a normally distributed process centered on the true mean. 
The T statistic is:

T = (m - x)/(s Sqrt(n))

where x is the sample mean, m is the actual mean, s is the sample standard deviation, and n is 
the sample size. T is distributed according to StudentT with d = n-1 degrees of freedom. 

The StudentT distribution is often used to test the statistical hypothesis that a sample mean is sig-
nificantly different from zero. If x1..xn measurements are taken to test the hypothesis m>0:

GetFract(StudentT(n-1), 0.95) 

This is the acceptance threshold for the T statistic. If T is greater than this fractile, we can reject 
the null hypothesis (that m<=0) at 95% confidence. When using GetFract for hypothesis testing, 
be sure to use a large sample size, since the precision of this computation improves with sample 
size. 

The StudentT can also be useful for modeling the power of hypothetical experiments as a function 
of the sample size n, without having to model the outcomes of individual trials. 

Example StudentT(8)



Chapter Probability Distributions

256 Analytica User Guide

15 Parametric continuous distributions

Weibull(n, s)
The Weibull distribution has a cumulative density given by:

for x>= 0. It is similar in shape to the gamma distribution, but tends to be less skewed and tail-
heavy. It is often used to represent failure time in reliability models. In such models, might 
represent the proportion of devices that experience a failure within the first x time units of opera-
tion, the number of insurance policy holders that file a claim within x days.

Example Weibull(10, 4) →

f x( ) 1 e

x
s
--⎝ ⎠

⎛ ⎞–
n

–=

f x( )



 Analytica User Guide 257

Custom continuous distributionsChapter Probability Distributions15

ChiSquared(d)
The ChiSquared() distribution with d degrees of freedom describes the distribution of a Chi-
Squared metric defined as:

where each yi is independently sampled from a standard normal distribution and d = n -1. The 
distribution is defined over non-negative values. 

The Chi-squared distribution is commonly used for analyses of second moments, such as analy-
ses of variance and contingency table analyses. It can also be used to generate the F distribution. 
Suppose:

Variable V := ChiSquared(k)
Variable W := ChiSquared(m)
Variable S := (V/k)*(W/m) 

S is distributed as an F distribution with k and m degrees of freedom. The F distribution is useful 
for the analysis of ratios of variance, such as a one-factor between-subjects analysis of variance. 

Custom continuous distributions
These functions let you specify a continuous probability distribution by specifying any number of 
points on its cumulative or density function.

Cumdist(p, r, i)
Specifies a continuous probability distribution as an array of cumulative probabilities, p, for an 
array of corresponding outcome values, r. The values of p must be nondecreasing and should 
start with 0 and end with 1. The values of r must also be be nondecreasing over their common 
index. If p is an index of r, or r is an index of p, or if both have the same single index, the corre-
spondence is clear and so you can omit i. Otherwise, if p or r have more than one index, you must 
specify the common index i to link p and r.

By default, it fits the cumulative distribution using piecewise cubic monotonic interpolation 
between the specified points, so that the PDF is also continuous. If you set the optional parameter 
Smooth to False, it uses piecewise linear interpolation for the CDF, so that the PDF is piecewise 
uniform. 

Library Distribution

Example Array_b →
Index_a 

Array_x →
Index_a 

CumDist(Array_b, Array_x) →

Chi2 yi
2

i 1=
n

∑=

1 2 3
0 0.6 1.0

1 2 3
10 20 30



Chapter Probability Distributions

258 Analytica User Guide

15 Custom continuous distributions

Probdist(p, r, i)
Specifies a continuous probability distribution as an array of probability densities, p, for an array 
of corresponding values, r. The values of r must be increasing. The probability densities p must 
be non-negative. It normalizes the densities so that the total probability integrates to 1. 

Usually the first and last values of p should be 0. If not, it assumes zero at 2r1 - Rr (or 2rn - rn-1). 

Either r must be an index of p, or p and r must have an index in common. If p or r have more than 
one index, you must specify the index i to link p and r. 

It produces the density function using linear interpolation between the points on the density func-
tion (quadratic on CDF). 

Library Distribution
Array_p →
Index_a 

Array_r →
Index_a 

Probdist(Array_p, Array_r) →

1 2 3 4 5 6
0 0.4 0.2 0.5 0.2 0

1 2 3 4 5 6
10 15 20 25 30 35



 Analytica User Guide 259

Special probabilistic functionsChapter Probability Distributions15

Special probabilistic functions

Certain(u)
Returns the mid (deterministic) value of u even if u is uncertain and evaluated in a prob (probabi-
listic) context. It is not strictly a probability distribution. It is sometimes useful in browse mode, 
when you want to replace an existing probability distribution defined for an input (see “Using input 
nodes” on page 116) with a non-probabilistic value.

Library Distribution

Shuffle(a, i) 
Shuffle returns a random reordering (permutation) of the values in array a over index i. If you 
omit i, it evaluates a in prob mode, and shuffles the resulting sample over Run. You can use it to 
generate an independent random sample from an existing probability distribution a. 

If a contains dimensions other than i, it shuffles each slice over those other dimensions indepen-
dently over i. If you want to shuffle the slices of a multidimensional array over index i, without 
shuffling the values within each slice, use this method: 

a[@i = Shuffle(@i, i)]

This shuffles a over index i, without shuffling each slice over its other indexes.

Truncate(u, min, max)
Truncates an uncertain quantity u so that it has no values below min or above max. You must 
specify one or both min and max. 

It does not discard sample values below min or above max. Instead, it generates a new sample 
that has approximately same probability distribution as u between min and max, and no values 
outside them. The values of the result sample have the same rank order as the input u, so the 
result retains the same rank-correlation that u had with any predecessor.

It gives an error if u is not uncertain, or if min is greater than max. It gives a warning if no sample 
values of u are in the range min to max. In mid mode, it returns an estimate of the median of the 
truncated distribution. Unlike other distribution functions, even in mid mode, it evaluates its 
parameter u (and therefore any of its predecessors) in prob mode. It always evaluates min and 
max in mid mode.



Chapter Probability Distributions

260 Analytica User Guide

15 Special probabilistic functions

Examples We define a normal distribution, X, and variables A, B, and C that truncate X below, above, and on 
both sides. Then we define a variable to compare A, B, and C and display its result in the probabil-
ity density view:

Chance X := Normal(10, 2)
Chance A := Truncate(X, 7)
Chance B := Truncate(X, , 10)
Chance C := Truncate(X, 8, 12)
Variable Compare_truncated_x := [A, B, C]

Library Distribution

Random(expr)
Generates a single value randomly sampled from expr, which, if given, must be a call to a proba-
bility distribution with all needed parameters, for example:

Random(Uniform(-100, 100))

This returns a single real-valued random number uniformly selected between -100 and 100. If you 
omit parameter expr, it generates one sample from the uniform distribution 0 to 1, for example:

Random(Uniform(-100, 100)) → 74.4213148
Random() → 0.265569265

Random is not a true distribution function, since it generates only a single value from the distribu-
tion, whether in mid or prob context. It generates each single sample using Monte Carlo, not Latin 
hypercube sampling, no matter what the global setting in the uncertainty setup. It is often useful 
when you need a random number generator stream, such as for rejection sampling, Metropolis-
Hastings simulation, and so on. 

Random has these parameters, all optional.

Parameters dist: If specified, must be a call to a distribution function that supports single-sample generation 
(see below). Defaults to Uniform(0, 1). 

Method: Selects the random number generator of 0=default, 1=Minimal standard, 2=L’Ecuyer, or 
3=Knuth. 

Over: A convenient way to list index(es) so that the result is an array of independent random 
numbers with this index or indexes. For example:

Random(Over: I)



 Analytica User Guide 261

Multivariate distributionsChapter Probability Distributions15

returns an array of independent uniform random numbers between 0 and 1 indexed by I. It is 
equivalent to:

Random(Uniform(0, 1, Over: i))

Supported distributions Random supports all built-in probability distribution functions with the exception of Fractiles, 
ProbDist, and Truncate. It supports Bernoulli, Beta, Binomial, Certain, ChiSquared, CumDist, 
Exponential, Gamma, Geometric, HyperGeometric, Logistic, LogNormal, Normal, Poisson, Stu-
dentT, Triangular, Uniform, Weibull. 

It supports these distributions in the Distribution Variations library: Beta_m_sd, Chancedist, 
Erlang, Gamma_m_sd, InverseGaussian, Lorenzian, NegBinomial, Pareto, Pert, Rayleigh, 
Smooth_Fractile, and Wald, and these distributions from the Multivariate Distributions library: 
BiNormal, Dirichlet, Dist_additive_growth, Dist_compound_growth, Dist_serial_correl, Gaussian, 
Multinomial, MultiNormal, MultiUniform, Normal_additive_gro, Normal_compound_gro, 
Normal_correl, Normal_serial_correl, UniformSpherical, Wishart, and InvertedWishart. 

User-defined functions can be used as a parameter to Random, if they are given an optional 
parameter declared as:

singleSampleMethod: Optional Atom Number

If the parameter is provided, the distribution function must return a single random variate from the 
distribution indicated by the other parameters. The value specifies the random number generator 
to use 0=default, 1=Minimal standard, 2=L’Ecuyer, and 3=Knuth.

Multivariate distributions
A multivariate distribution is a distribution over an array of quantities — or, equivalently, an array 
of distributions. Analytica’s Intelligent Array features make it relatively easy to generate multivari-
ate distributions. There are three main ways: 

• To create an array of identical independent distributions, use the Over parameter. 
• To create an array of independent distributions with different parameters, pass array(s) of 

parameter values to the function. 
• To create an array of dependent distributions, use a function from the Multivariate 

Distributions library, which lets you specify a dependence as a correlation, correlation matrix, 
or covariance matrix. 

See the following sections for details. 

Over indexes as parameters to probability distributions
If you want to generate an array of identical, independent distributions, the simplest method is to 
specify the index(es) in the Over parameter, for example:

Normal(10, 2, Over: K)

generates an array of independent normal distributions, each with mean 10 and standard devia-
tion 2, over index K. All parametric distributions accept Over as an optional parameter. Over 
allows multiple indexes if you want to create a multidimensional array of identically distributed 
quantities. For example, this generates a three-dimensional array of independent, identically dis-
tributed uniform distributions:

Uniform(0, 10, Over: I, J, K)

Probability distributions with array parameters
Probability distribution functions fully support Intelligent Arrays. If a parameter is an array, the 
function generates an array of independent distributions over any index(es) of the array. For 
example:

Index K := ['A', 'B', 'C']
Variable Xmean := Table(K)(10, 11, 12)
Variable X := Normal(Xmean, 2)



Chapter Probability Distributions

262 Analytica User Guide

15 Multivariate distributions

X is an array of normal distributions over index K, each with the corresponding mean. If you define 
a normal distribution with two parameters (mean and standard deviation) with the same Index(es) 
— in this case, Xmean and Ysd are both indexed by k:

Variable Ysd := Table(K)(2, 3, 4)
Variable Y := Normal(Xmean, Ysdeviation)

it generates an array of normal distributions over index K, each with corresponding mean and 
standard deviation. More generally, the result is an array with the union of the indexes of all its 
parameters — just the same as all other functions and operations that support Intelligent Arrays.

The custom probability distributions, including ProbTable, ProbDist, and CumDist, expect their 
parameters to be arrays of probabilities, probability densities, or values, with a common index. In 
this case, the common index is used in generating the random sample and does not appear in the 
result. But, if those array parameters have any other indexes, those indexes also appear in the 
result, following the usual rules of Intelligent Arrays.

Multivariate Distributions library
This library offers a variety of functions for generating probability distributions that are dependent 
or correlated. It is distributed with Analytica. To add this library to your model see “Adding library 
to a model” on page 322. 

Many of these functions specify dependence among distributions using a rank correlation num-
ber or matrix, also known as the Spearman correlation. Unlike the Pearson or product-moment 
correlation, rank correlation is a non-parametric measure of correlation. It is equivalent to the 
Pearson correlation on the ranks of the same. It does not assume that the relationship is linear, 
and applies to ordinal as well as interval-scale variables. It is therefore a more robust statistic. For 
example, it is a more stable way to estimate the relationship between two random samples when 
one or both has a long tail — such as a lognormal distribution. In such cases, Pearson correlation 
might be misleadingly large (or small) when an extreme sample in the tail of one sample does (or 
does not) correspond with an extreme value in the other sample. 

The methods provided to generate general multivariate distributions with specified rank correla-
tion, first generate multivariate normal (Gaussian) distributions with specified rank correlation, 
and then transform them to the desired marginal distributions. The rank correlations are not 
changed by such transformation.

The method for generating the correlated distribution (based on Iman & Conover) works for 
median and random Latin Hypercube as well as simple Monte Carlo simulation methods. The 
rank-correlations of the results are approximately, but not exactly, equal to the specified rank-cor-
relations. The accuracy of the approximation increases with the sample size. 

Create one distribution dependent on another

Normal_correl(m, s, r, y)
Generates a normal distribution with mean m, standard deviation s, and correlation r with uncer-
tain quantity y. In mid mode, it returns m. If y is not normally distributed, the result is also not nor-
mal, and the correlation is approximate. It generalizes appropriately if any of the parameters are 
arrays. The result array has the union of the indexes of the parameters.

Correlate_with(s, ref, rc)
Reorders the samples of s so that the result has the identical values to s, and a rank correlation 
close to rc with the reference sample, ref. 

Example To generate a lognormal distribution with a 0.8 rank correlation with Z, use:
Correlate_with(LogNormal(2, 3), Z, 0.8)

Note: If you have a non-default SampleWeighting of points, the weighted rank correlation 
might differ from rc.



 Analytica User Guide 263

Multivariate distributionsChapter Probability Distributions15

Dist_reshape(x, newdist)
Reshapes the probability distribution of uncertain quantity x, so that it has the same marginal 
probability distribution (i.e., same set of sample values) as newdist, but retains the same ranks 
as x over Run. Thus:

Rank(Sample(x), Run) 
= Rank(Sample(Dist_reshape(x, y)), Run)

In a mid context, it simply returns Mid(newdist), with any indexes of x.

The result retains any rank correlations that x might have with other predecessor variables. So, 
the rank-order correlation between a third variable z and x is the same as the rank-order correla-
tion between z and a reshaped version of x, like this:

RankCorrel(x, z) = RankCorrel(Dist_reshape(x, y), z)

The operation can optionally be applied along an index r other than Run.

An array of distributions with correlation or covariance matrix

Correlate_dists(x, rcm, m, i, j)
Given an array x indexed by i of uncertain quantities, it reorders the samples so as to match the 
desired rank correlation matrix, rcm between the x[i] as closely as possible. rcm is indexed by i 
and j, which must be the same length. It must be positive definite, and the diagonal should be all 
ones. The result has the same marginal distributions as x[i], and rank correlations close to those 
specified in rcm. In mid mode, it returns Mid(x).

Gaussian(m, cvm, i, j)
Generates a multivariate Gaussian (i.e., normal) distribution with mean vector, m, and covariance 
matrix, cvm. m is indexed by i. cvm must be a symmetric and positive-definite matrix, indexed by 
i and j, which must be the same length. It is similar to Multinormal() except that it takes a covari-
ance matrix instead of a rank correlation matrix.

MultiNormal(m, s, cm, i, j)
Generates a multivariate normal (or Gaussian) distribution with mean m, standard deviation s, 
and correlation matrix cm. m and s can be scalar or indexed by i. cm must be a symmetric, posi-
tive-definite matrix, indexed by i and j, which must be the same length. It is similar to Gaussian, 
except that it takes a correlation matrix instead of a covariance matrix.

BiNormal(m, s, i, c)
A 2D Normal (or bivariate Gaussian) distribution with means m, standard deviations s (>0) and 
correlation c between the two variables. The index i must have exactly two elements. s must be 
indexed by i.

Other parametric multivariate distributions

Dirichlet(alpha, i)
A Dirichlet distribution with parameters alpha>0 indexed by i. Each sample of a Dirichlet distribu-
tion produces a random vector indexed by i whose elements sum to 1. It is commonly used to rep-
resent second order probability information.

The Dirichlet distribution has a density given by:
k * Product(x^(alpha-1), i)

where k is a normalization factor equal to:
GammaFn(Sum(alpha, i))/Sum(GammaFn(alpha), i)



Chapter Probability Distributions

264 Analytica User Guide

15 Multivariate distributions

The alpha parameters can be interpreted as observation counts. The mean is given by the rela-
tive values of alpha (normalized to 1), but the variance narrows as the alphas get larger, just as 
your confidence in a distribution would narrow as you get more samples.

The Dirichlet lends itself to easy Bayesian updating, if you have a prior of alpha = 0, and you have 
n observations.

Multinomial(n, theta, i)
Returns the multinomial distribution, a generalization of the binomial distribution to n possible out-
comes. For example, if you were to roll a fair die n times, the outcome would be the number of 
times each of the six numbers appears. theta would be the probability of each outcome, where 
Sum(theta, i)=1, and index i is the list of possible outcomes. If theta doesn’t sum to 1, it is nor-
malized.

Each sample is a vector indexed by i indicating the number of times the corresponding outcome 
(die number) occurred during that sample point. Each sample has the property 

Sum(result, I) = n

UniformSpherical(i, r)
Generates points uniformly on a sphere (or circle or hypersphere). Each sample generated is 
indexed by i, so if i has three elements, the points lie on a sphere.

The mid value is a bit strange here since there isn’t really a median that lies on the sphere. Obvi-
ously the center of the sphere is the middle value, but that isn’t in the allowed range. So, it returns 
an arbitrary point on the sphere.

MultiUniform(cm, i, j, lb, ub)
The multi-variate uniform distribution.

Generates vector samples (indexed by i) such that each component has a uniform marginal distri-
bution, and each component has the pair-wise correlation matrix cm, indexed by i and j, which 
must have the same number of elements. cm needs to be symmetric and must obey a certain 
semidefinite condition, namely that the transformed matrix [ 2*sin(30*cov) ] is positive semidefi-
nite. (In most cases, this roughly the same as cm being positive semidefinite.) lb and ub can be 
used to specify upper and lower bounds, either for all components, or individually if these bounds 
are indexed by i. If lb and ub are omitted, each component has marginal Uniform(0, 1).

Note: cm is the true sample correlation, not rank correlation. 

The transformation is based on:

* Falk, M., “A simple approach to the generation of uniformly distributed random variables with 
prescribed correlations,” Comm. in Stats - Simulation and Computation 28: 785-791 (1999).

Arrays with serial correlation
These six functions each generate an array of distributions over an index t such that each distri-
bution has a specified serial correlation with the preceding element over t. They are especially 
useful for modeling dynamic processes or Markov processes over time, where the value at each 
time step depends probabilistically on the value at the preceding time. Normal_serial_correl() 
and Dist_serial_correl() generate arrays of serially correlated distributions that are normal and 
arbitrary, respectively. Normal_additive_gro() and Dist_additive_growth() produce arrays 
with uncertain additive growth with serial correlation. Normal_compound_gro() and 
Dist_compound_growth() produce arrays with uncertain compound growth with serial corre-
lation.



 Analytica User Guide 265

Importance weightingChapter Probability Distributions15

Normal_serial_correl(m, s, r, t)
Generates an array of normal distributions over index t with mean m, standard deviation s, and 
serial correlation r between successive values over index t. You can give each distribution a dif-
ferent mean and/or standard deviation if m and/or s are arrays indexed by t. If r is indexed by t, 
r[t=k] specifies the correlation between result[t=k] and result[t=k-1]. (Then it ignores the first 
correlation, r[@t=1].)

Dist_serial_correl(x, r, t)
Generates an array y over time index t where each y[t] has a marginal distribution identical to x, 
and serial rank correlation of rc with y[t-1]. If x is indexed by t, each y[t] has the same marginal 
distribution as x[t], but with samples reordered to have the specified rank correlation r between 
successive values. If r is indexed by t, r[@t=k] specifies the rank correlation between y[@t=k] 
and y[@t=k-1]. Then the first correlation, r[@t=1], is ignored.

Normal_additive_gro(x, m, s, r, t)
Generates an array of values over index t, with the first equal to x, and successive values adding 
an uncertain growth, normally distributed with mean m and standard deviation s. If we denote the 
result by g, r specifies a serial correlation between g[@t = k] and g[@t=k-1]. x, m, s, and r each 
can be indexed by t if you want them to vary over t.

Dist_additive_growth(x, g, rc, t)
Generates an array of values over index t, with the first equal to x, and successive values adding 
an uncertain growth g, and serial correlation rc between g[@t = k] and g[@t=k-1]. x, g, and rc 
each can be indexed by t if you want them to vary over t.

Normal_compound_gro(x, m, s, r, t)
Generates an array of values over index t, with the first equal to x, and successive values multi-
plied by compound growth 1+g, where g is normally distributed with mean m and standard devia-
tion s. It applies serial correlation r between g[@t = k] and g[@t=k-1]. x, g, and rc each can be 
indexed by t if you want them to vary over t.

Dist_compound_growth(x, g, rc, t)
Generates an array of values over index t, with the first equal to x, and successive values multi-
plying by an uncertain compound growth g, and serial rank correlation rc between g[@t = k] and 
g[@t=k-1]. x, g, and rc each can be indexed by t if you want them to vary over t.

Uncertainty over regression coefficients
For a description of RegressionDist(), RegressionNoise(), and RegressionFitProb(), see 
“Uncertainty in regression results” on page 287. 

Importance weighting
Importance weighting is a powerful enhancement to Monte Carlo and Latin hypercube simula-
tion that lets you get more useful information from fewer samples; it is especially valuable for risky 
situations with a small probability of an extremely good or bad outcome. By default, all simulation 
samples are equally likely. With importance weighting, you set SampleWeighting to generate 
more samples in the most important areas. Thus, you can get more detail where it matters and 
less where it matters less. Results showing probability distributions with uncertainty views and 
statistical functions reweight sample values using SampleWeighting so that the results are unbi-
ased. 



Chapter Probability Distributions

266 Analytica User Guide

15 Importance weighting

You can also modify SampleWeighting interactively to reflect different input distributions and so 
rapidly see the effects the effects on results without having to rerun the simulation. In the default 
mode, it uses equal weights, so you don’t have to worry about importance sampling unless you 
want to use it. 

SampleWeighting To set up importance weighting, you set weights to each sample point in the built-in variable Sam-
pleWeighting. Here is how to open its Object window:

1. De-select all nodes, e.g., by clicking in the background of the diagram.
2. From the Definition menu, select System Variables, and then SampleWeighting. Its Object 

window opens.

Initially, its definition is 1, meaning it has an equal weight of 1 for every sample. (1 is equivalent to 
an array of 1s, e.g., Array(Run, 1)). For importance weighting, you assign a different weight-
ing array indexed by Run. It automatically normalizes the weighting to sum to one, so you need 
only supply relative weights.

Suppose you have a distribution on variable X, with density function f(x), which has a small critical 
region in cr(x) — in which x causes a large loss or gain. To generate the distribution on x, we use 
a mixture of f(x) and cr(x) with probability p for cr(x) and (1-p) for f(x). Then use the sample-
Weighting function to adjust the results back to what they should be is:

f(x) / ((p f(x) + (1 - p) cr(x)) (3)

For example, suppose you are selecting the design Capacity in Megawatts for an electrical 
power generation system for a critical facility to meet an uncertain Demand in Megawatts which 
has a lognormal distribution:

Chance Demand := Lognormal(100, 1.5)
Decision Capacity := 240
Probability(Demand) → 0.015

In other words, the probability of failing to meet demand is about 1.5%, according to the probabi-
listic simulation of the lognormal distribution. Suppose the operator receives Price of 20 dollars 
per Megawatt-hour delivered, but must pay Penalty of 200 dollars per megawatt-hour of 
demand that it fails to supply to its customers:

Variable Price := 100
Variable Penalty := 1000
Variable Revenue := IF Demand <= Capacity THEN Price*Demand 

ELSE Price*Capacity - (Demand - Capacity)*Penalty
Mean (Revenue) → $2309



 Analytica User Guide 267

Importance weightingChapter Probability Distributions15

The estimated mean revenue of $2309 is imprecise because there is a small (1.5%) probability of 
a large penalty ($200 per Mwh that it cannot supply), and only a few sample points will be in this 
region. You can use Importance sampling to increase the number of samples in the critical region, 
where Demand > Capacity). 

Chance Excess_demand := Truncate(Demand, 150)
Variable Mix_prob := 0.6
Variable Weighted_demand := If Bernoulli(Mix_prob) 

THEN Excess_demand ELSE Demand
SampleWeighting := Density(Demand) / 

((1 - Mix_prob)*Density(Demand) + 
Mix_prob*Density(Excess_demand))

Thus, we compute a Weighted_demand as a mixture between the original distribution on 
Demand and the distribution in the critical region, Excess_demand. We assign weights to Sam-
pleWeighting, using the Object window for SampleWeighting opened as described above. 
See the Analytica Wiki at http://www.lumina.com/wiki for more.

For more on weighted statistics and conditional statistics, see “Weighted statistics and w parame-
ter” on page 276. 

http://www.lumina.com/wiki


Chapter Probability Distributions

268 Analytica User Guide

15 Importance weighting



Chapter 16 Statistics, Sensitivity, and 
Uncertainty Analysis

This chapter describes:

• Statistical functions that compute statistics, such as mean, 
variance, or correlation over a probabilistic value (or for arrays with 
other indexes)

• Functions that show the sensitivity of a variable to one or more 
variables that affect it, including WhatIf and Tornado analysis

• Tornado charts and importance analysis to see how to apportion 
credit or blame for the uncertainty in an output to its uncertain 
inputs

• XY plots and scatter plots to visualize the effect of an input on an 
output

• Functions to perform regression analysis



Chapter Statistics, Sensitivity, and Uncertainty Analysis

270 Analytica User Guide

16

Statistical functions
Statistical functions compute a statistic from a probability distribution. More precisely, they esti-
mate the statistic from a random sample of values representing a probabilistic value. Common 
examples are Mean, Variance, Correlation, and Getfract (which returns a fractile or percentile). 
The uncertainty view options (page 31) available in the Result window use these functions.

Statistical functions
force prob mode

evaluation

Unlike other functions, statistical functions usually force their main parameter(s) to be evaluated 
in prob mode (probabilistically) and they return a nonprobabilistic value — whether they are eval-
uated in a mid mode or prob mode. For example:

Chance X := Normal(0, 1)
Variable X90 := Getfract(X, .9)
X90 → 1.259

Evaluating variable X90 causes variable X to be evaluated in prob mode, so that Getfract(X, 
90%) can estimate the 90th percentile (0.9 fractile) of the distribution for X. X90 itself has only a 
mid value, and no probabilistic value. The exception is the Mid(x) function that forces X to be 
evaluated in mid mode, no matter the evaluation context.

Statistics from non-
probabilistic arrays

The default usage of statistical functions is over a probability distribution, represented as a ran-
dom sample indexed by Run. You can also use these functions to compute statistics over an array 
with a different index by specifying that index explicitly. This is often useful for computing statistics 
from data tables — including if you want to fit a probability distribution to a set of data. For exam-
ple, suppose Data is an array of imported measurements:

Index K := 1..1000
Variable Data:= Table(K)(123.4, 252.9, 221.4, ...)
Variable Xfitted := Normal(Mean(Data, K), Sdeviation(Data, K)

Xfitted is a normal distribution fitted to Data with the same mean and standard deviation.

Tip All statistical functions produce estimates from the underlying random sample for each probabilistic 
quantity. These estimates are not exact, but vary from one evaluation to the next due to the 
variability inherent in random sampling. Hence, your results might not exactly match the results 
shown in the examples here. For greater precision, use a larger sample size (see “Appendix A: 
Selecting the Sample Size” on page 388 on how to select a sample size).

Notation in formulas The formulas used to define statistics use this notation:

Statistics and text-
valued distributions

Most statistical functions require their parameters to be numerical. A few statistical functions, 
those that only requiring ordinal (ordered) values, also work on distributions with text values 
(whose domain is a list of labels), namely Frequency (use Frequency(X, X)), Mid, Min, Max, 
Probability_bands, and Sample. These functions assume the values are ordered as specified in 
the domain list of labels, e.g., Low, Mid, High. 

Example model The examples in this section use the following variables:
Variable Alt_ fuel_ price := Normal(1.25, 0.1)
Variable Fuel_price := Normal(1.19, 0.1)
Variable Skfuel_price := Beta(4,2,1,1.5)

xi The ith sample value of probabilistic variable x

The mean of probabilistic variable x (see “Mean(x)” on page 271)

s Standard deviation (see “Sdeviation(x)” on page 271)

m Sample size (see “Appendix A: Selecting the Sample Size” on page 388)

x



 Analytica User Guide 271

Chapter Statistics, Sensitivity, and Uncertainty Analysis16

Mean(x)
Returns an estimate of the mean of x if x is probabilistic. Otherwise, returns x. 

Mean(x) uses this formula.

Library Statistical

Examples Mean(Fuel_price) → 1.19
Mean(Skfuel_price) → 1.33

Median(x)
Returns an estimate of the median of x from its sample if x is probabilistic. When x is non-proba-
bilistic, returns x. Equivalent to GetFract(x,0.5).

Library Statistical

Examples Median(Fuel_price) → 1.19

Sdeviation(x)
Returns an estimate of the standard deviation of x from its sample if x is probabilistic. If x is non-
probabilistic, returns 0. 

Sdeviation(x) uses this formula.

Library Statistical 

Example Sdeviation(Fuel_price) → 0.10

Variance(x)
Returns an estimate of the variance of x if x is probabilistic. If x is non-probabilistic, returns 0.

Variance() uses this formula.

Library Statistical

Example Variance(Fuel_price) → 0.01

Skewness(x)
Returns an estimate of the skewness of x. x must be probabilistic.

Skewness is a measure of the asymmetry of the distribution. A positively skewed distribution has 
a thicker upper tail than lower tail, while a negatively skewed distribution has a thicker lower tail 
than upper tail. A normal distribution has a skewness of zero.

Skewness() uses this formula.

1
m
---- xi

i 1=

m

∑ x=

1
m 1–
------------- xi x–( )

2

i 1=

m

∑ σ=

1
m 1–
------------- xi x–( )

2

i 1=

m

∑ σ
2=

1
m
----

xi x–
σ-------------

3

i 1=

m

∑



Chapter Statistics, Sensitivity, and Uncertainty Analysis

272 Analytica User Guide

16

Library Statistical 

Example Skewness(Skfuel_price) → -0.45

Kurtosis(x)
Returns an estimate of the kurtosis of x. x must be probabilistic.

Kurtosis is a measure of the peakedness of a distribution. A distribution with long thin tails has a 
positive kurtosis. A distribution with short tails and high shoulders, such as the uniform distribu-
tion, has a negative kurtosis. A normal distribution has zero kurtosis.

Kurtosis(x) uses this formula.

Library Statistical

Example Kurtosis(Skfuel_prices) → -0.48

Probability(b) 
Returns an estimate of the probability or array of probabilities that the Boolean value b is True.

Library Statistical

Example Probability(Fuel_price < 1.19) → 0.5

GetFract(x, p)
Returns an estimate of the pth fractile (also known as quantile or percentile) of x. This is the value 
of x such that x has a probability p of being less than that value. If x is non-probabilistic, all frac-
tiles are equal to x.

The value of p must be a number or array of numbers between 0 and 1, inclusive.

Library Statistical

Examples Getfract(x, 0.5)returns an estimate of the median of x.
Getfract(Fuel_price, 0.5) → 1.19

The following returns a table containing estimates of the 10%ile and 90%ile values, that is, an 
80% confidence interval.

Index Fract := [0.1, 0.9]
Getfract(Fuel_price, Fract) →
Fract 

ProbBands(x)
Returns an estimate of probability or “confidence” bands for x if x is probabilistic. Otherwise 
returns x for every band. The probabilities are specified in the Uncertainty Setup dialog 
(page 233), Probability Bands option.

Library Statistical

Example Probbands(Fuel_price) →

1
m---

xi x–
σ

-------------
4

i 1=

m

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

3–

0.10 0.90
1.06 1.32



 Analytica User Guide 273

Chapter Statistics, Sensitivity, and Uncertainty Analysis16

Probability 

Covariance(x, y)
Returns an estimate of the covariance of uncertain variables x and y. If x or y are non-probabilis-
tic, it returns 0. The covariance is a measure of the degree to which x and y both tend to be in the 
upper (or lower) end of their ranges at the same time. Specifically, it is defined as:

Library Statistical

Suppose you have an array x of uncertain quantities indexed by i: 
Index i := 1..5
Variable x := Array(i, […])

You can compute the covariance matrix of each element of X against each other’s element 
(over i), thus:

INDEX j := CopyIndex(I)
Covariance(x, x[i=j])

We create index j as a copy of index i and then create a copy of x that replaces i by j so that the 
covariance is computed for each slice of x over i against each slice over j. The result is the cova-
riance matrix indexed by i and j. Each diagonal element contains the variance of the variable, 
since Variance(x) = Covariance(x, x). You can use this same method to generate a cor-
relation matrix using the Correlation() or Rank_correl() functions described below.

Correlation(x, y)
Returns an estimate of the correlation between the probabilistic expressions x and y, where -1 
means perfectly negatively correlated, 0 means no correlation, and 1 means perfectly positively 
correlated. 

Correlation(x, y), a measure of probabilistic dependency between uncertain variables, is some-
times known as the Pearson product moment coefficient of correlation, r. It measures the strength 
of the linear relationship between x and y, using the formula:

Library Statistical

Example With sampleSize set to 100 and number format set to two decimal digits:
Correlation(Alt_fuel_price + Fuel_price, Fuel_price) → 0.71

Correlation of two independent, uncorrelated distributions approaches 0 as the sample size 
approaches infinity.

Example With sampleSize = 20:
Correlation(Normal(1.19, 0.1), Normal(1.19, 0.1))→ -.28

With sampleSize = 1000:
Correlation(Normal(1.19, 0.1), Normal(1.19, 0.1))→ 0.03

0.05 0.25 0.5 0.75 0.95
1.025 1.123 1.19 1.257 1.355

xi x–( ) yi y–( )
i 1=
n

∑

xi x–( ) yi y–( )

i
∑

xi x–( )
2

i
∑ yi y–( )

2

i
∑×

------------------------------------------------------------



Chapter Statistics, Sensitivity, and Uncertainty Analysis

274 Analytica User Guide

16

Rankcorrel(x, y)
Returns an estimate of the rank-order correlation coefficient between the distributions x and y. 
x and y must be probabilistic.

Rankcorrel(x,y), a measure of the dependence between x and y, is sometimes known as Spear-
man’s rank correlation coefficient, rs.

Rank-order correlation is measured by computing the ranks of the probability samples, and then 
computing their correlation. By using the rank order of the samples, the measure of correlation is 
not affected by skewed distributions or extreme values, and is, therefore, more robust than simple 
correlation. Rank-order correlation is used for importance analysis (page 277).

Library Statistical

Example With sampleSize = 100:
Rankcorrel(Fuel_price, Alt_fuel_price) → .02

Frequency(x, i)
If x is a discrete uncertain variable, returns an array indexed by i, giving the frequency, or number 
of occurrences of discrete values i. i must contain unique values; if numeric, the values must be 
increasing. 

If x is a continuous uncertain variable and i is an index of numbers in increasing order, it returns 
an array indexed by i, with the count of values in the sample x that are equal to or less than each 
value of i and greater than the previous value of i.

If x is non-probabilistic, Frequency() returns sampleSize for each value of i equal to x.

Since Frequency() is computed by counting occurrences in the probabilistic sample, it is a func-
tion of sampleSize (see “Uncertainty Setup dialog” on page 233). If you want the relative fre-
quency rather than the count of each value, divide the result by sampleSize.

Library Statistical

Example (continuous) Index Index_a := [1.2,1.25] 
Frequency(Fuel_price, Index_a) →
Index_a 

Example (discrete) Bern_out: [0,1]

(Possible outcomes of the Bernoulli Distribution.)
With Samplesize = 100:
Frequency(Bernoulli (0.3), Bern_out) →
Bern_out 

With Samplesize = 25:
Frequency(Bernoulli (0.3), Bern_out) →
Bern_out 

(Compare to the Bernoulli example on page 241.)

1.2 1.25
54 19

0 1
70 30

0 1
18 7



 Analytica User Guide 275

Chapter Statistics, Sensitivity, and Uncertainty Analysis16

Mid(x)
Returns the mid value of x. Unlike other statistical functions, Mid() forces deterministic evaluation 
in contexts where x would otherwise be evaluated probabilistically. 

The mid value is calculated by substituting the median for most full probability distributions in the 
definition of a variable or expression, and using the mid value of any inputs. The mid value of a 
variable or expression is not necessarily equal to its true median, but is usually close to it.

Library Statistical

Example Mid(Fuel_price) → 1.19

Sample(x)
Forces x to be evaluated probabilistically and returns a sample of values from the distribution of x 
in an array indexed by the system variable Run. If x is not probabilistic, it just returns its mid value. 
The system variable sampleSize specifies the size of this sample. You can set sampleSize in 
the Uncertainty Setup dialog (page 233).

Library Statistical

When to use Use when you want to force probabilistic evaluation. 

Example Here are the first six values of a sample:
Sample(Fuel_price) →
Iteration(Run) 

Statistics(x)
Returns an array of statistics of x. Select the statistics to display in the Uncertainty Setup dialog 
(page 233), Statistics option.

Library Statistical

Example Statistics(Fuel_price) →
Statistics 

PDF(X) and CDF(X)
These functions generate histograms from a sample X. They are similar to the methods used to 
generate the probability density function (PDF) and cumulative probability distribution function 
(CDF) as uncertainty views in a result window as graph or table. But, as functions, they return the 
resulting histogram as an arrays available for further processing, display, or export. For example:

PDF(X)
CDF(X)

These functions evaluate x in prob mode, and return an array of points on the density or cumula-
tive distribution respectively.

You can also use PDF and CDF to generate a histograms (direct or cumulative) of data that is not 
uncertain, but indexed by something other than Run. For example, to generate a histogram of Y 
over index J, specify the index explicitly: 

PDF(Y, J)

If it decides that X is discrete rather than continuous, PDF generates a probability mass distribu-
tion and CDF generates a cumulative mass distribution, with a probability for each discrete value 

1 2 3 4 5 6
1.191 1.32 1.19 1.164 1.191 0.962

Min Median Mean Max Std. Dev.
0.93 1.19 1.19 1.45 0.10



Chapter Statistics, Sensitivity, and Uncertainty Analysis

276 Analytica User Guide

16 Weighted statistics and w parameter

of X. It uses the same method as the uncertainty views in results to decide if X is discrete — if it 
has text values, if it has many repeated numerical values, or if X has a domain attribute that is dis-
crete (see “The domain attribute and discrete variables” on page 244). Alternatively, you can con-
trol the result by setting the optional parameter discrete as true or false. For example:

Variable X := Poisson(20)
PDF(X, Discrete: True) 

This generates a discrete histogram over X. If X contains text values, i.e., categorical data, you 
might want to control the order of the categories, e.g., ["Low", "Medium", "High"]. You can 
do this by specifying the Domain attribute of X as a List of Labels with these values, or as an 
Index, referring to an Index using them. Alternatively, you can provide PDF or CDF with the 
optional Domain parameter provided as the list of labels. If X is an expression rather than a vari-
able, this is your only choice.

PDF and CDF have one required parameter:

In additional, PDF and CDF have these optional parameters:

Weighted statistics and w parameter
Normally, each statistical function gives an equal weight to each sample value in its parameters. 
You can use the optional parameter w for any statistical function to specify unequal weights for its 
samples. This lets you estimate conditional statistics. For example:

Mean(X, w: X>0)

This computes the mean of X for those samples of X that are positive. In this case, the weight vec-
tor contains only zeros and ones. The expression X>0 gives a weight of 1 (True) for each sam-
ple that satisfies the relationship and 0 (False) to those that do not. 

By default, this method works over uncertain samples, indexed by Run. You can also use it to 
compute weighted statistics over other indexes. For example, if Y is an array indexed by J, you 
could compute:

Mean(Y, I, W: Y>0)

If you set the system variable SampleWeighting to something other than 1 (see “Importance 
weighting” on page 265, all statistical functions use SampleWeighting as the default weights, 

X The sample data points, indexed by i.

i The index over which they generate the histogram. By default this is Run 
(i.e., a Monte Carlo sample) but you can also specify another index to 
generate a histogram over another dimension. 

w The sample weights. Can be used to weight each sample point differently. 
Defaults to system variable SampleWeights. 

discrete Set true or false to force discrete or continuous treatment. By default, it 
guesses, usually correctly.

binMethod Selects the histogramming method used. Otherwise it uses the system 
default set in the Uncertainty Setup dialog from the Result menu. 
Options are: 
0 “equal-X”: Equal steps along the X axis (values of X). 
1 “equal-sample-P”: Equal numbers of sample values in each step. 
2 “equal-weighted-P”: Equal sum of weights of samples, weighted by w. 

samplesPerStep An integer specifying the number of samples per bin. Otherwise, it uses 
the default samplesize set in the Uncertainty Setup dialog from the 
Result menu.

domain A list of numbers or labels, or the identifier of a variable whose Domain 
attribute should be used to specify the sequence of possible values for 
discrete distribution. If omitted, it uses the domain from the sample values.



 Analytica User Guide 277

Importance analysisChapter Statistics, Sensitivity, and Uncertainty Analysis16

unless you specify parameter w with some other weighting array. So, when using importance 
weighting, all statistics (and uncertainty views) automatically use the correct weighting.

Importance analysis
In a model with uncertain variables, you might want to know how much each uncertain input con-
tributes to the uncertainty in the output. Typically, a few uncertain inputs are responsible for the 
lion’s share of the uncertainty in the output, while the rest have little impact. You can then concen-
trate on getting better estimates or building a more detailed model for the one or two most impor-
tant inputs without spending considerable time investigating issues that turn out not to matter very 
much.

The importance analysis features in Analytica can help you quickly learn which inputs contribute 
the most uncertainty to the output. 

What is importance? This analysis uses as a metric of the “importance” of each uncertain input to a selected output, the 
absolute rank-order correlation between each input sample and the output sample. It is a robust 
measure of the uncertain contribution because it is insensitive to extreme values and skewed dis-
tributions. Unlike commonly used deterministic measures of sensitivity, such as used in the Tor-
nado analysis, it averages over the entire joint probability distribution. Therefore, it works well 
even for models where there are strong interactions, where the sensitivity to one input depends 
on the value of another.

Create an importance
variable

1. Be sure you are in edit mode, viewing a Diagram window. Select an output variable, U, that 
depends on two or more uncertain inputs — possibly, an objective.

2. Select Make Importance from the Object menu.

If the selected output is U, it creates an index U_Inputs, a list of the uncertain inputs, and a gen-
eral variable, U Importance, containing the importance of those inputs to the output. 

Example Variable Miles_per_year := Triangular(1, 12K, 30K)
Variable Fuelcost_per_gallon := Lognormal(3)
Variable Miles_per_gallon := Normal(33, 2)
Variable Fuel_cost_per_year := (Fuel_cost_per_gallon*Miles_per_year)/
Miles_per_gallon

After you select Fuel_cost_per_year and then Make Importance from the Object menu, the 
diagram contains two new variables.

Fuel cost per year Inputs is defined as a list identifiers, containing all the chance variable 
ancestors of the output node. It evaluates to an array of probability distributions, one for each 
chance variable. This array is self-indexed, with the index values consisting of handles to each 
input variable.



Chapter Statistics, Sensitivity, and Uncertainty Analysis

278 Analytica User Guide

16 Importance analysis

Fuel cost per year Importance is defined as:
Abs(Rankcorrel(Fuel_cost_per_year_inputs, Fuel_cost_per_year))

The Rankcorrel() function computes the rank-order correlation of each input to the output, and 
then the Abs() function computes the absolute value, yielding a positive relative importance.

As expected, Fuelcost_per_gallon contributes considerably more uncertainty to 
Fuel_cost_per_year than Miles_per_gallon.

Tip Importance, like every other statistical measure, is estimated from the random sample. The 
estimates can vary slightly from one computation to another due to random noise. For a sample 
size of 100, an importance of 0.1 might not be significantly different from zero. But an importance 
of 0.5 is significantly different from zero. The main goal is to identify two or three that are the 
primary contributors to the uncertainty in the output. For greater precision, use a larger sample 
size.

Updating inputs to
importance analysis

If you create an importance analysis variable for U, and later add or remove uncertain variables 
that affect U, the uncertainty analysis is not automatically updated to reflect those changes. You 
can update the analysis either by:

• Select U and then select Make Importance from the Object menu. It automatically updates 
the importance analysis to reflect any new or removed uncertain inputs.

• Draw an arrow from any new uncertain input into index U inputs. It adds the new variable 
as an uncertain input. Similarly, you can remove a variable from U inputs by redrawing an 
arrow from that variable into U inputs.



 Analytica User Guide 279

Sensitivity analysis functionsChapter Statistics, Sensitivity, and Uncertainty Analysis16

Sensitivity analysis functions
Sensitivity analysis enables you to examine the effect of a change in the value of an input variable 
on the values of its output variables. They do not require their parameters to be uncertain.

Examples The examples in this section refer to the following variables:

The probability density of fuelCost is shown below.

Dydx(y, x)
Returns the derivative of expression y with respect to variable x, evaluated at mid values. This 
function returns the ratio of the change in y to a small change in x that affects y. The “small 
change” is , or 1.0E-6 if x= 0. 

Library Special

Examples Because fuelCost depends on mpg, a small change in mpg seems to have a modest negative 
effect on fuelCost:

Dydx(fuelCost, mpg) → -19.7

The reverse is not true, because mpg is not dependent on fuelCost. That is, fuelCost does 
not cause any change in mpg:

Dydx(Mpg, Fuelcost) → 0

In this model of fuelCost, a small change in gasPrice has by far the largest effect of all its 
inputs:

Dydx(fuelCost, gasPrice) → 428.6 
Dydx(fuelCost, mpy) → 0.04643

Tip When you evaluate DyDx() in mid mode, the mid value for x is varied and the mid value of y is 
evaluated. In prob mode, the sample of x is varied and the sample for y is computed in prob mode. 

gasPrice Normal(1.3, .3) Cost of gasoline per gallon within market fluctuations

mpy: 12K The average number of miles driven per year

mpg: Normal(28, 5) Fuel consumption averaged over driving conditions

fuelCost: gasPrice * mpy / mpg Annual cost of fuel

x 10000⁄



Chapter Statistics, Sensitivity, and Uncertainty Analysis

280 Analytica User Guide

16 Sensitivity analysis functions

Therefore, when y is a statistical function of x, care must be taken to ensure that the evaluation 
modes for x and y correspond. So, for example:

Y := DyDx(Kurtosis(Normal(0, X)), X)
would not produce the expected result. In this case, when evaluating y in determ mode, Kurtosis 
evaluates its parameter, and thus x, in prob mode, resulting in a mis-match in computation modes. 
To get the desired result, you should explicitly use the mid value of x:

Y := DyDx(Kurtosis(Normal(0, Mid(X))), X)

Elasticity(y, x)
Returns the percent change in variable y caused by a 1 percent change in a dependent variable 
x. Mathematically, writing to emphasize that y is a function of x, elasticity is defined as:

(3)

When x is a positive scalar, but not when x is array-valued, Elasticity() is related to Dydx() in the 
following manner:

Elasticity(y, x) = Dydx(y, x)*(x/y)

Library Special

Examples Elasticity(fuelCost, mpg) → -1
Elasticity(fuelCost, gasprice) → 1

A 1% change in variables mpg and gasPrice cause about the same degree of change in fuel-
cost, although in opposite directions.

mpg is inversely proportional to the value of fuelCost, while gasPrice is proportional to it.

Tip When you evaluate Elasticity() in determ (mid) mode, the mid value for x is varied and the mid 
value of y is evaluated. In prob mode, the sample of x is varied and the sample for y is computed 
in prob mode. Therefore, when y is a statistical function of x, care must be taken to ensure that the 
evaluation modes for x and y correspond. 

Whatif(e, v, vNew)
Returns the value of expression e when variable v is set to the value of vNew. v must be a vari-
able. It lets you explore the effect of a change to a value without changing it permanently. It 
restores the original definition of v after evaluating Whatif() expression, so that there is no perma-
nent change (and so causes no side effects).

Library Special

Example Fuelcost → 557.1
Whatif(Fuelcost, Mpy, 14K) → 650

WhatIfAll(e, vList, vNew)
Like Whatif, but it lets you examine a set of changes to a list of variables, vList. It returns the mid 
value of e when each of variables in vList is assigned the value in vNew one at a time, with the 
remaining variables remaining at their nominal values. The result is indexed by vList. If vNew is 
indexed by vList, it assigns the corresponding value of vNew to each variable, letting you assign 
a different value to each variable in vList. WhatIfAll() is useful for performing ceteris paribus style 
sensitivity analysis, which varies one variable at a time, leaving the others at their initial value, 
such as in Tornado charts (see next section for an example).

y x( )

Elasticity y x,( ) 1
u
--- y x 1 u+( )( ) y x( )–

y x( )
--------------------------------------------⎝ ⎠

⎛ ⎞
u 0→
lim=



 Analytica User Guide 281

Tornado chartsChapter Statistics, Sensitivity, and Uncertainty Analysis16

Suppose Z is a function of A, B, and C, and we wish to examine the effect on Z when each input 
is varied, one at a time, by 10% from its nominal value. Define:

Variable Z := 10*A + B^2 + 5*C
Index L := [90%, 110%]
Variable V := [A, B, C]
MyTornado := WhatIfAll(Z, V, L*V)

Library Special

Tornado charts
A tornado diagram is a common tool used to depict the sensitivity of a result to changes in 
selected variables. It shows the effect on the output of varying each input variable at a time, keep-
ing all the other input variables at their initial (nominal) values. Typically, you choose a “low” and a 
“high” value for each input. The result is then displayed as a special type of bar graph, with bars 
for each input variable displaying the variation from the nominal value. It is standard practice to 
plot the bars horizontally, sorted so that the widest bar is placed at the top. When drawn in this 
fashion, the diagram takes on the appearance of a tornado, hence its name. The figure below 
shows a typical tornado diagram.

Create a tornado
analysis

To perform a tornado analysis, you must:

1. Select the result or output variable to perform the analysis on.
2. Select the input variables that might affect the output.
3. Decide what the low and high values are to be for each input variable.

Note: The input variables do not need to be chance variables. In fact, tornado analysis is often 
applied to models with no chance variables.

There are several options for selecting low and high values, including:

• Selecting the same absolute low and high levels for every input. This usually only makes 
sense if inputs are very homogeneous with identical nominal values.

• Selecting absolute low and high values separately for each input variable.
• Varying all inputs by the same relative amount, e.g., low=90% of nominal, high=110% of 

nominal.



Chapter Statistics, Sensitivity, and Uncertainty Analysis

282 Analytica User Guide

16 Tornado charts

• Varying all inputs between two given fractiles. This only makes sense if your inputs are 
uncertain variables. Example: Low=10% fractile, High=90% fractile, nominal=50% fractile.

Implementing a tornado analysis
For this example, assume we vary all inputs by the same amount.

1. Create an index variable containing a list of input variable identifiers. Suppose this is called 
Vars.

2. Create a variable, Level, and define it as a self-indexed table. (To do this, select Table from 
the expr menu, and select self as an index.) From the edit table, set the self-index labels to 
read low and high. Set the value corresponding to low to 90%, and set the value corresponding 
to high to 110%.

3. Create a node, Tornado_Analysis. Assume that the output variable is Net_value. Define 
Tornado_Analysis as:

WhatIfAll(X, Vars, Level * Vars)

4. Create a node, Input_Vars, defined as:
sortIndex(-abs(Tornado_Analysis[Level='high'] - 
Tornado_Analysis[Level='low']))

5. Create a node, Net_value_range, to hold the final graph, defined as:
Tornado_Analysis[Vars=Input_Vars]

Steps 4 and 5 are not necessary if you do not require your bars to be displayed from largest to 
smallest. If you do include steps 4 and 5, Net_value_range contains the results of the tornado 
analysis, otherwise the result is Tornado_Analysis. 

It is possible in Analytica to use array abstraction to produce a set of tornado diagrams, with each 
tornado itself indexed by an additional dimension. Additional dimensions are already included if 
your output variable is itself an array result, in which case you have a tornado diagram for each 
element in the output value’s array value. This flexibility is unique to Analytica; however, you 
should note that having multiple tornados in a single result complicates the problem of sorting the 
bars, since the sort order is, in general, different for the different bars. If you have extra indexes in 
your tornado analysis, you need to either skip steps 4 and 5 above, and display non-sorted Torna-
dos, or select a single sort order based on whatever criteria fits your needs, realizing that not all 
tornados display in sorted order. 

The WhatIfAll() function typically provides the easiest method for implementing a tornado analy-
sis in Analytica. Note that the third parameter to WhatIfAll() controls the method by which inputs 
are varied for the analysis. For example:

• For the case where you select the same absolute low and high levels for every input, Level 
would be set to the absolute low and high values, and the third parameter to WhatIfAll() 
would be simply Level. 



 Analytica User Guide 283

X-Y plotsChapter Statistics, Sensitivity, and Uncertainty Analysis16

• For the case where you select absolute low and high values separately for each input 
variable, you would index Level by Vars, fill in Level’s table appropriately, then set the 
third parameter to be just Level. 

• And for the case where you vary all inputs between two given fractiles, you would set Level 
to the desired fractiles, and use the expression getFract(Net_value,Level) as the 
third parameter. 

Graphing a tornado It’s customary to graph a tornado with the names of the input variables are listed down the vertical 
axis, and the bars displaying the effect on the output horizontally:

1. Select Show Result for the Tornado_Analysis or Sorted_Tornado variable. Press the 
Graph button if necessary.

2. Pivot the index order (if necessary) so that Vars is on the X-axis and L is the Key.
3. Select Graph Setup and the Chart Type tab. 
4. Set the Line Style to the filled bar setting and check the Variable origin checkbox. This will also 

set Bar Overlap=100% and Swap horizontal and vertical for you. Click Apply.
5. Next, we want to compare to the baseline value of Net_Value. Click the XY button to open 

the XY Comparison Sources dialog, check Use another variable, press Add..., and in the 
Object Finder select the variable Net_Value. Press OK twice.

6. In the Bar Origin pulldown, select Net_value.

X-Y plots
You can compare the result of a variable against another variable, or one column against another 
column of a result, using an XY-plot. XY plots can be graphed for Mid, Mean, Statistics, 
Probability Bands, and Sample view modes.

To graph one variable against another:

1. Open a Result window for the y- (vertical axis) variable. 
2. Click the XY button located in the top-right corner of the window to open the XY 

Comparison Sources dialog.
3. Check the Use another variable checkbox, press Add..., and in the Object Finder, select the 

x- (horizontal axis) variable.

The two variables in an XY window must share at least one index, and all indexes of x must also 
be indexes of y. The popup menu in the index selection area becomes Common Index — only 
indexes of both x and y might be selected. 

Variable Angle := Sequence(0, 360, 10)
Variable Radius := 1..3
Variable SinX := Radius * Sin(Angle)
Variable Cosine := Radius * Cos(Angle) →



Chapter Statistics, Sensitivity, and Uncertainty Analysis

284 Analytica User Guide

16 X-Y plots

Click the XY button, check Use another variable, then Add...., and in the Object Finder dialog 
under Current Module select the variable Sine to display this result.



 Analytica User Guide 285

Scatter plotsChapter Statistics, Sensitivity, and Uncertainty Analysis16

Click the Table View button to display this result.

To return to the graph or table of Cosine vs. Degrees, click in the XY checkbox.

Scatter plots
A scatter plot graphs the samples of two probabilistic variables against each other, and provides 
insight into their probabilistic relationship.

To generate a scatter plot for two variables, x and y:

1. Open a Result window for y.
2. Click the XY button located in the top-right corner of the window to open the Object Finder 

dialog.
3. In the XY Comparison sources dialog, check Use Another variable.
4. Press the Add... button, and in the Object Finder, select the x variable. Press OK twice.



Chapter Statistics, Sensitivity, and Uncertainty Analysis

286 Analytica User Guide

16 Regression analysis

5. In the Uncertainty View popup menu (at the top-left of the Result window), select the Sample 
view.

If the variables are independent, the scatter plot points fall randomly on the graph. If the variables 
are totally dependent, the scatter plot points fall along a single line. The strength of the relation-
ship is indicated by the degree to which the points are close to a line. If the line is straight, the 
relationship is linear; if the line is curved, the relationship is nonlinear.

You can superimpose several scatter plots of y in an array of uncertain quantities depending on x. 
The different quantities are represented by differently colored dots or symbols.

Example x: Uniform(1, 2)
y: Normal(10, 3)

The resulting scatter plot of two independent variables is shown below.

Regression analysis
Regression is a widely used statistical method to estimate the effects of a set of inputs (indepen-
dent variables) on an output (the dependent variable). It is a powerful method to estimate the sen-
sitivity of the output to a set of uncertain inputs. Like the rank-correlation used in importance 
analysis (page 277), it is a global measure of sensitivity in that it averages the sensitivity over the 
joint distribution of the inputs, unlike Tornado analysis that is local, meaning it varies each variable 
one at a time, leaving all others fixed at a nominal value.

Regression() is in the built-in Statistics library, and works with all editions of Analytica. The Logis-
tic, probit, and poisson regression functions are in an add-in library, Generalized Regres-
sion.ana, and require Analytica Optimizer. These generalized regression functions are 
described in the Analytica Optimizer manual.



 Analytica User Guide 287

Uncertainty in regression resultsChapter Statistics, Sensitivity, and Uncertainty Analysis16

Regression(y, b, i, k)
Generalized linear regression. Finds the best-fit (least squared error) curve to a set of data points. 
Regression() finds the parameters in an equation of the form:

The data points are contained in y (the dependent variable) and b (the independent variables), 
both of which must be indexed by i. b is the basis set and is indexed by i and k. The function 
returns the set of parameters indexed by k. Any datapoint having y=Null is ignored.

With the generalized form of linear regression, it is possible to have several independent vari-
ables, and your basis set might even contain non-linear transformations of your independent vari-
ables. Regression() can be used to find the best-fit planes or hyperplanes, best-fit polynomials, 
and more complicated functions.

Regression() uses a state-of-the-art algorithm based on singular-value decomposition that is 
numerically stable, even if the basis set contains redundant terms.

Example 1 Suppose a set of (x, y) points are contained in x and y, both indexed by i, and we wish to find the 
parameters m and b of the best-fit line . We first define an index k as a list of labels:

Index K := ['m', 'b']

Next, define b as a table indexed by k:

Variable b := k 

Regression(y, b, i, k) returns the coefficients m and b as an array indexed by k.

Example 2 We wish to fit the following polynomial to (x, y) data:

Define k to be the list:
Variable b := [x^5, x^4, x^3, x^2, x, 1]

Regression(y, b, i, b) returns the best-fit coefficients of the polynomial indexed by b.

Uncertainty in regression results
These functions help estimate the uncertainty in the results from a regression analysis, including 
uncertainty in the regression coefficients and the noise. Together they are useful for generating a 
probability distribution that represents the uncertainty in the predictions from a regression model. 
When applying regression to make projections into the future based on historical data, there 
might be additional sources of uncertainty because the future might be different from the past. 
These functions estimate uncertainty due to noise and imperfect fit to the historical data. You 
might wish to add further uncertainty for projections into the future to reflect these additional differ-
ences.

RegressionDist(y, b, i, k)
RegressionDist estimates the uncertainty in linear regression coefficients, returning probability 
distributions on them. Suppose you have data where y was produced as: 

y = Sum(c*b, k) + Normal(0, s)

ak

y akbk x( )
k
∑=

ak

m b
X 1

y mx b+=

y a5x5 a4x4 a3x3 a2x2 a1x a0+ + + + +=



Chapter Statistics, Sensitivity, and Uncertainty Analysis

288 Analytica User Guide

16 Uncertainty in regression results

s is the measurement noise. You have the data b[i, k] and y[i]. You might or might not know the 
measurement noise s. So you perform a linear regression to obtain an estimate of c. Because 
your estimate is obtained from a finite amount of data, your estimate of c is itself uncertain. This 
function returns the coefficients c as a distribution (i.e., in sample mode, it returns a sampling of 
coefficients indexed by Run and k), reflecting the uncertainty in the estimation of these parame-
ters. 

Library Multivariate Distributions 

Examples If you know the noise level s in advance, then you can use historical data as a starting point for 
building a predictive model of y, as follows: 

{ Your model of the dependent variables: }
Variable y := your historical dependent data, indexed by i
Variable b := your historical independent data, indexed by i, k
Variable x := { indexed by k. Maybe others. Possibly uncertain }
Variable s := { the known noise level }
Chance c := RegressionDist(y, b, i, k)
Variable Predicted_y := Sum(c*x, k) + Normal(0, s)

If you don’t know the noise level, then you need to estimate it. You’ll need it for the normal term of 
Predicted_y anyway, and you’ll need to do a regression to find it. So you can pass these optional 
parameters into RegressionDist. The last three lines above become: 

Variable e_c := Regression(y, b, i, k)
Variable s := RegressionNoise(y, b, i, k, e_c)
Chance c := RegressionDist(y, b, i, k, e_c)
Variable Predicted_y := Sum(c*x, k) + Normal(0, s)

If you use RegressionNoise to compute s, you should use Mid(RegressionNoise(...)) for the s 
parameter. However, when computing s for your prediction, don’t use RegressionNoise in con-
text. Better is if you don’t know the measurement noise in advance, don’t supply it as a parameter.

RegressionFitProb(y, b, i, k, c, s)
When you’ve obtained regression coefficients c (indexed by k) by calling the Regression func-
tion, this function returns the probability that a fit this poor would occur by chance, given the 
assumption that the data was generated by a process of the form: 

Y = Sum(c*b, k) + Normal(0, s)

If this result is very close to zero, it probably indicates that the assumption of linearity is bad. If it is 
very close to one, then it validates the assumption of linearity. 

Library Multivariate Distributions 

This is not a distribution function — it does not return a sample when evaluated in sample mode. 
However, it does complement the multivariate RegressionDist function also included in this 
library. 

Example To use, first call the Regression function, then you must either know the measurement knows a 
priori, or obtain it using the RegressionNoise function. 

Var e_c := Regression(y, b, i, k);
Var s := RegressionNoise(y, b, i, k, c);
Var PrThisPoor := RegressionFitProb(y, b, i, k, e_c, s)

RegressionNoise(y, b, i, k, c) 
When you have data, y[i] and b[i, k], generated from an underlying model with unknown coeffi-
cients c[k] and s of the form: 

y = Sum(c*b, i) + Normal(0, s)



 Analytica User Guide 289

Uncertainty in regression resultsChapter Statistics, Sensitivity, and Uncertainty Analysis16

This function computes an estimate for s by assuming that the sample noise is the same for each 
point in the data set. 

When using in conjunction with RegressionDist, it is most efficient to provide the optional param-
eter c to both routines, where c is the expected value of the regression coefficients, obtained from 
calling Regression(y, b, i, k). Doing so avoids an unnecessary call to the built-in Regression 
function. 

Library Multivariate Distributions 

These functions express uncertainty in the coefficients of a linear regression. If you are using 
results form a linear regression, you can use these functions to estimate uncertainty in predictive 
distributions. 

These uncertainties reflect only the degree to which the regression model fits the observations to 
which it was fit. They do not reflect any possible systematic differences between the past process 
that generated those observations and the process generating the results being predicted, usually 
in the future. In this way, they are lower bounds on the true uncertainty.



Chapter Statistics, Sensitivity, and Uncertainty Analysis

290 Analytica User Guide

16 Uncertainty in regression results



Chapter 17 Dynamic Simulation

This chapter shows you how to use the system function Dynamic() and 
the system variable Time.



Chapter Dynamic Simulation

292 Analytica User Guide

17 The Time index

A dynamic variable is a quantity that changes over time — for example, the effect of inflation on 
car prices over a ten-year period — with a recurrence or dependence on previous time periods. 
The system function Dynamic() and system variable Time enable you to model changes over 
time. 

Tip Read Chapter 11, “Arrays and Indexes,” before using these features.

The term dynamic is used in this chapter to refer to the Dynamic() function.

The Time index
Dynamic simulation time periods are specified in the system variable Time. To perform dynamic 
simulation, you must provide a definition for Time. 

To edit the definition of Time, select Edit Time from the Definition menu to open the Object win-
dow for Time.

Time is defined by default as a list of three numbers 0, 1, and 2. You might want to define Time 
as a list of years, as in the following example.

Time becomes the index for the array that results from the Dynamic() function. 

Tip A model can have only one definition Time — that is, one set of time periods for Dynamic() 
functions. Any number of variables in the model can be defined using Dynamic().

Tip A variation, Dynamic[T](), can be used to represent recurrences over indexes other than Time, 
but placing the index name in square brackets. This provides a way to express secondary 
recurrences if you’ve already used your Time index for sometime else. The dynamic concepts are 
introduced throughly this chapter using Time, but if you have a loop using a different index, just 
substitute your other index for Time in what follows.

Using the Dynamic() function

Dynamic(initial1, initial2..., initialn, expr)
Performs dynamic simulation, calculating the value of its defined variable at each element of 
Time. The result of Dynamic() is an array, indexed by Time. 



 Analytica User Guide 293

Using the Dynamic() functionChapter Dynamic Simulation17

Initial1, ...initialn are the values of the variable for the first n time periods. expr is an expression 
giving the value of the variable for each subsequent time period. expr can refer to the variable in 
earlier time periods, that is, contain its own identifier in its definition. If variable Var is defined 
using Dynamic(), expr can be a function of Var[Time-k] or Self[Time-k], where k is an 
expression that evaluates to an integer between 1 and t, and t is the time step at which expr is 
being evaluated.

Tip Square brackets ([ ]) are necessary around Time-t.

The Dynamic() function must appear at the topmost level of a definition. It cannot be used inside 
another expression.

When a dynamic variable refers to itself, it appears in its own list of inputs and outputs, with a 
symbol for cyclic dependency: .

Library Special

When to use Use Dynamic() for defining variables that are cyclically dependent. There are only two functions 
in Analytica that allow a cycle to be formed, in which a variable can refer to its own value or to 
other variables that depend on it. Those two functions are Dynamic() and Iterate(). Only dynamic 
variables can compute their value based on the values at at earlier time periods.

Example Dynamic() can be used to calculate the effect of inflation on the price of gasoline in the years 
1990 to 1994. 

If the initial value is $1.20 per gallon and the rate of inflation is 5% per year, then Gasprice can 
be defined as: Dynamic(1.2, Gasprice[Time-1] * 1.05) 
or Dynamic(1.2, Self[Time-1] * 1.05).



Chapter Dynamic Simulation

294 Analytica User Guide

17 More about the Time index

Clicking the Result button and viewing the mid value as a table displays the following results.

For 1990, Analytica uses the initial value of Gasprice (1.2). For each subsequent year, Ana-
lytica multiplies the value of Gasprice at [Time-1] by 1.05 (the 5 percent inflation rate).

x [ Time-k ]
Given a variable x and brackets enclosing Time minus an integer k, returns the value for x, k time 
periods back from the current time period. This function is only valid for variables defined using 
the Dynamic() function. 

Library Special

More about the Time index

Reference to earlier time
Time-k in the expression var[Time-k] refers to the position of the elements in the Time index, 
not values of Time.

For example, if Time equals [1990, 1994, 1998, 2002, 2006], then the value of 
Gasprice[Time-3] in year 2006 would refer to the price of gasoline in 1994, not 2003. When 
you refer to the Time variable directly, not as an index, the expression refers to the values of 
Time. For example, the expression (Time-3) in 2006 is 2003.

The offset, k, can be an expression, and might even be indexed by Time. When k is indexed by 
Time, then the offset varies at different points in Time. However, Slice(k, Time, t) must be 
between 1 and t-1. It must be positive since the expression is not allowed to depend on values in 
the future (that have not yet been computed). It must be less than t-1 since the expression cannot 
depend on values “before the beginning of time.”

Defining time
There are three ways to define the Time index, each of which has different advantages:

• Sequence (the preferred method)
• List (numeric)
• List of labels (text)

Time as a sequence
Using the Sequence() function is the easiest way to define Time with equal intervals (see 
“Expression view” on page 160 and “Defining a variable as an edit table” on page 166). The 
numeric values for Time can be used in other expressions.



 Analytica User Guide 295

More about the Time indexChapter Dynamic Simulation17

Example

Time as a list (numeric)
When Time is defined as a numeric list, it usually consists of increasing numbers. The intervals 
between entries can be unequal, and the values for Time can be used in other expressions.

Example Time

When you use time periods that differ by a value other than 1, typing (Time-1) won’t provide the 
value of the previous time period. You can use the syntax x[Time-1] if you want to utilize a vari-
able indexed by Time, but if you want to perform an operation that depends on the difference in 
time between the current time period and the last one, you must first create a node that uncumu-
lates the Time index.

YearsPassed: Uncumulate(Time)

Now you can include this node in a dynamic expression that depends on the time between time 
periods. The following definition is equivalent to the Dynamic() definition on page 293 but allows 
for changes in time period increments.

Gasprice:= Dynamic(1.2, Gasprice[Time - 1] *
1.05 ^ YearsPassed) →



Chapter Dynamic Simulation

296 Analytica User Guide

17 More about the Time index

Time as a list of labels (text)
When Time is defined as a list of labels, Time values cannot be used in other expressions as 
numbers.

The resulting graph of any Dynamic() function, with the x-axis set to Time, shows the labels at 
equal x-axis intervals.

Example Time

Gasprice:= Dynamic(1.2, Gasprice[Time-1] * 1.05) →



 Analytica User Guide 297

Initial values for DynamicChapter Dynamic Simulation17

Using Time in a model
You can use Time like any index variable; you can change only its title and definition. To include 
the Time node on a diagram:

1. Open the Object window for Time by selecting Edit Time from the Definition menu.
2. Select Make Alias from the Object menu (see “An alias is like its original” on page 53).

When the Time node displays on a diagram, arrows from Time to all dynamic variables display 
by default.

Initial values for Dynamic
A dynamic definition of var usually includes the expression Self[Time-k] or var[Time-k], 
where k is the number of time periods to subtract from the current Time value. It is typically the 
case that at least 1 initial value is supplied.

As an example, when k in [Time-k] is greater than 1, suppose your car insurance policy 
depends on the premium you paid two years ago. To calculate your payments in 1992, you must 
refer to the amount paid in 1990. A dynamic variable representing such a rate for insurance needs 
two initial values for Time, such as: 

Insurance: 
Dynamic(600, 700, Insurance[Time - 2] * 1.05) →

Using arrays in Dynamic()
The initial value of a dynamic variable — that is, the first parameter to the Dynamic() function — 
can be a number, variable identifier, or other expression that evaluates to a single number, list, or 
array. Analytica evaluates a dynamic variable starting from each initial value, in each time period, 
so the result is a correctly dimensioned array. 

Example Expanding the example (see “Using the Dynamic() function” on page 292), suppose the inflation 
rate of gasoline is uncertain. Instead of providing a single numerical value, you could define the 
inflation rate as a list.



Chapter Dynamic Simulation

298 Analytica User Guide

17 Dependencies with Dynamic

Using the new Inflation variable in the definition for Gasprice, the results show three differ-
ent rates of increases in gasoline prices from 1990 to 1994:

Gasprice:
Dynamic(1.2, Gasprice[Time - 1] * (1 + Inflation)) →

Dependencies with Dynamic
All variables with dynamic inputs are evaluated dynamically — that is, their results are arrays 
indexed by Time.

Example A series of dynamic definitions produce equations for distance, velocity, and acceleration:
Acceleration: -9.8
Dt: 0.5
Time: Sequence(0, 6, Dt)
Velocity: Dynamic(0, Self[Time-1] + Acceleration * Dt)
Distance: Dynamic(100, Self[Time-1] + Velocity * Dt) →



 Analytica User Guide 299

Dependencies with DynamicChapter Dynamic Simulation17

Dynamic dependency arrows
If a variable is dynamically dependent on another variable, a gray arrow is drawn between the 
variables.

To show or hide dynamic dependency arrows:

1. Select Set Diagram Style from the Diagram menu to open the Diagram Style dialog 
(page 76).

2. Click in the Dynamic checkbox to show dynamic arrows (or uncheck it to hide the arrows).
3. Click OK to accept the change.

Expressions inside dynamic loops
A dynamic loop is a sequence of variables beginning and ending at the same variable, with each 
consecutive variable dependent on the previous one. At least one variable in a dynamic loop is 
defined using the dynamic function. 

When the definition of a variable in a dynamic loop is evaluated, the definition is repeatedly evalu-
ated in the context of Time=t (as t increments through the values of Time). The value for any 
identifier that appears in an expression is implicitly sliced at Time=t (unless it is explicitly offset in 
Time). As an example, suppose A is indexed by Time, and X is defined as:

Dynamic(0, self[Time-1] + Max(A, Time))

During evaluation, A would be an atom at any given time point since it is implicitly sliced across 
Time. When A is not indexed by Time, Max(A, Time) simply returns A, so that the above 
expression is equivalent to:

Dynamic(0, self[Time-1] + A)

To add the greatest value of A along Time in this expression, you must introduce an extra vari-
able to hold the maximum value, defined simply as Max(A, Time), and ensure that the two vari-
ables do not occur in the same dynamic loop.

If you attempt to operate over the Time dimension from within a dynamic loop, Analytica issues 
the warning: “Encountered application of an array function over the Time index from within a 
dynamic loop. The semantics of this operation might be different than you expect.”



Chapter Dynamic Simulation

300 Analytica User Guide

17 Uncertainty and Dynamic

Uncertainty and Dynamic
Uncertain variables propagate uncertainty samples during dynamic simulation. If an uncertain 
variable is used in a dynamic simulation, its uncertainty sample is calculated only once, in the ini-
tial time period. 

Example The following definitions model population changes over time:
Variable Population := Normal(30, 2)
Variable Birthrate := Normal(1.2, .3)
Time := 1 ..10
Variable Pop_by_year := Dynamic(Population, Self[Time-1] + 
Birthrate)

The uncertainty samples for Population and Birthrate are each calculated once, at the ini-
tial time period. The same samples are then used for each subsequent time period.

Resampling
If you want to create a new uncertainty sample for each time period (that is, resample for each 
time period), place the distribution in the last parameter of the Dynamic() function. For example, 
replace Birthrate with its definition in Pop_by_year:

Pop_by_year:= Dynamic(Population, Self[Time - 1] +
Normal(1.2, .3))

An alternative way to create a new uncertainty sample for each time period is to make Birth-
rate a dynamic variable:

Birthrate:= Dynamic(Normal(1.2, .3), Normal(1.2, .3))
Pop_by_year:= Dynamic(Population, Self[Time-1] + 
Birthrate)

Dynamic on non-Time Indexes
The Dynamic function can be used to express a recurrence along any index, where the value at 
one value depends on previous values, the same way it is used to express a recurrence along the 
Time index. For non-Time indexes, you must specify the index explicitly in square brackets fol-
lowing the function name.



 Analytica User Guide 301

Dynamic on non-Time IndexesChapter Dynamic Simulation17

In the following example, we are to acquire as much of item 1 as we can afford, but can only pur-
chase an integer number of units. With whatever funds remain, we purchase as many integer 
units of item 2 as possible, as so on.

Index Item := [1,2,3,4]
Unit_price := Table(Item)(5100,1600,800,250)
Budget := 20K
Num_acquired := Floor(Funds_remaining/Unit_price)
Spent := Num_acquired * Unit_price
Funds_remaining := Dynamic[Item](budget,Self[Item-1]-Spent[Item-1])

The three variables, Num_acquired, Spent, and Funds_remaining, form a recurrence over 
the Item index. Evaluation proceeds starting with the dynamic context Item=1. When 
Num_acquired is evaluated in this context, the Unit_price appearing in its definition evalu-
ates to Unit_price[Item=1], since the use of a variable in a definition refers to its value sliced 
by the current dynamic context. Evaluation proceeds by evaluating each variable in the loop as 
Item is incremented and retaining the results for each value of Item:

Analytica’s dynamic evaluation is tuned maximum efficiency using the Time index; thus, it is best 
to use the system Time index as your model’s primary time index, utilizing non-Time indexes 
only when a secondary recurrent dimension is required.

Multi-dimensional recurrences are possible when dynamic recurrences over different indexes 
intersect. Here any unspent funds in the previous example are folded over into the following time-
period’s budget, forming a recurrence over both Time and Item:

Funds_remaining :=
Dynamic[Item](avail_funds,Self[Item-1]-Spent[Item-1])

Unspent_funds := 
Funds_remaining[Item=max(Item)] - Spent[Item=Max(item)]

Avail_funds := Dynamic(budget,budget+Unspent_funds[Time-1]



Chapter Dynamic Simulation

302 Analytica User Guide

17 Dynamic on non-Time Indexes



Chapter 18 Importing, Exporting, and 
OLE Linking Data

OLE linking makes it possible to link data to and from external applica-
tions. With OLE linking, changes to inputs or results are automatically 
and instantaneously propagated between applications.

This chapter describes how to exchange data between Analytica and 
other applications. The primary methods are:

• Using the standard Copy and Paste commands 
• Using OLE linking 
• Using the Import and Export commands 



Chapter Importing, Exporting, and OLE Linking Data

304 Analytica User Guide

18 Using OLE to link results to other applications

Copying and pasting
You can use the standard Copy and Paste commands with any modifiable attribute of a variable, 
module, or function. 

Pasting data from a
spreadsheet

To paste tabular data from a spreadsheet into an Analytica table:

1. Select a group of cells in a spreadsheet. 
2. Select Copy from that program’s Edit menu (Control+c), to copy the data to the clipboard. 
3. Bring the Analytica model to the front and open the Edit Table window you want to paste the 

data into. 
4. Select a top-left cell or the same number of cells that you originally copied. 
5. Select Paste from the Edit menu (Control+v).

Tip When copying a row of data from a spreadsheet into a one-dimensional table, transpose the data 
first so that you are copying it as a column of cells, not a row of cells.

Pasting data from
another program

To paste data from a program other than a spreadsheet:

• Use tab characters to separate items, and return characters to separate lines.
• Use numbers in floating point or exponential format. You can use the suffixes that Analytica 

recognizes (including K, M, and m; see character suffixes (page 128) for a comprehensive 
list). Dollar signs ($) and commas (thousands separators) are not permitted.

Copying a diagram To copy an influence diagram, including the objects represented by the nodes:

1. Select the group of nodes you wish to copy.
2. Select Copy from the Edit menu (Control+c). The objects that the nodes represent, as well as 

a picture of the selected nodes with all of the relevant arrows between the selected nodes, are 
copied to the clipboard.

To copy an entire Influence Diagram window, select Copy Diagram from the Edit menu. The 
entire influence diagram is copied as a picture representation without copying the objects that the 
nodes represent.

Exporting to an
image file

To export an influence diagram to an image file, with the diagram showing select Export from the 
File menu. From the Save dialog, select the desired format (e.g., EMF, PNG, JPEG). An image of 
the full diagram is stored (not just the selected nodes).

Copying an edit table
or result table

To copy data from an edit table or result table:

1. Open the window containing the table.
2. Select cells and choose Copy from the Edit menu (Control+c).

To copy all the elements of a table in addition to the index elements, select Copy Table from the 
Edit menu. The entire multidimensional array is copied as a graphic and as a list of two-dimen-
sional tables in a special text format (see “Edit table data import/export format” on page 312).

Copying a result graph To copy a result graph:

1. Open the Result window containing the graph. 
2. Select Copy from the Edit menu (Control+c) to copy an image representation of the graph to 

the clipboard.

Exporting a result graph
to an image file

To export a result graph:

1. Open the Result window containing the graph. 
2. Select Export from the File menu and select the desired image file format (e.g., EMF, PNG, 

JPEG).

Using OLE to link results to other applications
Object Linking and Embedding (OLE) is a widely used Microsoft technology that enables objects 
in two applications to be hotlinked, so that changes to the object in one application cause the 



 Analytica User Guide 305

Using OLE to link results to other applicationsChapter Importing, Exporting, and OLE Linking Data18

same changes in the other application. For example, by linking an array in Analytica to a table in 
a Microsoft Excel spreadsheet, any change to the array in the Analytica model is automatically 
reflected in the spreadsheet. 

By using OLE linking, results from Analytica models can be linked into OLE compliant applica-
tions like Word and Excel. Linking data can save a great deal of work because it saves you from 
performing repeated copy and paste operations between Analytica and other applications when-
ever your model results change. Without OLE, if you copied result tables from Analytica, pasted 
them into a Word document, and later you tweak your model results, you would need to re-copy 
and re-paste all those result tables. However, if you link those tables using OLE, all the data in the 
Word document either updates automatically, or if you prefer, when you explicitly decide to update 
the data. 

You can link any of the result table views (i.e., Mid, Mean, Statistics, Probability Density, Cumula-
tive Probability, and Sample table views). You can link any two-dimensional slice of a multi-dimen-
sional table with the regular Copy command. For result tables with more than two dimensions, 
you might decide to link the entire table as a series of two-dimensional tables using the Copy 
Table option from the Edit menu. You can also link a rectangular region of cells that are a subset 
of a a two-dimensional table. However, you cannot link non-table data such as the information 
that is contained in the Object window or Attribute panel. 

Linking procedure Steps for linking result data from your Analytica model to an external OLE-compliant application 
are as follows. For concreteness, we’ll assume here that the other application is Microsoft Excel.

1. In the Analytica Result window, select the cells you want to link and choose Copy from the 
Edit menu (Control+c).

2. From Excel, select the cells where you would like the Analytica data linked.
3. From Excel, choose Paste Special from the Edit menu. 
4. The Paste Special dialog appears.
5. In this box, choose the option Paste Link, select Text from the As list, and click OK.

You’re done. Any changes to the source result table are propagated to the linked data in Excel. 
The procedure for linking Analytica model results to other OLE-compliant applications is similar to 
the above steps.

Tip The external application must support OLE-linking of tab-delimited text data. Applications that do 
not support this format do not display “Text” as an option in Step 5 above, or disable the Paste 
Special menu item in Step 3. 

Detailed example of
linking Analytica results



Chapter Importing, Exporting, and OLE Linking Data

306 Analytica User Guide

18 Using OLE to link results to other applications

This example itemizes detailed steps for linking an Analytica result table into an Excel spread-
sheet. Suppose you would like to link the model results displayed above into an Excel spread-
sheet. You can start by linking the column and row headers. Go to the node titled Cashflow 
Category and evaluate its result. Notice the result of node Cash Flow Category is displayed as a 
column of cells, but you would like to have them linked into Excel as a row. Unfortunately you can-
not link this data as a row with a single Copy/Paste Special operation since Excel does not let you 
transpose the linked data from a column to a row. However, you can easily work around this limi-
tation. Link the values into an unused portion of your spreadsheet or to a blank sheet using the 
linking procedure described in the previous section. In the cells where you actually would like the 
labels to appear as a row, simply reference the linked cells. In other words, define the cells that 
comprise the column headers for the linked table you are creating using the names of the corre-
sponding linked cells.

Now it’s time to link the values of Time as the row headers in your linked table. Time is an Analyt-
ica system variable and one of the elementary ways to copy its values for linking is to create a 
node called Time and give it the definition time. Evaluate this node and then link the values dis-
played in the result table using the linking procedure described in the previous section.

Linking the body of the table is just a straightforward application of the linking procedure. The 
number format of the cells is preserved in fixed point format, but you might want to use Excel for-
matting to get the dollar sign and thousand separator displayed. Excel might switch to the expo-
nential number format or display ######## if your columns are not wide enough. 

The body of the table and its indexes (the row and column headers) are linked. For instance, if 
your Analytica model results change and you decide also to change the value of cost to expense, 
these changes are reflected in your linked table in Excel.

Important notes about linking to Analytica results
Changing file locations When moving linked files from one drive partition to another on the same machine or between two 

different computers, keep the relative paths the same. The simplest way to do this is to keep the 
linked model files and the other application files to which they are linked in the same folder.

Automatic vs. manual
updating

OLE links are set for automatic updating by default, but you can change this setting to manual. 
We recommend this if the data is linked from an Analytica model with a lengthy re-computation 
time or to an application with a lengthy re-computation time. 

To change a link’s setting to manual in Word:

1. On Word’s Edit menu, select Links.
2. In the Links box that appears select the link(s) you’re interested in adjusting.
3. Click the radio button labeled manual and click the OK button.

In other OLE-compliant applications the steps for switching from automatic to manual updating 
should be very similar to the ones listed above.



 Analytica User Guide 307

Linking data from other applications into AnalyticaChapter Importing, Exporting, and OLE Linking Data18

You can also decide to set all your OLE links to be updated manually using a preference setting in 
Analytica. From the Edit menu, select Preferences, then in the Preferences dialog, uncheck the 
checkbox located on the bottom right labeled Auto recompute outgoing OLE links.

Using Indexes Array-valued results that are to be linked should not have local indexes (created using the 
Index..Do construct). All indexes should correspond to index nodes in your diagram.

Number formatting When linking data into OLE compliant applications, the number format is the same as Analytica’s 
format at the time of link creation. However, if the linked Analytica data uses the default Suffix 
number format, the linking converts the format to Exponential, which is more universally recogniz-
able in other applications. In programs that have their own number formatting settings such as 
Excel, the number format is likely adjusted according to the settings for the cells you are pasting 
into. However you must still be careful about losing significant digits (see next paragraph).

Precision is another important issue in number formatting. Before linking from Analytica, you 
should first adjust the number format so that it displays all the significant digits you would like to 
have in the other OLE-savvy application to which you are linking.

Refreshing links when
Analytica model

is not running

If you refresh the links between an Analytica model and another OLE-savvy application when the 
Analytica model is not running, the following events occur:

1. A new instance of Analytica launches.
2. Analytica loads the model.
3. Analytica evaluates the variables upon which the links are dependent. 
4. The links reactivate.
5. The linked data updates.

There are two ways to refresh the links this way. The first case occurs when a file with links is 
opened while the model file to which it is linked is closed, and you answer Yes to the dialog 
prompting you to update the linked data. The other way is if you are working with a file containing 
links to a model that is not running and you explicitly update the links. To explicitly update the links 
in Excel, you would select Links from the Edit menu. Then in the Links dialog, select the links 
you would like to refresh and click the Update button.

Linking data from other applications into Analytica
Using OLE linking, you can incorporate data originating in OLE-compliant applications as the 
input for nodes in your Analytica model. You accomplish this by linking the external data to edit 
tables in Analytica. Once again, this removes the need to perform numerous copy and paste 
operations each time the source data in the other application changes. 

When linking data into Analytica, you can link data into any edit table with less than three dimen-
sions. When linking data in edit tables you must link all the contents of the table; linking a subset 
of an edit table is not supported. You cannot link data from other applications to anywhere else 
than an edit table in Analytica including the diagram windows, Object windows, and the Attribute 
panel.

Linking procedure Steps for creating a linked edit table in Analytica with data from an Excel spreadsheet:

1. In Excel, select the cells you want to link to Analytica and choose Copy from the Edit menu.
2. In Analytica, make the edit table where you want the Excel data linked the front most window.
3. From the Edit menu or the right mouse button pop-up menu, choose Paste Special. 

The Paste Special dialog appears. 
4. In this box, choose the option Paste Link, select Text from the As list, and click OK.

The process for linking data from Word or other OLE-compliant applications are analogous to the 
steps just outlined.



Chapter Importing, Exporting, and OLE Linking Data

308 Analytica User Guide

18 Linking data from other applications into Analytica

Example of linking a table into Analytica
This section itemizes detailed steps for linking a table from Excel into Analytica by creating a node 
with a “Linked Table” definition. Specifically, suppose you desire to link the Excel table displayed 
in the following figure into Analytica.

Start by creating two indexes in Analytica to store the row and column headers. Title the first index 
Items and the second Status. Select the node Items and then click the Show definition button on 
the toolbar (this is the button with the pencil icon) or right mouse menu. In the Attribute panel or 
Object window that appears, click the expr popup menu and choose List of Labels. Press the 
down-arrow or Return key three times. This gives you three cells — item 1, item 2, and item 3. In 
Excel, copy the three cells used as the row headers (i.e., Red Widgets, Blue Widgets, and Green 
Widgets); return to Analytica and do a regular paste into the three cells of the definition for the 
Index node Items. 

Now you need to copy the values of the column headers (i.e., In Stock and Ordered) into the def-
inition for the index node Status. Since Analytica enforces strict dimension checking (i.e., you 
cannot paste a 3 x 1 array of cells into a 1 x 3 array of cells), you are required to first convert the 
row into a column. You can accomplish this easily by copying the row, moving to an unused por-
tion of the spreadsheet or onto a blank sheet, and choosing Paste Special from Excel’s Edit 
menu. The Paste Special dialog appears and you need only select the Transpose checkbox on 
the bottom right. Click the OK button and you have converted the column header cells from a row 
into a column. Now copy this column, go back to Analytica, select the Status node, and click the 
Show definition toolbar button. Select the first cell item 1 and choose Paste from the Analyt-
ica’s Edit menu.

Since you’ve finished creating the indexes, you’re ready to start on the node that contains the 
linked table. Create a variable node in Analytica and title it Inventory. With this node selected, 
click the Show definition button on the toolbar. In the Attribute panel or Object window that 
appears, click the expr popup menu and choose Table. The Indexes dialog appears. In this dia-
log, select Items and click the button. This moves Items to the Selected Indexes section. You 
also want to select Status and then click the button to make it a selected index as well. Click 
OK and an edit table appears as follows.



 Analytica User Guide 309

Linking data from other applications into AnalyticaChapter Importing, Exporting, and OLE Linking Data18

Go to Excel and select the numerical values displayed in the table and choose Copy from the 
Edit menu (Control+c). Return to Analytica (while in edit mode) and click anywhere in the edit 
table grid. Choose Paste Special from the Edit menu and the Paste Special dialog comes into 
view. You want the settings in the box to be Paste Link and Text which are the default settings 
(see below). Click OK.

The caption for the table changes from Edit Table to Linked Table and you’re done. If you arrange 
the application windows so that you can see the source table in Excel and the linked table in Ana-
lytica, you can readily demonstrate that the link is activated. Change the value for Green Widgets 
Ordered from 2 to say 17. The corresponding value in Analytica’s linked table changes accord-
ingly.



Chapter Importing, Exporting, and OLE Linking Data

310 Analytica User Guide

18 Importing and exporting

Tip The data within the table is linked and is updated automatically when altered, but the row and 
column headers are not linked and any changes to their values must be propagated using the 
standard cut and paste operations. Perform this by copying to the indexes used by the table, not 
to the table itself.

Important notes about linking into Analytica edit tables
Changing file locations When moving linked files on the same machine or between two different computers, keep the rel-

ative paths the same so that the files can locate each other. The simplest way to do this is to keep 
the linked model file(s) and the other application file(s) to which it is linked in the same folder.

Automatic vs. manual
updating

OLE links are set for “automatic” updating by default, but you can change this setting to “manual.” 
This might be desirable if the linked data is used in a model with a lengthy computation time. To 
change a link’s setting to “manual” updating:

1. On Analytica’s Edit menu, select OLE Links.
2. In the Edit Analytica Links box that appears select the link(s).
3. Click the radio button labeled manual and click the OK button.

Terminating links You might want to terminate a link to a source file for a number of reason including if you do not 
have the source file or if you would like to edit the values in a linked table. To break a link, bring up 
the Edit Analytica Links dialog, by choosing OLE Links from the Edit menu. Select the link you 
would like to terminate and click the Break Link button.

Activating the other
application

If you have linked data from an external application into Analytica, after loading Analytica you can 
make the other application visible using the Open Source button on the OLE Links dialog, 
accessed through the Edit menu. If you implement a portion of your model in Analytica and a por-
tion in an external application, with OLE links in both directions, you can make both applications 
simultaneously visible on the screen by loading the Analytica model first, then pressing the Open 
Source button to open the external application.

Importing and exporting
Importing into an edit

table or list
To import a definition from a text file into an edit table or list:

1. Select the definition field of the variable in either the Object window or Attribute panel 
definition view. If variable is a table, open the edit table.

2. Select the cell(s) in which to import.
3. Select Import from the File menu. A dialog prompts you for the file name from which to import.



 Analytica User Guide 311

Printing to a fileChapter Importing, Exporting, and OLE Linking Data18

To import data from a tab-delimited text file into an edit table:

1. Open the window containing the table.
2. Select cells and choose Import from the File menu. 

A dialog prompts you for the file name from which to import.

To import all the elements of a multidimensional table including the index elements, a special text 
format is required (see “Edit table data import/export format” on page 312). This is also the format 
in which an edit table or result table is exported. The indexes of the table must have been previ-
ously created as nodes.

Exporting To export a variable’s result table to a text file, first be certain that the text file is closed.

1. Select the variable to be exported from and open its Result window.
2. Select Export from the File menu. A dialog prompts you for the file name to export to.

Printing to a file
Another way of exporting any Diagram window, Object window, or Result window to a file is to 
print to a file:

1. Select Print from the File menu. 
2. Select Print to File and press Enter or click OK.



Chapter Importing, Exporting, and OLE Linking Data

312 Analytica User Guide

18 Edit table data import/export format

3. Enter the name of the file and the format for the file in the dialog that appears.

Edit table data import/export format 
Multidimensional data being imported or copied into an edit table must be in a text file with the 
special format described in this section. This is also the format in which an edit table or result 
table is exported.

• TextTable is a keyword.
• Attribute is the name of the attribute into which the data is to be pasted (usually 

definition).
• Variable identifier is the identifier of the variable node into which the data is to be 

pasted. 
• Index identifier is the identifier of the index for this variable. This node must already 

exist in the model.
• Each index value and array value pair must be separated by tab characters.

One-dimensional array 
The format for a one-dimensional array is:

TextTable <Attribute> <Variable identifier> <line break>
<Index identifier><line break>
<Index value><tab><Array value><line break>



 Analytica User Guide 313

Edit table data import/export formatChapter Importing, Exporting, and OLE Linking Data18

Example

Two-dimensional array 
The format for a two-dimensional array is:

TextTable <Attribute><Variable identifier><line break>
<Index1 identifier><tab><Index1 values separated by tabs>
<line break>
<Index2 identifier><line break>
<Index2 value1><tab><Array values separated by tabs><line break>
<Index2 value2><tab><Array values separated by tabs><line break>
<Index2 valueN><tab><Array values separated by tabs><line break>

Example

Three-dimensional array
The format for a three-dimensional array is:

TextTable <Attribute> <Variable identifier> <line break>
<Index1 identifier><tab><Index1 Value1><line break>
<Index2 identifier><tab><Index2 values separated by tabs><line 
break>
<Index3 identifier><line break>
<Index3 value1><tab><Array values separated by tabs><line break>
<Index3 value2><tab><Array values separated by tabs><line break>
<Index3 valueN><tab><Array values separated by tabs><line break>
<Index1 identifier><tab><Index1 Value2><line break>
<Index2 identifier><tab><Index2 values separated by tabs><line 
break>
<Index3 identifier><line break>
<Index3 value1><tab><Array values separated by tabs><line break>

Keyword Attribute Variable identifier

TextTable Definition House_cost_inputs
House_inputs

PropTax 3400
Tax rate 0.44
Maintenance 4000
Interest 0.105
Appreciation 0.08

Index identifier

Index values Array values

TextTable Definition Mortgage
Down payment  20000 45000  60000
Buying price 
200000  180000 155000 140000
400000 380000 355000 340000
600000 580000 555000 540000

Keyword Attribute Variable identifier

Index1

Index1 valuesArray values

Index2

Index2 values



Chapter Importing, Exporting, and OLE Linking Data

314 Analytica User Guide

18 Edit table data import/export format

<Index3 value2><tab><Array values separated by tabs><line break>
<Index3 valueN><tab><Array values separated by tabs><line break>

And so on for each value of Index1. 

Example

Number format
Numerical data can be imported in any format recognized by Analytica (see “Number formats” on 
page 80). 

Numerical data is exported in the format set for the table, with these exceptions:

• Suffix format numbers are exported in scientific exponential format.
• Fixed decimal point numbers of more than 9 digits are exported in scientific exponential 

format.
• If a date format begins with the day of the week, e.g., “Saturday, January 1, 2000”, the 

weekday is suppressed: “January 1, 2000”.

TextTable Definition Net_diff
Buying price  200000
Years owned  5 10 15
Down payment 
20000 10112  12160  13525 
45000 10093  12158  13540 
60000 10073  12157  13555 
Buying price  400000
Years owned  5 10 15
Down payment 
20000 10180. 14201. 16867.
45000 10160. 14199. 16882.
65000 10141. 14198. 16897.
Buying price  60000
Years owned  5 10 15
Down payment 
20000 10248  16242  20209
45000 10228  16241  20224
60000 10208  16239  20239

Keyword Attribute Variable identifier

Index1

Index2
Index1 Value1

Index3

Index3 values

Index2 values

Index1 Index1 Value2

Array values

Index1 Index1 Value3



Chapter 19 Working with Large Models

This chapter shows you how to:

• Navigate large models
• Combine existing models into an integrated model



Chapter Working with Large Models

316 Analytica User Guide

19 Show module hierarchy preference

Large models, which include many variables organized into multiple modules at several levels of 
hierarchy, can be challenging to find your way around. The first part of this chapter describes how 
to navigate larger models, using the hierarchy preference, the Outline window, and variable input 
and output attributes. The second part of this chapter describes how to combine existing models 
into an integrated model.

Show module hierarchy preference
Often a large model has many layers of hierarchy. You can see the hierarchy depth of each mod-
ule at the top of its Diagram window by setting a preference. Select Preferences from the Edit 
menu to display the Preferences dialog.

If you check the Show module hierarchy box, the top of the active Diagram window displays the 
module path down to the current module:

You can jump to any parent or ancestor module by clicking on its name in the strip. When you 
click on an arrow, a tree menu displays other modules at that level and enables you to quickly 
navigate directly to any other module in the model:

The Outline window
The Outline window displays a listing of the nodes inside a model. It can also show the module 
hierarchy as an indented list of modules. It provides an easy way to orient yourself in a large 
model and to navigate within it.

Show module 
hierarchy 
option



 Analytica User Guide 317

The Outline windowChapter Working with Large Models19

Opening the Outline
window

To open the Outline window, click the Outline button in the toolbar .

The Outline window highlights the entry for the selected module or variable. 

Opening details from
an outline

To display a module’s Diagram window, double-click its entry in the outline.

To display a variable’s Object window, double-click its entry in the outline.

Expanding and
contracting the outline

By default, the outline lists all nodes in the model. Check the Modules Only box to list only the 
modules (exclude variables and functions). 

In the outline, each module entry has a triangle icon or to let you display or hide the mod-
ule’s contents. 

Viewing and editing
attributes

The Attribute panel at the bottom of the Outline window works just like the Attribute panel avail-
able at the bottom of a Diagram window (page 17). 

To view the attributes of a listed node:

1. Select the node by clicking it.
2. Choose the attribute to examine from the Attribute popup menu (see “Creating or editing a 

definition” on page 104).

If you edit attributes in this panel, the changes are propagated to any other Attribute panels and 
Object windows.

Check to display only
modules

Attribute popup menu

Attribute panel

List of variables,
modules, and functions

Selected object is
highlighted

Indicates that the module’s contents are not shown in the Outline window. Click this icon 
to display the module’s contents.

Indicates that the module’s contents are shown as an indented list. Click this icon to hide 
the module’s contents.

Click here to see
modules only



Chapter Working with Large Models

318 Analytica User Guide

19 Finding variables

Viewing values To see the Outline window with mid values, select Show With Values (page 24) from the Object 
menu. Each variable whose mid value has been evaluated and is an atom displays in the window.

Finding variables
To locate a variable in its diagram, by identifier or by title, use the Find dialog.

Find dialog To display the Find dialog: 

1. Select Find from the Object menu (Control+f). 

2. Choose the attribute to search by, Identifier or Title.
3. In the text field, enter the identifier or title for the Analytica object for which you want to search. 

You can enter an incomplete identifier or title, such as “down” for “Down payment.”
4. Click the Find button to initiate the search. 

The Diagram window containing the object found is displayed, with the node of the object 
selected.

If the name you type does not match completely any existing identifier or title (depending on 
which attribute you are searching), the first identifier or title that is a partial match is displayed.

To find the next object that is a partial match to the last identifier or title that you entered, select 
Find Next from the Object menu (Control+g).

To find an object whose identifier matches the selected text in an attribute field (such as a defini-
tion field), select Find Selection from the Object menu (Control+h). 



 Analytica User Guide 319

Managing attributesChapter Working with Large Models19

Managing attributes
Every node in an Analytica model is described by a collection of attributes. For some models, 
you might want to control the display of attributes or create new attributes. Some attributes apply 
to all classes (variable, module, and function). Others apply to specific classes, as listed in the fol-
lowing table.

Key:

For descriptions of the attributes, see “Glossary.”

Attributes dialog Use the Attributes dialog to control the display of optional attributes in the Object window and 
Attribute panel and to define new attributes.

To open the Attributes dialog, select Attributes from the Object menu. 

Attribute Function Module Variable

Author *

Check + +

Class * * *

Created *

Definition * *

Description * * *

Domain +

File Info *

Help + + +

Identifier * * *

Inputs + +

Last Saved *

MetaOnly +

Outputs + +

Parameters *

Probvalue +

Recursive +

Title * * *

Units * *

Value +

User-created (up to 5) + + +

plain = modifiable by user * = always displayed

italic = set by Analytica + = optionally displayed



Chapter Working with Large Models

320 Analytica User Guide

19 Managing attributes

• Class popup menu
Use this menu to select the Attribute list for variables, modules, or functions.

• Attribute list
This list shows attributes for the selected class. Attributes with an asterisk (*) are always 
displayed in the Object window and Attribute panel. Attributes with a checkmark (√) are 
displayed optionally.

Displaying optional
attributes

To display an optional attribute in the Object window and Attribute panel, click it once to select it, 
then click it again to show a checkmark.

To hide an optional attribute, click it once to select it, then click it again to remove the checkmark.

Creating new attributes You can create up to five additional attributes. For example, you could use a reference attribute to 
include the bibliographic reference for a module or variable.

To create a new attribute in the Attributes dialog:

1. Select new Attribute from the attribute list to show the new Attribute Title field and the Create 
button. 

2. Enter the title for the new attribute in the Title field. The title can contain a maximum of 14 
characters; 10 characters are the maximum recommended for visibility with all screen fonts.

3. Click the Create button to define the new attribute.

A newly created attribute is displayed for modules, variables, and functions. To control whether or 
not it is displayed for modules, variables, or functions, select the Class popup menu in the Attri-
butes dialog, and turn the checkmark on or off.

Renaming an attribute To rename a created attribute:

1. Select it in the Attribute list. The Title field and the Rename button appear.
2. Edit the name of the attribute in the Title field.
3. Click the Rename button.

Referring to the value of an attribute
Analytica includes the following function for referring to the value of an attribute in a variable’s def-
inition.

Attrib Of x 
Returns the value of attribute attrib of object x, where x might be a variable, function, or module. 
For most attributes, including Identifier, Title, Description, Units, Definition, and user-defined attri-
butes the result is a text value. For Value and Probvalue, the result is the value of the variable 
(deterministic or probabilistic, respectively). For Inputs, Outputs, and Contains (an attribute of a 
module), the result is a vector of variables.

You cannot refer to an attribute of a variable by naming the variable in the definition of that vari-
able. Instead, refer to it as Self, for example:

Class popup menu

Checkmark indicates optional
attribute is displayed Attribute list



 Analytica User Guide 321

Invalid variablesChapter Working with Large Models19

Variable Boiling_point
Units: F
Definition: If (Units of Self) = 'C' 

THEN 100 ELSE 212

Boiling_point → 212

Library Special

Example Units of Time → 'Years'

Tip Changes to attributes other than Definition do not automatically cause recomputation of the 
variables whose definitions refer to those attributes. So, if you change Units of Boiling_point 
to C, the value of Boiling_point does not change until Boiling_point is recomputed for 
some other reason.

Invalid variables 
To locate all variables in a model with syntactically incorrect or missing definitions, select Show 
Invalid Variables from the Definition menu.

Double-click a variable to open its Object window. From the Object window, you can edit the def-
inition, or click the Parent Diagram button to see the variable in its diagram.

Using filed modules and libraries
Modules and libraries can be components of a model. If you are building several similar models, 
or if you are building a large model composed of similar components, you can create modules 
and libraries for reuse. (See Chapter 20, “Building Functions and Libraries” for details about 
libraries.)

To use a module or library in more than one model, create a filed module or filed library. 

Creating a filed module
or library

To create a filed module or library:

1. Create a module by dragging the module icon from the node palette onto the diagram, and 
give it a title.

2. Create functions and variables in the module, or create them elsewhere and move them into 
the module.

3. Change the class (page 55) of the module to Module or Library .
4. The Save As dialog appears. Give the filed module or library a name and save it.
5. If you want the original model to load the new filed module or library the next time it is opened, 

save the model using the Save command.

Locking a filed module
or library

To prevent a filed module or library from being modified, lock it:

1. Close the filed module or library, or close Analytica.
2. In Windows Explorer, select the filed module or library.
3. Select Properties from the File menu.



Chapter Working with Large Models

322 Analytica User Guide

19 Adding a module or library

4. Check the Read-only checkbox.
5. Close the Properties window.

Adding a module
to a model

To add a filed module to the active model, use the Add Module dialog (page 322). You can either 
embed a copy of the module or link to the original of the filed module.

Adding library
to a model

To add a filed library to the active model, use the Add Module dialog (page 322). You can either 
embed a copy of the library or link to the original of the filed library.

When you select Add Library from the File menu, the Open File dialog always opens up to fixed 
directory, regardless of the current directory settings or previous changes of directories. The 
directory is determined by a registry setting in /Lumina Decision Systems/Analytica/
3.0/AddLibraryDir, which is set by the Analytica installer to INSTALLDIR/Libraries.

 Removing a module or
library from a model

To remove a filed module or library from a model, first select it. Then, select Cut or Clear from the 
Edit menu. An embedded copy is deleted; a linked original still exists as a separate file.

Saving changes After you have linked to a filed module or library, the Save command saves every filed module 
and library that has changed, as well as the model containing them, in their corresponding files.

The Save As and Save A Copy In commands save only the active (topmost window’s) model, 
filed module or filed library.

Adding a module or library
To add a module or library, select Add Module (Control+l) or Add Library from the File menu. 
The main difference is that Add module starts the file browser by default in the folder you opened 
the model (or last added module) from, where Add Library starts from the standard libraries 
folder installed when you installed Analytica. Either way, you must be in Edit mode or those 
options will be grayed out in the File menu. 

Check Read-only to 
lock a library or module 
file



 Analytica User Guide 323

Combining models into an integrated modelChapter Working with Large Models19

The standard Open Model dialog appears. Select the desired module in that dialog. The following 
dialog then appears.

Tip Be sure that the selected model or module was saved with a class of filed module or filed library. 
If it was saved with a class of model, when it is linked to the root model, its preferences and 
uncertainty settings overwrite the preferences and uncertainty settings of the root model.

An added module or library can be either embedded or linked. You can optionally overwrite any 
nodes with the same identifiers.

Embed a copy Embeds a copy of the selected module or library in the active model, making it a part of, and sav-
ing it with, the model. Any changes to the copy do not affect the original filed module or library.

Link to original Creates a link to the selected module or library, which can be separately opened and saved. If 
you make changes to a linked module or library from one model, the changes are saved in the 
original’s file and any other models linked to the original are affected by the changes.

A linked module or linked library has a bold arrow pointing into it on the diagram.

Merge contents
(overwrite)

Select this checkbox to overwrite existing objects in the active model with objects with the same 
identifiers from the added module or library. This is useful if the file being added contains updates 
from a previous version.

If you do not select this checkbox, and an object in the file being added has the same identifier as 
one in the active model, Analytica points that out and asks if you want to rename the variable. If 
you click Yes, it renames the variable in the existing model, and updates all definitions in the 
existing model to use the changed identifier. It leaves unchanged the identifier of the variable in 
the module it is adding (which might contain definitions referencing that identifier that it has yet 
to read.) Hence, all the definitions in the existing model and added module continue to refer-
ence the correct (original) variables.

Combining models into an integrated model 
Large models introduce a unique set of modeling issues. Modelers might want to work on differ-
ent parts of a model simultaneously, or at remote locations. During construction, a large model 
might be more tractable when broken into modular pieces (modules), but all modules should use 
a common set of indexes and functions. Analytica provides the functionality required to support 
large-scale, distributed modeling efforts.

This section describes how to best use Analytica for large modeling projects and contains sug-
gestions for planning a large model where responsibility for each module is assigned to different 
people (or teams).

Bold arrow indicates that this is a 
linked module



Chapter Working with Large Models

324 Analytica User Guide

19 Combining models into an integrated model

Define public variables The first step to creating an integrated model is to define public variables for use by all modules 
and agree on module linkages.

Every integrated model has variables that are used by two or more projects (for example, geo-
graphical, organizational, or other indexes, modeling parameters, and universal constants). 
These public variables should be defined in a separate module, and distributed to all project 
teams. Each team uses the Add Module dialog (page 322) to add the public variables module to 
its model at the outset of modeling. Using a common module for public variables avoids duplica-
tion of variables and facilitates the modules’ integration.

Source control over the public variable module must be established at the outset so that all teams 
are always working with the same public variables module. Modelers should not add, delete, or 
change variables in the public variables module unless they inform the source controller, who can 
then distribute a new version to all modelers.

If multiple teams will be working on separate projects, it is essential that the teams agree upon 
inputs and outputs. Modelers must specify the input variables, units, and dimensions that they are 
expecting as well as the output variables, units, and dimensions that they will be providing. The 
indexes of these inputs and outputs should be contained in the public variables module.

Create a modular model By keeping large pieces of a model in separate, or filed modules, modelers can work on different 
parts of a model simultaneously. You can break an existing model into modules, or combine mod-
ules into an integrated model. In both cases, the result is a top-level model, into which the mod-
ules are added.

To save pieces of a large model as a set of filed modules, see “Using filed modules and libraries” 
on page 321.

To combine existing models into a new, integrated model:

1. Create or open the model that will be the top level of the hierarchy. This is the model to which 
all sub-models will be added.

2. Using the Add Module dialog (page 322), add in the sub-models. Be sure to check the Merge 
option in the Add Module dialog. Add the modules in the following sequence:

• Any public variable modules
• All remaining modules in order of back to front; that is:

• First, the module(s) whose outputs are not used by any other module, and
• Last, the module(s) which take no inputs from any other module.

3. Save the entire integrated model, using the Save command.

The two alternative methods of controlling each module’s input and output nodes so the modules 
can be easily integrated, are: 

• Identical identifiers
• Redundant nodes

Identical identifiers Assign the input nodes in each module the exact same identifiers as the output nodes in other 
modules that will be feeding into them. When you add the modules beginning with the last mod-
ules first (that is, those at the end of model flow diagram), the input nodes are overwritten by the 
output nodes, thus linking the modules and avoiding duplication.

With identical identifiers, the individual modules cannot be evaluated alone because they are 
missing their input data. They can be evaluated only as part of the integrated model.

Redundant nodes Place the output node identifiers in the definition fields of their respective input nodes. Due to the 
node redundancy, this method requires more memory than using identical identifiers, and it is 
therefore less desirable when large tables of data are passed between modules. However, since 
no nodes are overwritten and lost upon integration, this method preserves the modules’ structural 
integrity, with both input and output nodes visible in each module’s diagram.

With redundant nodes, each module can be opened and evaluated alone, using stand alone 
shells.

Stand alone shells With redundant nodes, you can create a top-level model that contains one or more modules and 
the public variables module plus dummy inputs and outputs. Such a top-level model is called a 
stand alone shell because it allows you to open and evaluate a single module “standing alone” 



 Analytica User Guide 325

Managing windowsChapter Working with Large Models19

from the rest of the integrated model. Stand alone shells are useful when modelers want to exam-
ine or refine a particular module without the overhead of opening and running the entire model.

To create a stand alone shell for module Mod1, which is a filed module:

1. Open the integrated model and evaluate all nodes that feed inputs to Mod1.
2. Use the Export command (see “Importing and exporting” on page 310) to save the value of 

each feeding node in a separate file. Make a note of these items:
• The identifier of each node and the indexes by which its results are dimensioned.
• The identifiers of Mod1’s output nodes, if you want to include their dummies in the stand 

alone shell. 
3. Close the integrated model.
4. Create a new model, to be the stand alone shell.
5. Use Add Module to add the public variables module.
6. For each input node, create a node containing an edit table, using the identifier and 

dimensions of the feeding nodes you noted from the integrated model.
7. Use the Import command (see “Importing and exporting” on page 310) to load the appropriate 

data into each node’s edit table.
8. Use Add Module to add Mod1 into the stand alone shell.
9. To include output nodes at the top level of the hierarchy, create nodes there and define them 

as the identifiers of Mod1’s outputs.
10. Save the shell.

The shell now has all the components necessary to open and evaluate Mod1, without loading the 
entire model. As long as modelers do not make changes to the dimensions or identifiers of mod-
ule inputs and outputs, they can modify a module while using the stand alone shell, and the 
resulting module is usable within the integrated model.

Cautions in combining models
Identifiers Every object in a model must have a unique identifier. The identifiers of filed libraries and filed 

modules that you add to a model, as well as their variables and functions, cannot duplicate identi-
fiers in the root model. See “Merge contents (overwrite)” on page 323.

Created attributes When you combine models with created attributes, the maximum number of defined attributes is 
five (see “Managing attributes” on page 319).

Location of linked
modules and libraries

If the model will eventually be distributed to other computers, all modules and libraries should be 
on the same drive as the root model prior to being added to the root model. When the model is 
distributed, distribute it with all linked modules and libraries.

Managing windows
An Analytica model can potentially display thousands of Diagram, Object, and Result windows. 
To prevent your screen from becoming cluttered, Analytica limits the number of windows of each 
type that can be open at once. The default limits are:

• The top-level Diagram window and not more than one Diagram window for each lower level 
in the hierarchy

• One Object window
• Two Result windows

The oldest window of the same type is deleted whenever you display a new window that would 
otherwise exceed these limits.

Overriding the limits on
the number of windows

To display more windows of the same type, override the default limits in one of the following 
ways: 

• Open a second Object window, or open a Diagram window without closing an existing 
Diagram window at the same level, by pressing the Control key while you click or double-
click to open the new window.



Chapter Working with Large Models

326 Analytica User Guide

19 Managing windows

• Use the Preferences dialog (page 56) to change the limits. Select Preferences from the 
Edit menu. 

.

In the Windows of each Kind area, select Any number instead of One only.

To display more Result windows and keep the limit on Diagram and Object windows, enter 
the maximum number of Result windows.

Click here to allow an unlimited
number of windows on the

screen at once

Enter the maximum number
of Result windows



Chapter 20 Building Functions and 
Libraries

This chapter shows you how to:

• Use functions 
• Create your own functions 
• Work with parameter qualifiers 
• Create your own function libraries 



Chapter Building Functions and Libraries

328 Analytica User Guide

20 Example function

You can create your own functions to perform calculations you use frequently. A function has one 
or more parameters; its definition is an expression that uses these parameters. You can specify 
that the function check the type or dimensions of its parameters, and control their evaluation by 
using various parameter qualifiers.

A library is a collection of user-defined functions grouped in a library file, for use in more than one 
model. Using libraries, you can effectively extend the available functions beyond those built in to 
Analytica. Analytica is distributed with an initial set of libraries, available in the Libraries folder 
inside the Analytica folder on your hard disk. If you add a library to a model, it appears with its 
functions in the Definition menu, and these functions appear almost the same as the built-in 
functions. 

You might want to look at these libraries to see if they provide functions useful for your applica-
tions. You might also look at library functions as a starting point or inspiration for writing your own 
functions.

Analytica experts can create their own function libraries for particular domains. Other Analytica 
users can benefit from these libraries. 

Example function
The following function, Capm(), computes the expected return for a stock under the capital asset 
pricing model.

Parameters It has three parameters, rf, rm, and beta. The parameter qualifier Number says that it expects 
that the parameters are numbers.

Description The description says what the function returns and what its parameters mean.

Definition The definition is an expression that uses its parameters, rf, rm, and beta, and evaluates to the 
value to be returned.

Sample usage You use the Capm() function in a definition in the same way you would use Analytica’s built-in 
functions. For example, if the risk free rate is 5%, the expected market return is 8%, and Stock-
Beta is defined as the beta value for a given stock, we can find the expected return according to 
the capital asset pricing model as:

Stock_return: Capm(5%, 8%, StockBeta)

The function works equally well when StockBeta is an array of beta values — or if any parame-
ter is an array — the result is an array of expected returns.



 Analytica User Guide 329

Using a functionChapter Building Functions and Libraries20

Using a function
Position-based calling Analytica uses the standard position-based syntax for using, or calling, a function. You simply list 

the actual parameters after the function name, within parentheses, and separated by commas, in 
the same sequence in which they are defined. For example:

Capm(5%, 8%, StockBeta)

This evaluates function Capm(Rf, Rm, Beta) with Rf set to 5%, Rm set to 8%, and Beta set to 
Stockbeta.

Name-based
calling

Analytica also supports a more flexible name-based calling syntax, identifying the parameters by 
name:

Capm(beta: StockBeta, rf: 5%, rm: 8%)

In this case, we name each parameter, and put its actual value after a colon “:” after the parame-
ter name. The name-value pairs are separated by commas. You can give the parameters in any 
order. They must include all required parameters. This method is much easier to read when the 
function has many parameters. It is especially useful when many parameters are optional 
(page 333). 

You can mix positional and named parameters, provided the positional parameters come first:
Fu1(1, 2, D: 4, C:3)

You cannot give a positional parameter after a named parameter. For example, the following 
entry displays an error message:

Fu1(1, D: 4, 2, 3) Invalid

This name-based calling syntax is analogous to Analytica’s name-based subscripting for arrays to 
obtain selected elements of an array, in which you specify indexes by name. You don’t have to 
remember a particular sequence to write or understand an expression. See “x[i=v]: Subscript con-
struct” on page 171.

Tip Name-based calling syntax works for all user-defined functions. It also works for most of the built-
in functions, except for a few with only one or two parameters.

Creating a function
To define a function:

1. Make sure the edit tool is selected and you can see the node palette.
2. Drag the Function node icon from the node palette into the diagram area.
3. Title the node, and double-click it to open its Object window.
4. Enter the new function’s attributes (described in the next section).

Attributes of a function
Like other objects, a function is defined by a set of attributes. It shares many of the attributes of 
variables, including identifier, title, units, description, and definition, inputs, and outputs. It has a 
unique attribute, Parameters, which specifies the parameters available to the function. 

Identifier If you are creating a library of functions, make a descriptive identifier. This identifier appears in the 
function list for the library under the Definition menu, and is used to call the function. Analytica 
makes all characters except the first one lower case.

Title If you are creating a library of functions, limit the title to 22 characters. This title appears in the 
Object Finder dialog to the right of the function.

Units If desired, use the units field to document the units of the function’s result. The units are not used 
in any calculation.



Chapter Building Functions and Libraries

330 Analytica User Guide

20 Parameter qualifiers

Parameters The parameters to be passed to the function must be enclosed in parentheses, separated by 
commas. For example:

(x, y, z: Number)

The parameters can have type qualifiers, such as Number above (see the next section).

You can help make functions easier to understand and use by giving the parameters meaningful 
names, in a logical sequence. The parameters appear in the Object Finder dialog. When you 
select a function from the Definition menu, it copies its name and parameters into the current 
definition.

Description The description should describe what the function returns, and explain each of its parameters. If 
the definition is not immediately obvious, a second part of the description should explain how it 
works. The description text for a function in a library also appears in a scrolling box in the bottom 
half of the Object Finder dialog.

Definition The definition of a function is an expression or compound list of expressions. It should use all of 
its parameters. When you select the definition field of a function in edit mode, it shows the Inputs 
pull-down menu that lists the parameters as well as any other variables or functions that have 
been specified as inputs to the function. You can specify the inputs to a function in the same way 
as for a variable, by drawing arrows from each input node into the function node.

Recursive Set to 1 (true) if the function is recursive — that is, it calls itself. This attribute is not initially dis-
played. Use the Attributes dialog from the Object menu to display it. See “For and While loops 
and recursion” on page 343.

Parameter qualifiers
Parameter qualifiers are keywords you can use in the list of parameters to specify how, or 
whether, each parameter should be evaluated when the function is used (called), and whether to 
require a particular type of value, such as number or text value. Other qualifiers specify whether a 
parameter should be an array, and if so, which indexes it expects. You can also specify whether a 
parameter is optional, or can be repeated. By using qualifiers properly, you can help make func-
tions easier to use, more flexible, and more reliable.

For example, consider this parameters attribute:
(a: Number Array[i, j]; i, j: Index; c; d: Atom Text Optional =“NA”)

It defines five parameters. a should be an array of numbers, indexed by parameters i and j, and 
optionally other indexes. i and j must be index variables. c has no qualifiers, and so can be of any 
type or dimensions. (The semicolon “;” between c and d means that the qualifiers following d do 
not apply to c. d is an Atom Text, meaning that it is reduced to a single text value each time the 
function is called, and is optional. If omitted it defaults to “NA”. See below for details.

Evaluation mode qualifiers
Evaluation modes control how, or whether, Analytica evaluates each parameter when a function 
is used (called). The evaluation mode qualifiers are: 

Context Evaluates the parameter deterministically or probabilistically according to the current context. For 
example:

Function Fn1(x)
Parameters: (x: Context)
Mean(Fn1(x))

Mean() is a statistical function that always evaluates its parameter probabilistically. Hence, the 
evaluation context for x is probabilistic, and so Fn1 evaluates x probabilistically. 

Context is the default evaluation mode used when no evaluation mode qualifier is mentioned. 
So, strictly, Context is redundant, and you can omit it. But, it is sometimes useful to specify it 
explicitly to make clear that the function should be able to handle the parameter whether it is 
deterministic or probabilistic.



 Analytica User Guide 331

Parameter qualifiersChapter Building Functions and Libraries20

ContextSample Causes the qualified parameter to be evaluated in prob mode if any of the other parameters to the 
function are Run. If not, it evaluates in context mode — i.e., prob or mid following the context in 
which the function is called. 

This qualifier is used for the main parameter of most built-in statistical functions. For example, 
Mean has these parameters: 

Mean(x: ContextSample[i]; i: Index = Run)

Thus, Mean(x, Run) evaluates x in prob mode. So does Mean(x), because the index i defaults 
to Run. But, Mean(x, j) evaluates x in mid mode, because j is not Run. 

When the parameter declaration contains more than one dimension, prob mode is used if any of 
the indexes is Run. 

Mid Evaluates the parameter determinstically, or in mid mode, using the mid (usually median) of any 
explicit probability distribution.

Prob Evaluates the parameter probabilistically, i.e., in prob mode, if it can. If you declare the dimension 
of the parameter, include the dimension Run in the declaration if you want the variable to hold the 
full sample, or omit Run from the list if you want the variable to hold individual samples. For exam-
ple:

(A: Prob [ In1, Run ])

Sample Evaluates the parameter probabilistically, i.e., in prob mode, if it can. If you declare the dimension 
of the parameter, include the dimension Run in the declaration if you want the variable to hold the 
full sample, or omit Run from the list if you want the variable to hold individual samples. For exam-
ple: 

(A: Sample[ In1, Run ])

Index The parameter must be an index variable, or a dot-operator expression, such as a.i. You can then 
use the parameter as a local index within the function definition. This is useful if you want to use 
the index in a function that requires an index, for example Sum(x, i) within the function.

Variable The parameter must be a variable, or the identifier of some other object. You can then treat the 
parameter name as equivalent to the variable, or other object name, within the function definition. 
This is useful if you want to use the variable in one of the few expressions or built-in functions that 
require a variable as a parameter, for example, WhatIf, DyDx, and Elasticity. 

Array qualifiers
An array qualifier can specify that a parameter is an array with specified index(es) or no indexes, 
in the case of Scalar.

Atom Atom specifies that the parameter must be an atom — a single number, text, or other value not an 
array — when the function is evaluated; but the actual parameter can be an array when you call 
the function. If it is an array when you call the function, Analytica disassembles it into atoms, and 
evaluates the function separately on each atomic element of the array. After these evaluates, it 
reassembles the results into an array with the same indexes as the original parameter, and 
returns is returned as the overall result. 

You need to use Atom only when the function uses one of Analytica’s few constructs that require 
an atomic parameter or operand — i.e., that does not fully support array abstraction. See “Ensur-
ing array abstraction” on page 348. 

You might be tempted to use Atom to qualify parameters of every function, just in case it’s 
needed. We strongly advise you not to do that: Functions with Atom parameters can take much 
longer to execute with array parameters, because they have to disassemble the array-valued 
parameters, execute the function for each atom value, and reassemble them into an array. So, 
avoid using it except when really necessary.

Scalar The parameter expects a single number, not an array. Means the same as Number Atom.

Array [i1, i2...] Specifies that the parameter should be an array with the designated index(es) when it the function 
is evaluated. Similar to Atom above, you can still call the function with the parameter as an array 
with indexes in addition to those listed. If you do, it disassembles the array into subarrays, each 



Chapter Building Functions and Libraries

332 Analytica User Guide

20 Parameter qualifiers

with only the listed indexes. It calls the function for each subarray, so that a is indexed only by the 
specified index(es). For example, if Fu1 has the parameter declaration:

Function Fu1(a: Array[Time])

and if a, when evaluated, contains index(es) other than Time, it iterates over the other index(es) 
calling Fu1, for each one, and thus ensuring that each time it calls Fu1, parameter a has no index 
other than Time. 

An array declaration can specified zero or more indexes between the square brackets. With zero 
indexes, it is equivalent to the qualifier Atom, specifying that the parameter must be a single value 
or atom each time the function is called. 

The square brackets are sufficient and the qualifier word Array is optional, so you could write 
simply:

Function F(a: Number [I])

instead of 
Function F(a: Number Array [I])

Each index identifier listed inside the brackets can be either a global index variable or another 
parameter explicitly qualified as an Index. For example the Parameters attribute:

(A: [Time, j]; j: Index)

specifies that parameter a must be an array indexed by Time (a built-in index variable) and by the 
index variable passed to parameter j. 

In the absence of an array qualifier, Analytica accepts an array-valued parameter for the function, 
and passes it into the function Definition for evaluation with all its indexes. This kind of vertical 
array abstraction is usually more efficient for those functions that can handle array-valued param-
eters. 

All Forces the parameter to have, or be expanded to have, all the Indexes listed. For example:
x: All [i, j]

Here the All qualifier forces the value of x to be an array indexed by the specified index vari-
ables, i and j. If x is a single number, not an array, All converts it into an array with indexes, i and 
j, repeating the value of x in each element. Without All Analytica would simply pass the atomic 
value x into the function definition.

Type checking qualifiers
Type checking qualifiers make Analytica check whether the value of a parameter (each element 
of an array-valued parameter) has the expected type — such as, numerical, text, or reference. If 
any values do not have the expected type, Analytica gives an evaluation error at the time it tries to 
use (call) the function. The type checking qualifiers are:

Number A number, including +INF, -INF, or NaN.

Positive A number greater than zero, including INF. 

Nonnegative Zero, or a number greater than zero including INF.

Text A text value.

Reference A reference to a value, created with the \ operator.

Handle A handle to an Analytica object, obtained from the Handle or 
HandleFromIdentifier functions. It also accepts an array of handles.

OrNull Used in conjunction with one of the above type qualifiers, allows Null 
values in addition to the given type. For example:

x: Number OrNull

Some array functions ignore Null values, but require this qualifier for the 
null values to be accepted without flagging an error.



 Analytica User Guide 333

Parameter qualifiersChapter Building Functions and Libraries20

Coerce supports these conversions:

Other combinations, including Null to Number, give an error message that the coercion is not 
possible.

Ordering qualifiers: Ascending and Descending
The ordering qualifiers, Ascending or Descending, check that the parameter value is an array 
of numbers or text values in the specified order. For text values, Ascending means alphabetical 
order, and Descending means the reverse. 

Ordering is not strict; that is, it allows successive elements to be the same. For example, [1, 2, 
3, 3, 4] and ['Anne', 'Bob', 'Bob', 'Carmen'] are both considered ascending. 

If the value of the parameter does not have the specified ordering, or it is an atom (not array) 
value, it gives an evaluation error. 

If the parameter has more than one dimension (other than Run), you should specify the index of 
the dimension over which to check the order, for example:

A: Ascending [I]

Optional parameters
You can specify a parameter as optional using the qualifier Optional, for example:

Function F(a: Number; b: Optional Number)

In this case, you can call the function without mentioning b, as:
F(100)

Or you can specify b:
F(100, 200)

You can specify a default value for an optional parameter after an = sign, for example:
Function F(a: Number; b: Number Optional = 0)

It uses the default value if the actual parameter is omitted. Given an equal sign and default value, 
the Optional qualifier is itself optional (!):

Function F(a: Number; b: Number = 0)

Optional parameters can appear anywhere within the declaration — they are not limited to the 
final parameters. For example, if you declare the parameters for G as:

Function G(A: Optional; B; C: Optional; D; E: Optional)

Coerce If you accompany a Type checking qualifier by the Coerce qualifier, it 
tries to convert, or coerce, the value of the parameter to the specified 
type. For example:
a: Coerce Text [I]
tries to convert the value of a to an array of text values. It gives an error 
message if any of the coercions are unsuccessful.

From To Result

Null Text "Null"

Number Text Number as text, using the number format of the 
variable or function calling the function.

Text Number or Positive If possible, interprets it as a date or number, using 
the number format.

Null Reference \Null

Number Reference \X

Text Reference \Text



Chapter Building Functions and Libraries

334 Analytica User Guide

20 Parameter qualifiers

You can call G in any of these ways:
G(1, 2, 3, 4, 5)
G(1, 2, , 4)
G( , 2, , 4)
G( , 2, 3, 4, 5)

Generally, you must include the commas to indicate an omitted optional parameter, before any 
specified parameter, but not after the last specified parameter. 

Or you can use named-based calling syntax, which is usually clearer and simpler: 
G(B: 2, D: 4)

IsNotSpecified(v) If you omit a parameter that is not given a default value, you can test this inside the function defi-
nition using function IsNotSpecified(v). For example, the first line of the body of the function 
might read:

If IsNotSpecified(a) then a := 0;

But it is usually simpler to specify the default value in the parameter list as:
Function H(x;, a : = 0)

Repeated parameters (...)
Three dots, “...” qualifies a parameter as repeatable, meaning that the function accepts one or 
more actual parameters for the formal parameter. For example:

Function ValMax(x: ... Number) := Max(x)
ValMax(3, 6, -2, 4) → 6

ValMax() returns the maximum value of the actual parameters given for its repeated parameter, 
x. Unlike the built-in Max() function, it doesn’t need square brackets around its parameters. 

During evaluation of ValMax(), the value of the repeated parameter, x, is a list of the values of 
the actual parameters, with implicit (Null) index:

[3, 6, -2, 4] 

ValMax() can also take array parameters, for example:
Variable Z := [0.2, 0.5, 1, 2, 4]
ValMax(Sqrt(Z), Z^2, 0 )

By itself, the qualifier “...” means that the qualified parameter expects one or more parameters. 
If you combine “...” with Optional, it accepts zero or more parameters. 

Calling a function that has only its last parameter repeated is easy. You just add as many param-
eters as you want in the call. The extra ones are treated as repeated:

Function F2(a; b: ...)
F2(1, 2, 3, 4)

Within the function, F2, the value of a is 1, and the value of b is a list [2, 3, 4].

If the repeated parameter is not the last parameter, or if a function has more than one repeated 
parameter, for example:

Function Fxy(X: ... scalar; Y: ... Optional Scalar)

You have several options for syntax to call the function. Use name-based calling:
Fxy(x: 10, 20, 40, y: 2, 3, 4)

Or use position for the first repeated parameter group and name only the second parameter y:
Fxy(10, 20, 40, y: 2, 3, 4)

Or enclose each set of repeated parameters in square brackets:
Fxy([10, 20, 40], [2, 3, 4])



 Analytica User Guide 335

LibrariesChapter Building Functions and Libraries20

Deprecated synonyms for parameter qualifiers 
Most parameter qualifiers have several synonyms. For example, Atomic, AtomType, and Atom-
icType are synonyms for Atom. We recommend that you use only the words listed above. If you 
encounter other synonyms in older models, consult the Analytica wiki “Deprecated qualifiers” to 
see what they mean (http://lumina.com/wiki/index.php/Function_Parameter_Qualifiers).

Libraries
When you place functions and variables in a library, the library becomes available as an exten-
sion to the system libraries. Its functions and variables also become available. Up to eight user 
libraries can be used in a model.

There are two types of user libraries (see also “To change the class of an object” on page 55):

• A library is a module within the current model.
• A filed library is saved in a separate file, and can be shared among several models.

Creating a library
To create a library of functions and/or variables:

1. Create a module by dragging the module icon from the node palette onto the diagram, and 
give it a title.

2. Change the class (page 55) of the module to library or filed library.
3. Create functions and/or variables in the new library or create them elsewhere in the model and 

then move them into the library.

Functions and variables in the top level of the library can be accessed from the Definition menu 
or Object Finder. Use modules within the library to hold functions and variables (such as test 
cases) that are not accessible to models using the library.

Adding a filed library to a model
Add a filed library to a model using the Add Module dialog (page 322).

Using a library
When defining a variable, you can use a function or variable from a library in any of the following 
ways:

• Type it in.
• Select Paste Identifier from the Definition menu to open the Object Finder.
• Select Other from the expr menu to open the Object Finder.
• Paste from the library under the Definition menu.

http://lumina.com/wiki/index.php/Function_Parameter_Qualifiers#Deprecated_Synonyms_for_Parameter_Qualifiers


Chapter Building Functions and Libraries

336 Analytica User Guide

20 Libraries

Example Compare the way the Capm() function is displayed in the Object window (see “Libraries” on 
page 335) to the way it is displayed in the Object Finder.



Chapter 21 Procedural Programming

This chapter shows you how to use the procedural features of the Ana-
lytica modeling language, including:

• Begin-End, (), and “;” for grouping expressions (page 340)
• Declaring local variables and assigning to them (page 340)
• For and While loops and recursion (page 343)
• Local indexes (page 347)
• References and data structures (page 352)
• Handles to objects (page 356)
• Dialog functions (page 357)
• Miscellanous functions (page 360)



Chapter Procedural Programming

338 Analytica User Guide

21 An example of procedural programming

A procedural program is list of instructions to a computer. Each instruction tells the computer 
what to do, or it might change the sequence to execute the instructions. Most Analytica models 
are non-procedural — that is, they consist of an unsequenced set of definitions of variables. 
Each definition is a simple expression that contain functions, operators, constants, and other vari-
ables, but no procedural constructs controlling the sequence of execution. In this way, Analytica is 
like a standard spreadsheet application, in which each cell contains a simple formula with no pro-
cedural constructs. Analytica selects the sequence in which to evaluate variables based on the 
dependencies among them, somewhat in the same way spreadsheets determine the sequence to 
evaluate their cells. Controlling the evaluation sequence via conditional statements and loops is a 
large part of programming in a language like in Fortran, Visual Basic, or C++. Non-procedural lan-
guages like Analytica free you from having to worry about sequencing. Non-procedural models or 
programs are usually much easier to write and understand than procedural programs because 
you can understand each definition (or formula) without worrying about the sequence of execu-
tion. 

However, procedural languages enable you to write more powerful functions that are hard or 
impossible without their procedural constructs. For this reason, Analytica offers a set of program-
ming constructs, described in this chapter, providing a general procedural programming language 
for those who need it. 

You can use these constructs to control the flow of execution only within the definition of a vari-
able or function. Evaluating one variable or function cannot (usually) change the value of another 
variables or functions. Thus, these procedural constructs do not affect the simple nonprocedural 
relationship among variables and functions. The only exception is that a function called from a 
button can change the definition of a global variable. See “Creating buttons and scripts” on 
page 378.

An example of procedural programming
The following function, Factors(), computes the prime factors of an integer x. It illustrates many 
of the key constructs of procedural programming.

See below for an explanation of each of these constructs, and cross-reference to where they are.

Numbers identify
features below

Function Factors(x)
Definition:

1. VAR result := [1];

2. VAR n := 2;



 Analytica User Guide 339

Summary of programming constructsChapter Procedural Programming21

3. WHILE n <= x DO

4. BEGIN

2. VAR r := Floor(x/n);
IF r*n = x THEN 

5. (result := Concat(result, [n]);

6. x := r) 
ELSE n := n + 1

4, 7. END; /* End While loop */

7, 8. result /* End Definition */

This definition illustrates these features:

1. VAR x := e construct defines a local variable x, and sets an initial value e. See “Defining a 
local variable: Var v := e” on page 340 for more.

2. You can group several expressions (statements) into a definition by separating them by “;” 
(semicolons). Expressions can be on the same line or successive lines. See “Begin-End, (), 
and “;” for grouping expressions” on page 340.

3. While test Do body construct tests condition Test, and, if True, evaluates Body, and 
repeats until condition Test is False. See “While(Test) Do Body” on page 345.

4. Begin e1; e2; … End groups several expressions separated by semicolons “;” — in this case 
as the body of a While loop. See “Begin-End, (), and “;” for grouping expressions” on 
page 340.

5. (e1; e2; …) is another way to group expressions — in this case, as the action to be taken in 
the Then case. See “Begin-End, (), and “;” for grouping expressions” on page 340.

6. x := e lets you assign the value of an expression e to a local variable x or, as in the first case, 
to a parameter of a function. See “Assigning to a local variable: v := e” on page 341.

7. A comment is enclosed between /* and */ as an alternative to { and }. 
8. A group of expressions returns the value of the last expression — here the function Factors 

returns the value of result — whether the group is delimited by Begin and End, by 
parentheses marks ( and ), or, as here, by nothing.

Summary of programming constructs

Construct Meaning For more see

e1; e2; … ei Semicolons join a group of expressions to be evaluated in 
sequence.

page 340

BEGIN e1; e2; … 
ei END 

A group of expressions to be evaluated in sequence. page 340

(e1; e2; … ei) Another way to group expressions. page 340

m .. n Generates a list of successive integers from m to n. page 349

Var x := e Define local variable x and assign initial value e. page 340

Index i := e Define local index i and assign initial value e. page 347

x := e Assigns value from evaluating e to local variable x. 
Returns value e.

page 341

While Test Do 
Body

While Test is True, evaluate Body and repeat. Returns 
last value of Body.

page 345



Chapter Procedural Programming

340 Analytica User Guide

21 Begin-End, (), and “;” for grouping expressions

Begin-End, (), and “;” for grouping expressions
As illustrated above, you can group several expressions (statements) as the definition of a vari-
able or function simply by separating them by semicolons (;). To group several expressions as a 
condition or action of If a Then b Else c or While a Do b, or, indeed, anywhere a single expres-
sion is valid, you should enclose the expressions between Begin and End, or between parenthe-
ses characters ( and ). 

The overall value of the group of statements is the value from evaluating the last expression. For 
example:

(VAR x := 10; x := x/2; x - 2) → 3

Analytica also tolerates a semicolon (;) after the last expression in a group. It still returns the value 
of the last expression. For example:

(VAR x := 10; x := x/2; x/2;) → 2.5

The statements can be grouped on one line, or over several lines. In fact, Analytica does not care 
where new-lines, spaces, or tabs occur within an expression or sequence of expressions — as 
long as they are not within a number or identifier.

Declaring local variables and assigning to them

Defining a local variable: Var v := e
This construct creates a local variable v and initializes it with the value from evaluating expression 
e. You can then use v in subsequent expressions within this context — that is, in following 
expressions in this group, or nested within expressions in this group. You cannot refer to a local 
variable outside its context — for example, in the definition of another variable or function.

If v has the same identifier (name) as a global variable, any subsequent mention of v in this con-
text refers to the just-defined local variable, not the global.

Examples Instead of defining a variable as:
Sum(Array_a*Array_b, N)/(1+Sum(Array_a*Array_b, N))

Define it as:
VAR t := Sum(Array_a*Array*b, N); t/(1+t)

{ comments }
/* comments */

Curly brackets { } and /* */ are alternative ways to enclose 
comments to be ignored by the parser.

page 339

'text'
"text"

You can use single or double quotes to enclose a literal 
text value, but they must match.

page 129

For x := a DO e Assigns to loop variable x, successive atoms from array a 
and repeats evaluation expression e for each value of x. 
Returns an array of values of e with the same indexes as 
a.

page 352

For x[i, j…] := a DO 
e 

Same, but it assigns to x successive subarrays of a, each 
indexed by the indices, [i, j …].

page 352

\ e Creates a reference to the value of expression e. page 352

\ [i, j …] e Creates an array indexed by any indexes of e other than i, 
j … of references to subarrays of e each indexed by i, j ….

page 354

# r Returns the value referred to by reference r. page 352

Construct Meaning For more see



 Analytica User Guide 341

Declaring local variables and assigning to themChapter Procedural Programming21

To compute a correlation between Xdata and Ydata, instead of:
Sum((Xdata-Sum(Xdata, Data_index)/Nopts)*(Ydata-

Sum(Ydata, Data_index)/Nopts), Data_index)/
Sqrt(Sum((Xdata-Sum(Xdata, Data_index)/
Nopts)^2, Data_index) * Sum((Ydata -
Sum(Ydata, Data_index)/Nopts)^2, Data_index))

Define the correlation as:
VAR mx := Sum(Xdata, Data_index)/Nopts;
VAR my := Sum(Ydata, Data_index)/Nopts;
VAR dx := Xdata - mx;
VAR dy := Ydata - my;
Sum(dx*dy, Data_index)/Sqrt(Sum(dx^2, Data_index)*Sum(dy^2, 
Data_index))

The latter expression is faster to execute and easier to read.

The correlation expression in this example is an alternative to Analytica’s built-in Correlation() 
function (page 273) when data is dimensioned by an index other than the system index Run.

Assigning to a local variable: v := e
The := (assignment operator) sets the local variable v to the value of expression e. 

The assignment expression also returns the value of e, although it is usually the effect of the 
assignment that is of primary interest.

The equal sign = does not do assignment. It tests for equality between two values.

Within the definition of a function, you can also assign a new value to any parameter. This only 
changes the parameter and does not affect any global variables used as actual parameters in the 
call to the function. 

Tip Usually, you cannot assign to a global variable — that is, to a variable created as a diagram 
node. You can assign only to a local variable, declared in this definition using Var or Index, in the 
current context — that is, at the same or enclosing level in this definition. In a function definition, 
you can also assign to a parameter.This prevents side effects — i.e., where evaluating a global 
variable or function changes a global variable, other than one that mentions this variable or 
function in its definition. Analytica’s lack of side effects makes models much easier to write, 
understand, and debug than normal computer languages that allow side effects. You can tell how 
a variable is computed just by looking at its definition, without having to worry about parts of the 
model not mentioned in the definition. There are a few exceptions to this rule of no assignments to 
globals: You can assign to globals in button scripts or functions called from button scripts. See 
“Creating buttons and scripts” on page 378 for details. You can also assign to a global variable V 
from the definition of X when V is defined as ComputedBy(X).

ComputedBy(x)
This function indicates that the value of a variable is computed as a side-effect of another vari-
able, x. Suppose v is defined as ComputedBy(x), and the value of v needs to be computed, then 
Analytica will evaluate x. During the evaluation of x, x must set the value of v using an assign-
ment operator.

Even though v is a side-effect of x, its definition is still referentially transparent, which means that 
its definition completely describes its computed value. 

ComputedBy is useful when multiple items are computed simultaneously within an expression. It 
is particularly useful from within an Iterate() function when several variables need to be updated 
in each iteration.



Chapter Procedural Programming

342 Analytica User Guide

21 Declaring local variables and assigning to them

Variable rot := ... {a 2-D rotation matrix indexed by Dim and Dim2}
Variable X_rot := ComputedBy(Y_rot)
Variable Y_rot :=

BEGIN
Var v := Array(Dim,[X,Y]);
Var v_r := sum( rot*v, Dim );
X_rot := v_r[Dim2='x'];
v_r[Dim2='y'];
END

Assigning to a slice of a local variable
Slice assignment means assigning a value into an element or slice of an array contained by a 
local variable, for example: 

x[i = n] := e

x must be a local variable, i is an index (local or global), n evaluates to be a value or values of i, 
and e is any expression. If x was not array or was an array not indexed by i, the slice assignment 
adds i as a dimension of x. The result returned from the assignment operator is the value e, not 
the full value of x, which can be a source of confusion but is that way so you can chain assign-
ments, e.g.:

x[i=3] := x[i=5] := 7

You can write some algorithms much more easily and efficiently using slice assignment. For 
example: 

Function Fibonacci_series(f1, f2, n: Number Atom) :=
INDEX m := 1..n;
VAR result := 0;
result[m = 1] := f1;
result[m = 2] := f2;
FOR I := 3..n DO result[m = i] := result[m = i -1] + result[m = i - 2];
result

In the first slice assignment: 
result[m = 1] := f1;

result was not previously indexed by m. So the assignment adds the index m to result, making it 
into an array with value f1 for m=1 and its original value, 0, for all other values of m. 

More generally, in a slice assignment: 
x[i = n] := e

If x was already indexed by i, it sets x[i=n] to the value of e. All other slices of x over i retain 
their previous values. If x was indexed by other indexes, say j, the result is indexed by i and j. The 
assigned slice x[i=n] has the value e for all values of the other index(es) j. 

You can index by position as well as name in a slice assignment, for example: 
x[@i = 2] := e

This assigns the value of e as the second slice of x over index i. 

To set a cell in a multi-dimensional array, include multiple subscript coordinates, e.g.:
x[i=2,j=5,k=3] := 7

Slice assignment array abstracts when x, n, or e have extra dimensions, and the abstraction is 
coordinated when an index is shared by x, n, or e. Using abstraction, it is possible to assign to 
many cells in a single assignment operation. 



 Analytica User Guide 343

For and While loops and recursionChapter Procedural Programming21

For and While loops and recursion
Tip Analytica’s Intelligent Array features means that you rarely need explicit iteration using For loops 

to repeat operations over each dimensions of an array, often used in conventional computer 
language. If you find yourself using For loops a lot in Analytica, this might be a sign that you are 
not using the Intelligent Arrays effectively. If so, please (re)read the sections on Intelligent Arrays 
(page 140 and page 156).

For i := a Do expr
The For loop successively assigns the next atom from array a to local index i, and evaluates 
expression expr. expr might refer to i, for example to slice out a particular element of an array. a 
might be a list of values defined by m..n or Sequence(m, n, dx) or it might be a multidimen-
sional array. Normally, it evaluates the body expr once for each atom in a.

The result of the For is an array with all the indexes of a containing the values of each evaluation 
of expr. If any or all evaluations of expr have any additional index(es), they are also indexes of 
the result.

Usually, the Intelligent Array features take care of iterating over indexes of arrays without the 
need for explicit looping. For is sometimes useful in these specialized cases:

• To avoid selected evaluations of expr that might be invalid or out of range, and can be 
prevented by nesting an If-Then-Else inside a For.

• To apply an Analytica function that requires an atom or one- or two-dimensional array input to 
a higher-dimensioned array. 

• To reduce the memory needed for calculations with very large arrays by reducing the 
memory requirement for intermediate results.

See below for an example of each of these three cases.

Library Special

Avoiding out-of-range
errors

Consider the following expression:
If x<0 Then 0 Else Sqrt(x)

The If-Then-Else is included in this expression to avoid the warning “Square root of a negative 
number.” However, if x is an array of values, this expression cannot avoid the warning since 
Sqrt(x) is evaluated before If-Then-Else selects which elements of Sqrt(x) to include. To 
avoid the warning (assuming x is indexed by i), the expression can be rewritten as:

For j:=I do
If x[i=j]<0 then 0 else Sqrt(x[i=j])

Or as (see next section):
Using y:=x in i do

If y<0 Then 0 else Sqrt(y)

Situations like this can often occur during slicing operations. For example, to shift x one position 
to the right along i, the following expression would encounter an error:

if i<2 then x[i=1] else x[i=i-1]

The error occurs when x[i=i-1] is evaluated since the value corresponding to i-1=0 is out of 
range. The avoid the error, the expression can be rewritten as:

For j:=i do 
If j<2 then x[i=1] else x[i=j-1]

Out-of-range errors can also be avoided without using For by placing the conditional inside an 
argument. For example, the two examples above can be written without For as follows:

Sqrt(if x<0 then 0 else x)
x[i=(if i<2 then 1 else i-1)]



Chapter Procedural Programming

344 Analytica User Guide

21 For and While loops and recursion

Dimensionality
reduction

For can be used to apply a function that requires an atom, one- or two- dimensional input to a 
multi-dimensional result. This usage is rare in Analytica since array abstraction normally does this 
automatically; however, the need occasionally arises in some circumstances.

Suppose you have an array A indexed by I, and you wish to apply a function f(x) to each element 
of A along I. In a conventional programming language, this would require a loop over the ele-
ments of A; however, in almost all cases, Analytica’s array abstraction does this automatically — 
the expression is simply f(A), and the result remains indexed by i. However, there are a few 
cases where Analytica does not automatically array abstract, or it is possible to write a user-
defined function that does not automatically array abstract (e.g., by declaring a parameter to be of 
type Atom, page 330). For example, Analytica does not array abstract over functions such as 
Sequence, Split, Subset, or Unique, since these return unindexed lists of varying lengths that 
are unknown until the function evaluates. Suppose we have the following variables defined (note 
that A is an array of text values):

A: Index_1

Index_2:

We wish to split the text values in A and obtain a two dimensional array of letters indexed by 
Index_1 and Index_2. Since Split does not array abstract, we must do each row separately 
and re-index by Index_2 before the result rows are recombined into a single array. This is accom-
plished by the following loop:

FOR Row := Index_1 DO Array(Index_2, SplitText(A[Index_1=Row], ','))

This results in:
Index_1 , Index_2 

Reducing memory
requirements

In some cases, it is possible to reduce the amount of memory required for intermediate results 
during the evaluation of expressions involving large arrays. For example, consider the following 
expression:

MatrixA: A two dimensional array indexed by M and N.
MatrixB: A two dimensional array indexed by N and P.

Average(MatrixA * MatrixB, N)

During the calculation, Analytica needs memory to compute MatrixA * MatrixB, an array 
indexed by M, N, and P. If these indexes have sizes 100, 200, and 300 respectively, then 
MatrixA * MatrixB contains 6,000,000 numbers, requiring over 60 megabytes of memory at 10 
bytes per number.

To reduce the memory required, use the following expression instead:
For L := M Do Average(MatrixA[M=L]*MatrixB, N)

Each element MatrixA[M=L]*MatrixB has dimensions N and P, needing only 200x300x10= 
600 kilobytes of memory at a time.

Tip For the special case of a dot product (page 204), for an expression of the form Sum(a*b, i), it 
performs a similar transformation internally.

1 A, B, C
2 D, E, F
3 G, H, I

1 2 3

1 2 3
1 A B C
2 D E F
3 G H I



 Analytica User Guide 345

For and While loops and recursionChapter Procedural Programming21

While(Test) Do Body
While evaluates Body repeatedly as long as Test <> 0. For While ... to terminate, Body must 
produce a side-effect on a local variable that is used by Test, causing Test eventually to equal 0. 
If Test never becomes False, While continues to loop indefinitely. If you suspect that might be 
happening, type Control+. (Control+period) to interrupt execution.

Test must evaluate to an atomic (non-array) value; therefore, it is a good idea to force any local 
variable used in Test to be atomic valued. While is one of the few constructs in Analytica that 
does not generalize completely to handle arrays. But, there are ways to ensure that variables and 
functions using While support Intelligent Arrays and probabilistic evaluation. See “While and 
array abstraction” on page 350 for details.

While returns the final value found in the last iteration of Body or Null if no iterations occur. For 
example:

(Var x := 1; While x < 10 Do x := x+1) → 10
(Var x := 1; While x > 10 Do x := x+1) → Null

Using While often follows the following pattern:
Var x[]:= ...;
While (FunctionOf(x)) Do (

...
x := expr;
...

);
returnValue

Iterate(initial, expr, until, maxIter, warnFlag)
Suppose the definition of variable x contains a call to Iterate(). Iterate() initializes x to the value of 
initial. While stopping condition until is False (zero), it evaluates expression expr, and assigns 
the result to x. Given the optional parameter maxIter, it stops after maxIter iterations and, if 
warnFlag is True, issues a warning — unless it has already been stopped by until becoming 
True. If until is array-valued, it only stops when all elements of until are True.

Iterate() is designed for convergence algorithms where an expression must be recomputed an 
unknown number of iterations. Iterate (like Dynamic) must be the main expression in a definition 
— it cannot be nested within another expression. But it can, and usually does, contain nested 
expressions as some of its parameters. Iterate() (again like Dynamic() and unlike other func-
tions) can, and usually does, mention the variable x that it defines within the expressions for ini-
tial and until. These expressions can also refer to variables that depend on x.

If you use Iterate() in more than one node in your model, you should be careful that the two func-
tions don’t interact adversely. In general, two nodes containing Iterate() should never be mutual 
ancestors of each other. Doing so makes the nesting order ambiguous and can result in inconsis-
tent computations. Likewise, care must be taken to avoid similar ambiguities when using interact-
ing Iterate and Dynamic loops.

Tip You can usually write convergence algorithms more cleanly using While. One difference is that 
While requires its stopping condition Test to be an atom, where Iterate() allows an array-valued 
stopping condition until. Nevertheless, it is usually better to use While because you want it to do 
an appropriate number of iterations for each element of until, rather than continue until all its 
elements are True. But, with While you need to use one of the tricks described on and after “While 
and array abstraction” on page 350 to ensure the expression fully supports array abstraction.



Chapter Procedural Programming

346 Analytica User Guide

21 For and While loops and recursion

Recursive functions
A recursive function is a function that calls itself within its definition. This is often a convenient 
way to define a function, and sometimes the only way. As an example, consider this definition of 
factorial:

Function Factorial2(n: Positive Atom)
Definition: IF n > 1 THEN N*Factorial2(n-1) ELSE 1

If its parameter, n, is greater than 1, Factorial2 calls itself if with the actual parameter value n-1. 
Otherwise, it simply returns 1. Like any normal recursive function, it has a termination condition 
under which the recursion stops — when n <= 1.

Tip The built-in function Factorial does the same, and is fully abstractable, to boot. We define 
Factorial2 here as a simple example to demonstrate key ideas.

Normally, if you try to use a function in its own definition, it complains about a cyclic dependency 
loop. To enable recursion, you must display and set the Recursive attribute:

1. Select the Attributes dialog from the Object menu.

2. Select Functions from the Class menu in this dialog.
3. Scroll down the list of attributes and click Recursive twice, so that it shows √, meaning that 

the recursive attribute is displayed for each function in its Object window and the Attribute 
panel.

4. Check OK to close Attributes dialog. 

For each function for which you wish to enable recursion:

5. Open the Object Window for the function by double-clicking its node (or select the node and 
click the Object button).



 Analytica User Guide 347

Local indexesChapter Procedural Programming21

6. Type 1 into its Recursive field.

As another example, consider this recursive function to compute a list of the prime factors of an 
integer, x, equal to or greater than y:

Function Prime_factors(x, y: Positive Atom) 
Definition: 

Var n := Floor(x/y);
IF n<y THEN [x]
ELSE IF x = n*y THEN Concat([y], Factors(n, y))
ELSE Prime_factors(x, y+1)

Factors(60, 2) → [2, 2, 3, 5]

In essence, Prime_factors says to compute n as x divided by y, rounded down. If y is greater 
than n, then x is the last factor, so return x as a list. If x is an exact factor of y, then concatenate 
x with any factors of n, equal or greater than n. Otherwise, try y+1 as a factor.

Tip To prevent accidental infinite recursion, it stops and gives a warning if the stack reaches a depth 
of 256 function calls.

Local indexes
You can declare a local index in the definition of a variable or function. It is possible that the value 
of the variable or value returned by the function is an array using this index. This is handy 
because it lets you define a variable or function that creates an array without relying on an exter-
nally defined index.

The construct, Index i := indexExpr defines an index local to the definition in which it is used. 
The expression indexExpr can be a sequence, literal list, or other expression that generates an 
unindexed array, as used to define a global index. For example:

Variable PowersOf2 := Index j := 0..5; 2^j

The new variable PowersOf2 is an array of powers of two, indexed by the local index j, with val-
ues from 0 to 5:

PowersOf2 → 



Chapter Procedural Programming

348 Analytica User Guide

21 Ensuring array abstraction

Dot operator: a . i The dot operator in a . i lets you access a local index i via an array a that it dimensions. If a local 
index identifies a dimension of an array that becomes the value of a global variable, it can persist 
long after evaluation of the expression — unlike other local variables which disappear after the 
expression is evaluated.

Even though local index j has no global identifier, you can access it via its parent variable with the 
dot operator (.), for example:

PowersOf2.j → [0,1,2,3,4,5]

When using the subscript operation on a variable with a local index, you need to include the dot 
(.) operator, but do not need to repeat the name of the variable:

PowersOf2[.j=5] → 32

Any other variables depending on PowersOf2 can inherit j as a local index — for example:
Variable P2 := PowersOf2/2

P2[.j=5] → 16

Example using
a local index

In this example, MatSqr is a user-defined function that returns the square of a matrix — i.e., A x 
A', where A' is the transpose of A. The result is a square matrix. Rather than require a third index 
as a parameter, MatSqr creates the local index, i2, as a copy of index i. 

Function MatSqr(a: Array; i, j: Index)
Definition := Index i2:=CopyIndex(i); Sum(a*a[i=i2], j)

The local variable, i2, in MatSqr is not within lexical scope in the definition of Z, so we must use 
the dot operator (.) to access this dimension. We underline the dot operator for clarity:

Variable Z := Var XX := MatSqr(X, Rows, Cols);
Sum(XX * Y[I=XX.i2], XX.i2)

Ensuring array abstraction
The vast majority of the elements of the Analytica language (operators, functions, and control 
constructs) fully support Intelligent Arrays — that is, they can handle operands or parameters that 
are arrays with any number of indexes, and generate a result with the appropriate dimensions. 
Thus, most models automatically obtain the benefits of array abstraction with no special care. 

There are just a few elements that do not inherently enable Intelligent Arrays — i.e., support array 
abstraction. They fall into these main types: 

• Functions whose parameters must be atoms (not arrays), including Sequence, m..n, and 
SplitText. See below.

• Functions whose parameter must be a vector (an array with just one index), such as 
CopyIndex, SortIndex, Subset, Unique, and Concat when called with two parameters. 

• The While loop (page 350), which requires its termination condition to be an atom. 



 Analytica User Guide 349

Ensuring array abstractionChapter Procedural Programming21

• If b Then c Else d (page 350), when condition b is an array, and c or d can give an 
evaluation error.

• Functions with an optional index parameter that is omitted (page 351), such as Sum(x), 
Product, Max, Min, Average, Argmax, SubIndex, ChanceDist, CumDist, and ProbDist. 

When using these constructs, you must take special care to ensure that your model is fully array-
abstractable. Here we explain how to do this for each of these five types.

Functions expecting
atomic parameters

Consider this example:
Variable N := 1..3
Variable B := 1..N
B → Evaluation error:
One or both parameters to Sequence(m, n) or m .. n are not scalars.

The expression 1..N, or equivalently, Sequence(1, N), cannot work if N is an array, because it 
would have to create a nonrectangular array containing slices with 1, 2, and 3 elements. Analytica 
does not allow nonrectangular arrays, and so requires the parameters of Sequence to be atoms 
(single elements). 

Most functions and expressions that, like Sequence, are used to generate the definition of an 
index require atomic (or in some cases, vector) parameters, and so are not fully array 
abstractable. These include Sequence, Subset, SplitText, SortIndex (if the second parameter 
is omitted), Concat, CopyIndex, and Unique. 

Why would you want array abstraction using such a function? Consider this approach to writing a 
function to compute a factorial:

Function Factorial2
Parameters: (n)
Definition: Product(1..n)

It works if n is an atom, but not if it is an array, because 1..n requires atom operands. In this ver-
sion, however, using a For loop works fine:

Function Factorial3
Parameters: (n)
Definition: FOR m := n DO Product(1..m)

The For loop repeats with the loop variable m set to each atom of n, and evaluates the body 
Product(1..m) for each value. Because m is guaranteed to be an atom, this works fine. The 
For loop reassembles the result of each evaluation of Product(1..m) to create an array with all 
the same dimensions as n.

Atom parameters and
array abstraction

Another way to ensure array abstraction in a function is to use the Atom qualifier for its parame-
ter(s). When you qualify a parameter n as an Atom, you are saying that it must be a single value 
— not an array — when the function is evaluated, but not when the function is used:

Function Factorial3
Parameters: (n: Atom)
Definition: Product(1..n)



Chapter Procedural Programming

350 Analytica User Guide

21 Ensuring array abstraction

Index K := 1 .. 6
Factorial3(K) →

Notice that Atom does not require the actual parameter K to be an atom when the function is 
called. If K is an array, as in this case, it repeatedly evaluates the function Factorial3(n) with n set 
to each atom of array K. It then reassembles the results back into an array with the same indexes 
as parameter K, like the For loop above. This scheme works fine even if you qualify several 
parameters of the function as Atom. 

In some cases, a function might require a parameter to be an vector (have only one index), or 
have multiple dimensions with specified indexes. You can use “Array qualifiers” on page 331 to 
specify this. With this approach, you can ensure your function array abstracts when new dimen-
sions are added to your model, or if parameters are probabilistic.

While and array
abstraction

The While b Do e construct requires its termination condition b to evaluate to be an atom — that 
is, a single Boolean value, True (1) or False (0). Otherwise, it would be ambiguous about whether 
to continue. Again, Atom is useful to ensure that a function using a While loop array abstracts, as 
it was for the Sequence function. Here’s a way to write a Factorial function using a While loop:

Function Factorial4
Parameters: (n: Atom)
Definition: 

VAR fact := 1; VAR a := 1;
WHILE a < n DO (a := a + 1; fact := fact * a) 

In this example, the Atom qualifier assures that n and hence the While termination condition a < 
n is an atom during each evaluation of Factorial4. 

If a Then b Else c and
array abstraction

Consider this example:
Variable X := -2..2
Sqrt(X) → [NAN, NAN, 0, 1, 1.414]

The square root of negative numbers -2 and -1 returns NAN (not a number) after issuing a warn-
ing. Now consider the definition of Y:

Variable Y := (IF X>0 THEN Sqrt(X) ELSE 0)
Y → [0, 0, 0, 1 1.414]

For the construct IF a THEN b ELSE c, a is an array of truth values, as in this case, so it evalu-
ates both b and c. It returns the corresponding elements of b or c, according to the value of con-
dition a for each index value. Thus, it still ends up evaluating Sqrt(X) even for negative values 
of X. In this case, it returns 0 for those values, rather than NAN, and so it generates no error mes-
sage.

A similar problem remains with text processing functions that require a parameter to be a text 
value. Consider this array:

Variable Z := [1000, '10,000', '100,000']

This kind of array containing true numbers, e.g., 1000, and numbers with commas turned into text 
values, often arises when copying arrays of numbers from spreadsheets. The following function 
would seem helpful to remove the commas and convert the text values into numbers:

Function RemoveCommas(t)
Parameters: (t)
Definition: Evaluate(TextReplace(t, ',', ''))



 Analytica User Guide 351

Ensuring array abstractionChapter Procedural Programming21

RemoveCommas(Z) → 
Evaluation Error: The parameter of Pluginfunction TextReplace must 
be a text while evaluating function RemoveCommas.

TextReplace doesn’t like the first value of z, which is a number, where it’s expecting a text value. 
What if we test if t is text and only apply TextReplace when it is? 

Function RemoveCommas(t)
Parameters: (t)
Definition: IF IsText(t) 

THEN Evaluate(TextReplace(t, ',', '')) ELSE t

RemoveCommas(Z) → (same error message)

It still doesn’t work because the IF construct still applies ReplaceText to all elements of t. Now, 
let’s add the parameter qualifier Atom to t:

Function RemoveCommas(t)
Parameters: (t: Atom)
Definition: IF IsText(t) 

THEN Evaluate(TextReplace(t, ',', '')) ELSE t
RemoveCommas(Z) → 

This works fine because the Atom qualifier means that RemoveCommas breaks its parameter t 
down into atomic elements before evaluating the function. During each evaluation of Remove-
Commas, t, and hence IsText(t), is atomic, either True or False. When False, the If construct 
evaluates the Else part but not the Then part, and so calls TextReplace when t is truly a text 
value. After calling TextReplace separately for each element, it reassembles the results into the 
array shown above with the same index as Z.

Omitted index
parameters and array

abstraction

Several functions have index parameters that are optional, including Sum, Product, Max, Min, 
Average, Argmax, SubIndex, ChanceDist, CumDist, and ProbDist. For example, with Sum(x, 
i), you can omit index i, and call it as Sum(x). But, if x has more than one index, it is hard to pre-
dict which index it sums over. Even if x has only one dimension now, you might add other dimen-
sions later, for example for parametric analysis. This ambiguity makes the use of functions with 
omitted index parameters non-array abstractable.

There is a simple way to avoid this problem and maintain reliable array abstraction: When using 
functions with optional index parameters, never omit the index! Almost always, you know 
what you want to sum over, so mention it explicitly. If you add dimensions later, you’ll be glad you 
did.

Tip When the optional index parameter is omitted, and the parameter has more than one dimension, 
these functions choose the outer index, by default. Usually, the outer index is the index created 
most recently when the model was built. But, this is often not obvious. We designed Intelligent 
Arrays specifically to shield you from having to worry about this detail of the internal representation.



Chapter Procedural Programming

352 Analytica User Guide

21 References and data structures

Selecting indexes
for iterating with

For and Var

To provide detailed control over array abstraction, the For loop can specify exactly which indexes 
to use in the iterator x. The old edition of For still works. It requires that the expression a assigned 
to iterator x generate an index — that is, it must be a defined index variable, Sequence(m, n), or 
m..n. The new forms of For are more flexible. They work for any array (or even atomic) value a. 
The loop iterates by assigning to x successive subarrays of a, dimensioned by the indexes listed 
in square brackets. If the square brackets are empty, as in the second line of the table, the suc-
cessive values of iterator x are atoms. In the other cases, the indexes mentioned specify the 
dimensions of x to be used in each evaluation of e. In all cases, the final result of executing the 
For loop is a value with the same dimensions as a.

The same approach also works using Var to define local variables. By putting square brackets 
listing indexes after the new variable, you can specify the exact dimensions of the variable. These 
indexes should be a subset (none, one, some, or all) of the indexes of the assigned value a. Any 
subsequent expressions in the context are automatically repeated as each subarray is assigned 
to the local variable. In this way, a local variable can act as an implicit iterator, like the For loop.

Var Temp[i1, i2, ...] := X;

References and data structures
A reference is an indirect link to a value, an atom or an array. A variable can contain a single ref-
erence to a value, or it can contain an array of references. Variables and arrays can themselves 
contain references, nested to any depth. This lets you create complex data structures, such as 
linked lists, trees, and non-rectangular structures. Use of references is provided by two operators:

• \e is the reference operation. It creates a reference to the value of expression e.
• #e is the dereference operation. It obtains the value referred to by e. If e is not a reference, 

it issues a warning and returns Null.

For x := a DO e Assigns to loop variable x successive atoms from index expression 
a and repeats evaluation expression e for each value. Returns an 
array of values of e indexed by a.

For x := a DO e 
For x[] := a DO e 

Assigns to loop variable x, successive atomic values from array a. It 
repeats evaluation of expression e for each value. It returns an 
array of values of e with the same indexes as a.

For x[i] := a DO e Assigns to loop variable x successive subarrays from array a, each 
indexed only by i. It repeats evaluation of expression e for each 
index value of a other than i. As before, the result has the same 
indexes as a.

For x[i, j …] := a DO e Assigns to loop variable x successive subarrays from array a, each 
indexed only by i, j …. It repeats evaluation of expression e for 
each index value of a other than i, j …. . As before, the result has 
the same indexes as a.

An example:
Variable M
Definition: 100

Variable Ref_to_M
Definition: \ M

The result of Ref_to_M looks like this:



 Analytica User Guide 353

References and data structuresChapter Procedural Programming21

You can double-click the cell containing 
«ref» to view the value referenced, in this 
case:

You can also create an array of refer-
ences. Suppose:

Index K
Definition: 1..5

Variable Ksquare
Definition: K^2

Ksquare →

Variable Ref_to_Ksquare
Definition: \ Ksquare

Ref_to_Ksquare →

If you click the «ref» cell, it opens:



Chapter Procedural Programming

354 Analytica User Guide

21 References and data structures

 

Managing indexes of
referenced subarrays: \

[i, j,...] e

More generally, you can list in the square brackets any indexes of e that you want to be indexes of 
each subarray referenced by the result. The other indexes of e (if any) are used as indexes for the 
referencing array. Thus, in the example above, since there were no indexes in square brackets, 
the index K was used as an index of the reference array. If instead we write:

\ [K] Ksquare →

It creates a similar result to \ Ksquare, since K is the only index of Ksquare. 

You can also create an array of refer-
ences from an array, for example:

Variable Ref_Ksquare_array
Definition: \ [] Ksquare
Ksquare →

The empty square brackets [ ] specify that 
the values referred to have no indexes, 
i.e., they are atoms. You can now click 
any of these cells to see what it refers to. 

Clicking the third cell, for example, gives:



 Analytica User Guide 355

References and data structuresChapter Procedural Programming21

To summarize:

In general, it is better to include the square brackets after the reference operator, and avoid the 
unadorned reference operator, as in the first row of the table. Being explicit about which indexes 
to include generally leads to expressions that array abstract as intended.

IsReference(x) Is a test to see whether its parameter x is a reference. It returns True (1) if x is a reference, False 
(0) otherwise.

Using references for
linked lists: Example

functions

Linked lists are a common way for programmers to represent an ordered set of items. They are 
more efficient than arrays when you want often to add or remove items, thereby changing the 
length of the list (which is more time consuming for arrays). In Analytica, we can represent a 
linked list as an element with two elements, the item — that is, a reference to the value of the item 
— and a link — that is, a reference, to the next item:

Index Linked_list
Definition: ['Item', 'Link']

Function LL_Put(x, LL)
Description: Puts item x onto linked list LL.
Definition: \Array(Linked_List, [\x, LL])

Function LL_Get_Item(LL)
Description: Gets the value of the first 

item from linked list LL.
Definition: # Subscript(#LL, Linked_list, 'Item')

Function LL_length(LL)
Parameters: (LL: Atom)
Description: Returns the number of items in

linked list LL
Definition: VAR len := 0;

WHILE (IsReference(LL)) BEGIN
LL := subscript(#LL, Linked_List, "Next");
len := len + 1

END;
len

Function LL_from_array(a, i)
Parameters: (a; i: Index)
Description: Creates a linked list from the

elements of array a over index i
Definition: 

VAR LL := NULL;
Index iRev := Size(i) .. 1;

\ e Creates a reference to the value of expression e, whether it is an atom or an 
array.

\ [] e Creates an array indexed by all indexes of e containing references to all 
atoms from e.

\ [i] e Creates an array indexed by any indexes of e other than i of references to 
subarrays of e each indexed by i.

\ [i, j …] e Creates an array indexed by any indexes of e other than i, j … of references 
to subarrays of e each indexed by i, j ….



Chapter Procedural Programming

356 Analytica User Guide

21 Handles to objects

FOR j := iRev 
DO LL := LL_Push(LL, Slice(a, i, j));

LL

See Linked List Library.ana in the Libraries folder for these and other functions for work-
ing with linked lists.

Handles to objects
A handle is a pointer to a variable, function, module, or other object. Using a handle lets you write 
variables or functions that work with the object itself, for example to access its attributes — 
instead of just its value which is what you usually get when you mention a variable by identifier in 
an expression. 

Viewing handles In a table result, a handle in an index or content cell usually shows the title of the object. If you 
select Show by identifier from the Object menu (or press Control+y) it toggles to show identifi-
ers instead of titles (as it does in the node diagrams). If you double-click a cell containing a handle 
(title or identifier) it opens its Object window (as it does when you double-click a node in a dia-
gram).

Attributes that contain
handles

The attributes, inputs, outputs, and contains (the list of objects in a module) each consist of a 
list of handles to objects. The attribute isIn is a single handle to the module that contains this 
object — the inverse of contains.

List of variables: [v1, v2, ... vn]
If you define a variable as a list of variables, for example,

Variable A := [X, Y, Z]

the variable will have a self index that is a list of handles to those variables. In a table result view 
of A (or other variable that uses this index), the index A will usually show the titles of the variables. 
See “List of variables” on page 163 for more. In an expression, the handles in the self index can 
be accessed using IndexValue(A). The main value of A (either mid value or a probabilistic view of 
A) contains the results of evaluating X, Y and Z.

Handle(o)
Returns a handle to an Analytica object, given its identifier o. 

Handle(Va1) → Va1

HandleFromIdentifier(text)
Returns a handle to global object (i.e., not a local variable or parameter), given its identifier as 
text. 

Variable B := 99
HandleFromIdentifier("B") → Va1

The dependency maintenance is unaware of the dependency on the object. Hence, any changes 
to the variable B above will not cause the result to recompute.

Indexes of Handles
MetaOnly attribute When an index object is defined as a list of identifiers, the MetaOnly attribute controls whether it 

is treated as a general index or a meta-index. Meta-indexes are useful when reasoning about 
the structure or contents of the model itself. A general index evaluates the variables appearing in 
its definition to obtain its mid or sample value, and the values that are recognized by Subscript 
(i.e., a[i=x]), while a meta-index (having its metaOnly attribute set to 1) does not evaluate the 
objects in the list. The following comparisons demonstrates the similarities and differences.



 Analytica User Guide 357

Dialog functionsChapter Procedural Programming21

Constant E:= exp(1)
Variable X := -1

MetaIndex..Do The construct, MetaIndex i := indexExpr, declares a local meta-index (see “Local indexes” 
on page 347). This should generally be used in lieu of the Index i := indexExpr construct 
when indexExpr evaluates to a list of handles.

MetaIndex I := contains of Revenue_Module;
Description of (I)

IndexesOf(X) Returns the indexes of an array value as a list of handles. The first element of the list is null, 
rather than a handle, when X has an implicit dimension (also known as a null-index).

Dialog functions
Dialog functions display dialog boxes to give special information, warnings, or error messages, or 
to request information from the user. Dialogs are modal — meaning that Analytica pauses evalu-
ation while showing the dialog until the user closes the dialog. (ShowProgressBar is an excep-
tion in that it continues evaluation while it displays the progress bar.) If the user clicks Cancel 
button, it stops further evaluation — as if user pressed Control+. (Control+period). 

Dialog functions display their dialog when evaluated. If the definition of a variable A calls a dialog 
function, it will display the dialog when it evaluates A. If it evaluates A in mid and prob mode, it dis-
plays the dialog each time. It does not display the dialog again until it evaluates A again — for 
example, because one of its inputs changes.

MsgBox(message, buttons, title)
Displays a dialog with the text message, a set of buttons and an icon (according to numerical 
codes below), with title in the dialog header bar. Analytica pauses until the user clicks a button. If 
the user clicks the Cancel button, it stops evaluation. Otherwise it returns a number, depending 
on which button the user presses (see below).

The optional buttons parameter is a number that controls which buttons to display, as follows:

0 = OK only 

1 = OK and Cancel (the default if buttons is omitted)

2 = Abort, Retry, and Ignore

3 = Yes, No, and Cancel

4 = Yes and No

5 = Retry and Cancel

General index Meta-Index

Index I0 := [E,X,Pi,True]
MetaOnly of I0 := 0 {or not set}

Index I1 := [E,X,Pi,True]
MetaOnly of I1 := 1

Variable A0 := Table(I0)(1,2,3,4) Variable A1 := Table(I1)(1,2,3,4)

IndexValue(I0) → [E,X,Pi,True] IndexValue(I1) → [E,X,Pi,True]

Mid(I0) → 2.718,-1,3.142,1,0] Mid(I1) →[E,X,Pi,True,False]

A0[I0=Handle(E)] → 1
A0[I0=Handle(True)] → 4

A1[I1=Handle(E)] → 1
A1[I1=Handle(True)] → 4

A0[I0=E] → 1
A0[I0=-1] → 2
A0[I0=True] → 4

A1[I1=E] → Error:-2.718 not in I1
A1[I1=-1] → Error:-1 not in I1
A1[I1=True] → Error:1 not in I1



Chapter Procedural Programming

358 Analytica User Guide

21 Dialog functions

To display an icon in the dialog, add one of these numbers to the buttons parameter:

16 = Critical (white X on red circle)

32 = Question

48 = Exclamation

64 = Information

MsgBox returns a number depending on which button the user presses:

1 = OK

2 = Cancel (stops any further evaluation)

3 = Abort

4 = Retry

5 = Ignore

6 = Yes

7 = No

Here are some examples.
Msgbox('OK, I''m done now.', 0+64,'Information') →

Msgbox('Uh uh! Looks like trouble!', 5+16, 'Disaster') →

Msgbox('Do you really mean that?', 3+32, 'Critical question') →

Msgbox('This could be a real problem!', 2+48, 'Critical question') →



 Analytica User Guide 359

Dialog functionsChapter Procedural Programming21

Error(message)
Displays an evaluation error in a dialog mentioning the variable whose definition calls this func-
tion, showing the message text:

Variable Xyz := Error('There seems to be some kind of problem')
Xyz →

If you click Yes, it opens the definition of the variable or function whose definition (or Check attri-
bute) calls Error() in edit mode (if the model is editable). If you click No or Cancel, it stops evalu-
ation. 

Error in check If you call Error() in a check attribute (page 111), it shows the error message when the check fails 
instead of the default check error message, letting you tailor the message.

AskMsgText(question, title, maxText, default)
Opens a dialog displaying question text with a field for the user to provide an answer, which it 
returns as text. 

If you specify title text it displays that in the title bar of the dialog. If you specify maxText as a 
number, it will accept only that many characters. If you specify default text, it displays that as the 
default answer.

Example AskMsgText("Enter your model access key", title: "License Entry", 
maxText: 15)

AskMsgNumber(question, title, default)
Displays a dialog showing question with title, if given. It shows a field for user to enter a number, 
containing default number if given. When the user enters a number into the dialog, and clicks 
OK, it returns the number. 

ShowProgressBar(title, text, p)
Displays a dialog with the title in title bar, a text message and a progress bar showing fraction p 
of progress along the bar. The dialog appears the first time you call it with p<1. As long as 
0<=p<1, it shows a Cancel button, and continues evaluation. If you click Cancel, it stops further 
computation, as if the user had pressed Control+. (Control+period). If p=1, it shows the OK button 
and stops further computation. If you click OK, it closes the dialog. The dialog also closes if called 
with p>1 or when the computation completes. 



Chapter Procedural Programming

360 Analytica User Guide

21 Miscellaneous functions

Declaration ShowProgressBar(title, text: Text atomic; p: number atomic)

Example In this example:
VAR xOrig := X;
VAR result := 

FOR n[] := @Scenario DO (
ShowProgressBar("Progress", "Computing Across All Scenarios", (n-

1)/Size(Scenario));
WhatIf(Y, X, xOrig[@Scenario=n])

);
ShowProgressBar("Progress", "Done", 1);
result

Miscellaneous functions

CurrentDataDirectory(filename)
Sets the current data directory to filename. The current data directory is the directory used by 
ReadTextFile() and WriteTextFile(), if their filename parameter contains no other path. When 
starting a model, it is the current model directory that contains the model. Specifying a path as a 
parameter to the function changes the current data directory to that path. If filename is omitted, it 
returns the path to the current data directory. 

CurrentModelDirectory(filename)
Sets the current model directory to filename. The current model directory is the directory into 
which the model (and submodules) are saved, by default. When starting a model, it is the direc-
tory containing the model. You can change it by selecting a different directly using the directory 
browser from Save as, or by using this function. If filename is omitted, it returns the path to the 
current model directory.

Evaluate(e)
If e is a text value, Evaluate(e) tries to parse e as an Analytica expression, evaluates it, and 
returns its value. For example:

Evaluate('10M /10') → 1M

One use for Evaluate(e) is to convert a number formatted as text into a number it can compute 
with, for example:

Evaluate('1.23456e+10') → 12.3456G

If e is an expression that generates a text value, it evaluates the expression, and then parses and 
evaluates the resulting text value. For example:

(VAR x := 10; Evaluate(x & "+" & x)) → 20

If e is a number or expression that is not a text value, it just returns its value:
Evaluate(10M /10) → 1M

If e is a text value that is not a valid expression — for example, if it has a syntax error — it returns 
Null. 

Like other functions, it evaluates the parameter as mid (deterministic) or prob (probabilistic), 
according to the context in which it is called. 

Evaluate(e) parses and evaluates text e in a global context. Thus, e cannot refer to local vari-
ables, local indexes, or function parameters defined in the definition that uses Evaluate(e). For 
example, this would give an evaluation error:

Variable A := (VAR r := 99; Evaluate('r^2') )



 Analytica User Guide 361

Miscellaneous functionsChapter Procedural Programming21

If e evaluates to a handle before it is passed to the function, then that object is evaluated and its 
(mid or sample) value is returned.

Evaluate and
dependencies

Analytica’s dependency mechanism does not work with variables or functions whose identifiers 
appear inside the text parameter of Evaluate. For example, consider:

Variable B := Evaluate("F(A)") 
Variable C := F(A)

Initially B and C compute the same value. If you then change the definition of function F or vari-
able A, Analytica’s dependency maintenance ensures that C is recomputed when needed using 
the new definition of F and A. But, B does not know it depends on F and A, so is not recomputed, 
and can become inconsistent with the new values for F and A. In rare cases, you might intention-
ally want to break the dependency, in which case Evaluate is appropriate; otherwise, use it only 
with care.

GetRegistryValue(root, subfolder, name)
Reads a value from the Windows system registry. This can be quite useful if you install your Ana-
lytica model as part of a larger application, and if your model needs to find certain data files on the 
user’s computer (for example, for use with ShowPdfFile, ReadTextFile, or RunConsolePro-
cess). The locations of those files could be stored in the registry by your installer, so that your 
model knows where to look. 

Example GetRegistryValue("HKEY_CURRENT_USER", "Software/MyCompany/MyProduct", 
"FileLocation")

IgnoreWarnings(expr)
Evaluates its parameter expr, and returns its value, while suppressing most warnings (page 404) 
that might otherwise be displayed during the evaluation. It is useful when you want to evaluate an 
expression that generates warnings, such as divide by zero, that you know are not important in 
that context, but you do not want to uncheck the option Show Result Warnings in the Prefer-
ences dialog (page 56), because you do want to see warnings that might appear in other parts of 
the model. 

IsResultComputed(x)
Returns 1 if the value of x is computed when the function is evaluated. To test whether the sample 
value of x has been computed, use Sample(IsResultComputed(x)), or to test the mid value 
use Mid(IsResultComputed(x)). 

ShowPdfFile(filename) 
Opens filename using Adobe Reader or Acrobat if one is installed on this computer and the file is 
a PDF document. ShowPdfFile is most useful when called from a button script, for example, as a 
way to provide the user of your model with a way to open a user guide for your model.



Chapter Procedural Programming

362 Analytica User Guide

21 Miscellaneous functions



Chapter 22 Analytica Enterprise

Analytica Enterprise extends the Professional edition with these fea-
tures:

• Database access: Functions to read and write data from and to 
ODBC databases and external files

• Reading and writing text files
• Reading and writing data in Excel worksheets.
• Reading data from the internet
• Save models as browse-only: Models that let end users of models 

modify only variables designated as inputs
• Hide definitions: Prevent end users from viewing data or algorithms 

that are confidential or proprietary
• Huge arrays: Expand arrays with indexes of over 30,000 elements
• Creating buttons and scripts: Objects that users click to run scripts 

that can change the model
• Performance Profiler: A library to see which variables and functions 

take the most CPU time or memory
• RunConsoleProcess: A function that calls another Windows 

application as subprogram from Analytica



Chapter Analytica Enterprise

364 Analytica User Guide

22 Accessing databases

Tip You need Analytica Enterprise or Optimizer to create models using the features described in this 
chapter. You can use the Analytica Power Player or the Analytica Decision Engine to run models 
created with Enterprise or Optimizer with these features, and can change them using Analytica 
Decision Engine. You can use any edition of Analytica to run a model that uses buttons, or was 
saved as browse-only with hidden definitions.

Accessing databases
Analytica Enterprise provides several functions for querying external databases using Open Data-
base Connectivity (ODBC). ODBC is a widely used standard for connecting to relational data-
bases, on either local or remote computers. It uses queries in Structured Query Language (SQL), 
pronounced “sequel,” to read from and write to databases.

Overview of ODBC SQL is a widely used language to read data from and write data to a relational database. A rela-
tional database organizes data in two-dimensional tables, where the columns of a table serve as 
fields or labels, and the rows correspond to records, entries, or instances. In Analytica, it is more 
natural to refer to the columns as labels and rows as records. For instance, an address book 
table might have the columns or labels LastName, FirstName, Address, City, State, Zip, Phone, 
Fax, and E-mail, and each individual would occupy one row or record in that table.

The result of an SQL query is a two-dimensional table, called a result table. The rows are the 
records matching the criteria specified by the query. The columns are the requested fields.

Analytica Enterprise provides functions that accept an SQL query, using standard SQL syntax, as 
a text-valued parameter. These functions return the result of the query as an array with two 
dimensions, with its rows indexed by a record index, and columns indexed by a label index. So, 
the basic structure of an Analytica model for retrieving a result table is this.

Each of these three nodes could require the information from the Result_Table. For example, 
the definition of the record index would require knowing how many records (rows) are in the result 
table; the label index might need to read the names of the columns — although, often they are 
known in advance; and of course, the Result_Table needs to read the table. The Database 
library provides the functions, DBQuery, DBLabels, and DBTable to define these variables. 
These functions work in concert to perform the query only once (when the record index is evalu-
ated), and share the result table between the nodes. 

For the address database example above, we can obtain the record index as Individuals, the 
label index as Address_fields, and the resulting table as Address_fields, as follows:

Index Individuals := DBQuery(Data_source,'SELECT*FROM Addresses')
Index Address_fields := DBLabels(Individuals)
Variable Address_fields := DBTable(Individuals, Address_fields)

In the above example, the record index is defined using DBQuery(), the label index is defined 
using DBLabels(), and the result table is defined using DBTable(). Each function is described 
below.

To specify a data source query, two basic pieces of information must always be known. These are 
the data source identifier and the SQL query text. These two items are the parameters to the 
DBQuery() function, and are discussed in the following two subsections.

DSN and data source A data source is described by a text value, which can contain the Data Source Name (DSN) of 
the data source, login names, passwords, etc. Here, we describe the essentials of how to identify 



 Analytica User Guide 365

Accessing databasesChapter Analytica Enterprise22

and access a data source. These follow standard ODBC conventions. For more details, consult 
one of the many texts on ODBC.

Tip You must have a DSN already configured on your machine. If not, consult with your Network 
Administrator. See “Configuring a DSN” below.

The general format of a data source identification text is (the single quotes are Analytica’s text 
delimiters):

'attr1=value1; attr2=value2; attr3=value3;'

For example, the following data source identifier specifies the database called 'Automobile Data', 
with a user login 'John' and a password of 'Lightning':

'DSN=Automobile Data; UID=John;PWD=Lightning'

If a database is not password protected, then a data source descriptor might be as simple as:
'DSN=Automobile Data'

If a default data source is configured on your machine (consult your database administrator), you 
can specify it as:

'DSN=DEFAULT'

Some systems might require one login and password for the server, and another login and pass-
word for the DBMS. In this case, both can be specified as:

'DSN=Automobile Data; UID=John; 
PWD=Lightning; UIDDBMS=JQR; PWDDBMS=Thunder'

You can use the DRIVER attribute to specify explicitly which driver to use, instead of letting it be 
determined automatically by the data source type. For example:

'DSN=Automobile Data; DRIVER=SQL Server'

Instead of embedding a long data source connection text inside the DBQuery() statement, you 
can define a variable in Analytica whose value is the appropriate text value. The name of this vari-
able can then be provided as the argument to DBQuery(). Another alternative is to place the con-
nection information in a file data source (a .DSN file). Such a file would consist of lines such as:

DRIVER = SQL Server
UID = John
PWD = Lightning
DSN = Automobile Data

Assuming this data is in a file named MyConnect.DSN, the connection text can be specified as:
'FILEDSN=MyConnect.DSN'

In some applications, you might wish to connect directly to a driver rather than a registered data 
source. Some drivers allow this as a way to access a data file directly, even when it is not regis-
tered. Also, some drivers provide this as a way of interrogating the driver itself. To perform such a 
connection, use the driver keyword. For example, if the Paradox driver accepts the directory of 
the data files as an argument, you can specify:

'DRIVER={Paradox Driver};DIRECTORY='D:\CARS'

The specific fields used here (UID, PWD, UIDDBMS, PWDDBMS, DIRECTORY, etc.) are inter-
preted by the ODBC driver, and therefore depend on the specific driver used. Any fields inter-
preted by your driver are allowed. 

If you do not wish to embed the full DSN in the connection text, a series of dialogs pop up when 
the DBQuery() function is evaluated. For example, you can leave the UID and PWD (user name 
and password) out of your model. When the model is evaluated, Analytica prompts you to enter 
the required information. Explicitly placing information in your model eliminates the extra dialog. A 
blank connection text can even be used, in which case you need to choose among the data 
sources available on your machine when the model is being evaluated. Although the user can 
form the DSN via the graphical interface at that point, the result is not automatically placed in the 



Chapter Analytica Enterprise

366 Analytica User Guide

22 Accessing databases

definitions of your Analytica model. However, you might be able to store the information in a DSN 
file (depending on which drivers and driver manager you are using). You might also be able to 
register data sources on your machine from that interface.

Tip In 64-bit Windows, ODBC drivers may be either 64-bit drivers or 32-bit drivers. When you are using 
Analytica 64-bit, you can only make use of 64-bit ODBC drivers. If you do not have a 64-bit driver 
for the database you are using installed on your computer, you will not be able to query that 
database from Analytica 64-bit. Likewise, the 32-bit editions of Analytica can only make use of 32-
bit ODBC drivers, so the appropriate 32-bit driver must be installed on your computer.

Note that 64-bit versions of the Microsoft JET drivers do not exist. These drivers are installed with 
Microsoft Access and include the Access ODBC driver, the Excel ODBC driver, and the flat file 
ODBC driver. Microsoft apparently has no plans to release 64-bit versions of these drivers, and 
has indicated it wants to phase out the use of these drivers entirely. These drivers therefore cannot 
be utilized from Analytica 64-bit. Most other major database drivers are available in both 32- and 
64-bit.

Configuring a DSN To access a database using ODBC, you must have a Data Source Name (DSN) already config-
ured on your machine. In general, configuring a DSN requires substantial database administration 
expertise as well as the appropriate access permissions on your computer and network. To con-
figure a data source, you should consult with your Network Administrator or your database prod-
uct documentation. The general task of configuring a DSN is beyond the scope of this manual.

If you find you must configure a DSN yourself, the process usually involves the following steps 
(assuming your database already exists):

1. Select the ODBC icon from the Windows Control Panel.
2. Select the User DSN, System DSN, or File DSN tab depending on your needs. Most likely, 

you will want System DSN. Click the Add button.
3. Select the driver. For example, if your database is a Microsoft Access database, select the 

Microsoft Access Driver and click Finish. 
4. You are led through a series of dialogs specific to the driver you selected. These include 

dialogs that allow you to specify the location of your database, as well as the DSN name that 
you will use from your Analytica model. An example is shown here.

Specifying an SQL
query

You can use any SQL query as a text parameter within an Analytica database function. SQL que-
ries can be very powerful, and can include multiple tables, joins, splits, filters, sorting, and so on. 
We give only a few simple examples here. If you are interested in more demanding applications, 
please consult one of the many excellent texts on SQL.

The DSN used in your
Analytica queries

The actual location of
the database



 Analytica User Guide 367

Accessing databasesChapter Analytica Enterprise22

The SQL expression to select a complete table in a relational database, where the table is named 
VEHICLES, would be:

'SELECT * FROM vehicles'

Tip SQL is case insensitive, but Analytica is case sensitive for labels of Column names. 

To select only two columns (make and model) from this same table and sort them by make:
'SELECT make, model FROM vehicles ORDER BY make'

These examples provide a starting point. When using multiple tables, one detail to be aware of is 
that it is possible in SQL to construct a result table with two columns containing the same label. 
For example:

'SELECT * FROM vehicles, companies'

where both tables for vehicles and companies contain a column labeled Id. In this case, you can 
only access one (the first) of the two columns using DBTable(). Thus, you should take care to 
ensure that duplicate column labels do not result. This can be accomplished, for example, using 
the AS keyword, for example:

'SELECT vehicles.Id AS vid, companies.Id AS
cid, * FROM vehicles, companies'

For users that are unaccustomed to writing SQL statements, products exist that allow SQL state-
ments to be constructed from a simple graphical user interface. Many databases allow queries to 
be defined and stored in the database. For example, from Microsoft Access, one can define a 
query by running Access and using the Query Wizard graphical user interface. The query is given 
a name and stored in the database. The name of the query can then be used where the name of 
a table would normally appear, for example:

'SELECT * FROM myQuery'

Retrieving an SQL
result table

To retrieve a result table from a data source, you need: 

1. The data source connection text. 
2. The SQL query. These are discussed in the previous two sections. For illustrative purposes, 

suppose the connection text is 'DSN=Automobile Data', and the SQL statement is 
'SELECT * FROM vehicles'. Obtain the relational Result_table thus:
Index Records := DBQuery('DSN=Automobile Data', 

'SELECT * FROM vehicles')
Index Labels := DBLabels(Records)
Variable Result_table := DBTable(Records, Labels)

You can now display Result_table to examine the results.

This basic procedure can be repeated for any result table. The structure of the model stays the 
same, and just the connection text and SQL query text change. 

Separating columns of a database table
It is often more convenient for further modeling to create a separate variable for each column of a 
database table. Each column variable uses the same record index. For example, we might create 
separate variables for Make, Year, and Car model from the vehicles database table.



Chapter Analytica Enterprise

368 Analytica User Guide

22 Accessing databases

In this case, the record index is still defined using DBQuery(), and each column is defined using 
DBTable(). The actual SQL query is issued only once when the record index is evaluated.

Suppose you wished to have Make, Model, Year, MPG, etc., as separate Analytica variables, 
each a one-dimensional array with a common index. For example:

Index Records := DBQuery('DSN=Automobile Data',
'SELECT * FROM vehicles')
Variable Make := DBTable(Records, 'make')
Variable Model_Year := DBTable(Records, 'year')
Variable Car_Model := DBTable(Records, 'model')

Since Model is a reserved word in Analytica, we named the variable Car_Model instead of just 
Model. But, the second parameter to DBTable() specifies the name of the column as stored in 
the database. This does not have to be the same as the name of the variable in Analytica.

Alternatively, you can construct a table containing a subset of the columns in a result table. For 
example, if vehicles has a large number of columns, you might create this variable with only the 
three columns you are interested in:

Variable SubCarTable:= DBTable(Records, ['make','model','year'])

This table is indexed by Records and by an implicit index (a.k.a. a null index). The first argument 
to DBTable() must always be an indexed defined by DBQuery() — remember the SQL query is 
defined in that node, and this is how DBTable() knows which table is being retrieved.

DBWrite(): Writing to a database
You can use SQL to change the contents of the external data source from within an Analytica 
model. Using the appropriate SQL statements, you can add or delete records from an existing 
database table. You can also add columns, and create or delete tables, if your data source driver 
supports these operations. 

DBQuery() cannot alter the data source, because it processes the SQL statement in read-only 
mode. Instead, use DBWrite(), which is identical to DBQuery() except that it processes the SQL 
statement in read-write mode. DBWrite() can make any change to the database that can be 
expressed as an SQL statement, and is supported by the ODBC driver. 

To send data from your model into the database, you must convert that data into a text value — 
more precisely, into an SQL statement. Analytica offers some tools to help this process. Here, we 
illustrate a common case — writing a multi-dimensional array to a table in a database. We use the 
ODBC_Library.ana library distributed with Analytica.

Suppose you want to write the value of variable A, which is a three dimensional array indexed by 
I, J, and K, into a relational table named TableA, so that other applications can use the data.

First, we need to convert the 3D array into the correct relational table form. Then we convert the 
table into the SQL text to write to the database.

Our approach is to first convert the three-dimensional array A into a two dimensional table, which 
we store into TableA. TableA needs the two indexes ARowIndex and ALabelIndex. These 
three variables are defined as follows:

Index ALabelIndex := Concat(IndexNames(A),['A'])



 Analytica User Guide 369

Accessing databasesChapter Analytica Enterprise22

Index ARowIndex := sequence(1, Size(A))
Variable TableA := MDArrayToTable(A, ARowIndex, ALabelIndex)

MDArrayToTable(A, I, L) (pure relational transformation) is described in “MDArrayToTable(A, 
I, L) (pure relational transformation)” on page 191. ALabelIndex evaluates to 
['I','J','K','A'], and ARowIndex sets aside one row for each element of A. TableA is 
then a table with one row for each element of A, where the value of each index for that element is 
listed in the corresponding column, and the value of that element appears in the final column. 

Next, set up TableA in the database with the same columns. This is most easily done using the 
front end provided with your database. For example, if you are using MS Access, start the MS 
Access program, and from there, create a new table. Alternatively, you could issue the statement:

DBWrite(DB,'CREATE TABLE TableA(I <text>, J <text>, K <text>, A 
<text>)') 

from an Analytica expression (replacing <text> with whatever type is appropriate for your appli-
cation). Be sure that the column labels in the database table have the same names as the labels 
of ALabelIndex in the Analytica model.

Tip If you want to use column labels in the database that are different from the Analytica index names, 
define ALabelIndex to be a 1D array, self indexed. Set the domain of ALabelIndex to be the 
database labels, and the values of the array to the index names. (The last value is arbitrary.)

Our data is now in the form of a 2D table as needed for a database table. Next we construct the 
SQL text to write the table to the database. You must choose whether you want to append rows to 
the existing database table, or replace the table entirely. Or you can replace only selected entries. 
Your choice affects how you construct the SQL statement. Here, we totally replace any existing 
data with the new data, so after the operation, the database table is exactly the same as TableA 
in the Analytica model. The SQL statements for performing the write is:

DELETE * FROM TableA
INSERT INTO TableA(I, J, K, A) VALUES ('i1','j1','k1','a111')
INSERT INTO TableA(I, J, K, A) VALUES ('i1','j1','k2','a112')
...

The first statement removes existing data, since we are replacing it. We follow this by one 
INSERT INTO statement for each row of TableA. The data to the right of the VALUES keyword 
is replaced by the specific values for indexes I, J, K, and array A (the example above assumes 
the values are all text values). If your values are numeric, you should note that MSAccess adds 
quotes around them automatically.

Since writing the table requires a series of SQL statements, we have two options: Evaluate a 
series of DBWrite() functions, or lump the series of SQL statements into one long text value and 
issue one DBWrite() statement. In Analytica, the second option is much more efficient for two 
reasons. First, the overhead of connecting with the database occurs only one time. Second, inter-
mediate result tables do not have to be read from the ODBC driver, while if you issued separate 
DBWrite() statements, each one would go through the effort of acquiring the result table, only to 
be ignored. 

Important feature
(double semicolon)

To allow multiple SQL statements in a single DBWrite() function (or in a single DBQuery() func-
tion), Analytica provides an extension to the SQL language. The double semicolon separates 
multiple statements. For example:

'DELETE * FROM TableA ;; SELECT * FROM TableA' 

This first deletes the data from the table, and then reads the (now empty) table. When ;; is used, 
only the last SQL statement in the series returns a result table. Most statements that write to a 
database return an empty result table.

We are now ready to write the Analytica expression that constructs the SQL statement to write the 
table to the database. The function to do this already exists in the ODBC_Library. First, use the 
Add Module item on the File menu to insert the ODBC_Library into your model; then use the 
WriteTableSql() function, which returns the SQL statement (as a text value) for writing the table 



Chapter Analytica Enterprise

370 Analytica User Guide

22 Database functions

to the database. The function requires that I and L contain no duplicates (which should be the 
case anyway). 

Finally, define: 
Variable Write_A_to_DB := DBWrite(DB, WriteTableSql(A, RowIndex, 
LabelIndex,'TableA'))

Creating an output node
to write to a database

Write_A_to_DB writes array A to the database whenever it is evaluated. But, this happens when 
the model user causes Write_A_to_DB to be evaluated, not necessarily whenever A changes. 
To make it easy for the end user to perform the write, we suggest you make an output node for 
WriteAtoDB:

1. Select node Write_A_to_DB in its diagram.
2. Select the Make Output Node command on the Edit menu.
3. Move the new output node to a convenient place in the user interface of the model.

Initially, the output node shows the Calc button. When you click it, it writes A to the database. It 
also displays the result of evaluating DBWrite(), usually an empty window, not very interesting to 
the user. To avoid this, append “; 'Done' ” to its definition:

Write_A_to_DB := DBWrite(DB, WriteTableSql(A, RowIndex, 
LabelIndex,'TableA'); 'Done'

Now, when you or an end user of the model, clicks Write_A_to_DB, after writing A to the data-
base, it shows 'Done' in the output node. It reverts to the Calc button, whenever A changes.

Database functions 
The Database library on the Definition menu contains five functions for working with ODBC data-
bases.

DBLabels(dbIndex)
Returns a list of the column labels for the result table. This statement can be used to define an 
index which can then be used as the second argument to DBTable(). The first argument, dbIn-
dex, must be defined by a DBQuery() statement.

DBQuery(connection, sql, key)
Used to define an index variable. The definition of the index should contain only one DBQuery() 
statement. connectionString specifies a data source (e.g., 'DSN=MyDatabase') and sql 
defines an SQL query. The optional key parameter may specify the name of a column in the data-
base that will be used to determine the row index values returned by DBQuery. It is best to only 
use key columns that contain unique values in each row.

When placed as the definition of an index variable, DBQuery() is evaluated as soon as the defini-
tion is complete, or immediately when the model is loaded. If you place it in a variable node, it will 
be evaluated when the result is requested, rather than when the model is loaded, provided there 
are no index nodes downstream that depend on it. When it is evaluated, the actual query is per-
formed. The resulting result table is cached inside Analytica, to subsequently be accessed by 
DBTable() or DBLabels(). 

When the optional key parameter is not specified, DBQuery() returns a sequence 1..n, where n 
is the number of records (rows) in the result table. When key is specified, DBQuery returns a list 
consisting of the values from that column in the data source.

DBQuery() should appear only once in a definition, and if it is embedded in an expression, the 
expression must return a list with n elements.

DBQuery() processes the sql statement in read-only mode, so that the data source cannot be 
altered as a result of executing this statement. To alter the data source, use DBWrite().



 Analytica User Guide 371

Database functionsChapter Analytica Enterprise22

DBTable(dbIndex, column)
DBTable(dbIndex, columnList)
DBTable(dbIndex, columnIndex)

DBTable() is used to get at the data within a result table. The first argument, dbIndex, must be 
the name of a variable (normally an index) in your Analytica model that is defined with a 
DBQuery() statement. If the second argument, column, is a text value, it identifies the name of a 
column label in the result table, in which case DBTable() returns a 1D array (indexed by dbIndex) 
with the data for that column. If the second argument is a list of text values (the columnList form), 
then DBTable() returns a 2D table with records indexed by dbIndex, and columns implicitly 
indexed (i.e., self-indexed/null-indexed). If the second argument is the name of an Analytica vari-
able (usually an index) whose value evaluates to a list of text values, those text values become 
the column headings for a 2D table with columns indexed by columnIndex, and rows indexed by 
dbIndex. With this last form, columnIndex can be defined as DBLabels(dbIndex).

DbTableNames(connectionString, catalogs, schemas, tables, tableTypes)
Connects to an ODBC data source and returns catalog data for the data source. connection-
String specifies a data source (e.g., 'DSN=MyDatabase'). Catalogs, schemas, tables, and 
tableTypes may be names or patterns (as long as the driver manager on your computer is ODBC 
3-compliant). Use the percent symbol (%) as a wildcard in each field to match zero or more char-
acters. Underscore (_) matches one character. Most drivers use backslash (\) as an escape char-
acter, so that the characters %, _, or \ as literals must be entered as \%, \_, or \\. tableTypes 
might be a comma-delimited list of table types. Your data source and ODBC driver might or might 
not support this call to varying degrees.

Examples To get all catalog entries (tables, views, schemas, etc) in My db:
DBTableNames('DSN=My db')

To get just information on tables in My db:
DBTableNames('DSN=My db',tables:'%')

To get all valid views:
DbTableNames('DSN=My db',tableTypes:'VIEW')

The precise value you give to tableTypes depends on which database server you are querying. If 
you are not sure which type names are used by your database, evaluate DBTableNames first with 
none of the parameters and you should see a column that provides the type names for existing 
catalog entries.

DBWrite(connectionString, sql)
This function is identical to DBQuery() except that the query is processed in read-write mode, 
making it possible to store data in the data source from within Analytica. 

MdxQuery(connectionString, mdx) 
MdxQuery lets you read or write multidimensional data on an OLAP server database, returning or 
sending a multidimensional Analytica array. It uses the standard query language, MDX. MDX is 
analogous to SQL, but where SQL accesses any standard relational database, MDX accesses 
multidimensional “hypercube” databases. MdxQuery() works with Microsoft SQL Server Analysis 
Services.

connectionStr is the standard text used to identify and connect with the database, similar to that 
used in other database functions, such as DBQuery(). mdx is text containing the query in the 
MDX language. 

MdxQuery() creates a local index for each dimension. The local indexes are named .Axis1, 
.Axis2, .Axis3, etc., and contain the cube member captions as elements. Some cube axes 
returned from MDX queries are hierarchical, and for these, MdxQuery concatenates member 
captions, separated by commas. For example, if a particular hierarchical axis included calendar 



Chapter Analytica Enterprise

372 Analytica User Guide

22 Reading and writing text files

year and quarter, an element of .Axis1 might be “2003,1”, i.e., Calendar year 2003, quarter 1. To 
use a separator other than comma, specify an optional parameter, sep, to MdxQuery.

For additional usage information and examples, please refer to MdxQuery on the Analytica Wiki.

SqlDriverInfo(driverName)
Returns a list of attribute-value pairs for the specified driver. If driverName='' (an empty text 
value), returns a list of the names of the drivers. driverName must be a text value — it cannot be 
a list of text values or an index that is defined as a list of text values. This statement would not 
normally be used in a model, but might be helpful in understanding the SQL drivers that are avail-
able.

Reading and writing text files

ReadTextFile(filename)
Reads a file filename and returns its contents as a text value. If filename contains no directory 
path, it tries to read from the current folder, usually the folder containing the current model file. If it 
doesn’t find the file, it opens a Windows browser dialog to prompt the user. For example:

Function LinesFromFile(filename: Atom Text)
Definition:

VAR r := SplitText(ReadTextFile(filename), Chr(10));
Index lines :=1..Size(r);
Array(lines, r)

This function reads in the file and splits the text up at the end of each line, with the Chr(10) line 
feed character. It then defines a local index lines, to be used as the index of the array of lines 
that it returns.

The optional parameter showDialog controls whether the file dialog appears. If not specified, 
then the dialog appears only if the file does not exist. If you set showDialog to true (1), it always 
prompts for the file, even if it finds one by that name. This gives the user a chance to change the 
filename, while still providing a default name. 

WriteTextFile(filename, text, append, warn, sep)
Writes text to the file filename. The filename is relative to the current data directory. It returns the 
full pathname of the file if it is successful in writing or appending to it. By default, the append flag 
is False and warn flag is True. If the file doesn’t already exist, it creates the file in the current 
data directory — and if the file does exist, it asks if you want to replace it. If append is True (1), 
and the file already exists, it appends the text to the end of the file. If warn is False (0), it does 
not issue a warning before overwriting an existing file when append is False, or when modifying 
an existing file when append is True. 

If text is an array, it writes each element to the file, inserting separator sep between elements, if 
provided. If text has more than one dimension, you can control the sequence in which they are 
written by using function JoinText() to join the text over the index you want innermost. 

You can write or append to multiple files when filename is an array of file names. If text has the 
same index(es), it writes the corresponding slice of text to each file — following proper array 
abstraction.

Reading and writing from Excel spreadsheets
Several functions on the Database menu allow direct reading and writing from Excel workbooks. 
These functions launch Excel (without the GUI if it isn’t arleady running) to access and compute 
the requested cells, so they require Microsoft Excel to be installed on your computer in order to 
use these functions.

http://lumina.com/wiki/index.php/MdxQuery


 Analytica User Guide 373

Reading and writing from Excel spreadsheetsChapter Analytica Enterprise22

SpreadsheetOpen( filename, showDialog )
Opens the indicated Excel workbook file. The optional showDialog parameter can be specified 
as true or false to force or prevent the display of the file selector dialog. Returns a special 
«workbook» object which is passed as a parameter to the other Excel functions.

SpreadsheetSave(workbook, filename)
Saves an Excel workbook to a file. The workbook parameter must be a workbook object returned 
from a previous call to SpreadsheetOpen(). The workbook is saved to the same file it was origi-
nally loaded from when the filename parameter is omitted. This function is used after changes 
have been made to the workbook using SpreadsheetSetCell() or SpreadsheetSetRange().

SpreadsheetCell( workbook, sheet, column, row )
Reads the value of one cell in an Excel worksheet given its coordinates. The function fully array 
abstracts so that it can also be used to read an range of cells by specifying the column or row 
parameters as arrays. Workbook is the result of a call to SpreadsheetOpen. The sheet and col-
umn parameters may be either the textual names or the ordinal number identifying the sheet in 
the workbook or column in the worksheet.

The following demonstrates equivalent methods for obtaining the value from cell C7 of the first 
worksheet, “Sheet1”:

SpreadsheetCell(workbook,'Sheet1','C',7)
SpreadsheetCell(workbook,1,3,7)

The following reads the 2-D array of cells C3:J10 in Sheet1:
Index Year := 2008..2015;
Index Asset := 1..16;
SpreadsheetCell(workbook,'Sheet1',@Year+2,@Asset+3)

SpreadsheetSetCell(workbook,sheet,col,row,value)
Writes value (either a number or text) to the cell identified by sheet, col, and row. Can be used to 
write multiple values via array abstraction when col, row and value are arrays that share one or 
more indexes. The first parameter, workbook, must be an object obtained from a previous call to 
SpreadsheetOpen().

To write the value 3.5 to cell Sheet1!C5:
SpreadsheetSetCell(workbook,'Sheet1','C',5,3.5)

SpreadsheetRange(workbook, range, colIndex, rowIndex, howToIndex, sheet )
Reads a range of cells from an Excel workbook. The range can be the name of a named range in 
the Excel workbook, or it can specify range coordinates such as “Sheet1!C7” or 
“Sheet3!C7:F12”. Alternatively, you can specify a range coordinate as “C7:F12” and specify 
the sheet either by name or number in the optional sheet parameter. When specifying a named 
range, it is not necessary to specify the worksheet name, but when using range coordinates the 
sheet must be identified.

Depending on the dimensions of the cells requested, the result may be a scalar (single cell), a 
column vector, a row vector, or a 2-D array. When the range contains multiple cells, the result is 
an array. When the optional colIndex or rowIndex parameters are not provided, local indexes 
are created for those dimensions when the range for the result contains more than one column or 
more than one row. If you already have indexes for those dimensions, you should provide them 
explicitly in the colIndex and rolIndex parameters.

The optional howToIndex parameter provides additional control over how the result is indexed 
and the range interpreted. It can be any additive combination of the following values:

1 = Force column index when range has only one column.



Chapter Analytica Enterprise

374 Analytica User Guide

22 Reading data from the internet

2 = Force row index when range has only one row.

4 = First row of range contains column labels

8 = First column of range contains row labels

16 = Do not issue error if supplied colIndex or rowIndex is not the correct length.

Suppose the range of cells, C7:F12 in sheet 'Projection', the third sheet in the Excel work-
book, has been labelled in Excel with the name Costs. Then the following are each equivalent 
and return a 2-D array, indexed by local indexes .Row=[7,8,9,10,11,12] and .Column= 
['C','D','E','F']:

SpreadsheetRange(workbook,'Costs')
SpreadsheetRange(workbook,'Projection!C7:F12')
SpreadsheetRange(workbook,'C7:F12',sheet:'Projection')
SpreadsheetRange(workbook,'C7:F12',sheet:3)

SpreadsheetSetRange( workbook,range,value,colIndex,rowIndex,sheet)
Writes value (often an array of text or numbers) to a cell range or named range. Workbook must 
be an object obtained from a previous call to SpreadsheetOpen(). Sheet is the name or number 
of the worksheet containing the range. Range may be a coordinate range (e.g., 
'Sheet1!C7:F15', or when the optional sheet parameter is also specified range may be just 
'C7:F15') or the name of a named range. Value is the value written, and colIndex and rowIn-
dex are the indexes of value (when value is an array).

Reading data from the internet
The ReadFromUrl function, on the Database menu, reads text from URL sources, such as HTTP 
web pages or FTP sites.

ReadFromUrl(url, method, formValues, formFields, formIndex)
Reads text or images from a URL (Universal Resource Locator) location on the web. In most 
cases, this is called with a single parameter -- the URL. When reading from a web page, the URL 
should begin with 'http://....'. When reading a text file from an FTP site, it should begin 
with 'ftp://...'. The entire text from the requested location is returned as a text value. In 
most cases, you will need to write Analytica expressions to parse the data. When the URL is an 
http request that points to an image (*.jpg, *.png, *.gif, etc), a picture object is returned that can be 
assigned to the pict attribute of objects. With the exception of http requests to known image types, 
the source data must be textual, and if not, the resulting data will be garbled.

Some web pages and most FTP sites require user and password authentication to access. To 
authenticate, embed the user name and password in the URL as follows:

ReadFromUrl('http://user:password@www.site.com/dir/page.htm')
ReadFromUrl('ftp://user:password@site.com/directory/file.txt')

The optional second through fourth parameters are used to submit data to web forms. There are 
two methods used to submit data to HTTP web forms: method:'POST'or method:'GET'. The 
field names and the values submitted for those fields are specified in formValues and form-
Fields, which must share a common index, and if that common index is anything other than form-
Fields, it should be specified in the formIndex parameter.

For additional detailed information on specifying HTTP headers and context, and querying web 
services, please see ReadFromUrl on the Analytica Wiki.

Making a browse-only model and hiding definitions
When you are ready to let others use the models you have created, you might want to save it as 
browse-only, so that end users can only change the variables you have designated as inputs (by 

http://lumina.com/wiki/index.php/ReadFromUrl
http://lumina.com/wiki


 Analytica User Guide 375

Making a browse-only model and hiding definitionsChapter Analytica Enterprise22

making input nodes for them). You might also want to hide definitions of variables or functions to 
protect confidential or proprietary data or algorithms. With Analytica Enterprise, you can save 
models that are locked as browse-only and with hidden definitions, using these steps:

1. Hide selected definitions in your model, for entire model, modules, or by variable.
2. Save your master model file (and any linked submodules) so that you can still view and modify 

it yourself.
3. Select Save a copy from the File menu, and check Lock and obfuscate and optionally Save 

as a browse-only model copy to save an obfuscated copy — that is a file scrambled into a 
non-human-readable form.

4. Distribute the obfuscated copy to your end users.

The third step permanently locks your model so that hidden definitions can never again be viewed 
in that copy. It is therefore recommended that you save a protected copy of your model, and leave 
your original model as a master (unprotected) copy. Until the model is stored in an “obfuscated” 
form (step 3), an end user is not prevented from unhiding your definitions, or from viewing them 
by other means (e.g., by loading the Analytica model file into a text editor).

Tip An obfuscated model file cannot be un-obfuscated, even by the original author. If it is locked as 
browse-only, it can never again be edited. If definitions are hidden, they can never again be viewed 
or edited. Always place a master copy of your model (and any submodules) in a safe place before 
making an obfuscated copy!

Hiding and unhiding
definitions

To hide the definition of a single variable or function, select its node and select Hide Definition(s) 
from the Object menu, so it becomes checked. You cannot hide multiple nodes, except by hiding 
all nodes in a parent module. To hide the definitions of all objects in a module:

1. Select the node of the module in its parent diagram, or open the module and select no nodes 
inside it.

2. Select Hide Definition(s) from the Object menu, so it becomes checked.

If a variable, function, or module is hidden, when you try to view its definition, it displays:
[Definition is Hidden]

Tip The definition of a variable with an input node is always visible regardless of whether it or its parent 
module is marked as Hidden. 

Unhiding and
inheritance of hiding

Definition hiding is inherited down the module hierarchy. If you hide a module, you hide the defini-
tions of all the objects that it contains, including its submodules and all the objects that they con-
tain — unless you explicitly unhide an object or submodule, in which it or the objects it contains 
are not hidden. To unhide a variable, function, or module:

1. Select its node in its parent diagram.
2. Select Unhide Definition(s) from the Object menu, so it becomes checked.

In the module hierarchy shown below, module Mo1 is hidden, and therefore so are the objects it 
contains, module Mo2, Va1, and Va2. But module Mo3 is unhidden, and therefore so are the 
objects it contains, Va3 and Mo4. However, object Va4 is itself explicitly hidden.



Chapter Analytica Enterprise

376 Analytica User Guide

22 Making a browse-only model and hiding definitions

Tip The Hide Definition(s) and Unhide Definition(s) menu options are disabled if the current model, 
or any of its linked submodules, has been obfuscated. In this case, obfuscation has locked hiding 
in place.

After hiding the definitions you want, you can view your model to check everything is as you want. 
You can still Unhide items if you want to view or edit them. But, after saving the model in obfus-
cated form, no one, even you, can view hidden definitions or edit any variables that are not inputs, 
even if they open the model file in a text editor. That’s why it’s important that you save a master 
copy for your own use. 

Saving an obfuscated
copy of your model

When you are ready to save an obfuscated copy of your model, select Save a Copy In from the 
File menu.

Mo3Mo2

Mo4

Mo1

Va1

Va2 Va3

Va4

(hide)

(hide)

(unhide)



 Analytica User Guide 377

Making a browse-only model and hiding definitionsChapter Analytica Enterprise22

Enter a filename that is different than the filename of your master copy, to make sure that you 
retain an editable version for your self. 

Check Lock and obfuscate the copy at the bottom of the dialog to save the model in an encrypted 
form that makes any hidden definitions unviewable, even if you try to edit the file.

Check Save as a browse-only model if you also want to prevent users from changing any vari-
ables not designated as inputs. In that case, the model is locked in browse-only mode, as if it is 
being run with Analytica Player or Power Player, even if the user runs the model with an Analytica 
edition that normally allows editing. 

Optionally check Save everything in one file by embedding linked modules to produce a single file 
that can be distributed. If your model is utilizing unlocked linked modules, the content in those 
may remain exposed unless you use this option (alternatively, you can link to locked copies of 
those modules in your main model before saving your main model in a locked form). Even if you 
do not lock your model, this option can provide a convenient way to distribute your model as a sin-
gle file to end-users, or to bundle it for upload to the Analytica Web Player.

A browse-only model is always obfuscated to prevent anyone from editing the source Analytica 
file. Thus, it automatically checks Lock and obfuscate the copy and the Save in XML format option 
is not available.

If you want end users to be able to use other Enterprise features, such as database access, file 
reading and writing, Huge Arrays, or performance profiling, they need the Power Player — or their 
own Enterprise edition. Enterprise and Optimizer-level features are available to users viewing 
your model through the Analytica Web Player (AWP).

When a browse-only model (saved as such from Enterprise) is loaded into Analytica Professional, 
it runs it in Power Player mode,so that database access, etc., is available.

Linked libraries and submodules

Warning!! When your model utilizes linked libraries or submodules, you need to be very careful that the 
module files you distribute to your users are indeed obfuscated or locked as you intend, while at 
the same time ensuring that you do not accidentally obfuscate your master copies of these 
modules. Because locking a model as obfuscated or browse only is an irreversible operation, it is 
extremely important that you don’t accidentally lock your master versions. If your model uses linked 
libraries or linked modules, to avoid inadvertently making these mistakes, it is highly recommended 
that you embed all modules and libraries check in your obfuscated copy by checking Save 
everything in one file by embedding linked modules.

When you save a copy of your model, without checking the Save everything in one file by embed-
ding linked modules option, Analytica 4.2 and later will save a locked copy only of the top-level 
model file. The locked status of any linked modules remain in their original state, such that individ-
ual module files may remain non-obfuscated or editable. If you don’t want to embed all linked 
modules in your obfuscated copy, then you’ll need to save an obfuscated copy of each submod-
ule individually, and then use “Add Module...” with the Link and Merge options to switch your 
model to using the locked copy, prior to saving a copy of your top-level model.

If you ever use a pre-4.2 release of Analytica, take extreme caution when obfuscating a model 
containing linked modules -- release 4.1 and earlier will also obfuscate the linked module files. 
Thus, it is imperative that you make a copy of all linked submodules before saving an obfuscated 
copy.

In Analytica 4.2 and later, you can distribute locked copies of libraries or modules, allowing other 
model developers to utilize those libraries without being able to view your proprietary definitions 
(when they are obfuscated) or being able to modify the libraries (when locked as browse-only). 
When using locked libraries, certain operations involving objects in those modules are restricted. 
You cannot embed an obfuscated sub-module within a non-obfuscated module, but you can use it 
as a linked module. Embedding an obfuscated module in an obfuscated module is allowed. Vari-
ous operations that might allow a user to gain access to your hidden definitions are disallowed, 



Chapter Analytica Enterprise

378 Analytica User Guide

22 Huge Arrays

such as moving an object with a hidden definition from an obfuscated module to a non-obfuscated 
module.

Warning!! If you distribute locked module files for use by others to use in their models, it is important to ensure 
that they are using Analytica 4.2 or later. Loading an obfuscated or browse-locked module into a 
model from Analytica 4.1 or earler will result in the entire model being placed in the same locked 
state. The ability to utilize a combination of locked and unlocked modules in the same model 
requires Analytica 4.2 or later.

Huge Arrays
Analytica Enterprise, Optimizer, Power Player, and ADE can manage indexes and arrays of up to 
100 million elements in any dimension. The only practical limit on model sizes is the amount of 
memory. Huge Arrays means they can also handle sample size for probabilistic simulation up to 
this size. (You can set this in the Uncertainty Setup dialog from the Result menu.) This also lets 
you read in large datasets from databases, using the ODBC functions. 

Tip Editions of Analytica other than Enterprise, Optimizer, Power Player, and ADE are limited to index 
and sample sizes of 32,000 elements. 

Creating buttons and scripts
A button is a special kind of object you can add to a diagram. It contains a script that is executed 
when you press the button (in browse mode). You need Analytica Enterprise (or Optimizer) to cre-
ate new buttons. You can use buttons with any edition of Analytica. 

To make a button To create a new button, enter edit mode, and drag from the button icon at the right end of the new 
object toolbar onto the diagram (or press Control+0).

Button script The button script is in its script attribute. You can view and edit the script in the Attribute panel as 
above, or its Object window, like any user-editable attribute. Any change to an identifier used in a 
button script automatically updates the script, just as it does in a definition of a variable or func-
tion.

Script language The script language is similar to the Analytica language used in definitions. Some key differences 
are:

• A script consists of one or more statements, each on a separate line, with no semicolon (;) or 
other separator between them. 

• A statement can be an assignment to change the definition of a global variable — something 
not allowed in a variable definition.

• A statement in a script can be any expression valid in the Analytica modeling language, 
including a call to a built-in or user-defined function, as long as it fits on one line.



 Analytica User Guide 379

Creating buttons and scriptsChapter Analytica Enterprise22

• A statement or expression in a script must be all on one line. A new line implies a new 
statement. A script does not accept BEGIN END or parentheses around a sequence of 
statements.

• A script can call a function that assigns to a global variable. Such a function can be called 
directly from a script, or indirectly from another function called from a script, and so on 
recursively. Such a function might not be from an Analytica variable.

• Script statements can use a wide range of script commands, not available in the normal 
modeling language. Among other things, these can open or close windows. See http://
lumina.com/wiki/index.php/Commands.

Consult the Scripting Guide on Anawiki for details of syntax of scripts.

Tip If you want a button to perform a complex series of steps, it is usually easiest to define those steps 
in a function, and call the function from the script, rather than write the steps directly into the script. 
Function definitions offer several advantages over scripts, including the ability to add inputs by 
drawing arrows to its node and a more flexible (and familiar) syntax. 

Assigning to global variables
Assigning a definition

in a script
A statement in a button script can assign to a nonlocal (global) variable, for example:

A := 100

This is not permitted in the definition of a variable, which only assigns to local variables declared 
within the definition of the variable, to prevent side effects — where evaluating one variable 
changes the value of another. See “Assigning to a local variable: v := e” on page 341.

An assignment statement in a script assigns the definition of the variable to the expression 
assigned, not to the value of the expression. Consider these three statements in a button script, 
assuming A and B are global (i.e., non-local) variables:

A := 1
B := A+1
A := 100

The second assignment changes the definition of B to the expression A+1, not the value of the 
expression, which would be 2. After these three statements, the value of B is 101, because the 
third line sets A to 100, which propagates to the definition of B is A+1.

Assigning a value
in a script

In the context of an expression rather than a script statement, the assignment 
B := A+1

sets variable B to the value of A+1, not the expression A+1. An expression is anything in the def-
inition of a variable or function. You might also include an expression within a script statement 
simply by enclosing it in parentheses:

A := 1
(B := A+1)
A := 100

In this case, after executing this script, the definition of B is 2 — the value of expression A+1 in the 
second line. Since the definition of B is now 2, not A+1, the third line, assigning 100 to A has no 
effect on B.

Assigning a value
in a function

There is an important exception to the rule that you cannot assign to globals in a definition: You 
can assign to a global variable in a function that is called from a button script. It can be called 
directly or indirectly — that is, called from a function called from a script, and so on recursively:

Variable A := 100
Variable B := 2

Function IncrementA
Parameters: (x)

http://lumina.com/wiki/index.php/Commands
http://lumina.com/wiki/index.php/Commands
http://lumina.com/wiki/index.php/Scripting_Guide


Chapter Analytica Enterprise

380 Analytica User Guide

22 Creating buttons and scripts

Definition: A := A + x

Button Add_B_to_A
Script: IncrementA(B)

When you press button Add_B_to_A, it calls function IncrementA, which sets the definition of A 
to the current value of A+B, i.e., 102. Like any assignment in a function, it assigns the value not 
the expression A+B. 

This kind of global assignment gives you the ability to create buttons and functions to make 
changes to a model, including such things as modifying existing model values and dependencies. 

Save a
computed value

One useful application of assigning to a global variable is to save the results of a long computa-
tion. Normally, the cached result of a computation is stored until you change any ancestor feeding 
into the computation, or until you Quit the session. By assigning the result to a global variable, 
you can save it so that it remains the same when you change an input, or even when you quit and 
later restart the model.

A common case where this is helpful is a model containing two parts: (1) A time-consuming statis-
tical estimation, neural network, or optimization that learns a parameter set, and (2) a model that 
applies the learned parameters to classify new instances. After computing the parameters, you 
can save them into a set of global variables, and then save and close the model. When you 
restart the model, you can apply the learned parameters to many instances without having to 
waste time recomputing them. 

Consider this example:
Variable Saved_A := 0

Function Save_value(x)
Description: Sets Saved_A to be the value of x.
Definition: Saved_A := x

Button Save_A
Script: Save_value(A)

When you click button Save_A, it calls function Save_value(A), which saves the value of A into 
global Saved_A. Saved_A retains this value if you change A or any of its predecessors, or even if 
you quit the session, saving the model file, and later restart the model. Thus, you won’t have to 
wait to recompute Saved_A. Of course, the value of Saved_A does not update automatically if 
you change any of its predecessors, the way A does. You need to click button Save_A again to 
save a new value of A.

If the value of A is an array with nonlocal indexes, the definition of Saved_A is an edit table, 
using those indexes. Any subsequent change to those indexes affect, and possibly invalidate the 
table. If you want to make sure this doesn’t happen, you might want to save copies of the indexes, 
and transform the table to use the saved indexes.

Assign to
an attribute

You can assign to any user-editable attribute of a (nonlocal) variable or other object, subject to the 
same restrictions as assigning a value — i.e., you can do it only in a function called from a script, 
directly or indirectly. You cannot assign to an attribute in the definition of a variable. The syntax is:

<attrib> OF <object> := <text>

Here <attrib> is the name of an editable attribute, including Title, Units, Description, Definition, 
Check, Domain, and Author; <object> is the identifier of a user-defined, nonlocal object, vari-
able, function, module, etc.; and <text> is a text value. For example:

Function Retitle(o, t)
Description: Sets the title of object o to text t.
Parameters: (o: Object; t: Atom Text)
Definition: Title OF o := t



 Analytica User Guide 381

Creating buttons and scriptsChapter Analytica Enterprise22

Variable Gray := 0
Title: Gray

Button Change_title
Script: Retitle(Gray, 'Earl '&(Title of Gray))

When you click button Change_title, it calls function Retitle applying it to variable Gray, 
prefixing the old title of Gray with Earl to become Earl Gray. It does this again each time you 
press the button. Notice that the object whose attribute you are resetting can be passed to the 
function, provided the parameter is qualified as an Object in the parameters declaration. 

If the text is an array, it flattens the array into a single text value before the assignment — proba-
bly not what you want. So, it is best only to assign atomic text values.

If you want to assign a new definition as text (rather than assigning the value of an expression), 
you can assign to the definition thus:

Definition OF X := Y^2

You can use this method to assign new values to various internal attributes, such as Nodeloca-
tion, Nodecolor, Nodesize, and NodeFont, letting you change the way nodes appear on a dia-
gram. Consult the Scripting Guide on Anawiki for details of syntax.

EvaluateScript(t)
This function evaluates a text value t as if it was a script. This means t can contain script com-
mands, assignments to globals, and other statements permitted in scripts. 

Tip Avoid using EvaluateScript(t) except in script functions — that is, functions called from button 
scripts. This minimizes the danger of undermining the no-side-effects rule.

Typescript Window
The Typescript window offers an old-fashioned command-line user interface, like the Windows 
CMD program or a Unix shell, showing a prompt — the title of the model or module — at the start 
of each line. You can type in a script command. It prints any results as text, and show another 
prompt. This window is occasionally useful for advanced users who wish to inspect internal 
details of a model. You can also use it to test out commands that you want to use in a button 
script.

To open the Typescript window, press Control+' (single apostrophe).

http://lumina.com/wiki/index.php/Scripting_Guide


Chapter Analytica Enterprise

382 Analytica User Guide

22 Performance Profiler library

Performance Profiler library
The Performance Profiler library shows you the computation time and memory space used by 
each variable and function. If you have a large model that takes a long time to run or uses a lot of 
memory, you might want to find out which variables or functions are using the Lion’s share of the 
time or memory. As experienced programmers know, the results are often a surprise. With the 
results from the Performance Profiler, you know where to focus your efforts to make the model 
faster or use less RAM.

First add Performance Profiler.ana from the Libraries folder into your model.

Now display the results (table or graph) for the variables whose performance you want to pro-
file. Open the library, and click Performance profiles.

This table lists the variables and functions by row, with the class of the object, parent module, 
Bytes of RAM (random access memory), and CPU msecs (milliseconds of time used by the cen-
tral processing unit). The last column, msecs w ancestors, shows the CPU milliseconds to com-
pute each variable or function including all its ancestors — i.e., the variables and functions it uses. 
The Profiler shows all variables and functions that use more than 24 bytes of RAM (the minimum) 
or take more than 1 millisecond to compute. Use Sort objects by to sort the table by any column.

If you want to inspect a variable or function to see why it’s taking so much time or memory, just 
click its title in the .Objects index column to open its Object window.

Update profiles After computing more results, click this button to update the performance profile to reflect the 
additional time and memory used.

Zero out times If you want to look at the incremental time used by additional results, or another computation, first 
click this button to zero out the times already computed.

Understanding
memory usage

For complex definitions, it might use much more RAM while it is computing than it needs to cache 
the final result — the Profiler reports only the latter. The Bytes show the RAM used to store the 
value of each variable, mid, probabilistic, or both, depending on which it has computed. Typically, 



 Analytica User Guide 383

Integrating with other ApplicationsChapter Analytica Enterprise22

an array takes about 12 bytes per number to store. For example, an uncertain dynamic array of 
numbers, with an index I of 20 elements, Time has 30 elements, and Samplesize = 1000, would 
use about 20 x 30 x 1000 x12 = 7,200,000 bytes or 7.2 Megabytes. Analytica uses an efficient 
representation for arrays with many zeroes (sparse arrays) or many repeated values. An array 
that is an exact or partial copy of another array can share slices. In such cases, it might actually 
use less memory than it reports.

Understanding
computation time

The CPU time listed is the time it took to evaluate the mid and/or prob value of each variable or 
function, depending on which type of evaluation it did. It is zero if the results computed did not 
cause evaluation of the variable or function. A variable is usually only computed at most once 
each for its mid and prob value. Rare exceptions include when the variable is referenced directly 
or indirectly in a parameter to Whatif or WhatIfall, which might cause multiple evaluations. A 
function can be called many times. The CPU time reported is the sum over all these evaluations.

Time and virtual
memory

Like most 32-bit applications on Windows, Analytica can use up to 3 GB of memory. If your com-
puter doesn’t have that much RAM installed, and it needs more than is available, it can use virtual 
memory — that is, it saves data onto the hard disk. Since reading and writing a hard disk is usu-
ally much slower than RAM, using virtual memory often causes the application to slow down sub-
stantially. In this case, finding a way to reduce memory usage below the amount of physical RAM 
available can speed up the application considerably. Another approach is to install more RAM, up 
to 4 GB.

Performance profiling attributes and function
The Performance Profiler library uses a function, two attributes, and a command, which are also 
available for you to write your own functions using memory or time. For an example of how to use 
them, you can open up the library.

MemoryInUseBy(v) This function returns the number of bytes in use by the cached result(s) for variable v — with the 
same disclaimer that shared memory can be counted more than once. It includes memory used 
by mid and prob values if those results have been computed and cached, but it doesn’t force 
them to be computed if they haven’t been.

This function includes these two special read-only attributes:

ResetElapsedTimings This command sets these attributes back to zero. Like any command, you can use it in a button 
script, the Typescript, but not in a regular definition.

Tip These features, including the Performance Profiler are only available for Analytica Enterprise, 
Power Player, and ADE editions.

Integrating with other Applications

RunConsoleProcess(program)
This function lets an Analytica model run a console process, that is, start another Windows appli-
cation. The application or program can be a simple one with no graphical user interface, or it can 
interact directly with the user. RunConsoleProcess() can provide data as input to the program 
and return results generated by the application. The program parameter contains text to specify 
the directory path and name of the program. It can feed input to the program via command line 
parameters in cmdLine, via the stdIn parameter, piped to the StdIn input channel of the program, 
or via a data file created with WriteTextFile(). Normally, when the program completes, RunCon-

EvaluationTime This attribute returns the time in seconds to evaluate its variable or 
function, not including the time to evaluate any of its inputs.

EvaluationTimeAll This attribute returns the time in seconds to evaluate its variable or 
function, including the time to compute any of its inputs that needed to 
be evaluated (and their inputs, and so on.).



Chapter Analytica Enterprise

384 Analytica User Guide

22 Integrating with other Applications

soleProcess returns a result (as text) any information the program writes to stdOut. Analytica 
can also use ReadTextFile() to read any results the program has saved as a data file.

Required parameter

Optional parameters

RunConsoleProcess() fully supports Intelligent Arrays. If any parameter is passed an array, it 
runs a separate process for each element of the array. It runs multiple blocking processes 
sequentially. It runs multiple non-blocking processes concurrently. 

Examples
Run a VB Script Suppose the Visual Basic program file HelloWorld.vbs is in your model directory and contains: 

WScript.Echo "Hello World"

Your call to RunConsoleProcess might look like: 
RunConsoleProcess("C:\Windows\System32\CScript.exe",

"CScript /Nologo HelloWorld.vbs")

program Text to specify the directory path and name of the Windows application (pro-
gram) to run. A relative path is interpreted relative to Analytica’s CurrentDataDi-
rectory. If it cannot find or launch the application, it gives an error message.

cmdline Text given input to the program as command line parameters. (It is separated 
from the program parameter to protect against a common type of virus attack.)

stdIn Text to be piped to the StdIn input channel of the program.

block If you omit block or set it to True (1), RunConsoleProcess() blocks — that is, 
after calling the process, Analytica stops and waits until the console process ter-
minates and returns a result before it resumes execution. While blocked, Analyt-
ica still notices Windows events. If you press Control+Break (or Control+.) 
before the process terminates, it kills the process, and ends further computation 
by Analytica, just as when Analytica is computing without another process. 

If you set block to False (0), RunConsoleProcess() spawns an independent 
process that runs concurrently with Analytica. Within Analytica, it returns empty 
text. Analytica and the spawned process each continues running independently 
until it terminates. If you press Control+Break (or Control+.), it interrupts and 
stops further computations by Analytica, but has no effect on the spawned pro-
cess. An unblocking process might continue running even after you exit Analyt-
ica. Unblocking processes are useful when you want to send data to another 
application for display, such as a special graphing package or GIS, or for saving 
selected results. It is difficult for Analytica to get any results or status back from 
an unblocking process. If you need results back it is usually best to use a block-
ing process. 

curDir The directory the process should use as its default directory to read and write 
files. If omitted, it uses the application’s own directory as the default.

priority Sets the priority that Windows should give the spawned process relative to the 
Analytica process. The default (0) is the same priority as the Analytica process. 
Setting it to +1 or +2 raises its priority, taking more of the CPU for the process. -
1 or -2 lowers the priority, letting other processes (including Analytica) use more 
of the CPU. 

showErr Controls the display of error messages from a blocking process. By default, if the 
process writes anything to stdErr, Analytica displays it as an error message 
when the process terminates. If showErr=2 it shows any text in stdErr as a 
warning message. If showErr=0, it ignores anything in stdErr. Analytica always 
ignores any error in an unblocking process, which is assumed to control the dis-
play of its own errors.



 Analytica User Guide 385

Integrating with other ApplicationsChapter Analytica Enterprise22

The first parameter identifies the program to be launched. You don’t need to worry about quoting 
any spaces in the path name. The second parameter is the command line as it might appear on a 
command prompt. This expression returns the text value "Hello World". 

To send data to the StdIn of the process, include the optional parameter StdIn: 
RunConsoleProcess("C:\Windows\System32\CScript.exe",

"CScript /Nologo HelloWorld.vbs", StdIn: MyDataToSend)

where MyDataToSend is an Analytica variable that gives a text value. 

To run a batch file Suppose the directory C:\Try contains a data file named data.log and a batch file named 
DoIt.bat containing: 

# DoIt.bat — dump the log
Type data.log

This batch file assumes it is run from the directory C:\Try so does not mention the directory of 
data.log. From Analytica, you call: 

RunConsoleProcess("C:\Windows\System32\Cmd.exe", "Cmd /C DoIt.bat",
CurDir: "C:\Try")

Or you can run it directly: 
RunConsoleProcess("DoIt.bat", "DoIt.bat", CurDir: "C:\Try")



Chapter Analytica Enterprise

386 Analytica User Guide

22 Integrating with other Applications



Appendices

The following appendices shows you:

• How to select an appropriate sample size 
• The complete set of Analytica menus 
• The specifications for Analytica
• The list of reserved identifiers and error message types 
• Forward and backward compatibility information 
• A bibliography 
• A list of all the Analytica functions 



Appendices Appendices

388 Analytica User Guide

Appendix A: Selecting the Sample Size
Each probabilistic value is simulated by computing a random sample of values from the actual 
probability distribution. 

You can control the sampling method and sample size by using the Uncertainty setup dialog. 
This appendix briefly discusses how to select a sample size.

Choosing an
appropriate sample size

There is a clear trade-off for using a larger sample size in calculating an uncertainty variable. 
When you set the sample size to a large value, the result is less noisy, but it takes a longer time to 
compute the distribution. For an initial probabilistic calculation, a sample size of 20 to 50 is usually 
adequate.

How should you choose the sample size m? It depends both on the cost of each model run, and 
what you want the results for. An advantage of the Monte Carlo method is that you can apply 
many standard statistical techniques to estimate the precision of estimates of the output distribu-
tion. This is because the generated sample of values for each output variable is a random sample 
from the true probability distribution for that variable. 

Uncertainty about
the mean

First, suppose you are primarily interested in the precision of the mean of your output variable y. 
Assume you have a random sample of m output values generated by Monte Carlo simulation:

(1)

You can estimate the mean and standard deviation of y using the following equations: 

(2)

(3)

This leads to the following confidence interval with confidence α, where c is the deviation for the 
unit normally enclosing probability α:

(4)

Suppose you wish to obtain an estimate of the mean of y with an α confidence interval smaller 
than w units wide. What sample size do you need? You need to make sure that:

(5)

Or, rearranging the inequality:

(6)

To use this, first make a small Monte Carlo run with, say, 10 values to get an initial estimate of the 
variance of y — that is, s2. You can then use equation (6) to estimate how many samples reduce 
the confidence interval to the requisite width w. 

y1 y2 y3 …ym, , ,( )

y
yi
m
----

i 1=

m

∑=

s2 yi y–( )2

m 1–( )
--------------------

i 1=

m

∑=

y c s
m

--------– y c s
m

--------+,⎝ ⎠
⎛ ⎞

w 2c s
m

-------->

m 2cs
w

--------⎝ ⎠
⎛ ⎞

2
>



 Analytica User Guide 389

Appendices Appendices

For example, suppose you wish to obtain a 95% confidence interval for the mean that is less than 
20 units wide. Suppose your initial sample of 10 gives s = 40. The deviation c enclosing a proba-
bility of 95% for a unit normal is about 2. Substituting these numbers into equation (6), you get:

(7)

So, to get the required precision for the mean, you should set the sample size to about 64. 

Estimating confidence
intervals for fractiles

Another criterion for selecting sample size is the precision of the estimate of the median and other 
fractiles, or more generally, the precision of the estimated cumulative distribution. Assume that 
the sample m values of y are relabeled so that they are in increasing order:

c is the deviation enclosing probability α of the unit normal. Then the following pair of sample val-
ues constitutes the confidence interval:

where:

(8)

(9)

Note: The brackets in equations (8) and (9) above mean round up  and round down , since 
they are computing numbers that need to be integers.

Suppose you want to achieve sufficient precision such that the α confidence interval for the pth 
fractile is given by , where is an estimate of , and  is an estimate of . 
In other words, you want α confidence of  being between the sample values used as esti-
mates of the ( )th and ( )th fractiles. What sample size do you need? Ignoring the 
rounding, you have approximately:

, (10)

Thus: 

(11)

From equations (8) and (9) above, you have:

(12)

Equating the two expressions for , you obtain:

(13)

(14)

For example, suppose you want to be 95% confident that the estimated fractile Y.90 is between 
the estimated fractiles Y.85 and Y.95. So you have , and . Substituting the numbers 
into equation (14), you get:

(15)

m 2 2× 40×
20

------------------------⎝ ⎠
⎛ ⎞

2
> 82 64= =

y1 y2 …ym≤ ≤

yi yk( , )

i mp c mp 1 p–( )–=

k mp c mp 1 p–( )+=

Yp yi yk( , ) yi Yp Δp– yk Yp Δp+
Yp

p Δp– p Δp+

i m p Δp–( )= k m p Δp+( )=

k i– 2mΔp=

k i– 2c mp 1 p–( )=

k i–

2mΔp 2c mp 1 p–( )=

m p 1 p–( ) c
Δp
-------⎝ ⎠

⎛ ⎞
2

=

Δp 0.05= c 2≈

m 0.90· 1 0.90–( )× 2 0.05⁄( )
2

× 144= =



Appendices Appendices

390 Analytica User Guide

On the other hand, suppose you want the credible interval for the least precise estimated percen-
tile (the 50th percentile) to have a 95% confidence interval of plus or minus one estimated percen-
tile. Then:

(16)

These results are completely independent of the shape of the distribution. If you find this an 
appropriate way to state your requirements for the precision of the estimated distribution, you can 
determine the sample size before doing any runs to see what sort of distribution it might be.

m 0.5 1 0.5–( )× 2 0.01⁄( )
2

× 10 000,= =



 Analytica User Guide 391

Appendices Appendices

Appendix B: Menus

File menu

New Model Starts a new model.

Open Model Opens an existing, previously saved model.

Add Module Adds a filed module to the active model.

Add Library Opens file finder at Analytica Libraries folder to add a library 
module.

Close Closes the active window.

Close Model Closes the model after prompting you to save the file if it has 
changed.

Save Saves the model in its file. If the model has never been saved 
before, prompts for a file name and folder. If it has linked 
modules that have changed, it also saves them.

Save As Saves the active model, filed module, or filed library as a new 
file, after asking for new file name and folder.

Save A Copy In Saves a copy of the active model (or filed module) into a new 
file, after prompting for a file name, leaving the original file 
name for future saves. 

Import Imports the contents of a text or data file into the selected 
variable definition. See “Importing and exporting” on page 310.

Export Exports the contents of the selected field or cells into a file. See 
“Importing and exporting” on page 310.

Print Setup Opens a dialog for selecting paper size, orientation, and 
scaling options for printing.

Print Preview Opens a view showing where page breaks occur before the 
current window is printed. 

Print Opens a dialog for selecting the printer, number of copies you 
want to print, and other printing options.

Print Report Opens a dialog for printing multiple diagrams, Object windows, 
and result windows at the same time. See “Printing” on 
page 25.

Recent files Lists the six most recently opened Analytica model files. Select 
one to open that model. 

Exit Quits the Analytica application, after prompting to save any 
model changes to file.



Appendices Appendices

392 Analytica User Guide

Edit menu

Undo Undoes your last action. “Can’t Undo” appears in this location if an undo is 
not possible. 

Cut Cuts the selected text, node(s), or table cells into the clipboard temporarily 
for pasting.

Copy Copies the selected text, node(s), graph, or table cells into the clipboard 
temporarily for pasting. See “Copying and pasting” on page 304.

Paste Pastes the contents of the clipboard at the insertion point in a text, diagram, 
or table, or replaces the current selection. See “Copying and pasting” on 
page 304.

Paste Special Brings up a dialog to select the format of data to OLE link into an edit table.

Clear Deletes the selected text or node(s).

Select All Selects all the text in an attribute field, nodes in a diagram, or cells in a table.

Duplicate Nodes Duplicates the selected nodes onto the same diagram. See “Duplicate 
nodes” on page 49.

Copy Diagram or 
Copy Table

When a Diagram window is active, Copy Diagram copies a picture of the 
diagram for pasting into a graphics application. When a table window is 
active, Copy Table copies the entire multidimensional object as a 
tab-delimited list of tables. See “Copying and pasting” on page 304.

Insert Rows or
Insert Columns

Inserts an item into a list, or a row in a table, by copying the current item, or 
row. If a column in a table is selected, Insert Columns inserts an item or 
column. See “Editing a table” on page 168.

Delete Rows or
Delete Columns

Deletes the selected item or items in a list, or rows or columns in a table. See 
“Editing a table” on page 168.

Preferences Opens the Preferences dialog (page 56) to examine or change various 
options. 

OLE Links Opens a dialog to let you change properties for OLE links from external 
applications into your model. See Chapter 18, “Importing, Exporting, and 
OLE Linking Data.”



 Analytica User Guide 393

Appendices Appendices

Object menu

Find Opens a Find dialog to search for an object by its identifier or title. If a 
table is in focus, brings up the Find in Table dialog. See “Finding 
variables” on page 318.

Find Next Finds the next object that partially matches the previously defined text 
value. See “Finding variables” on page 318.

Find Selection Finds an object by its identifier that matches the currently selected text. 
See “Finding variables” on page 318.

Make Alias Creates an alias for the selected object(s). See “Alias nodes” on 
page 52.

Make Importance Creates an importance variable (and index) to compute the importance 
(rank correlation) of all uncertain inputs for the selected variable. See 
“Importance analysis” on page 277.

Make Input Node Creates an input node for the selected node(s).

Make Output 
Node

Creates an output node for the selected node(s). See “Using output 
nodes” on page 118.

Show By Identifier Shows the identifier instead of title of each object in the current diagram, 
edit table, Result window, or Outline view. Toggle to show title again.

Show With Values Shows the mid values of the variable and all its inputs in each Object 
window. See “Showing values in the Object window” on page 24.

Attributes Opens the Attribute dialog to set the visibility of attributes and define 
new attributes. See “Managing attributes” on page 319.

Hide Definition(s) Marks the currently selected node or module as hidden, so that their 
definitions are invisible. (Analytica Enterprise only) 

Unhide 
Definition(s)

Unhides the currently selected node or module. This overrides any 
settings in parent modules to hide definitions. (Analytica Enterprise only)



Appendices Appendices

394 Analytica User Guide

Definition menu
This menu is hierarchical. Each library lists the functions or other constructs it contains. The mid-
dle partition lists built-in libraries. At the bottom, are any libraries you have created or added. If 
you view and select a subitem when editing a definition, it pastes it into the definition.

Edit Definition Opens the appropriate view for editing the definition of the selected 
variable. If the variable is defined as a distribution or sequence, the 
Object Finder opens. If it is defined as a table or probability table, its 
edit table window opens. Otherwise, an Object window or Attribute 
panel opens, depending on the Edit attributes setting in the 
Preferences dialog (page 56).

Edit Time Opens the Object window for the Time system variable. See “The Time 
index” on page 292.

Paste Identifier Opens the Object Finder dialog for examining functions and variable 
identifiers, entering function parameters, and pasting them into 
definitions. See “Object Finder dialog” on page 108.

Show Invalid 
Variables

Displays a window listing all variables with invalid or missing definitions. 
See “Invalid variables” on page 321.

Math See “Math functions” on page 133. 

Array See Chapter 11, “Arrays and Indexes,” and Chapter 12, “More Array 
Functions.”

Distribution See Chapter 15, “Probability Distributions.”

Special Displays a list of unusual or less commonly used functions in the Special 
library.

Statistical See “Statistical functions” on page 270.

Operators Arithmetic, comparison, logical, and conditional operators. See 
“Operators” on page 130.

System 
Variables

System Variables submenu (see below).

Matrix See “Matrix functions” on page 203.

Text Functions See “Converting number to text” on page 134.

Financial See “Financial functions” on page 216.

Advanced Math See “Converting number to text” on page 134.

Database Appears only in Analytica Enterprise. See “Database functions” on 
page 370.

Optimizer Appears only if you have the Optimizer activated. See Optimizer Guide 
for more.

your libraries Lists the names of any libraries that you have defined or added to the 
model, each with a submenu that lists the functions contained in the 
library. See Chapter 20, “Building Functions and Libraries.”



 Analytica User Guide 395

Appendices Appendices

System Variables
submenu

Analyticaedition The edition of Analytica running, either “Optimizer”, “Enterprise”, 
“Professional”, “Power Player”, “Player”, “Trial”, “Lite”, “ADE” or “ADE 
Optimizer”.

Analyticaplatform The operating system/platform. In Analytica for Windows, this is “Windows,” 
in Analytica for Macintosh, this is “Macintosh,” and in the Analytica Decision 
Engine this is “ADE.” 

Analyticaversion An integer encoding the current build number of Analytica being run. In terms 
of the major release number, minor release number, and sub-minor release 
number, it is equal to:

For example, Analytica 4.1 subminor version 2 returns the value 40102.

False The logical (Boolean) constant that evaluates numerically to zero.

Issampleevalmode This is 1 when evaluated in Sample mode, or 0 when evaluated in Mid mode. 
You can use this in an expression when you need to compute a mid value 
differently than a probabilistic value.

Null A special system constant, returned by various functions when data does not 
exist at a requested location, and ignored by array-reducing functions when 
present in the cells of an array. See “Exception values INF, NAN, and NULL” 
on page 135.

Pi The ratio of circumference to the diameter of a circle.

Run The index for uncertainty sampling, defined as 
Sequence(1,Samplesize). 

Samplesize The number of sample iterations for probabilistic simulation. See 
“Uncertainty Setup dialog” on page 233.

Sampleweighting When this variable to an array indexed by Run, a different weight can be 
assigned to each probabilistic sample point. See “Importance weighting” on 
page 265.

Svdindex The SingularValueDecomp() function returns three matrices, 'U', 'W', 
and 'V'. To return all three at once, the return value is an array indexed by 
SvdIndex, which is equal to ['U','W','V'].

Time The index variable identifying the dimension for dynamic simulation (the 
Dynamic() function). See “The Time index” on page 292.

True The logical (Boolean) constant that evaluates numerically to nonzero.

10K Major⋅ 100 Minor⋅ SubMinor+ +



Appendices Appendices

396 Analytica User Guide

Result menu

Show Result Opens a Result window for the selected object. See “The Result 
window” on page 28.

Mid Value Displays the mid or deterministic value. See “Uncertainty views” on 
page 31.

Mean Value Displays the mean of the uncertain value. See “Uncertainty views” on 
page 31.

Statistics Displays statistics of the uncertain value in a table as set in the 
Uncertainty Setup dialog. See “Uncertainty views” on page 31.

Probability Bands Shows probability bands (percentiles) as set in the Uncertainty 
Setup dialog. See “Uncertainty views” on page 31.

Probability 
Density

Displays a probability density graph for an uncertain value. For a 
discrete probability distribution, Probability Mass replaces this 
command. See “Uncertainty views” on page 31.

Cumulative 
Probability

Displays a cumulative probability graph representing the probability 
that a variable’s value is less than or equal to each possible 
(uncertain) value. See “Uncertainty views” on page 31.

Sample Displays a table of the values determined for each uncertainty sample 
iteration. See “Uncertainty views” on page 31.

Graph Setup Displays a dialog to specify the graphing tool, graph frame, and graph 
style. See “Graphing roles” on page 84.

Number Format Displays a dialog to set the number format for displays of results. See 
“Number formats” on page 80.

Uncertainty 
Options

Displays a dialog to specify the uncertainty sample size and sampling 
method and to set options for statistics, probability bands, probability 
density, and cumulative probability. See “Uncertainty Setup dialog” on 
page 233.



 Analytica User Guide 397

Appendices Appendices

Diagram menu

Align submenu

Make Same Size submenu

Space evenly submenu

Set Diagram Style Displays a Diagram style dialog to set default arrow displays, 
node size, and font for this diagram. See “Diagram Style dialog” 
on page 76.

Set Node Style Displays Node style dialog to set arrow display and font for the 
selected node(s). See “Node Style dialog” on page 77.

Show Color 
Palette

Displays the color palette to set the color of the diagram 
background or of selected nodes. See “Recoloring nodes 
or background” on page 75.

Align Selection To 
Grid 

Aligns selected node(s) to the diagram grid. See “Align to the 
grid” on page 71.

Adjust Size Adjusts the selected node’s size to match the default node size, 
or to fit the title label. See “Default node size” on page 76.

Move Into Parent Moves the selected object from the current diagram to its parent 
diagram. See “The Object window” on page 21.

Resize Centered If checked, when you resize a node, the node’s center stays 
unmoved. If unchecked, when you resize a node by dragging a 
corner handle, the opposite handle stays unmoved. See “Align 
selected nodes” on page 71.

Change Picture 
Format

Opens a dialog that lets you convert the internal image format for 
any selected images to another image format.

Snap to Grid Turns alignment to the diagram grid on or off in edit mode.See 
“Align to the grid” on page 71.

Edit Icon Opens a window to draw or edit an icon for the selected node. 
See “Adding icons to nodes” on page 120.

Left Edges Aligns left edges. 

Centers Left and 
Right

Aligns centers along the same horizontal line.

Right Edges Aligns right edges.

Left and Right 
Edges

Moves and changes width so left and right edges are aligned 
vertically.

Top Edges Aligns top edges.

Centers Up and 
Down

Aligns centers along the same vertical line.

Bottom Edges Aligns bottom edges.

Width Makes all nodes the same width.

Height Makes all nodes the same height.

Both Makes all nodes the same width and height.

Across Spaces nodes evenly horizontally between leftmost and rightmost 
node.

Down Spaces nodes evenly vertically between top and bottom node.



Appendices Appendices

398 Analytica User Guide

Window menu

Help menu

Tip The options that appear on the help menu vary depending on your computer setup and the version 
of Analytica you have. 

Bring To Front Displays a list of the current windows; select one to display on top.

Show Memory Usage Opens a window showing memory usage. See “Numbers and arrays” on 
page 400.

Show Page Breaks Shows page breaks for the active diagram.

Cascade Rearranges all open windows using a standard size, organized so that 
you can see the title bar of each one. 

Tile Top to Bottom Rearranges all open windows so that they fill the application window 
horizontally.

Tile Left to Right Rearranges all open windows so that they fill the application window 
vertically.

User guide Opens the User Guide.

Optimizer Opens the Optimizer Manual (only appears in Optimizer-enabled version 
of Analytica).

Tutorial Opens the Analytica Tutorial.

Web tech support Opens your default web browser to the Analytica Tech Support page at 
http://www.lumina.com.

Email tech support Opens your email system to send an email to Analytica Tech Support.

Register Opens your default web browser to the Analytica software registration 
page at http://www.lumina.com.

Contact Lumina Provides contact information for Lumina.

Update license Displays your current Analytica license information and allow you to 
update the license code.

About Analytica Displays useful information such as the application’s edition, release 
number, your license code, and contact information.



 Analytica User Guide 399

Appendices Appendices

Right mouse button menus
Click the right mouse button on one or more nodes, a diagram background, or in other windows 
to get a menu of useful commands. The list of commands depends on the context. This menu is 
what you get when you right-click a node.
These two menu options appear only when you right-click one or more nodes. This is the only 
way to move some nodes in front of others.

Bring to Front Brings the selected object(s) to the front of the drawing order so that if the 
object(s) overlap any other elements, the object is visible.

Send to Back Sends the selected object(s) to the back of the drawing order so that the 
selected object(s) are drawn behind any overlapping elements.



Appendices Appendices

400 Analytica User Guide

Appendix C: Analytica Specifications

Memory usage
The Memory Usage window displays the amount of memory available on your system, as well as 
the memory currently in use by all applications, including Windows itself. The memory available 
on your system is the sum of all physical memory installed on your system and the pagefile on 
your hard disk, which is used to complement the physical memory.

To display the Memory Usage window, select Show Memory Usage from the Window menu. 
The memory usage displays in two sizes, depending on whether you check Expanded View. The 
expanded view contains a large number of memory statistics.

Hardware and software CPUs supported Pentium or higher and equivalent AMD processors 
recommended

System Software Windows XP, Vista, Windows 7, Server

Memory requirements 128 MB (512 MB+ recommended)

Application size Approximately 6 MB

Maximum memory usable by Analytica 
process.

Analytica 64-bit: 128GB (limited by max pagefile size)

Analytica 32-bit: 

4GB on Windows x64

3GB if /3GB flag added in C:\boot.ini

2GB without /3GB flag in C:\boot.ini

Objects Number of system objects 738

Maximum user-defined objects 31,900

Maximum number of local variables No fixed limit

Uncertainty Probability methods Random Latin HyperCube
Median Latin HyperCube
Monte Carlo

Maximum sample size 99,999,999 for Analytica Enterprise, Optimizer, Power 
Player, and ADE

30,000 (other Editions)
limited by available memory

Random sampling methods Minimal Standard
L’Ecuyer
Knuth

Numbers and arrays Number precision 15 significant digits for floating-point numbers
9 digits for integers

Maximum elements in a dimension 99,999,999 (Analytica Enterprise, Optimizer, Power 
Player, and ADE)
30,000 (other editions)

Maximum dimensions in an array 15



 Analytica User Guide 401

Appendices Appendices

Tip The above window appears automatically when Analytica runs low on memory. 

Expanded view:

If you require additional memory to run your model at a given sample size, you can take several 
steps to increase the amount of memory available to Analytica:

1. Close other open applications.

All applications require a segment of memory to operate, and this reduces the memory 
available to Analytica.

2. Increase the size of your computer’s pagefile. 

In Windows XP, right click on My Computer and select the Advanced tab. Select 
Performance Settings, Advanced, Virtual Memory Change. From the resulting dialog, 
increase maximum paging file size.

3. Analytica is a 32-bit process, and like all 32-bit process, the Windows operating system limits 
the maximum amount of memory that can be used by a 32-bit process to a default limit of 2GB. 
In Windows XP and Vista, this limit can be increased to 3GB by editing a system file 
C:\boot.ini. For the line corresponding to your operating in that file, append /3GB and 
/USERVA options. For example, after your edit, the line may be:
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows XP" /3GB /USERVA

After making the edit, a system reboot is required for this to take effect.
4. Consider adding more physical memory to your computer. 

If you are limited by the 3GB per process ceiling, then adding more memory will not increase 

Maximum memory (RAM+pagefile) currently available for use/
RAM load from all applications. 
High RAM loads can slow down 
computation as page file memory 
is used..

Button appears when computing.

Link opens Analytica Wiki page 
describing memory statistics and what 
they mean.

Statistics describing total memory 
utilization, consisting of RAM and pagefile

Statistics relating to physical RAM 
availability and utilization.

The Analytica Wiki page is the best 
place to look for detailed documentation 
on what all these fields mean.

Current sample size (reduce it if you are 
having memory problems); see 
“Uncertainty sample” on page 233.

When you watching which object is being 
evaluated, you may be able to spot particular 
variables that are memory intensive. Beware 
that this option slows overall computation 
speed dramtically.



Appendices Appendices

402 Analytica User Guide

available space, although it may speed up execution when other applications are also open. 
Analytica 64-bit will directly benefit from any RAM you add.

5. Add a solid-state drive to your computer and locate your page file on it. 
6. Consider ways to reorganize your model. Are there dimensions that can be removed from the 

model, or especially from problematic high-dimensional results. The Performance Profiler (in 
Analytica Enterprise) can help you pinpoint variables that consume a lot of memory.

For additional ideas for coping with memory limitations, see Managing Memory and CPU Time for 
large models on the Analytica Wiki (http://lumina.com/wiki).

http://lumina.com/wiki/index.php/Managing_Memory_and_CPU_Time_for_large_models
http://lumina.com/wiki/index.php/Managing_Memory_and_CPU_Time_for_large_models
http://lumina.com/wiki


 Analytica User Guide 403

Appendices Appendices

Appendix D: Identifiers Already Used
Each object, whether built-in or created by you, must have a unique identifier. This identifier must 
start with a letter, and can be up to 20 characters including letters, digits, and underscores. If you 
try to create an identifier already in use, it warns you and append a digit to make it unique.

To see all identifiers currently in use:

1. Press Control+’ (Control+single apostrophe), to open the Typescript Window
2. Type List, followed by Enter.



Appendices Appendices

404 Analytica User Guide

Appendix E: Error Message Types
There are several types of error messages in Analytica. Many messages are designed to inform 
you that something in the model needs to be corrected; some messages indicate that Analytica 
cannot continue or complete your request. Each error message begins with its message type, one 
of warning, lexical, syntax, evaluation, system, and fatal errors. 

In general, Analytica allows you to continue working on your model unless it cannot proceed until 
a problem has been corrected. When you are editing a variable definition, you can request an 
error message by pressing Alt-Enter or by clicking the definition warning icon .

Warning A warning indicates that there is a possible problem. Here is an example.

A warning is reported during result evaluation to inform you that continuing can yield unexpected 
results.

You can suppress evaluation warnings for all variables by disabling the Show result warnings 
preference (see “Preferences dialog” on page 56). When Show result warnings is unchecked, 
any warning conditions encountered during result evaluation is ignored. You can also suppress 
warnings during evaluation of a single expression with the IgnoreWarnings(expr) function. See 
“IgnoreWarnings(expr)” on page 361 for details.

If an identifier in a module you are adding to a model has a name conflict with an identifier in the 
model, you see a warning similar to the following.

Lexical error A lexical error occurs when a component of an expression was expected and is missing or is 
invalid. For example, if you enter a number with an invalid number suffix, you might get a mes-
sage similar to the following.

Syntax error A syntax error occurs when an expression contains a syntax mistake. Analytica often reports the 
mistake together with the fragment of the expression that contained the error. Here is an example.

The following are two common syntax errors.

If you attempt to change the identifier for a variable, and the new identifier is assigned to another 
node, you see a message similar to the following.

Warning: 

Log of non-positive number.

Warning: 

Can’t declare Variable Location because the Identifier
is already in use as Attribute Location.

Declare using the Identifier Location1? 

Lexical error while checking:

2sdf
^

Invalid exponent code. 

Expecting "," Indicates a comma is missing, or there are too few parameters to a function.

Expecting ")" Indicates there are too many parameters to a function.

Syntax error while checking:

2 + + 3
^

Expression expected.



 Analytica User Guide 405

Appendices Appendices

Evaluation error An evaluation error occurs when there is a problem while evaluating a variable, user-defined func-
tion, or system function. You are asked if you want to edit the definition of the variable currently 
being evaluated.

If a system function expects a specific kind of argument, an error message similar to the following 
is displayed.

This message indicates that an argument passed to the function is of a different type or cannot be 
handled by that function. You might need to redefine a variable being used as an argument to the 
function, or change an expression being passed as an argument.

Invalid number If a calculation tries to perform a division by zero, it displays a warning with an option to continue 
calculating. Three possible error codes can be returned as a result of an invalid calculation.

You can test for these results in an expression using "X=INF", Isnan(X), or X=NULL.

System error If you see this message type, please contact Lumina Decision System’s technical support depart-
ment to report the error. (See inside the front cover for contact information, or go to 
www.lumina.com.)

Out of memory error Indicates that Analytica has used up all available memory and cannot complete the current com-
mand. If this occurs, first save your model. Before attempting to evaluate again, close some win-
dows, use a smaller sample size, or expand the memory available to Analytica (see “Numbers 
and arrays” on page 400).

Syntax error: 

The Identifier "Location" is already in use.

Error during evaluation of Ch1.

Do you want to edit the Definition of Ch1?

Evaluation error: 

First parameter of Sysfunction Argmax must be 
a table.

Code Meaning

INF Infinity, such as 1/0.

NAN Not A Number. Results from invalid functions such as Sqrt(-1), or 0/0.

NULL
(blank)

Displays as a blank cell if the result is a table, or shows the Compute button 
otherwise. Results from certain functions, such as SubIndex(), when a 
result is not available.



Appendices Appendices

406 Analytica User Guide

Appendix F: Forward and Backward Compatibility
Backward compatibility Models created in earlier releases of Analytica can be loaded, viewed, evaluated, and modified 

with Analytica 4.2. There is no fundamental difference in file format, so no file conversion must 
take place. There are, however, some changes that could affect your results when migrating a 
model from a previous release to 4.2.

When you are trying a model for the first time in 4.2, the first thing you should do is ensure that 
Show Result Warnings is checked in the Preferences dialog. While evaluating your model, avoid 
selecting Ignore Warnings if warnings do appear. If any expression in your model produces a 
warning that you can live with, surround the expression with IgnoreWarnings(...) to suppress the 
warning, so that you don’t feel compelled to select the Ignore Warnings button. When you leave 
warnings on while your model evaluates, any potential backward-compatibility issues are 
reported to you.

The most commonly encountered difference is the multiplication of NaN or INF by zero. In earlier 
releases of Analytica (prior to 4.0), multiplying INF or NaN by zero results in 0, while now it results 
in NaN (with a warning, if “Check result warnings” is on). The new 4.0+ treatment here is in accor-
dance with the IEEE 754 binary floating point arithmetic standard. It was not uncommon by Ana-
lytica 3.1 modelers to zero-out NaNs and INFs with a multiplication by zero. Now you might need 
to use IF-THEN-ELSE instead. If you find certain results have suddenly changed to NaN, this is 
the likely reason. 

There have been many bug fixes in Analytica 4.2, so if for some reason your model utilized an 
undocumented feature that was really a bug, a change in model behavior could result. There are 
also numerous uncommon situations where there are syntactic and evaluation differences 
between the releases. In a correctly functioning model from a previous release, you are unlikely to 
encounter these, but they are documented in detail on the Analytica Wiki at http://lumina.com/
wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models.

Generally when you load a model into Analytica and evaluate uncertain variables in an identical 
sequence, the identical random samples are returned. (Also, when you reset the random seed, 
you can reproduce the same sample.) In most, but not all, cases, Analytica 4.2 returns the same 
sample returned by Analytica 3.1 or 4.0; however, this is not guaranteed, and there are several 
cases where the sample is different. Although the samples in each release come from the same 
distribution, the precise points in the random samples might be different, causing changes in your 
results. Uncertain results inherently have a certain “sampling error” arising from the fact that a 
finite sample size is used. These differences, when they occur, reflect this sampling error. Two 
uses of distribution functions that are likely to result in a sampling difference are certain hierarchi-
cal uses of distributions, in which the parameters to distribution functions are themselves uncer-
tain, and use of the Truncate function (which now preserves rank order). In the hierarchical 
cases, several distribution functions are more efficient now, requiring fewer random numbers to 
be generated when producing the entire sample. In either case, once a different number of 
pseudo-random numbers are utilized, you see all samples from that point on changed. 

Forward compatibility It is also possible to run models created or edited in Release 4.2 in earlier releases of Analytica, 
such as Analytica 4.0 or 3.1, provided you don’t rely on functions, features, or functionalities new 
to Analytica 4.2. The models load into earlier releases of Analytica, although they might encounter 
problems during parsing or evaluation in the places where 4.2 features are used. A few 4.2 fea-
tures might be stripped out of the model if it is re-saved from 3.1, including, for example, graphing 
settings for graphs viewed while the model was loaded in 3.1. 

If you have pasted bitmap graphics onto a diagram in 4.2, these will not display when your model 
is loaded into Analytica 4.0 or earlier, due to a new feature in 4.1 that compresses these images 
into an internal PNG format. The Change Picture Format option on the Diagram menu in 4.2 
can be used to convert these back to the Legacy Bitmap format so that they display in earlier 
releases (at a price of increased space consumed).

There are two issues related to edit tables that could potentially create a problem when loading a 
model edited with 4.0 or 4.1 into an earlier release of Analytica. If a computed index has changed 
in the model since the downstream edit tables have been accessed, some edit tables might not 
yet be fully spliced. When loaded into Analytica 3.1, unspliced edit tables do not successfully 
parse. To avoid this, prior to saving the model from Analytica 4.2, access the typescript windows 

http://lumina.com/wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models
http://lumina.com/wiki/index.php/Changes_in_4.0_that_could_impact_3.x_models


 Analytica User Guide 407

Function List

When viewing this list online, click the 
category or function name to see details.

Basic Math
Abs, Sign, Mod, Sqr, Sqrt, Exp, Ln, 
Logten, Round, Ceil, Floor, 
Factorial, Radians, Degrees, Sin, 
Cos, Tan, Arctan

Advanced Math
Arccos, Arcsin, Arctan2, Bessel*, 
BetaFn, BetaI, BetaIInv, 
Combinations, Cosh, CumNormal, 
CumNormalInv, Erf, ErfInv, 
GammaFn, GammaI, GammaIInv, 
Lgamma, Permutations, Regression, 
Sinh, Tanh

Creating Arrays
[ ... ], m..n, Array, CopyIndex, 
DetermTable, Sequence, SubTable, 
Table

Array-Reducing
Area, Argmin, Argmax, Average, Max, 
Min, Product, Subindex, Sum, 
CondMin, CondMax, 
PositionInIndex

Transforming Arrays
Aggregate, Cumproduct, Cumulate, 
Integrate, Normalize, Rank, Sort, 
Sortindex, Uncumulate

Selecting from Arrays
x[i=v], x[@i-n], x[Time=n], 
Choice, Slice, Subscript

Interpolation
Cubicinterp, Linearinterp, 
Stepinterp

Other Array Functions
Concat, ConcatRows, Size, 
Subindex, Subset, Unique, Rank, 
IndexesOf, IndexNames, 
IndexValue

Relational to Array conversions
MDArrayToTable, MDTable

Matrix Functions
Decompose, Determinant, 
DotProduct, Invert, 
MatrixMultiply, Transpose, 
EigenDecomp, 
SingularValueDecomp

Continuous Distributions
Beta, ChiSquared, Cumdist, 
Exponential, Gamma, Logistic, 
Lognormal, Normal, Probdist, 
Random, Shuffle, StudentT, 
Triangular, Truncate, Uniform, 
Weibull

Discrete Distributions
Bernoulli, Binomial, Certain, 
Chancedist, Geometric, 
Hypergeometric, Poisson, 
Probtable, Uniform

Multivariate Distributions
BiNormal, Correlate_dists, 
Correlate_with, Dirichlet, 
Gaussian, Multinomial, 
MultiNormal, MultiUniform, 
Normal_correl, RegressionDist

Statistical Functions
CDF, Correlation, Covariance, 
Frequency, Getfract, Kurtosis, 
Mean, Median, Mid, PDF, 
Probability, Probbands, 
Rankcorrel, Regression, Sample, 
Sdeviation, Skewness, Statistics, 
Variance

Text Functions
&, Asc, Chr, FindinText, JoinText, 
ParseNumber, SelectText, 
SplitText, TextTrim, 
TextUpperCase, TextLength, 
TextLowerCase, 
TextSentenceCase,
TextReplace

Sensitivity Analysis
Correlation, Dydx, Elasticity, 
Rankcorrel, Regression, Whatif, 
WhatIfAll

Special Functions
ComputedBy, Dynamic, Error, 
Evaluate, EvaluateScript, 
IgnoreWarnings, Iterate, 
Subindex, Time, Today, Whatif, 
WhatIfAll

Miscellaneous Functions
CurrentDataDirectory, 
CurrentModelDirectory, 
GetRegistryValue, Handle, 
HandleFromIdentifier, 
RunConsoleProcess

Financial Functions
Cumipmt, Cumprinc, Fv, Ipmt, Irr, 
MIrr, Nper, Npv, Pmt, Ppmt, Pv, Rate, 
XIrr, XMIrr, Xnpv, YearFrac

Dates
DateAdd, DatePart, MakeDate, 
MakeTime, ParseDate, Today

Dialog Functions
MsgBox, AskMsgNumber, AskMsgText, 
ShowProgressBar, Error, 
ShowPdfFile

Operators
@, + - * / ^ < <= = <> >= > : & \ # NOT 
OR AND OF

Database Access
DBLabels, DBQuery, DBTable, 
DBTableNames, DBWrite, MdxQuery, 
SqlDriverInfo, ReadFromUrl, 
ReadTextFile, WriteTextFile

Excel Access Functions
SpreadsheetOpen, 
SpreadsheetSave, 
SpreadsheetCell, 
SpreadsheetRange, 
SpreadsheetSetCell, 
SpreadsheetSetRange

Data Types
IsHandle, IsNaN, IsNull, IsNumber, 
IsReference, IsText, IsUndef, 
TypeOf

Control Constructs
(s1;s2;...), Begin ... End, 
For...Do..., Index, 
If...Then...Else..., IfAll, 
IfOnly, IgnoreWarnings, Iterate, 
MemoryInUseBy, Var, 
While...Do...

System Variables
AnalyticaEdition,
AnalyticaPlatform, 
AnalyticaVersion, 
IsSampleEvalMode, Run, 
Samplesize, SampleWeighting, 
Time

System Constants
False, Null, Pi, True, INF

Object Classes
Chance, Constant, Decision, Form, 
Index, Library, Model, Module, 
Objective, Variable

Parameter Qualifiers
All, Atom, Array, Ascending, 
Coerce, Context, ContextSample, 
Descending, Handle, Index, 
IsNotSpecified, Mid, Nonnegative, 
Number, Optional, OrNull, 
Positive, Prob, Reference, Sample, 
Text, Variable

Optimizer Functions
See the Optimizer Guide for information on 
these functions.
LpDefine, LpFindIIS, LpObjSA, 
LpOpt, LpRead, LpSolution, 
LpStatusNum, LpStatusText, 
LpWrite, LpWriteIIS, NlpDefine, 
QpDefine, Logistic_regression, 
Prob_regression, 
Poisson_regression



Appendix Function List

408 Analytica User Guide

H



Glossary

This glossary defines special terms used for Analytica and selected sta-
tistical terms.



Glossary

410 Analytica User Guide

ADE See “Analytica Decision Engine.”

Alias A node in a diagram that refers to a variable or other node located somewhere else, usually in 
another module. An alias permits you to display a variable in more than one module. An alias 
node is distinguished by having its title in italics. See “Alias nodes” on page 52.

Analytica Decision
Engine

An Edition of Analytica that runs Analytica models on a server computer. The Analytica Decision 
Engine (or ADE) provides an application programming interface (API) instead of Analytica’s 
graphical end user interface. You can write custom applications in Visual Basic, C++, C#, Micro-
soft Office, or any language supporting ActiveX Automation or COM to access ADE via its API. 
For example, you could write a web application that lets you view and run an Analytica model 
from a web browser on a server. See “Editions of Analytica” on page 6.

Analytica Enterprise An edition of Analytica that includes all features of Analytica Professional, and adds functions for 
accessing databases, Huge arrays, creating buttons and scripts, model profiling, and the ability to 
save models that are browse-only and hide selected aspects of a model that are proprietary or 
confidential. See “Editions of Analytica” on page 6 and Chapter 22, “Analytica Enterprise” on 
page 363.

Analytica Optimizer An edition of Analytica that includes all features of Analytica Enterprise, and adds the Optimizer 
engine with functions for linear and nonlinear programming. See “Editions of Analytica” on 
page 6.

Analytica Player A free edition of Analytica that lets you open, view, and run a model. It lets you change variables 
designated as inputs, and generate corresponding results. It does not let you edit the model or 
save changes. See “Editions of Analytica” on page 6.

Analytica Power Player An edition of Analytica that lets you open, view, run a model, and change variables designated as 
inputs. Like the free Player edition, it does not let you edit the model other than inputs. But it does 
let you save changes, and it offers the database access and Huge Array features of Analytica 
Enterprise. See “Editions of Analytica” on page 6.

Analytica Professional The standard edition of Analytica. It provides all the features and functionality required to create, 
edit, and evaluate models. See “Editions of Analytica” on page 6.

Analytica Trial An edition of Analytica that offers all features of the Professional edition for a trial period, say of 
15 days. You can download Analytica Trial from the Lumina web site (www.lumina.com) for a test 
drive. After expiration, Analytica Trial converts to Analytica Player edition. See “Editions of Analyt-
ica” on page 6.

Array A collection of values that can be viewed as a table or graph. An array has one or more dimen-
sions, each identified by an index. See “Introducing indexes and arrays” on page 140.

Array abstraction See “Intelligent array abstraction.”

Arrow An arrow or influence from one variable node to another indicates that the origin node affects 
(influences) the destination node. If the nodes depict variables, the origin variable usually appears 
in the definition of the destination variable. See “Drawing arrows” on page 49.

Arrow tool A tool available from the edit tool in the toolbar in the shape of an arrow pointing right. In arrow 
mode, the cursor changes to this arrow. In this mode, you can draw arrows from one node to 
another to define influences. See “Drawing arrows” on page 49.

Attribute A property or descriptor of an object, such as its title, description, definition, value, or inputs. See 
“Managing attributes” on page 319.

Attribute panel An auxiliary window pane that you can open below a diagram or outline window. Use the Attri-
bute panel to rapidly examine one attribute at a time of any variable in the model, by selecting the 
variable and then the attribute from a popup menu. See “The Attribute panel” on page 22.

Author An attribute recording the name(s) of the person or people who created the model, or other 
object. See “The model’s Object window” on page 46.

Behavior analysis Model behavior analysis is a type of sensitivity analysis in which you specify a set of alternative 
values for one or more inputs and examine the effect on selected model output variables. It is also 
known as parametric analysis. See “Analyzing Model Behavior” on page 39.

Browse-only models A model that you can open, run, and change designated inputs, but not make other changes even 
if you have an edition of Analytica that is normally capable of editing a model. You can create a 



 Analytica User Guide 411

Glossary

Browse-only model with Analytica Enterprise. Browse-only models are also obfuscated, meaning 
that the model file is encrypted and not readable or editable. See “Making a browse-only model 
and hiding definitions” on page 374.

Browse tool The browse tool is in the shape of a hand. With the browse tool, you can examine the diagram but 
cannot make any changes, except to input variables. See “Browse mode” on page 21.

Chance variable An variable that is defined as uncertain by a probability distribution. A chance variable is depicted 
as an oval node. See “Classes of variables and other objects” on page 18.

Check The check attribute contains an expression that checks the validity of the value of a variable. It 
usually displays a warning message when the check fails. See “Checking for valid values” on 
page 111.

Class The type of Analytica object: decision, chance, objective, or index variable; function; module; 
library; form; model. See “Classes of variables and other objects” on page 18.

Cloaking See “Definition Hiding.”

Conditional dependency A chance variable a is conditionally dependent on another variable b if the probability of a value 
of a depends on the value of b. If a is defined by a probability table, b can be an index of its prob-
ability table. See “Add a conditioning variable” on page 247.

Constant A variable whose value is not probabilistic, and does not depend on other variables, such as the 
number of minutes in an hour. See “Classes of variables and other objects” on page 18.

Continuous distribution A probability distribution defined for a continuous variable — that is, for a real-valued variable. 
Example continuous distributions are beta, normal, and uniform. Compare to “Discrete distribu-
tion.” See “Parametric continuous distributions” on page 249 and subsequent sections.

Continuous variable A variable whose value is a real number — that is, one of an infinite number of possible values. Its 
range can be bounded (for example, between 0 and 1) or unbounded. Compare to “Discrete vari-
able.” See “Is the quantity discrete or continuous?” on page 228.

Created The date and time at which the model was first created. This model attribute is entered automati-
cally, and is not user-modifiable. See “The model’s Object window” on page 46.

Cumulative probability
distribution

A graphical representation of a probability distribution that plots the cumulative probability that the 
actual value of the uncertain variable x is less than or equal to each possible value of x. The 
cumulative probability distribution is a display option in the Uncertainty View popup menu. See 
“Cumulative probability” on page 34.

Data source A data source is described by a text value, which might contain the Data Source Name (DSN) of 
the data source, login names, passwords, etc. See “DSN and data source” on page 364.

Decision variable A variable that the decision maker can control directly. Decision variables are represented by rect-
angular nodes. See “Classes of variables and other objects” on page 18.

Definition A formula for computing a variable’s value. The definition can be a simple number, a mathemati-
cal expression, a list of values, a table, or a probability distribution. In text format, it is limited in 
length to 32,000 characters. See “Creating and Editing Definitions” on page 103.

Definition Hiding A feature in Analytica Enterprise for protecting your intellectual property when distributing models 
you have created to others. Definition hiding controls whether the end-user of your model can 
view the definitions of selected nodes. See “Making a browse-only model and hiding definitions” 
on page 374.

Description Text explaining what the node represents in the real system being modeled. It is limited in length 
to 32,000 characters. See “Attributes of a function” on page 329.

Deterministic table A deterministic function that gives the value of a variable x conditional on the values of its input 
variables. The input must all be discrete variables. The table is indexed by each of its inputs, and 
gives the value of x that corresponds to each combination of values of its inputs. See “Creating a 
DetermTable” on page 201.

Deterministic value A variable’s deterministic value, or mid value, is a calculation of the variable’s value assuming all 
uncertain inputs are fixed at their median values. See “Uncertainty views” on page 31.

Deterministic (determ)
variable

A variable that is a deterministic function of its inputs. Its definition does not contain a probability 
distribution. The value of a deterministic variable can be probabilistic if one or more of its inputs 



Glossary

412 Analytica User Guide

are uncertain. A deterministic variable is displayed as a double oval. You can also use a general 
variable (rounded rectangle) to depict a deterministic variable. See “Classes of variables and 
other objects” on page 18.

Determtable See “Deterministic table.”

Diagram See “Influence diagram.”

Dimension An array has one or more dimensions. Each dimension is identified by an index variable. When 
an array is shown as a table, the row header (vertical) and column headers (horizontal) give the 
two dimensions of the table. See “Introducing indexes and arrays” on page 140.

Discrete distribution A probability distribution over a finite number of possible values. Example discrete distributions 
are Bernoulli and the Probtable function. Compare to “Continuous distribution.” See “Parametric 
discrete distributions” on page 241.

Discrete variable A variable whose value is one of a finite number of possible values. Examples are the number of 
days in a month (28, 29, 30, or 31), or a Boolean variable with possible values True and False. 
A variable that is defined as a list or list of labels is discrete. Compare to “Continuous variable.” 
See “Is the quantity discrete or continuous?” on page 228.

Domain The possible outcomes of a variable. The domain has a type as well as value. The possible types 
are List of Labels, List of Numbers, or Continuous; the default type is Continuous, except for vari-
ables defined with the Choice(), Probtable(), and Determtable() functions. See “The domain 
attribute and discrete variables” on page 244.

DSN The Data Source Name (DSN) provides connectivity to a database through an ODBC driver. The 
DSN contains the database name, directory, database driver, user ID, password, and other infor-
mation. See “DSN and data source” on page 364.

Dynamic variable A variable that depends on the system variable Time and is defined by the Dynamic() function. 
A dynamic variable can depend on itself at a previous time period, directly or indirectly, through 
other dynamic variables. See “Dynamic Simulation” on page 291.

Edit table A definition defined by the Table function, also called an edit table because it can be edited. See 
“Defining a variable as an edit table” on page 166 and “Editing a table” on page 168. 

Editable table A table that the end user can edit directly when it is a model input, including an edit table (table), 
probability table (probtable), deterministic table (determtable), or subtable. See “Defining a vari-
able as an edit table” on page 166

Edit tool A tool is used to create a new model or to change an existing model. It allows you to move, resize, 
and edit nodes, and exposes the arrow tool and node palette.The edit tool is in the shape of the 
normal mouse pointer cursor. See “Creating and editing nodes” on page 47.

Expression A formula that can contain numbers, variables, functions, distributions, and operators, such as 
0.5, a-b, or Min(x), combined according to the Analytica language syntax. The definition of a 
variable must contain an expression. See “Using Expressions” on page 127.

Expression type The expr (Expression) popup menu, which appears above the definition field, allows you to 
change the definition of a variable to one of several different kinds of expressions. Expression 
types include expression, list (of expressions or numbers), list of labels (text values), table, proba-
bility table, and distribution. Any definition, regardless of expression type, can be viewed as an 
expression. See “The Expression popup menu” on page 107.

File Info The name of the file and folders in which the model was last saved. 

Filed library A library whose contents are saved in a file separate from the model that contains it. A filed library 
can be shared among several models without making a copy for each model. See “Using filed 
modules and libraries” on page 321.

Filed module A module whose contents are saved in a file separate from the model that contains it. A filed mod-
ule can be shared among several models without making a copy for each model. See “Using filed 
modules and libraries” on page 321.

Fractile The median is the 0.5 fractile. More generally, there is probability p that the value is less than or 
equal to the p fractile. Quantile is a synonym for fractile. (Fractal is something different!) Compare 
to “Percentile.” See “GetFract(x, p)” on page 272.



 Analytica User Guide 413

Glossary

General variable A variable that can be certain or probabilistic. It is often convenient to define a variable as a gen-
eral variable without worrying about what particular kind of variable it is. A general variable is 
depicted by a rounded rectangle node. See “Classes of variables and other objects” on page 18.

Graph Format for displaying a multidimensional result. To view a result as a graph, click the Graph but-
ton. See also “Table.” See “Viewing a result as a graph” on page 30. 

Graphing role An aspect of a graph or chart used to display a dimension (or Index) of an array value. They 
include the horizontal axis, vertical axis, and key. See “Graphing roles” on page 84.

Identifier A unique name for a variable used in expressions in definitions. An identifier must start with a let-
ter, have no more than 20 characters, and contain only letters, numbers, and underscore (_) char-
acters (which are used instead of spaces). Each identifier in a model must be unique. Compare to 
“Title.” See “Identifiers and titles” on page 48.

Importance analysis Importance analysis lets you determine how much effect the uncertainty of one or more input vari-
ables has on the uncertainty of an output variable. Analytica defines importance as the rank order 
correlation between the sample of output values and the sample for each uncertain input. It is a 
robust measure of the uncertain contribution because it is insensitive to extreme values and 
skewed distributions. 

Unlike commonly used deterministic measures of sensitivity, this rank order correlation averages 
over the entire joint probability distribution. Therefore, it works well even for models where the 
sensitivity to one input depends strongly on the value of another. See “Importance analysis” on 
page 277.

Index An index of an array identifies a dimension of that array. An index is usually a variable defined as 
a list, list of labels, or sequence. An index is often, but not always, a variable with a node class of 
Index. See “Introducing indexes and arrays” on page 140.

The plural, indexes, indicates a set of index variables that define the dimensions of a table (in an 
edit table or value).

Index selection area The top portion of a Result window, containing a description of the result and other information 
about the dimensions of the result. See “Index selection” on page 29.

Index variable A class of variable, defined as a list, list of labels, or sequence, that identifies the dimensions of 
an array — for example, in an edit table. An index variable is depicted as a parallelogram node. 
Variables of other classes whose definition or domain consist of list, list of labels, or sequence 
can also be used to identify the dimensions of an array, and are sometimes referred to as index 
variables. See “Classes of variables and other objects” on page 18.

Influence arrow See “Arrow.”

Influence cycle A cyclic dependency occurs when a variable depends on itself directly or indirectly so that the 
arrows form a directed circular path. The only cyclic dependencies allowed in Analytica are in 
variables using the Dynamic() function that contain a time lag on the cycle. See “Influence cycle 
or loop” on page 50.

Influence diagram An intuitive graphical view of the structure of a model, consisting of nodes and arrows. Influence 
diagrams provide a clear visual way to express uncertain knowledge about the state of the world, 
decisions, objectives, and their interrelationships. See “The Object window” on page 21.

Innermost dimension The dimension of an array that varies most rapidly in the Table() function. The innermost dimen-
sion is the last index listed in a Table() or Array() function. Compare to “Outermost dimension.” 
See “Array(i1, i2, … in, a)” on page 179 and “Table(i1, i2, … in) (u1, u2, u3, … um)” on page 181.

Input node A node in a diagram that gives easy access to view and change the value of a variable. This can 
be a field, choice menu, or edit table. An input node is an alias to a variable. See also “Output 
node.” See “Using input nodes” on page 116.

Input arrowhead An arrowhead pointing into a node, indicating that the node has one or more inputs from outside 
its module. Click the arrowhead for a popup menu of the input variables. See “Arrows linking to 
module nodes” on page 50.

Inputs attribute A computed attribute listing the variables and functions used in the definition of this object. The 
inputs are determined by the arrows drawn to and the variables or functions referred to in this 



Glossary

414 Analytica User Guide

variable’s or function’s definition or check attribute. See also “Outputs attribute.” See “Using input 
nodes” on page 116.

Intelligent array
abstraction

A powerful key feature of the Analytica Engine that automatically propagates and manages the 
dimensionality of multidimensional arrays within models. See “Summary of Intelligent Arrays and 
array abstraction” on page 156.

Key In a results graph, the key shows the value of the key index variable that corresponds to each 
curve, indicated by pattern or color. See “Graphing roles” on page 84.

Kurtosis A measure of the peakedness of a distribution. A distribution with long thin tails has a positive kur-
tosis. A distribution with short tails and high shoulders, such as the uniform distribution, has a 
negative kurtosis. A normal distribution has zero kurtosis. See “Kurtosis(x)” on page 272.

Last Saved The date and time at which the model was last saved. This model attribute is entered automati-
cally, and is not user-modifiable. If the model is new, this field remains empty until the model is 
first saved. 

Library A model component that typically contains a collection of user-defined functions and variables to 
be shared. See “Libraries” on page 335.

List A type of expression available in the expr menu consisting of an ordered set of numbers or 
expressions. A list is often used to define index and decision variables. See “Creating an index” 
on page 159.

List of labels A type of expression available in the expr menu consisting of an ordered set of text items. A list of 
labels is often used to define index and decision variables. See “Creating an index” on page 159.

Matrix A two-dimensional array of numbers with indexes of equal length. See “Matrix functions” on 
page 203.

Mean The average of the population, weighted by the probability mass or density for each value. The 
mean is also called the expected value. The mean is the center of gravity of the probability den-
sity function. See “Mean(x)” on page 271.

Median The value that divides the range of possible values of a quantity into two equally probable parts. 
Thus, there is 0.5 probability that the uncertain quantity is less than or equal to the median, and 
0.5 probability that it is greater than the median.

Mid value The result of evaluating a variable deterministically, holding probability distributions at their 
median value. Analytica calculates the mid value of a variable by using the mid value of each 
input. The mid value is a measure of central value, computed very quickly compared to uncer-
tainty values. Compare “Prob value.” See “Uncertainty views” on page 31.

Mode The most probable value of the quantity. The mode is at the highest peak of the probability den-
sity function. On the cumulative probability distribution, the mode is at the steepest slope, at the 
point of inflection. See “Probability density” on page 34.

Model The main module containing all the objects that comprise an Analytica model. A model can con-
tain a hierarchy of modules and libraries. Between sessions, a model is stored in an Analytica 
document file with extension .ana. See “Models” on page 16.

Module A collection of related nodes, typically including variables, functions, and other modules, orga-
nized as a separate influence diagram. A module is depicted in a diagram as a node with a thick 
outline. See “Classes of variables and other objects” on page 18.

Module hierarchy A model can contain several modules, each one containing details of the model. Each module 
can contain further modules, containing still more detail. This module hierarchy is organized as a 
tree with the model at the top. You can view the hierarchical structure in the Outline window. See 
“Organizing a module hierarchy” on page 73 and “Show module hierarchy preference” on 
page 316.

Multimodal distribution A probability distribution that has more than one mode. See “How many modes does it have?” on 
page 229.

Node A shape, such as a rectangle, oval, or hexagon, that represents an object in an influence diagram. 
Different node shapes are used to represent different types of variables. See “Classes of vari-
ables and other objects” on page 18.



 Analytica User Guide 415

Glossary

Normal distribution The bell-shaped curve, also known as a Gaussian distribution. See “Normal(mean, stddev)” on 
page 250.

Obfuscated Saved in a non-human-readable (i.e., encrypted) form. Obfuscation provides a mechanism for 
protecting intellectual property. Analytica Enterprise users can distribute obfuscated copies of 
their models to their end-users. In Analytica, obfuscation also has the effect of making settings for 
definition hiding and/or browse-only mode permanent. See “Making a browse-only model and hid-
ing definitions” on page 374.

Object A variable, function, or module in an Analytica model. Each object is depicted as a node in an 
influence diagram and is described by a set of attributes. See also “Class,” “Node,” “Attribute,” 
and “Influence diagram.” See “Classes of variables and other objects” on page 18.

Object Finder A dialog used to browse and edit the functions and variables available in a model. See “Object 
Finder dialog” on page 108.

Object window A view of the detailed information about a node. The Object window shows the visible attributes, 
such as a node’s type, identifier, and description. See “The Object window” on page 21.

Objective variable A variable that evaluates the overall desirability of possible outcomes. The objective can be mea-
sured as cost, value, or utility. A purpose of most decision models is to find the decision or deci-
sions that optimize the objective — for example, minimizing cost or maximizing expected utility. 
An objective variable is represented by a hexagonal node. See “Classes of variables and other 
objects” on page 18.

ODBC Open Database Connectivity (ODBC) is a widely used standard for connecting to relational data-
bases, on either local or remote computers, and issuing queries in Standard Query Language 
(SQL). See “Overview of ODBC” on page 364.

OLE linking A standard in the Windows operating system for sharing data between applications. See “Using 
OLE to link results to other applications” on page 304.

Operator A symbol, such as a plus sign (+), that represents a computational process or action such as 
addition or comparison. See “Operators” on page 130.

Outermost dimension The dimension of an array that varies least rapidly in the Table() function. The outermost dimen-
sion is the first index listed in a Table() or Array() function. Compare to “Innermost dimension.” 
See “Array(i1, i2, … in, a)” on page 179 and “Table(i1, i2, … in) (u1, u2, u3, … um)” on page 181.

Outline window A view of a model that lists the objects it contains as a hierarchical outline. See “The Outline win-
dow” on page 316.

Output node A node in a diagram that gives easy access to see the result of a variable, as a number, table, or 
graph. This can be a field, choice menu, or edit table. An output node is an alias to a variable. See 
also “Input node.” See “Using output nodes” on page 118.

Output arrowhead An arrowhead pointing out of a node, indicating that the node has one or more outputs outside its 
module. Click the arrowhead for a popup menu of the output variables. See “Arrows linking to 
module nodes” on page 50.

Outputs attribute A computed attribute listing the variables and functions that mention this variable in their defini-
tion. The outputs are determined by the arrows drawn from this variable or function and the vari-
ables or functions in whose definition or check attribute this variable or function appears. See also 
“Inputs attribute.” See “Using output nodes” on page 118.

Parameters Values or expressions passed to a function, in parentheses after the function name, sometimes 
termed arguments. See “Function calls and parameters” on page 132.

Parametric analysis See “Behavior analysis.”

Parent The parent of an object is the module that contains it. 

Percentile The median is the fiftieth percentile (also written as 50%ile). More generally, there is probability p 
that the value is less than or equal to the pth percentile. Compare to “Fractile.” See “GetFract(x, 
p)” on page 272.

Probabilistic variable A variable that is uncertain, and is described by a probability distribution. A probabilistic variable 
is evaluated using simulation; its result is an array of sample values indexed by Run. See “Proba-
bilistic calculation” on page 232.



Glossary

416 Analytica User Guide

Probability bands The bands that display the uncertainty in a value by showing percentiles from its distribution — for 
example, the 5%, 25%, 50%, 75%, and 95% percentiles. On a graph, these often appear as 
bands around the median (50%) line. Probability bands are also referred to as credible intervals. 
See “Probability Bands option” on page 236.

Probability density
function (PDF)

A graphical representation of a probability distribution that plots the probability density against the 
value of the variable. The probability density at each value of X is the relative probability that X is 
at or near that value. The probability density function can be displayed for continuous, but not dis-
crete variables. It is a display option in the Uncertainty View popup menu. Compare to “Probabil-
ity mass function,” which is used with discrete variables. See “Probability density” on page 34.

Probability distribution A probability distribution describes the relative likelihood of a variable having different possible 
values. See “Probability distributions” on page 240 and “Probabilistic calculation” on page 232.

Probability mass
function

A probability mass function is a representation of a probability distribution for a discrete variable 
as a bar graph, showing the probability that the variable takes each possible value. The probabil-
ity mass function can be displayed for discrete, but not continuous variables. It is a display option 
in the Uncertainty mode View menu. Compare to “Probability density function (PDF),” which is 
used with continuous variables. See “Probability density” on page 34.

Probability table A table for specifying a discrete probability distribution for a chance variable. In a probability table, 
you specify the numerical probability for each value in the domain of the variable. If the variable 
depends on (that is, is conditioned by) other discrete variables, each of these conditioning vari-
ables gives an additional dimension to the table, so you can specify the probability distribution 
conditional on the value of each conditioning variable. See “Probtable(): Probability Tables” on 
page 246.

Probtable See “Probability table.”

Prob value The probabilistic value of a variable, represented as a random sample of values from the proba-
bility distribution for the variable. The prob value for a variable is based on the prob value for the 
inputs to the variable. See also “Probabilistic variable” and compare to “Mid value.” See “Uncer-
tainty views” on page 31.

Quantile See “Percentile.”

Reducing function A function that operates on an array over one of its indexes. The result of a reducing function has 
that dimension removed, and hence has one fewer dimension. See “Array-reducing functions” on 
page 182.

Remote variable A variable in another module, not shown in the active diagram. Typically a remote variable is an 
input or output of a node in the active diagram. See “Seeing remote inputs and outputs” on 
page 18.

Result view A window that shows the value of a variable as a table or graph. See “Default result view” on 
page 57. 

Sample An array of values selected at random from the underlying probability distribution for a quantity. 
Analytica represents uncertainty about a quantity as a sample, and estimates statistics, probabil-
ity density function, and other representations of a probability distribution from the sample. See 
“Sample” on page 35.

Sampling method A method used to generate a random sample from the probability distributions in a model (for 
example, Monte Carlo and Latin hypercube). See “Sampling method” on page 234.

Scalar A value that is a single number. See “Input field” on page 116.

Scatter plot A graph that plots the samples of two probabilistic variables against each other. See “Scatter 
plots” on page 285.

Self A keyword used in two different ways:

• Refers to the index of a table that is indexed by itself. Self refers to the alternative values of 
the variable defined by the table. See “Create a probability table” on page 246.

• Refers to the variable itself, instead of the variable’s identifier, in a check attribute or a 
Dynamic expression. See “Dynamic(initial1, initial2..., initialn, expr)” on page 292.



 Analytica User Guide 417

Glossary

Sensitivity analysis A method to identify and compare the effects of various input variables to a model on a selected 
output. Example methods for sensitivity analysis are importance analysis and model behavior 
analysis. See “Sensitivity analysis functions” on page 279.

Side effects If evaluating the definition of variable A changes the value of variable B, the change to B would be 
a side effect of evaluating A. Unlike most computer languages, Analytica does not (usually) allow 
side effects, which makes Analytica models much easier to understand and verify. See “Assigning 
to a local variable: v := e” on page 341. 

Skewed distribution A distribution that is asymmetric about its mean. A positively skewed distribution has a thicker 
upper tail than lower tail; and vice versa, for a negatively skewed distribution. See “Is the quantity 
symmetric or skewed?” on page 230.

Skewness A measure of the asymmetry of the distribution. A positively skewed distribution has a thicker 
upper tail than lower tail, while a negatively skewed distribution has a thicker lower tail than upper 
tail. A normal distribution has a skewness of zero. See “Skewness(x)” on page 271.

Slice A slice of an array is an element or subarray selected along a specified index dimension. A slice 
has one less dimension than the array from which it is sliced. See “XY comparison” on page 96.

Slicer A control on a graph or table result window that shows the value of a third (or higher) index 
dimension, not otherwise visible on the graph or table. You can press on the slicer to open a 
menu to select another value for the slicer index, or to step through other values. See “Slicers” on 
page 86.

Splicing Table splicing is the process of updating an editable table that depends on a computed index 
when that index changes. It can result in adding, deleting, or reordering subarrays of the table. 
See “Splice a table when computed indexes change” on page 170. 

SQL Structured Query Language or SQL is a standard interactive and programming language for get-
ting information from and updating a database. See “Accessing databases” on page 364.

Standard deviation The square root of the variance. The standard deviation of an uncertainty distribution reflects the 
amount of spread or dispersion in the distribution. See “Sdeviation(x)” on page 271.

Suffix notation The default number format, such as 10K, 123M, or 1.23u, where a suffix letter denotes a power of 
ten. For example, K, M, and u denote 103, 106, and 10-6, respectively. See “Suffix characters” on 
page 81.

Symmetrical
distribution

A distribution, such as a normal distribution, that is symmetrical about its mean. See “Is the quan-
tity symmetric or skewed?” on page 230.

System function A function available in the Analytica modeling language. See also “User-defined function.” See 
“Building Functions and Libraries” on page 327.

System variable A variable built in to the Analytica language, such as Samplesize or Time. See “Using a func-
tion or variable from the Definition menu” on page 110.

Table A two-dimensional view of an array. An array can have more than two dimensions, but usually you 
can only display two at one time. A definition that is a table is called an edit table. In the Result 
window, click the Table button to select the table view of an array-valued result. See “Viewing a 
result as a table” on page 30.

Tail The upper and lower tails of a probability distribution contain the extreme high and low quantity, 
respectively. Typically, the lower and upper tails include the lower and upper ten percent of the 
probability, respectively. See “Is the quantity symmetric or skewed?” on page 230.

Title An attribute of an Analytica object containing its full name. The title usually appears in the dia-
gram node for the object and in graphs and lists of inputs and outputs. It is limited to 255 charac-
ters. The title can contain any characters, including spaces and punctuation. Compare to 
“Identifier.” See “Edit a node title” on page 47.

Uncertain value See “Prob value.”

Uniform distribution A distribution representing an equal chance of occurrence for any value between the lower and 
upper values. See “Uniform(min, max, Integer: True)” on page 242 and “Uniform(min, max)” on 
page 249.



Glossary

418 Analytica User Guide

Units The increments of measurement for a variable. Units are used to annotate tables and graphs; 
they are not used in any calculation. See “Showing values in the Object window” on page 24. 

User-defined function A function that the user defines to augment the functions provided as part of the Analytica model-
ing language. See “Building Functions and Libraries” on page 327.

Value See “Mid value.”

Variable An object that has a value, which can be text, a number, or an array. Classes of variable include 
decision, chance, and objective. See “The Object window” on page 21.

Variance A measure of the uncertainty or dispersion of a distribution. The wider the distribution, the greater 
its variance. See “Variance(x)” on page 271. 



 Analytica User Guide 419

Index
- (subtraction) operator 130
^ (exponentiation) operator 130
:: (scoping) operator 131
:= (assignment) operator 341
.. (sequence) operator 163
... (list) operator 162
@ (position) operator 186
* (multiplication) operator 130
\ (reference) operator 332, 352
& (concatenation) operator 212
# (dereference) operator 207, 352
+ (addition) operator 130
< (less than) operator 130
<= (less than or equal to) operator 130
<> (not equal) operator 130
= (equal) operator 130
> (greater than) operator 130
>= (greater than or equal to) operator 130

A
About Analytica command 398
Abs() function 133
accept button 106
Across command 397
Add Library command 391
Add Module command 391
Adjust Size command 397
Advanced Math command 394
Aggregate() function 197
aliases

compared to original 53
creating 52
definition 410
illustration 52
input nodes 54, 116
output nodes 54, 118
vs. originals 54

Align Selection to Grid command 397
Align submenu 397
All qualifier 332
alphabetic ordering, text 130
.ana file extension 16
Analytica 4.2 new features 11
Analytica Decision Engine, description 410
Analytica Enterprise, description 410
Analytica Player, description 410
Analytica Power Player, description 410
Analytica Professional, description 410
Analytica Trial, description 410
Analyticaedition system variable 395
Analyticaplatform system variable 395
Analyticaversion system variable 395
application integration 383
Arccos() function 216
Arcsin() function 216
Arctan() function 134
Arctan2() function 216
Area() function 187



Index

420 Analytica User Guide

Argmax() function 184
Argmin() function 184
arithmetic operators

array abstraction 143
meanings 130

Array command 394
Array() function 179
arrays

abstraction, see intelligent array abstraction
changing index of 180
combining 143–148
defining 180
definition 410
ensuring abstraction 348
example variables 178
functions 179
IF a THEN b ELSE c 150, 157
matrices 203
modeling 139–175
multidimensional 186
one-dimensional 143, 145, 147, 312
qualifiers 331
reducing functions 182
removing indexes 167
safe intermediates 58
scalar 143
serial correlation 264
slicing 171
subarrays 171
three-dimensional 148, 313
two-dimensional 147, 148, 313
using in Dynamic() 297
values 25
working with 140–157
zero-dimensional 143

arrows
across windows 51
alias nodes 52
arranging 70
arrow tool 20, 410
automatically drawn 49
between modules 51, 53
bold 323
creating 49
definition 410
display settings 76
double-headed 51
drawing 49–53
dynamic 299
gray 50
hiding and unhiding 49, 72, 76
illustrations 50
influence cycles 50
input 413
keyboard shortcuts 174
linking to module nodes 50
outputs 415
removing 49
small arrowhead 51

Asc() function 210

AskMsgNumber() function 359
AskMsgText() function 359
assignment operator 341
associational correspondence 170
atoms

about 140
array abstraction 349
qualifier 331
values 25

Attrib Of Ident 320
Attribute panel

closing 24
definition 410
using 22

attributes
canceling edits 54
controlling display 319
copying and pasting 304
creating 320
definition 410
displaying 320
displaying check attribute 111
domain 244
editing 54
functions 319, 329
managing 319–320
modules 319
renaming 320
user-created 319
variables 319

Attributes command 393
Attributes dialog 111, 319
authors

adding 46
attribute 319
definition 410

Average() function 183
axes, display settings 89

B
background printing 26
backward compatibility 406
bar graphs 89
behavior analysis

definition 410
overview 40
results 41
understanding 43

Bernoulli() function 241
BesseII() function 216
Bessel functions 216
Bessel K() function 216
BesselJ() function 216
BesselY() function 216
Beta() distribution function 252
BetaFn() function 224
BetaI() function 224
BetaIInv() function 225
bibliography 406



Index

 Analytica User Guide 421

binding precedence, operators 131
Binomial() function 241
BiNormal() distribution function 263
Boolean

number format 81
operators 131
values 129
variables 229

Both command 397
Bottom Edges command 397
Bring to Front command 398, 399
browse mode 21
browse tool

button 20
definition 411

browse-only models 410
buttons

accept and cancel 106
arrow tool 20
assigning to global variables 379
browse tool 20
Calc 21, 118
creating 378
Definition 20
Distribution 21
Edit Table 21
edit tool 20
editing modes 20
List 21
navigation toolbar 19
Object 19
object representation 19
Outline 19
Parent Diagram 19
Result 20, 21, 118
scripts 378

C
Calc button 21, 118
Calloption() function 222
cancel button 106
Capm() function 222
Cascade command 398
categorical plots 92
CDF() function 275
Ceil() function 133
cells

adding 161, 169
copying and pasting 168
deleting 161, 169
editing 168
selecting 168

Centers Left and Right command 397
Centers Up and Down command 397
Certain() distribution function 259
chance variables

definition 411
representation 18

Chancedist() function 248

Change Picture Format command 397
charts, selecting type 87
check attribute

defining 111
definition 411
displaying 111
edit table cells 112
failure 112
features 319
triggering 112

ChiSquared() distribution function 257
choice menus 173
Choice option 117
Choice() function 172
Chr() function 210
Class attribute 319
classes

changing for objects 55
definition 411

Clear command 392
cloaking 411
Close command 391
Close Model command 391
Coerce qualifier 333
colors

adding to influence diagrams 75
background 76, 91
changing 75
displaying in nodes 77
graphs 90
grouping nodes 75
input and output nodes 119
opening palette 75
screenshots 78

columns
adding and deleting 169
display significance 146
separating 367
trading places with rows 146

Combinations() function 225
comments in definitions 105
comparison operators 130
compatibility, backward and forward 406
computation time 388
ComputedBy() function 341
Concat() function 198
concatenation operators 212
ConcatRows() function 199
conditional dependencies

creating 247
definition 411

CondMax() function 184
CondMin() function 184
confidence intervals 388, 389
conglomeration functions 194
console processes, running 383
constants

definition 411
representation 18

constructs, programming 339



Index

422 Analytica User Guide

Contact Lumina command 398
context qualifier 330
ContextSample qualifier 331
continuous distributions

definition 411
overview 229

continuous plots 92
continuous variables 411
controls, resizing 119
conventions, typographic 10
Copy command 392
Copy Diagram command 392
Copy Table command 392
CopyIndex() function 165
Correlate_dists() distribution function 263
Correlate_with() distribution function 262
Correlation() function 273
correspondence types 170
Cos() function 134
Cosh() function 216
CostCapme() function 222
CostCapmm() function 223
Covariance() function 273
Created attribute 319, 411
cross-hatching pattern

switching off 78
use of 57, 106

Cubicinterp() function 197
Cumdist() distribution function 257
Cumipmt() function 217
CumNormal() function 225
CumNormalInv() function 225
Cumprinc() function 217
Cumproduct() function 188
cumulative probability

distribution 411
options 236
samples per plot point 237
uncertainty view 34

Cumulative Probability command 396
currency symbols, showing 81
CurrentDataDirectory() function 360
CurrentModelDirectory() function 360
curve fitting 287
Cut command 392
cycles, influence 50, 413
cyclic dependencies 50, 413

D
data

copying and pasting 304
copying diagrams 304
identifying source 364
import/export format 312
importing and exporting 303–314
numerical 314
OLE linking 304
pasting from programs 304
pasting from spreadsheets 304

source 411
structures 352

Data Source Name (DSN)
definition 412
using 364

Database command 394
Database library functions 370
databases

configuring DSN 366
writing to 368

datatype functions 137
date formats

arithmetic 84
date numbers 84
date origin 82, 84
interpreting 83
letter codes 83
literal text 83
range of dates 84
settings 82
type description 81

date functions 213
Date values, entering 128
DateAdd() function 215
DatePart() function 214
DBLabels() function 370
DBQuery() function 370
DBTable() function 371
DBTableNames() function 371
DBWrite() function 368, 371
decision variables

arranging nodes 70
definition 411
identifying 61
representation 18

Decompose() function 206
defaults

changing global 95
views 29

Definition attribute 319
Definition button 20
Definition menu

overview 394
pasting from a library 110

definitions
about 411
adding identifiers 105
alphabetical list 409–418
changes to influence diagrams 106
changing 107
comments in 105
creating 104–106, 118
cross-hatching 106
editing 104–106, 110
exporting 311
hidden, see hidden definitions
hiding 375, 411
importing 310
including probability distributions in 232
incomplete 321



Index

 Analytica User Guide 423

inheritance 375
invalid or missing 394
syntax check 106
unhiding 375
updating arrows 107
using 330
working with 104

Degrees() function 134
Delete Columns command 392
Delete Rows command 392
dependencies

conditional 247
cyclic 50, 413
Dynamic() function 298

depreciation 149
dereference operator 352
Description attribute 319
descriptions

definition 411
overview 124
using 330

Determinant() function 205
deterministic tables

converting Table to DetermTable 202
definition 201, 411
equivalent of using Subscript 203
expression view 202
in parametric analysis 203
relation to ProbTable 247
splicing 170
used with discrete distributions 247
working with 201–203

deterministic values 411
deterministic variables 411
DetermTable() function 201, 247
determtables, see deterministic tables
Diagram menu 397
Diagram Style dialog 76
Diagram window

description 17
maximum number of 325

diagrams
see also influence diagrams
adding frames 122
adding graphics 122
adding text 122
copying 304
editing 19, 47
exporting as image 78
exporting to image file 304
keeping compact 72
opening details 17
organizing 70, 73
overriding default styles 77
tornado 281

dialog functions 357
digits, setting maximum number 81
dimensions

adding to tables 146
definition 412

modeling arrays and tables 140
reducing 344

Dirichlet() distribution function 263
discrete probability distributions

creating 248
definition 412
vs. continuous 229

discrete variables
definition 412
domain attribute 244
logical and Boolean 229
probability tables 246

discretizing process 229
Dist_additive_growth() distribution function 265
Dist_compound_growth() distribution function 265
Dist_reshape() distribution function 263
Dist_serial_correl() distribution function 265
Distribution button 21
Distribution command 394
Distribution library 240
distributions

arrays with serial correlation 264
continuous 411
correlation or covariance matrix 263
creating dependencies 262
custom continuous 257
exponential 254
gamma 254
logistic 254
lognormal 251
multivariate 261
normal 415
parametric continuous 249
parametric discrete 241
symmetric vs. skewed 230
transformed beta 252
uniform 242, 249, 417

domain attributes
classes 319
editing 244
types 245
use of Index domains 201
use with DetermTable 201
viewing in Object window 245
working with 244

domains 412
dot operator 348
dot product 204
Down command 397
DRIVER attribute 365
DSN, see Data Source Name (DSN)
Duplicate Nodes command 392
Dydx() function 279
dynamic arrows, showing or hiding 299
dynamic loops 299
dynamic models 70
dynamic simulation 292–300
dynamic variables

definition 412
initial values 297



Index

424 Analytica User Guide

working with 292
Dynamic() function 292–300

E
Edit Definition command 394
Edit Icon command 397
Edit menu 392
Edit Table button 21
Edit Table window 168
edit tables

see also tables
adding cells 169
adding dimensions 146
blank cells 181
choice menus 173
clickable titles 163
comparing results 36
copying 169, 304
copying and pasting cells 168
creating 142, 181
date formats 83
defining 143
defining variables as 166–168
definition 412
deleting cells 169
display 117
editing 168–170
extending indexes 153, 169
import and export formats 312
importing data 311
keyboard shortcuts 174
OLE linking 310
pivoting 3D 148
pivoting rows and columns 146
saving recover info 57
selecting cells 168
splicing 170
totals 152
two with the same index 144
using spreadsheet data 168
working with 168

Edit Time command 394
edit tool

about 20
definition 412
using 47

edits, canceling 54
EigenDecomp() function 206
Elasticity() function 280
Email tech support command 398
Erf() function 225
ErfInv() function 225
Error() function 359
errors

avoiding out-of-range 343
custom messages 112
displaying warnings 58
evaluation 359, 405
factor 251

fatal 405
invalid number 405
lexical 404
message types 404–405
naming 404
out of memory 405
syntax 404
system 405
warnings 136

Evaluate() function 360
EvaluateScript() function 381
evaluation errors 359, 405
evaluation mode qualifiers 330
Exit command 391
Exp() function 133
expected value

definition 414
using 33

exponent number format 80
exponential distribution 254
Exponential() distribution function 253
Export command

exporting images 78
menu item description 391

export format 312
expr (Expression) popup menu 107, 166
expression view 160
expressions

Boolean values 129
conditional 132
definition 412
entering probability distributions as 231
exception values 135
importing definitions 310
in dynamic loops 299
listing 107
number formats 127, 128
parenthesis matching 105
subscript constructs 149
syntax 131
text values 129
truth values 129
types 107, 412
using 127–137
variable definitions 128

F
Factorial() function 134
False system variable 129, 395
fatal errors 405
File Info attribute 319, 412
File menu 391
filed libraries

about 335
adding to models 322, 335
creating 321
definition 412
locking 321
removing from models 322



Index

 Analytica User Guide 425

representation 55
saving 322
working with 321

filed modules
adding to models 322
creating 321
definition 412
locking 321
removing from models 322
representation 55
saving 322
working with 321

files
changing locations 306, 310

Financial command 394
financial functions 216
Financial library functions 221
Find command 393
Find dialog 318
Find Next command 393
Find Selection command 393
FindinText() function 210
fixed point number format 80
Floor() function 133
font settings

graphs 90
nodes 76, 77

For loops 343
For...Do function 343
Form class 55
form modules

adding nodes 120
creating 119
working with 119

forward compatibility 406
fractiles

definition 412
estimating confidence intervals 389

frames, adding to diagrams 122
Frequency() function 274
functions

about 19
array 197
array-reducing 182–187
attributes 329
categories 407
conglomeration 194
creating 329
custom discrete probabilities 246
datatype 137
date 213
dialog 357
financial 216
Financial library 221
interpolation 196
list of 407
math 133, 216
matrix 203–??
miscellaneous 360
name-based calls 132, 329

pasting 106
position-based calls 132, 329
probability 224
recursive 330, 346
special probabilistic 259
statistical 270
system 417
text 210
transforming 187–191
using 329

Fv() function 218

G
Gamma() distribution function 254
GammaFn() function 225
GammaI() function 226
GammaIInv() function 226
Gaussian probability distributions 250
Gaussian() distribution function 263
general indexes 356
general variables

definition 413
representation 18

generalized linear regression 287
generalized regression analysis 286
Geometric() distribution function 242
GetFract() function 272
GetRegistryValue() function 361
global defaults, modifying 95
Graph Setup command 396
Graph Setup dialog

Axis Ranges tab 89
Background tab 91
Chart Type tab 87
opening 87
Preview tab 92
Style tab 89
Text tab 90
using 87–92

graphics
adding frames 122
adding to diagrams 122
converting image formats 122
exporting diagrams 78
exporting graphs 92
Legacy Bitmap format 122
taking screenshots 78

graphing roles
definition 413
working with 84

graphs
3D effects 88
axis settings 89
bar style 89
changing global default 95
combining settings 94
comparing results 36
converting from tables 30
creating templates 93



Index

426 Analytica User Guide

customizing 31
definition 413
display settings 89
displaying 30
exporting 304
exporting as image files 92, 304
features 31
line style settings 88
modifying templates 94
plotting methods 92
previewing 92
renaming templates 95
scatter 285
unlinking templates 93
using templates 93
XY 96, 283

grid, aligning to 71

H
Handle qualifier 332
Handle() function 356
HandleFromIdentifier() function 356
handles

edit tables 163
functions 356
indexes of 356
using 356
viewing 356

Height command 397
Help attribute 319
Help menu 398
hexagons 18
hidden definitions

creating 375
description 411
inheritance 375
making unviewable 377
unhiding 375
using 374

Hide Definition(s) command 393
hourglass cursor 17
Hypergeometric() distribution function 242
hyperlinks, using 124

I
Icon window, opening 120
icons

adding to nodes 120
drawing 121
editing 121

Ident(Time-k) function 294
identifiers

changing 56
copying 52
definition 413
listing those in use 403
name format 403
naming 404
using 48, 105, 329

Identifiers attribute 319
IF a THEN b ELSE c

in arrays 150, 157
using 132

ignoreNaN parameter 183
ignoreNonNumbers parameter 183
IgnoreWarnings() function 361
image files

see also graphics
exporting diagrams as 78
exporting graphs as 92

Implied_volatility_c() function 223
Implied_volatility_p() function 223
Import command 391
import format 312
importance analysis 413
importance weighting

setting up 266
using 265

Index button 169
index position operator 186
Index qualifier 331
index variables 413
indexes

adding 169
adding items 153
automatic updates 154
by name not position 171
changing on arrays 180
correspondence types 170
creating 141, 159, 167
defining 370
definition 413
dialog box features 167
example variables 178
expanding 153, 169
functions 162, 199
general 356
handles 356
iterating with For and Var 352
label 364
local 347
meta-indexes 356
modeling 139–175
OLE linking 307
omitting parameters 351
position operator 186
propagating without changing definitions 148
recognizing nodes 18
record 364
reducing when unused 182
removing from arrays 167, 170
selection area 29, 413
self 152, 163
sequence of numbers 144
splicing 170
sums 148
SvdIndex 207
working with 140–157

IndexesOf() function 199, 357



Index

 Analytica User Guide 427

IndexNames() function 199
IndexValue() function 200
INF 135
infinity 135
influence arrows, see arrows
influence cycles 50, 413
influence diagrams

see also diagrams
automatically updating 106
coloring 75
copying 304
creating 69–72
decision variables 61
definition 413
examples of good and bad 68
overview 17
screenshots 78
using to create models 60

innermost dimension 413
input nodes

browsing 20
creating 117
definition 413
original variables 119
popup menus 117
resizing 119
using 116–118
viewing 21

input variables, date formats 83
inputs

arrowhead 413
attribute 319
examining results 41
listing 18
remote 18
varying 41

Insert Columns command 392
Insert Rows command 392
integer number formats 81, 128
Integrate() function 190
integration with other applications 383
intellectual property, protecting 374
intelligent array abstraction

arithmetic operators 143
definition 414
dimensional reduction 344
ensuring 348
exceptions 156
financial functions 216
IF THEN ELSE 350
omitted index parameters 351
summary 156
tornado diagrams 282
vertical 332

Intelligent Arrays
about 140
main principles 156
Monte Carlo sampling 155
probability distributions 261

interpolation functions 196

invalid variables 321
Invert() function 205
Ipmt() function 218
Irr() function 218
IsNaN() function 137
IsNotSpecified() function 334
IsNumber() function 137
IsReference() function 137
IsResultComputed() function 361
Issampleevalmode system variable 395
IsText() function 137
IsUndef() function 137
Iterate function 345

J
JoinText() function 212

K
key combinations for editing 105, 173
key icon 23
key, in graphs 414
Knuth random number generator 235
kurtosis 414
Kurtosis() function 272

L
L’Ecuyer random number generator 235
labels

index 364
listing 107

Last Saved attribute 319, 414
Left and Right Edges command 397
Left Edges command 397
Legacy Bitmap format 122
lexical errors 404
Lgamma() function 216
libraries

adding 322
creating 335
custom 394
Database 370
definition 414
Distribution 232
Distribution System 107
embedding 323
filed, see filed libraries
Financial 221
linking to original 323
Multivariate Distributions 262
obfuscating 377
Performance Profiler 382
representation 55
selecting 109
Special 394
Text 210
Trash 49
user 394
user-defined functions 335
using 328, 335



Index

428 Analytica User Guide

line style in charts, selecting 88
linear regression 287
Linearinterp() function 197
List button 21
List buttons 117
list view 160
lists

adding cells 161
autofilling 160
creating 40
defining time 295
definition 414
deleting cells 161
editing 161
labels 414
mixing numbers and text 160
navigating 161

Ln() function 133
local indexes

about 347
MetaIndex declaration 357

local variables
assigning 341
assigning slices 342
declaring 340

logical operators 131
logical variables 229
logistic regression 286
Logistic() distribution function 254
Lognormal() distribution function 251
Logten() function 133
loops, dynamic 299

M
m to n sequence 163
magnification, printouts 25
Maintain recovery info preference 58
Make Alias command 393
Make Importance command 277, 393
Make Input Node command 393
Make Output Node command 393
Make Same Size submenu 397
MakeDate() function 214
MakeTime() function 214
Math command 394
math functions

advanced 216
Math library 133

matrices
definition 414
dot product 204
functions 203–??
multiplication 204

Matrix command 394
MatrixMultiply() function 204
Max() function 184
MDArrayToTable() function 191, 193, 369
MDTable() function 194
MdxQuery() function 371

mean value
definition 414
using 33

Mean Value command 396
Mean() function 271
median

definition 414
Latin hypercube sampling method 235
see GetFract()

Median() function 271
memory

increasing swapfile size 401
Memory Usage window 400
reducing requirements 344
requirements 400
understanding usage 382
usage 398

MemoryInUseBy() function 383
menus

choice 173
command descriptions 391–399
creating 117
pull-down 21
right mouse button 399

MetaIndex declaration 357
meta-indexes 356
MetaOnly attribute 319, 356
Mid qualifier 331
Mid Value command 396
mid values

definition 414
using 31, 32

Mid() function 275
Min() function 184
Minimal Standard random number generator 235
MIrr() function 218
mixed correspondence 170
Mod() function 134
Model class 55
models

behavior analysis 40
browse-only 374, 410
building 60
closing 17
combining 323
creating 46
definition 414
documentation 63
dynamic 70
editing 47–54
expanding 64
hierarchy 316
integrated 323
large 316–326
linking obfuscated 377
listing nodes 316
making easy to use 116
modular 324
navigating 317
obfuscating 375



Index

 Analytica User Guide 429

opening 16
opening details 21
protecting intellectual property 374
reusing 62
saving obfuscated copies 376
separating columns 367
specifying attributes 46
switching 17
testing and debugging 62
unexpected behavior 43
viewing details 17
working with 16

modes
definition 414
determining number of 229
overview 20
quantities 229
switching 47

Module class 55
modules

about 18
adding 322
connecting with arrows 51
definition 414
displaying hierarchy 57
embedding 323
filed, see filed modules
form 119
hierarchy 316, 414
linking to original 323
obfuscated 377
opening details 21
organizing hierarchy 73
subclasses list 55

Monte Carlo sampling method
Intelligent Arrays 155
using 234

mouse operations 173
Move Into Parent command 397
MsgBox() function 357
multiD tables, converting from relational 191
multimodal distribution 414
Multinomial() distribution function 264
Multinormal() distribution function 263
MultiUniform() distribution function 264
multivariate distributions 261
Multivariate Distributions library

using 262

N
name-based calling syntax 132, 329
name-based subscripting 149
naming errors 404
NAN 135
natural cubic spline 197
navigation

shortcuts 105, 173
toolbar 19

New Model command 391

Node Style dialog. using 77
nodes

about 17
adding icons 120
adjusting size 70
alias 52
aligning 71
arranging 70
arranging front to back 72
changing size 49
consistent sizes 69
creating 47
creating aliases 52
customizing 77
cut, copy, and paste 49
default size 76
definition 414
deleting 49
deselecting 19
distributing 72
duplicating 49
editing title 47
flagging with red triangle 57
font and typeface settings 76
grouping related 73
handles 48
identifying types 18
input, see input nodes
linking arrows to 50
list of attributes 319
moving 48
moving into the same diagram 52
output, see output nodes
redundant 324
selecting 19, 48
selecting multiple 19
shape descriptions 18
shape representations 18
text node type 122
title characteristics 69
undefined 57, 78
visual grouping 75
Z-order 72

Nonnegative qualifier 332
non-procedural programs 338
normal distribution 415
Normal_additive_gro() distribution function 265
Normal_compound_gro() distribution function 265
Normal_correl() distribution function 262
Normal_serial_correl() distribution function 265
Normal() distribution function 250
Normalize() function 190
Nper() function 219
Npv() function 219
Null system constant 135, 395
Number Format command 396
Number format dialog 80
number formats

case sensitivity 81
converting to text 134



Index

430 Analytica User Guide

currency symbols 81
date numbers 213
expressions 127
import and export rules 314
integers 128
largest and smallest 128
list of types 80
number of decimal digits 81
OLE linking 307
options 128
precision 128, 400
quick reference 438
regional settings 82
settings 80
tables 30
thousands separator 81
trailing zeroes 81

Number qualifier 332
numbers in lists 160

O
obfuscated copies 375
obfuscated, definition 415
Object button 19
Object Finder dialog

definition 415
Distribution library 231
using 108

Object menu 393
Object window

definition 415
features of 46, 328
maximum number of 325
opening 22
showing values 24
using 21, 46

objective variables
arranging nodes 70
definition 415
representation 18
working with 60

objects
changing class 55
classes 18
definition 415
finding 318
handles 356
identifiers 48
searching for 109
titles 48
viewing definitions 57

ODBC 415
OLE linking

activating other applications 310
auto recompute links 58, 307
automatic vs. manual updates 306, 310
changing file locations 306, 310
definition 415
linking data from Analytica 304–307

linking data into Analytica 307–310
number formatting 307
OLE Links menu command 392
Open Source button 310
Paste Special dialog 309
procedure, from Analytica 305
procedure, to Analytica 307
refreshing links 307
table example 308
terminating links 310
using indexes 307
working with 303

one-dimensional array format 312
Open Model command 391
Open Source button 310
operators

arithmetic 130, 143
binding precedence 131
Boolean 131
comparison 130
definition 415
logical 131
scoping 131
text concatenation 212

Operators command 394
Optimizer command

Definition menu 394
Help menu 398

order of precedence 131
ordering qualifiers 333
originals vs. aliases 54
OrNull qualifier 332
outermost dimension 415
Outline button 19
Outline window 316, 415
out-of-range errors 343
output nodes

browsing 20
creating 118
definition 415
original variables 119
resizing 119
using 118
viewing values 21
writing to databases 370

outputs
arrowhead 415
attribute 319
definition 415
listing 18
remote 18

ovals 18

P
palette, color 75
parallelograms 18
parameters

assigning values 40
attribute 319



Index

 Analytica User Guide 431

changing definition 40
defining as lists 40
definition 415
financial functions 217
parametric analysis 40
qualifiers 328, 330
repeated 334
using 330
varying inputs 40, 41

parametric sensitivity analysis 147
parent diagram

hiding nodes 375
returning to 22
settings 19
viewing 18

Parent Diagram button 19
parenthesis matching 105
parents, definition 415
ParseDate() function 215
ParseNumber() function 213
Paste command 392
Paste Identifier command 394
Paste Special command 392
PDF() function 275
percent number format 81
percentiles

definition 415
estimating 272

Performance Profiler library
features 382
functions 383
using 382

Permutations() function 225
Pi system variable 395
pictures, see graphics
pivot table

creating array from relational tables 191
edit tables 168
result tables 30
see function MDTable() 194

Pmt() function 219
poisson regression 286
Poisson() distribution function 241
positional correspondence 170
position-based calling syntax 132, 329
PositionInIndex() function 185
Positive qualifier 332
Ppmt() function 220
precedence, order of 131
precision, number

formats 128
specifications 400

Preferences command 392
Preferences dialog

changing window limits 326
disabling checking 113
features 56–58
opening 316

Print command 391
Print Preview command 391

Print Report command 26, 391
Print Setup command 391
printing options

background 26
fit to page 25
magnification/scale 25
multiple windows 26
page preview 25
printing to files 311
setting 25

Prob qualifier 331
Prob Table button 246
prob values

definition 416
Probvalue attribute 319
using 31

probabilistic variables 415
probability bands

definition 416
settings 236
uncertainty view 33

Probability Bands command 396
probability density

displaying graphs 396
equal steps 237
function (PDF) 416
options 236
samples per plot point 237
uncertainty view 34

probability distributions
array parameters 261
beta 252
button 117
calculating 232
Chi-squared 257
choosing 228–230
computing 240
continuous 229
custom discrete 246
defining variables as 230
definition 416
discrete 229, 248
entering as expressions 231
functions 239–257
Gaussian 250
including in definitions 232
normal 250
triangular 250
truncating 259
uniform 249

probability functions, advanced 224
probability mass functions

definition 416
displaying in graphs 34
menu command 396

probability tables
adding conditional variables 247
conditional 247
creating 246
definition 416



Index

432 Analytica User Guide

expression view 247
Self index 246
splicing 170
working with 246

Probability() function 272
Probbands() function 272
Probdist() distribution function 258
probit regression 286
Probtable() distribution function 246
probtables, see probability tables
procedural programs

constructs 339
example 338
using 338

Product() function 183
progressive refinement 156
public variables 324
purchase price 149
pure associational correspondence 170
pure positional correspondence 170
Putoption() function 222
Pv() function 220
Pvgperp() function 224
Pvperp() function 224

Q
qualifiers

All 332
array 331
Atom 331
Coerce 333
context 330
ContextSample 331
deprecated synonyms 335
evaluation mode 330
Handle 332
Index 331
Mid 331
Nonnegative 332
Number 332
Optional 333
ordering 333
OrNull 332
parameter 328, 330
Positive 332
Prob 331
Reference 332
Sample 331
Scalar 331
Text 332
type checking 332
Variable 331

quantiles 272
quantities

bounds 229
discrete vs. continuous 228
discretizing process 229
modes 229
selecting distribution 230

skewed vs. symmetric 230

R
Radians() function 134
random Latin hypercube sampling 235
random number methods 235
random seed 236
Random() distribution function 260
Rank() function 188
Rankcorrel() function 274
Rate() function 220
ReadFromUrl() function 374
ReadTextFile() function 372
Recent files 391
record indexes 364
records 364
recovery info settings 57
rectangles 18
recursion 343
Recursive attribute 319
recursive functions

attributes 330
settings 346
using 346

reducing functions
definition 416
working with 182–187

reference operator 352
Reference qualifier 332
references 352
refinement, progressive 156
regional settings

date formats 83
number formats 82

Register command 398
regression analysis 286
Regression() function 287
RegressionDist() function 287
RegressionFitProb() function 288
RegressionNoise() function 288
Regular Expressions 213
relational tables, converting from multiD 191
remote variables

definition 416
seeing 18

Reorder
See SortIndex() function

resampling 300
Resize Centered command 397
Result button 20, 21, 118
result graphs, exporting 304
Result menu 396
result tables

copying 304
getting data 371
retrieving 367

result views
definition 416
setting default 57



Index

 Analytica User Guide 433

Result window
controls 28
default view 29, 57
graph view 30
index selection 29
maximum number of 56, 325
opening 28
table view 30
working with 28–37

results
analyzing 41
comparing 36
graph view 30
recomputing 30
table view 30
viewing 17

Return key, using to enter data 58
Right Edges command 397
Round() function 133
rows

adding and deleting 169
display significance 146
trading places with columns 146

Run system variable
description 167
menu command 395
probabilistic calculation 232
sample values 275

RunConsoleProcess() function 383

S
Sample command 396
Sample qualifier 331
sample size

selecting 388
setting 234

Sample() function 275
samples, definition 416
SampleSize system variable 234, 275, 395
Sampleweighting system variable 395
sampling methods

choosing 235
definition 416
median Latin hypercube 235
Monte Carlo 234
random Latin hypercube 235
selecting 234

Save A Copy In command 391
Save As command 391
Save command 391
scalar (0D) arrays 143
Scalar qualifier 331
scalars

definition 416
input fields 116

scatter plots
definition 416
example 286
working with 285

scoping operator 131
screenshots, taking 78
scripts

assigning to global variables 379
creating 378
language 378

Sdeviation() function 271
Select All command 392
SelectText() function 210
self indexes 152, 163
self, definitions 416
semicolon, double 369
Send to Back command 399
sensitivity analysis

definition 417
functions 279–281

sequence operator 163
Sequence() function 163
Set Diagram Style command 397
Set Node Style command 397
shells, stand alone 324
shortcuts, navigation 105, 173
Show By Identifier command 393
Show Color Palette command 397
Show Invalid Variables command 394
Show Memory Usage command 398, 400
Show Page Breaks command 398
Show Result command 396
Show With Values command 393
ShowPdfFile() function 361
ShowProgressBar() function 359
Shuffle() distribution function 259
side effects 417
Sign() function 133
Sin() function 134
SingularValueDecomp() function 207
Sinh() function 216
Size() function 200
skewed distributions

about 230
comparison to symmetric 230
definition 417
formula 271

skewness 417
Skewness() function 271
Slice() function 172
slicers

definition 417
working with 86

slices
adding items to indexes 169
assigning to variables 342
construct 171
definition 417
effects of splicing 170
mixing with subscripts 171
preceding time period 172
types of correspondence 170

Snap to Grid command 397
Sort



Index

434 Analytica User Guide

Sorting arrays, see SortIndex() function
Sort() function 189
Sortindex() function 165
Space evenly submenu 397
Special command 394
Special library 394
splicing

changing computed indexes 170
default correspondence 170
definition 417
working with 170

SplitText() function 212
SpreadsheetOpen() function 373
SpreadsheetRange() function 373
SpreadsheetSave() function 373
SpreadsheetSetCell() function 373
SpreadsheetSetRange() function 374
SQL

accessing databases 364
case sensitivity 367
definition 417
retrieving result tables 367
specifying queries 366

SqlDriverInfo() function 372
Sqr() function 134
Sqrt() function 134
standard deviation 417
Statistical command 394
statistics

functions 270
setting options 236
uncertainty view 33
weighted 276

Statistics command 396
Statistics() function 275
Stepinterp() function 196
strings, see text
StudentT() distribution function 255
subarrays

extracting 171
slicing and subscripting 171

Subindex() function 185
subscript construct

mixing with slices 171
using 171

Subscript() function 171
subscripting

construct syntax 149
name-based 149
value v is array 149

Subset() function 164
with arrays 200

SubTable() function 203
subtables, using 203
suffix notation

characters 81
definition 417
number formats 80
using 80

Sum() function 152, 183

Svdindex system variable 395
symmetrical distributions

comparison to skewed 230
definition 417

syntax
checking in definitions 106
errors 404
name-based 132, 329
operators 131
position-based 132, 329

system constants 135
system functions 417
system variables

definition 417
Definition menu 110
menu commands 394, 395
menu options 395
sample weighting 266

T
Table() function 181
tables

converting between 191
converting from graph view 30
copying 304
creating 180
definition 417
deterministic, see deterministic tables
displaying 30
edit, see edit tables
editable types 412
features 30
import/export data format 312
lookup 196
modeling 139–175
multiple number formats 84
number formats 30
numerical data formats 314
probability, see probability tables
separating columns 367

tails, definition 417
Tan() function 134
Tanh() function 216
templates

combining settings 94
creating 93
modifying 94
renaming 95
setting associations 95
unlinking 93
using with graphs 93

terminology 409–418
text

adding to diagrams 122
alphabetic ordering 130
combining with numbers 160
concatenation operators 212
converting to numbers 134
evaluating as scripts 381



Index

 Analytica User Guide 435

functions 210
joining 212
reading and writing files 372
values 129

Text functions command 394
Text qualifier 332
TextLength() function 210
TextLowerCase() function 213
TextReplace() function 211
TextSentenceCase() function 213
TextTrim() function 211
TextUpperCase() function 213
three-dimensional array format 313
Tile Left to Right command 398
Tile Top to Bottom command 398
time

profiling 382
slices, preceding 172

Time system variable
description 167
details 294–297
earlier time reference 294
menu command 395
using in a model 297
working with 292

Time values, entering 128
Title attribute 319
titles

attribute characteristics 329
characteristics 69
definition 417
editing 47
using 48

Today() function 215
toolbar

features 19
quick reference 438

Top Edges command 397
tornado charts 281
transformed beta distribution 252
transforming functions 187–191
Transpose() function 205
trapezoids

finding area 187
representation 18

Triangular() distribution function 250
True system variable 129, 395
Truncate() distribution function 259
truth values 129
Tutorial command 398
two-dimensional array format 313
type checking qualifiers 332
typeface, editing in nodes 76
TypeOf() function 137
Typescript window 381
typographic conventions 10

U
uncertainties

dynamic simulations 300
expressing 228
mean 388
resampling 300

uncertainty factor 251
Uncertainty Options command 396
Uncertainty Sample option 233
Uncertainty Setup dialog 233–237
uncertainty views

cumulative probability 34
list of 32
mean value 33
mid value 32
probability bands 33
probability density 34
probability mass function 34
sample 35
statistics 33
working with 31

Uncumulate() function 188
Undo command 392
Unhide Definition(s) command 393
uniform distribution 417
Uniform() distribution function 242, 249
UniformSpherical() distribution function 264
Unique() function 165
units

attribute 319
definition 418
using 329

Update License command 398
Use Excel date origin preference 58
User guide command 398
user interfaces, creating for models 116
user libraries 335, 394
user-created attributes 319
user-defined functions

attributes 329
creating 329
definition 418
libraries 328, 335
parameter qualifiers 330
working with 327–336

V
Value attribute 319
values

arrays 25
assigning to parameters 40
atoms 25
Boolean 129
checking bounds 57
checking validity 111–113
constants 152
disabling checking 113
expected 414
listing 107
showing in Object window 24
text 129



Index

436 Analytica User Guide

truth 129
undefined 194

Variable qualifier 331
variables

assigning slices 342
automatic renaming 56
chance 18, 411
class checking 57
classes 18
comparing lists 151
constants 18
continuous 411
declaring 340
defining as distributions 230
defining as edit tables 166–168
definition 418
description 17
discrete 244, 412
dynamic 292, 412
examples 178
finding 318
general 18, 413
index 18, 413
invalid 321
objective 18
probabilistic 415
public 324
remote 18
setting number formats 80
uncertain 300

variance
definition 418
estimating 271

Variance() function 271
views

default 29, 57
uncertainty, see uncertainty views

W
w parameter 276
Wacc() function 224
warning icon 106
warnings, see errors
Web tech support command 398
Weibull() distribution function 256
weighted statistics 276
weighting, importance 265
Whatif() function 280
WhatifAll() function 280
While loops 343
While...Do function 345
Width command 397
Window menu 398
windows

see also Diagram window, Object window, Result window
browsing 21
changing number limits 326
example images 437
managing 325

numbers displayed 56
print settings 26

Windows system software 400
WorksheetCell() function 373
WriteTableSql() function 369
WriteTextFile() function 372

X
Xirr() function 220
XMIrr() function 221
Xnpv() function 221
XY button 98, 283
XY comparison

dialog features 96
examples 97, 100
special menus 97
using 96

XY plots 283

Y
YearFrac() function 221

Z
Z-order, nodes 72



 Analytica User Guide 437

Windows and Dialogs

Outline Window

Diagram Window: 
Inputs and Outputs Diagram Window: 

Influence Diagram Result Window — Graph View

Object Window Object Finder

Result Window — Table View

Graph Setup Dialog

Uncertainty Setup Dialog

Find Dialog

Preferences Dialog

Attributes Dialog

Diagram Style Dialog Node Style Dialog Number Format Dialog



438 Analytica User Guide

Quick Reference

The Tool Bar

Number Formats 

Suffix format

For more, see “Number formats” on page 80.

O
bj

ec
t

De
fin

itio
n

Re
su

lt

O
ut

lin
e

Br
ow

se
 to

ol
Ed

it 
to

ol
Ar

ro
w 

to
ol

It displays the node palette 
when you select the edit tool or 
arrow tool.

Ch
an

ce
 n

od
e

Va
ria

bl
e 

no
de

De
cis

io
n 

no
de

O
bj

ec
tiv

e 
no

de

In
de

x 
no

de

Fu
nc

tio
n 

no
de

M
od

ul
e 

no
de

Co
ns

ta
nt

 n
od

e

Pa
re

nt
 D

ia
gr

am

Te
xt

 b
ox

Bu
tto

n 
no

de

Format Description Example

Suffix letter denotes order of magnitude, such as
M for 10-6 (see table below)

12.35K

Exponent scientific exponential 1.235e+004

Fixed point fixed decimal point 12345.68

Integer fixed point with no decimals 12346

Percent percentage 1234568%

Date text date 12 Jan 2008

Boolean true or false True

Power of 10 Suffix Prefix Power of 10 Suffix Prefix

10-2 % percent

103 K Kilo 10-3 m milli

106 M Mega or Million 10-6 µ micro (mu)

109 G Giga 10-9 n nano

1012 T Tera or Trillion 10-12 p pico

1015 Q Quad 10-15 f femto


	Contents
	About Analytica
	Welcome!
	If you don’t read manuals
	Hardware and software requirements
	Installation and licenses
	Editions of Analytica
	Compare Analytica features by edition

	Help menu and electronic documentation
	Online help and electronic documentation

	Normally, usually, and defaults
	Typographic conventions in this guide
	User guide Examples folder
	What’s new in Analytica 4.2?
	Licensing Options
	64-Bit Editions
	User Interface
	Engine Enhancements
	Function Enhancements
	Modules and Libraries


	Examining a Model
	To open or exit a model
	Diagram window
	Classes of variables and other objects
	Selecting nodes
	The toolbar
	Browsing with input and output nodes
	Browse mode
	Viewing input nodes
	Viewing output node values
	Opening module details

	The Object window
	The Attribute panel
	Showing values in the Object window
	Printing

	Result Tables and Graphs
	The Result window
	Index selection
	The default view
	Recomputing results

	Viewing a result as a table
	Viewing a result as a graph
	Uncertainty views
	Comparing results

	Analyzing Model Behavior
	Varying input parameters
	Analyzing model behavior results

	Creating and Editing a Model
	Creating and saving a model
	Creating and editing nodes
	Drawing arrows
	How to draw arrows between different modules
	Alias nodes
	To edit an attribute
	To change the class of an object
	Module Subclasses

	Preferences dialog

	Building Effective Models
	Creating a model
	Testing and debugging a model
	Expanding your model

	Creating Lucid Influence Diagrams
	Guidelines for creating lucid and elegant diagrams
	Arranging nodes to make clear diagrams
	Organizing a module hierarchy
	Color in influence diagrams
	Diagram Style dialog
	Node Style dialog
	Taking screenshots of diagrams

	Formatting Numbers, Tables, and Graphs
	Number formats
	Date formats
	Multiple formats in one table
	Graphing roles
	Graph setup dialog
	Chart Type tab
	Axis Ranges tab
	Style tab
	Text tab
	Background tab
	Preview tab
	Categorical and Continuous Plots
	Exporting graph image type

	Graph templates
	To use a graph style template
	To stop using a graph style template
	To define a new graph style template
	To modify a graph style template
	Combining local, template, and model default settings
	Saving defaults as a template model
	Graph templates and setting associations
	Changing the global default
	To rename a graph style template

	XY comparison

	Creating and Editing Definitions
	Creating or editing a definition
	Automatically updating the diagram

	The Expression popup menu
	Object Finder dialog
	Using a function or variable from the Definition menu
	Checking for valid values

	Creating Interfaces for End Users
	Using input nodes
	Creating a choice menu
	Using output nodes
	Input and output nodes and their original variables
	Using form modules
	Adding icons to nodes
	Graphics, frames, and text in a diagram
	Default and XML model file formats
	Hyperlinks in model documentation

	Using Expressions
	Expressions
	Numbers
	Date and Time Values
	Boolean or truth values
	Text values
	Operators
	Operator binding precedence

	IF a THEN b ELSE c
	Function calls and parameters
	Math functions
	Numbers and text
	Exception values INF, NAN, and NULL
	Warnings
	Datatype functions

	Arrays and Indexes
	Introducing indexes and arrays
	IF a THEN b ELSE c with arrays
	Creating an index
	Editing a list
	Defining an index as a sequence

	Functions that create indexes
	[ u1, u2, u3, … um ]
	List of variables
	m .. n
	Sequence(start, end, stepSize, strict, dateUnit)
	Concat(i, j)
	Subset(d)
	CopyIndex(i)
	Sortindex(d, i)
	Unique(a, i)

	Defining a variable as an edit table
	Indexes dialog

	Editing a table
	Editing or extending indexes in an edit table

	Splice a table when computed indexes change
	Subscript and slice of a subarray
	x[i=v]: Subscript construct
	Subscript(x, i, v)
	x[@i=n]: Slice construct
	Slice(x, i, v)
	Slice(x, n)
	Preceding time slice: x[Time-1]
	Choice(i, n, inclAll)

	Choice menus in an edit table
	Shortcuts to navigate and edit a table

	More Array Functions
	Functions that create arrays
	Array(i1, i2, … in, a)
	Table(i1, i2, … in) (u1, u2, u3, … um)

	Array-reducing functions
	Sum(x, i)
	Product(x, i)
	Average(x, i)
	Max(x, i)
	Min(x, i)
	Argmax(a, i)
	Argmin(a, i)
	CondMin(x: Array[i], cond: Boolean[i]; i: IndexType) CondMax(x: Array[i], cond: Boolean[i]; i: IndexType)
	Subindex(a, u, i)
	PositionInIndex(a, x, i)
	@: Index Position Operator
	Area(y, x, x1, x2,i)

	Transforming functions
	Cumulate(x, i)
	Uncumulate(x, i, firstElement)
	Cumproduct(x, i)
	Rank(x, i)
	Sort(x, i)
	Integrate(y, x, i)
	Normalize(y, x, i)

	Converting between multiD and relational tables
	MDArrayToTable(A, I, L) (pure relational transformation)
	MDArrayToTable(A, I, L,ValueIndex) (fact table transformation)
	MDArrayToTable() (partial transformation)
	MDTable(T, rows, cols, vars, conglomerationFn, defaultValue, ValueColumn)
	MDTable() (partial transformation)

	Interpolation functions
	Stepinterp(x, y, v, i)
	Linearinterp(x, y, v, i)
	Cubicinterp(x, y, v, i)

	Other array functions
	Aggregate(x,map,i,targetIndex)
	Concat(a1, a2, i, j, k)
	ConcatRows(a, rowIndex, colIndex, concatIndex)
	IndexNames(a)
	IndexesOf(a)
	IndexValue(i)
	Size(u,listLen)
	Subset(d,position,i,resultIndex )

	DetermTable: Deterministic tables
	SubTable
	Matrix functions
	Dot product of two matrices
	MatrixMultiply(a, aRow, aCol, b, bRow, bCol)
	Transpose(c, i, j)
	Invert(c, i, j)
	Determinant(c, i, j)
	Decompose(c, i, j)
	EigenDecomp(a: Numeric[i, j]; i, j: Index)
	SingularValueDecomp(a, i, j, j2)


	Other Functions
	Text functions
	Date functions
	Advanced math functions
	Financial functions
	Cumipmt(rate, nPer, pv, startPeriod, endPeriod, type )
	Cumprinc(rate, nPer, pv, startPeriod, endPeriod, type)
	Fv(rate, nPer, pmt, pv, type)
	Ipmt(rate, per, nPer, pv, fv, type)
	Irr(values, i, guess)
	Nper(rate, pmt, pv, fv, type)
	Npv(discountRate, values, i, offset)
	Pmt(rate, nPer, pv, fv, type)
	Ppmt(rate, per, nPer, pv, fv, type)
	Pv(rate, nPer, pmt, fv, type)
	Rate(nPer, pmt, pv, fv, type, guess)
	Xirr(values, dates, i, guess)
	Xnpv(rate, values, dates, i)

	Financial library functions
	Calloption(S, X, T, r, theta)
	Putoption(S, X, T, r, theta)
	Capm(Rf, Rm, Beta)
	CostCapme(rOpp, rD, Tc, L)
	CostCapmm(rAllEq, Tc, L)
	Implied_volatility_c(S, X, T, r, p)
	Implied_volatility_p(S, X, T, r, p)
	Pvperp(C, rate)
	Pvgperp(C1, rate, growth)
	Wacc(Debt, Equity, rD, rE, Tc)

	Advanced probability functions

	Expressing Uncertainty
	Choosing an appropriate distribution
	Defining a variable as a distribution
	Including a distribution in a definition
	Probabilistic calculation
	Uncertainty Setup dialog

	Probability Distributions
	Probability distributions
	Parametric discrete distributions
	Bernoulli(p)
	Binomial(n, p)
	Poisson(m)
	Geometric(p)
	Hypergeometric(s, m, n)
	Uniform(min, max, Integer: True)

	Probability density and mass graphs
	The domain attribute and discrete variables
	Custom discrete probabilities
	Probtable(): Probability Tables
	Determtable(): Deterministic conditional table
	Chancedist(p, a, i)

	Parametric continuous distributions
	Uniform(min, max)
	Triangular(min, mode, max)
	Normal(mean, stddev)
	Lognormal(median, gsdev, mean, stddev)
	Beta(x, y, min, max)
	Exponential(r)
	Gamma(a, b)
	Logistic(m, s)
	StudentT(d)
	Weibull(n, s)
	ChiSquared(d)

	Custom continuous distributions
	Cumdist(p, r, i)
	Probdist(p, r, i)

	Special probabilistic functions
	Certain(u)
	Shuffle(a, i)
	Truncate(u, min, max)
	Random(expr)

	Multivariate distributions
	Over indexes as parameters to probability distributions
	Probability distributions with array parameters
	Multivariate Distributions library
	Create one distribution dependent on another
	An array of distributions with correlation or covariance matrix
	Other parametric multivariate distributions
	Arrays with serial correlation
	Uncertainty over regression coefficients

	Importance weighting

	Statistics, Sensitivity, and Uncertainty Analysis
	Statistical functions
	Mean(x)
	Median(x)
	Sdeviation(x)
	Variance(x)
	Skewness(x)
	Kurtosis(x)
	Probability(b)
	GetFract(x, p)
	ProbBands(x)
	Covariance(x, y)
	Correlation(x, y)
	Rankcorrel(x, y)
	Frequency(x, i)
	Mid(x)
	Sample(x)
	Statistics(x)
	PDF(X) and CDF(X)

	Weighted statistics and w parameter
	Importance analysis
	Sensitivity analysis functions
	Dydx(y, x)
	Elasticity(y, x)
	Whatif(e, v, vNew)
	WhatIfAll(e, vList, vNew)

	Tornado charts
	X-Y plots
	Scatter plots
	Regression analysis
	Regression(y, b, i, k)

	Uncertainty in regression results
	RegressionDist(y, b, i, k)
	RegressionFitProb(y, b, i, k, c, s)
	RegressionNoise(y, b, i, k, c)


	Dynamic Simulation
	The Time index
	Using the Dynamic() function
	Dynamic(initial1, initial2..., initialn, expr)
	x [ Time - k ]

	More about the Time index
	Reference to earlier time
	Defining time
	Using Time in a model

	Initial values for Dynamic
	Using arrays in Dynamic()
	Dependencies with Dynamic
	Dynamic dependency arrows
	Expressions inside dynamic loops

	Uncertainty and Dynamic
	Resampling

	Dynamic on non-Time Indexes

	Importing, Exporting, and OLE Linking Data
	Copying and pasting
	Using OLE to link results to other applications
	Important notes about linking to Analytica results

	Linking data from other applications into Analytica
	Example of linking a table into Analytica
	Important notes about linking into Analytica edit tables

	Importing and exporting
	Printing to a file
	Edit table data import/export format
	One-dimensional array
	Two-dimensional array
	Three-dimensional array
	Number format


	Working with Large Models
	Show module hierarchy preference
	The Outline window
	Finding variables
	Managing attributes
	Referring to the value of an attribute

	Invalid variables
	Using filed modules and libraries
	Adding a module or library
	Combining models into an integrated model
	Cautions in combining models

	Managing windows

	Building Functions and Libraries
	Example function
	Using a function
	Creating a function
	Attributes of a function
	Parameter qualifiers
	Evaluation mode qualifiers
	Array qualifiers
	Type checking qualifiers
	Ordering qualifiers: Ascending and Descending
	Optional parameters
	Repeated parameters (...)
	Deprecated synonyms for parameter qualifiers

	Libraries
	Creating a library
	Adding a filed library to a model
	Using a library


	Procedural Programming
	An example of procedural programming
	Summary of programming constructs
	Begin-End, (), and “;” for grouping expressions
	Declaring local variables and assigning to them
	Defining a local variable: Var v := e
	Assigning to a local variable: v := e
	ComputedBy(x)
	Assigning to a slice of a local variable

	For and While loops and recursion
	For i := a Do expr
	While(Test) Do Body
	Iterate(initial, expr, until, maxIter, warnFlag)
	Recursive functions

	Local indexes
	Ensuring array abstraction
	References and data structures
	Handles to objects
	List of variables: [v1, v2, ... vn]
	Handle(o)
	HandleFromIdentifier(text)
	Indexes of Handles

	Dialog functions
	MsgBox(message, buttons, title)
	Error(message)
	AskMsgText(question, title, maxText, default)
	AskMsgNumber(question, title, default)
	ShowProgressBar(title, text, p)

	Miscellaneous functions
	CurrentDataDirectory(filename)
	CurrentModelDirectory(filename)
	Evaluate(e)
	GetRegistryValue(root, subfolder, name)
	IgnoreWarnings(expr)
	IsResultComputed(x)
	ShowPdfFile(filename)


	Analytica Enterprise
	Accessing databases
	Separating columns of a database table

	Database functions
	DBLabels(dbIndex)
	DBQuery(connection, sql, key)
	DBTable(dbIndex, column) DBTable(dbIndex, columnList) DBTable(dbIndex, columnIndex)
	DbTableNames(connectionString, catalogs, schemas, tables, tableTypes)
	DBWrite(connectionString, sql)
	MdxQuery(connectionString, mdx)
	SqlDriverInfo(driverName)

	Reading and writing text files
	ReadTextFile(filename)
	WriteTextFile(filename, text, append, warn, sep)

	Reading and writing from Excel spreadsheets
	SpreadsheetOpen( filename, showDialog )
	SpreadsheetSave(workbook, filename)
	SpreadsheetCell( workbook, sheet, column, row )
	SpreadsheetSetCell(workbook,sheet,col,row,value)
	SpreadsheetRange(workbook, range, colIndex, rowIndex, howToIndex, sheet )
	SpreadsheetSetRange( workbook,range,value,colIndex,rowIndex,sheet)

	Reading data from the internet
	ReadFromUrl(url, method, formValues, formFields, formIndex)

	Making a browse-only model and hiding definitions
	Linked libraries and submodules

	Huge Arrays
	Creating buttons and scripts
	Assigning to global variables
	EvaluateScript(t)
	Typescript Window

	Performance Profiler library
	Performance profiling attributes and function

	Integrating with other Applications
	RunConsoleProcess(program)
	Examples


	Appendices
	Appendix A: Selecting the Sample Size
	Appendix B: Menus
	Appendix C: Analytica Specifications
	Appendix D: Identifiers Already Used
	Appendix E: Error Message Types
	Appendix F: Forward and Backward Compatibility
	Appendix G: Bibliography

	Function List
	Glossary
	Index
	Windows and Dialogs
	Quick Reference
	The Tool Bar
	Number Formats
	Suffix format



